
Codability and Robustness in Formal Natural
Language Semantics

Kristina Liefke(B)

Munich Center for Mathematical Philosophy, Ludwig-Maximilians-University,
Geschwister-Scholl-Platz 1, 80539 Munich, Germany

K.Liefke@lmu.de

Abstract. According to the received view of type-logical semantics
(suggested by Montague and adopted by many of his successors), the
correct prediction of entailment relations between lexically complex sen-
tences requires many different types of semantic objects. This paper
argues against the need for such a rich semantic ontology. In particular,
it shows that Partee’s temperature puzzle – whose solution is commonly
taken to require a basic type for indices or for individual concepts – can
be solved in the more parsimonious type system from [11], which only
assumes basic individuals and propositions. We generalize this result to
show the soundness of the PTQ-fragment in the class of models from
[11]. Our findings support the robustness of type-theoretic models w.r.t.
their objects’ codings.

Keywords: PTQ-fragment · Individual concepts · Temperature puzzle ·
Entailment-preservation · Coding · Robustness

In choosing theories, we always invoke a principle of theoretical simplicity or par-
simony: given two theories of equal explanatory power, the theory that postulates
fewer irreducibly distinct kinds or types of entities is preferable. [10, p. 51]

1 Introduction

It is a commonplace in ontology engineering that, to model complex target sys-
tems, we need to assume many different types of objects. The semantic ontology
of natural language is no exception to this: To interpret a reasonably rich frag-
ment of English, we assume the existence of individuals, propositions, properties
of individuals, relations between individuals, situations, events, degrees, times,
substances, kinds, and many other types of objects. These objects serve the inter-
pretation of proper names, declarative sentences or complement phrases, common
nouns or intransitive verbs, transitive verbs, neutral perception verbs, adverbial
or degree modifiers, temporal adjectives, mass terms, bare noun phrases, etc.

I would Like to thank two anonymous referees for LENLS11 for their comments and
suggestions. Thanks also to Ede Zimmermann, whose comments on my talk at
Sinn und Bedeutung 18 have inspired this paper. The research for this paper
has been supported by the Deutsche Forschungsgemeinschaft (grant LI 2562/1-
1), by the LMU-Mentoring program, and by Stephan Hartmann’s Alexander von
Humboldt-professorship.

c© Springer-Verlag Berlin Heidelberg 2015
T. Murata et al. (Eds.): JSAI-isAI 2014 Workshops, LNAI 9067, pp. 6–22, 2015.
DOI: 10.1007/978-3-662-48119-6 2



Codability and Robustness in Formal Natural Language Semantics 7

Traditional type-logical semantics (esp. [11,12]) tames this zoo of objects by
assuming only a small set of primitive objects and constructing all other types of
objects from these primitives via a number of object-forming rules. In this way,
Montague reduces the referents of the basic fragment of English from [11] (hereaf-
ter, the EFL-fragment) to two basic types of objects: individuals (type ι) and
propositions (analyzed as functions from indices to truth-values, type σ → t;1

abbreviated ‘o’). From these objects, properties and binary relations of individu-
als are constructed as functions from individuals to propositions (type ι → o), resp.
as curried functions from pairs of individuals to propositions (type ι → (ι → o)).

Since Montague’s semantics reduces the number of basic objects in the lingu-
istic ontology to a small set of primitives, we hereafter refer to this view of formal
semantics as the reduction view. The latter is characterized below:

Reduction View. Many (types of) objects in the linguistic ontology can be
coded as constructions out of a few (types of) primitives. The coding relations
between objects enable the compositional interpretation of natural language.

In the last forty years, revisions and extensions of Montague’s formal seman-
tics have caused many semanticists to depart from the reduction view. This depar-
ture is witnessed by the introduction of a fair number of new basic types (including
types for primitive propositions, situations, events, degrees, and times). The intro-
duction of these new types is motivated by the coarse grain of set-theoretic func-
tions (s.t. Montague’s semantics sometimes generates wrong predictions about
linguistic entailment), and by the need to find semantic values for ‘new’ kinds
of expressions, which are not included in Montague’s small linguistic fragments.
Since many of these new values are either treated as primitives or are identified
with constructions out of new primitives, we will hereafter refer to this view of
formal semantics as the ontology engineering view. This view is captured below:

Ontology Engineering View. Many (types of) objects in the linguistic ontol-
ogy are not coded as constructions out of other objects. The compositionality of
interpretation is only due to the coding relations between a small subset of objects.

The ontology engineering view is supported by Montague’s semantics from
[11,12]. The latter interpret the EFL-fragment in models with primitive individ-
uals and propositions, and interpret the fragment of English from [12] (called
the PTQ-fragment) in models with primitive individuals, indices (i.e. possible
worlds, or world-time pairs), and truth-values. Since the PTQ-fragment extends
the lexicon of the EFL-fragment via intensional common nouns (e.g. temperature,
price) and intensional intransitive verbs (e.g. rise, change), since PTQ-models
extend the frames of EFL-models via individual concepts, and since PTQ-models
interpret intensional nouns and intransitive verbs as functions over individual
concepts, it is commonly assumed that any empirically adequate model for the
PTQ-fragment requires a basic type for indices, or for individual concepts.

The ontology engineering view is further supported by its practical advan-
tages. In particular, the availability of a larger number of basic types facilitates

1 We follow the computer science-notation for function types. Thus, σ → t corresponds
to Montague’s type 〈σ, t〉 (or, given Montague’s use of the index-type s, to 〈s, t〉).



8 K. Liefke

work for the empirical linguist: In a rich type system, fewer syntactic expressions
are interpreted in a non-basic type.2 As a result, the compositional translations
of many syntactic structures will be simpler, and will involve less lambda con-
versions than their ‘reductive’ counterparts.

However, the proliferation of basic types is not an altogether positive develop-
ment: Specifically, the interpretation of new kinds of expressions in (constructi-
ons out of) additional basic types prevents an identification of the relation
between the different type-theoretic models. As a result, we cannot check the rel-
ative consistency of the different models, transfer the interpretive success of some
classes of models to other models, or identify the minimal semantic requirements
on models for certain linguistic fragments. These problems are exemplified by
the absence of a consequence-preserving translation between the terms of Mon-
tague’s three-sorted logic IL from [12] (or of Gallin’s logic TY2 from [5]) and
the terms of the two-sorted logic underlying [11], by the resulting impossibility
of attributing the PTQ-model’s solution of Partee’s temperature puzzle to EFL-
models, and by the related open question whether a primitive type for indices is
really required for the interpretation of the PTQ-fragment.

This paper defends the reduction view with respect to the interpretation
of the PTQ-fragment. In particular, it shows that the PTQ-fragment can be
interpreted in EFL-models, which do not have a designated type for indices
or individual concepts. This interpretation is sound: the EFL-interpretation of
the PTQ-fragment preserves the entailment relation which is imposed on this
fragment by its translation into Montague’s logic IL. To illustrate this soundness,
we show that our EFL-semantics blocks Partee’s temperature puzzle from [12].

The plan of the paper is as follows: We first introduce Partee’s temperature
puzzle for extensional semantics of natural language and present Montague’s
solution to this puzzle (in Sect. 2). We then identify a strategy for the EFL-
coding of indices and truth-values, which allows us to translate the linguistically
relevant sublanguage of TY2 into an EFL-language3 (in Sect. 3). Finally, we
apply this strategy to solve Partee’s temperature puzzle (in Sect. 4). The paper
closes with a summary of our results.

2 Partee’s Temperature Puzzle and Montague’s Solution

Partee’s temperature puzzle [12, pp. 267–268] identifies a problem with exten-
sional semantics for natural language, which regards their validation of the coun-
terintuitive inference from (�):
2 For example, since linguists often assign degree modifiers (e.g. very) the type for

degrees δ (rather than the type for properties of individuals, (ι → o) → o), gradable
adjectives (e.g. tall) are interpreted in the type δ → (ι → o), rather than in the type
((ι → o) → o) → (ι → o).

3 In [11], Montague uses a direct interpretation of natural language into logical models,
which does not proceed via the translation of natural language into the language of
some logic. As a result, [11] does not identify a logical language with EFL-typed
expressions. However, since such a language is easily definable (cf. Definition 7), we
hereafter refer to any EFL-typed language as an ‘EFL-language’.



Codability and Robustness in Formal Natural Language Semantics 9

The temperature is ninety.
The temperature rises.

Ninety rises.
(�)

The origin of this problem lies in the different readings of the phrase the tempe-
rature in the two premises of (�), and in the inability of extensional semantics (e.g.
[1]) to accommodate one of these readings: In the second premise, the occurrence
of the phrase the temperature is intuitively interpreted as a function (type σ → ι)
from worlds and times (or ‘indices’, type σ) to the temperature at those worlds at
the given times.4 In the first premise, the occurrence of the temperature is inter-
preted as the value (type ι) of this function at the actual world at the current time.
Since extensional semantics do not have a designated type for indices – such that
they also lack a type for index-to-value functions –, they are unable to capture the
reading of the phrase the temperature from the second premise.

The inference from the conjunction of the translations of the two premises of
(�) to the translation of the conclusion of (�) in classical extensional logic is given
below. There, constants and variables are subscripted by their semantic type:

∃xι∀yι.(tempι→t(y) ↔ x = y) ∧ x = ninetyι

∃xι∀yι.(tempι→t(y) ↔ x = y) ∧ riseι→t(x)
riseι→t(ninetyι)

(ext -�)

The asserted identity of the temperature x with the value ninety in the first
premise of (ext -�) justifies the (counterintuitive) substitution of the translation
of the temperature from the second premise by the translation of the name ninety.

Montague’s semantics from [12] blocks this counterintuitive inference by inter-
preting intensional common nouns (e.g. temperature) and intransitive verbs (e.g.
rise) as (characteristic functions of) sets of individual concepts (type (σ → ι)(σ → ι)(σ → ι) → t),
andby restricting the interpretation of the copula is to a relation between the exten-
sions of two individual concepts at the actual world @ at the current time (i.e. to
a curried relation between individuals, type ιιι → (ιιι → t)). Since the first premise
of (�) thus only asserts the identity of the individual ‘the temperatureat @at @at @’ and the
value ninety, it blocks the substitution of the individual concept-denoting phrase
the temperature in the second premise of (�) by the name ninety.

The invalidity of the inference from the conjunction of the two premises of (�)
to the conclusion of (�) in a streamlined version of Montague’s Intensional Logic
(cf. [5]) is captured in (ptq -�). There, ninety denotes the constant function from
indices to the type-ι denotation of the term ninety (s.t. ∀iσ.ninety (i) = ninety):

∃cσ→ι∀c1σ→ι.(temp(σ→ι)→t(c1) ↔ c = c1) ∧ c (@σ) = ninetyι

∃cσ→ι∀c1σ→ι.(temp(σ→ι)→t(c1) ↔ c = c1) ∧ rise(σ→ι)→t(c)

rise(σ→ι)→t(ninetyσ→ι)

(ptq -�)
/ / / / / /

4 As a result, this reading is sometimes called the function reading (cf. [8]). The reading
of the phrase the temperature from the first premise is called the value reading.



10 K. Liefke

Since Montague’s EFL-models from [11] only assume basic types for indi-
viduals and propositions (s.t. they do not allow the construction of individual
concepts), it is commonly assumed that these models are unable to block the
inference from (�). We show below that this assumption is mistaken.

3 Connecting PTQ and EFL

To demonstrate that Montague’s models from [11] enable a solution to Partee’s
temperature puzzle, we first identify a strategy for the EFL-representation of
indices and truth-values, which allows us to code every object in the class of mod-
els from [12] as an object in the class of models from [11] (in Sect. 3.1). We will see
(in Sect. 3.3; cf. Sect. 3.2) that this strategy enables the translation of every lin-
guistically relevant term5 in a streamlined version of the language from [12] into a
term in the language of a logic with basic types ι and o. We will then show that our
translation avoids the emergence of Partee’s temperature puzzle (in Sect. 4).

3.1 Coding PTQ-Objects as EFL-Objects

To enable the translation of Montague’s PTQ-translations from [12] into terms of
an EFL-typed language, we code indices and truth-values as type-o propositions.
This coding is made possible by the interpretation of o as the type for functions
from indices to truth-values, such that there are injective maps, λiσλjσ.j = i
and λθtλiσ.θ, from indices and truth-values to propositions. These maps enable
the representation of indices via characteristic functions of the singleton sets
containing these indices, and the representation of truth-values via constant
functions from indices to these truth-values.

The existence of these maps suggests the possibility of replacing all non-
propositional occurrences6 of the types σ and t and all occurrences of the type
σ → t by the type o. This replacement scheme converts the type for individual
concepts into the type ooo → ι,7 and converts the type for (characteristic functions
of) sets of individuals into the type ι → ooo. The type for sets of individual
concepts is then converted into the type (ooo → ι) → ooo. However, this scheme
fails to associate the types of some EFL-expressions from [12] with the ι- and
o-based types from [11]. In particular, it associates the PTQ-type of common
nouns, σ → (ι → t), with the type ooo → (ι → ooo), rather than with the type of
common nouns from [11], ι → ooo. But this is undesirable.

5 These are terms which are associated with PTQ-expressions.
6 The latter are occurrences of index- and truth-value types which are not a constituent

of the propositional type σ → t. The need for the distinction between propositional
and non-propositional occurrences of the types σ and t is discussed below.

7 We will see that, since no other syntactic category of the PTQ-fragment receives an
interpretation in a construction involving the type o → ι, semantic types involving
this type still motivate the syntactic categories. This contrasts with the coding of
degrees as equivalence classes of individuals (in [2]), which assigns adjectives (origi-
nally, type δ → (ι → t)) the type for verbal modifiers, (ι → t) → (ι → t).



Codability and Robustness in Formal Natural Language Semantics 11

To ensure the correct conversion of PTQ-types into EFL-types, we refine the
above replacement scheme into the type-conversion rule from Definition 4. In
the definition of this rule, the sets of TY2 types and of EFL-types8 (hereafter
called ‘TY1 types’), and a TY2 type’s o-normal form are defined as follows:

Definition 1 (TY2 Types). The set 2Type of TY2 types is the smallest set of
strings such that ι, σ, t ∈ 2Type and, for all α, β ∈ 2Type, (α → β) ∈ 2Type.

Definition 2 (TY1 Types). The set 1Type of TY1 types is the smallest set of
strings such that ι, o ∈ 1Type and, for all α, β ∈ 1Type, (α → β) ∈ 1Type.

It is clear from the above and from the definition of o as σ → t that all TY1 types
are TY2 types, but not the other way around. In particular, the TY2 types σ, t,
and constructions out of these types (esp. the types σ → ι, (σ → ι) → t, and
σ → (ι → t)) are not TY1 types.

Definition 3 (o-normal form). An o-normal form, β, of a TY2 type α is a TY2

type that has been obtained fromα via a unary variant, ♦, of the permutation relation
� from [14, p. 119]. The former is defined as follows, where 0 ≤ n ∈ N:9

(i) σ♦ = σ; t♦ = t ; ι♦ = ι;
(ii) (σ → (α1 → (. . . → (αn → t))))♦ = α♦

1 → (. . . → (α♦
n → (σ → t)));

(iii) (α → β)♦ = (α♦ → β♦), if (α → β) 	= (σ → (α1 → (. . . → (αn → t))))

Definition 3 identifies the type for functions from individuals to propositions,
ι → (σ → t) (i.e. the type for ‘properties’ of individuals), as the o-normal form
of the type for parametrized sets of individuals, σ → (ι → t).

The conversion of TY2 into TY1 types is defined below:

Definition 4 (Type-conversion). The relation ξ connects TY2 types with
TY1 types via the following recursion:

I. (i) ξ(ι) = ι;
(ii) ξ(σ) = ξ(t) = o, when σ resp. t does not occur in (σ → t);

II. (i) ξ(σ → t) = o;
(ii) ξ(α → β) = ξ(γ → δ) = (ξ(γ) → ξ(δ)), where (γ → δ) = (α → β)♦

and (α → β) 	= (σ → t).

Clauses I and II.(i) capture the conversion of basic and propositional TY2 types.
Clause II.(ii) captures the conversion of all other complex TY2 types. Specifically,
the conjunction of this clause with the clauses for the conversion of basic TY2

types enables the conversion of the type for individual concepts, σσσ → ι, to
the type for proposition-to-individual functions, ooo → ι, and of the type for
sets of individuals, ι → ttt, to the type for properties of individuals, ι → ooo. The
conjunction of clause II.(ii) with the converted TY2 types for individual concepts
and truth-values then enables the conversion of the type for sets of individual
8 Since n-ary functions can be coded as unary functions of a higher type (cf. [16]), our

definition of TY1 types neglects n-ary function types, which are assumed in [11].
9 Following Muskens, we write ‘♦ ’ in postfix notation, such that ‘α♦ ’ denotes ♦(α).



12 K. Liefke

concepts, (σσσ → ι) → ttt, to the type for properties of proposition-to-individual
functions, (ooo → ι) → ooo. Since the type ι → (σ → t) is the o-normal form of
the type σ → (ι → t) (cf. clause II.(ii)), the type ι → o is the converted type of
both parametrized sets of individuals (type σ → (ι → t)) and of properties of
individuals (type ι → (σ → t)).

Notably, the restriction of clauses I.(ii) and II.(ii) to non-propositional types,
resp. to o-normal forms prevents the undesired conversion of the type σ → t into
the type for properties of propositions, o → o, and of the type for parametrized
sets of type-α objects, σσσ → (α → ttt), to the type for functions from propositions
to properties of type-α objects (type o → (α → o)). The converted TY2 types
of all classes of expressions from the PTQ-fragment are listed in Table 1:10

Table 1. TY2 and converted TY2 (i.e. TY1) types of PTQ-expressions.

Cat’y α ∈ 2Type ξ(α) Cat’y α ∈ 2Type ξ(α) ∈ 1Type

Name ι ι NP (σ → (ι → t)) → t (ι → o) → o

S t o SCV (σ → t) → (ι → t) [6] o → (ι → o)

C, SAV (σ → t) → t o → o ADV (σ → (ι → t)) → (ι → t) (ι → o) → (ι → o)

CN, IV ι → t ι → o [2, 3] CN, IV (σ → ι) → t (o → ι) → o

TV [4] ι → (ι → t) ι → (ι → o) ICV (σ → (ι → t)) → (ι → t) (ι → o) → (ι → o)

TV [5] (σ → ((σ → (ι → t)) → t)) → (ι → t) ((ι → o) → o) → (ι → o)

DET (σ → (ι → t)) → ((σ → (ι → t)) → t) (ι → o) → ((ι → o) → o)

P [8] ι → ((σ → (ι → t)) → (ι → t)) ι → ((ι → o) → (ι → o))

P (σ → ((σ → (ι → t)) → t)) → ((σ → (ι → t)) → (ι → t))
((ι → o) → o) → ((ι → o) → (ι → o))

This completes our discussion of the TY1-coding of TY2 types. To show the
possibility of interpreting the PTQ-fragment in TY1 models, we next describe
the class of languages of the logics TY2 and TY1 (in Sect. 3.2), and translate all
linguistically relevant TY2 terms into terms of the logic TY1 (in Sect. 3.3). We
then observe that this translation is entailment-preserving.

3.2 The Languages of TY2 and TY1

The languages of the logics TY2 and TY1 are defined as countable sets
∪α∈2TypeLα, resp. ∪β∈1TypeLβ , of uniquely typed non-logical constants. For every
TY2 type α and TY1 type β, we further assume a countable set V2

α, resp. V1
β of

uniquely typed variables, with ‘∪α∈2TypeV2
α’ abbreviated as ‘V2’ and ‘∪β∈1TypeVβ ’

abbreviated as ‘V1’. From these basic expressions, we form complex terms induc-
tively with the help of functional application, lambda abstraction, and the con-
stants for falsum, ⊥, and logical implication, →.
10 These type-assignments incorporate the type-ι interpretation of names and the mea-

ning postulates from [12, pp. 263–264]. The latter are given in square brackets.



Codability and Robustness in Formal Natural Language Semantics 13

In the definition of TY2 terms, the set CoType of conjoinable TY2 types is
defined as follows (cf. [15]):

Definition 5 (Conjoinable TY2 Types). The set CoType of conjoinable
types of the logic TY2 is the smallest set of strings such that, if α1, . . . , αn ∈
2Type, then α1 → (. . . → (αn → t)) ∈ CoType, where 0 ≤ n ∈ N.

According to the above, a TY2 term has a conjoinable type if its type is either the
truth-value type t or a construction to the type t (via one or more applications of
the rule from Definition 1). In these two cases, we say that the term is conjoinable.

Definition 6 (TY2 Terms). Let α, β ∈ 2Type, and let ε ∈ CoType. The set T 2
α

of TY2 terms of type α is then defined as follows:

(i) L2
α,V2

α ⊆ T 2
α, ⊥ ∈ T 2

t ;
(ii) If B ∈ T 2

α→β and A ∈ T 2
α, then (B (A)) ∈ T 2

β ;
(iii) If A ∈ T 2

β and x ∈ V2
α, then (λx.A) ∈ T 2

α→β;
(iv) If B,C ∈ T 2

ε , then (B → C ) ∈ T 2
t .

Clause (i) identifies all members of L2
α and V2

α as TY2 terms. Clauses (ii) and (iii)
identify the results of application and abstraction as TY2 terms. Clause (iv) spe-
cifies the formation of complex TY2 terms. From ⊥ and →, the familiar TY2

connectives and quantifiers are standardly obtained (cf. [7]).
We next define the terms of the logic TY1. Notably, since TY1 does not

have a type for truth-values, the TY2 constants ⊥ (type t) and → (type ε →
(ε → t)) are not available in TY1. The non-logical constants �⊥ (type o) and →·
(type ε → (ε → o)) serve as their single-type stand-ins, where ε is in the proper
subset,PropType = {α1 → (. . . → (αn → o)) |α1, . . . , αn ∈ 1Type}, of the set
of conjoinable TY2 types.11 We hereafter call members of this set propositional
types.

Definition 7 (TY1 Terms). Let α, β ∈ 1Type, and let ε ∈ PropType. The set
T 1

α of TY1 terms of type α is then defined as follows:

(i) L1
α,V1

α ⊆ T 1
α, �⊥ ∈ T 1

o ;
(ii) If B ∈ T 1

α→β and A ∈ T 1
α, then (B (A)) ∈ T 1

β ;
(iii) If A ∈ T 1

β and x ∈ V1
α, then (λx.A) ∈ T 1

α→β;
(iv) If B,C ∈ T 1

ε , then (B →· C ) ∈ T 1
o .

The typing12 of →· , B, and C in clause (iv) suggests that the term (B →· C) be
instead written as ‘→· (B)(C)’. Our use of infix notation for →· (and similarly,
11 [17] and [4] use a similar strategy for the introduction of propositional connectives.
12 Since we only stipulate that ε ∈ PropType, clause (iv) describes →· as a non-uniquely

typed constant, which applies to pairs of arguments of all propositional TY1 types.
To avoid an extension of the TY1 type system via polymorphic types, we assume a
schematic (or abbreviatory) polymorphism of types. The latter is a syntactic device
whereby a metatheoretical symbol is used to abbreviate a range of (monomorphic)
types. Thus, in (iv), ε may be instantiated by any of the elements in PropType.

The constant →· then represents a family, {→· ε→(ε→o) | ε ∈ PropType}, of distinct
identical-looking constants, one for each type.



14 K. Liefke

for the TY1 proxies of all other logical TY2 constants; cf. Notation 1) is intended
to remind the reader of their emulated logical role (cf. Definition 8).

From �⊥ and →· , the TY1 proxies of the other truth-functional connectives
and quantifiers are easily obtained. In particular, the TY1 proxies for the logical
constants 
,∀,=,¬,∧, and � (i.e. �� ,

∧
,

.=,�, .∧ , and �· ) are obtained by variants
of the definitions from [7]. Below, we let A, x and y, X (or B, C ), and Y be
variables (resp. constants) of the type o, α, α → o, resp. (α → o) → o, where
α ∈ 1Type:

Notation 1 We write

�� for (�⊥ →· �⊥ ); (
∧

x.A) for ((λx.�� )→· (λx.A));
B

.= C for (
∧

Y. Y (B)→· Y (C )); �B for (λx.B(x) .= �⊥ );
(B .∧C ) for (λx.(λX.X(B .= C )) .= (λX.X(�� )))
(B .∧

C ) for �(�B .∧ �C ); �· A for (
∧

x.x
.= �⊥ .∧(x →· A))

The TY1 stand-ins, 	 .=, ↔· ,
∨

, and �· , of the familiar symbols for inequality,
(material) biimplication, the existential quantifier, and the modal diamond oper-
ator have their expected definitions.

The behavior of �⊥ , →· , and of the defined constants from Notation 1 is
governed by the constraints from Definition 8:

Definition 8 (Constraints on L1-constants). The interpretations of the
TY1 constants �⊥ and →· obey the following semantic constraints:13

(C1) �⊥ = (λiσ.⊥); (C2) (B →· C ) = (λiσ∀x.B (x)(i) → C (x)(i))

The constraints (C1) and (C2) define the designated TY1 constants �⊥ and →· as
the results of lifting the TY2 connectives ⊥ and → to terms of the logic TY1.14

In particular, (C1) defines the constant �⊥ as the designator of the constant
function from indices to falsum. From (C1), (C2), and Notation 1, the constraints
for the remaining designated TY1 constants are easily obtained. Since the TY1

constants , and � are η-equivalent to their TY2 constraints, we hereafter use
instead the familiar connectives ∧, ∨, and ¬.

3.3 Translating LTY2 into LTY1

To prepare the TY1 translation of the PTQ-fragment, we next introduce the
particular TY2 and TY1 languages, L2 and L1, whose constants are associated
with the lexical elements of the PTQ-fragment. Following a streamlined presen-
tation of Montague’s PTQ-to-IL (or TY2) translation from [12] (cf. [5]), we then
identify a relation between L2- and L1-terms.

Tables 2 and 3 contain the non-logical constants of the designated languages
L2, resp. L1. The small grey tables introduce our notational conventions for vari-
ables. In the tables, brackets contain the relevant meaning postulates from [12],
13 These constraints are formulated in the TY1 metatheory, TY2 (cf. Sect. 3.3).
14 This is reminiscent of the translation of dynamic to typed terms from [13, p. 9].



Codability and Robustness in Formal Natural Language Semantics 15

resp. the constants’ interpretive domains from [11]. We will abbreviate x1, x2, and
x3 as ‘x’, ‘y’, resp. ‘z’, abbreviate i1, i2, and i3 as ‘i’, ‘j’, resp. ‘k’, and abbreviate
p1, p2, and p3 and c1, P1, and Q1 as ‘p’, ‘q’ resp. ‘r’ and ‘c’, ‘P ’, resp. ‘Q’.

Table 2. L2 constants and variables.

Table 3. L1 constants and variables.

We denote the sets of TY2 and TY1 terms which are obtained from L2 and L1

via the operations from Definitions 6 and 7 by ‘T 2’, resp. ‘T 1’.
Note that the language L1 adopts the individual constants, john,mary, bill,

and ninety, of the language L2. To connect the designated languages of the logics
TY2 and TY1, we further assume that each term from L1 is also a member of L2

(s.t. L1 is a sublanguage of L2), and that the designated TY2 frame F2 and



16 K. Liefke

interpretation function IF2 embed the designated frame F1 and interpretation
function IF1 of the logic TY1, such that F1 = F2�1Type and IF1 = IF2�1Type .

We next give a streamlined presentation of Montague’s PTQ-to-IL (or TY2)
translation from [12]:

We identify Logical Form (LF) with the component of syntactic representa-
tion which is interpreted in TY2 models. Logical forms are translated into TY2

terms via the process of type-driven translation (cf. [9]). The latter proceeds in
two steps, by first defining the translations of lexical elements, and then defining
the translations of non-lexical elements compositionally from the translations of
their constituents.

Definition 9 (Basic TY2 Translations). The base rule of type-driven trans-
lation translates the lexical PTQ-elements15 into the following TY2 terms16,
where X1, . . . , Xn, R, and R1 are TY2 variables of the types α1, . . . , αn, resp.
α1 → (. . . → (αn → t)), and where tn is the trace of a moved constituent in a
logical form that is translated as a free variable:

On the basis of the above, we define the relation between T 2 and T 1 terms
as follows:

Definition 10 (Embedding TY2 in TY1). The relation • connects the des-
ignated terms of the logic TY2 with terms of the logic TY1, such that
I. (i) john• = john ; man • = man ; walk • = walk ; temp • = temp ;

ninety • = ninety ; ninety • = ninety ; rise • = rise ; find • = find ;
seek • = seek; allegedly • = allegedly ; about • = about ; in • = in ;

believe • = believe; assert • = assert ; rapidly • = rapidly ; try • = try ;
@ • = @@@;

(ii) x•
k = xk for 1 ≤ k ∈ N; c •

k = ck for 1 ≤ k ∈ N;
P •

k = Pk for 1 ≤ k ∈ N; p •
k = pk for 1 ≤ k ∈ N;

T •
k = Tk for 1 ≤ k ∈ N; i•k = pk for 1 ≤ k ∈ N;

15 For reasons of space, we only translate some representative elements. Expressions of
the same lexical (sub-)category receive an analogous translation.

16 To perspicuate the compositional properties of our PTQ-translations, we assign lexi-
cal PTQ-elements variants of their TY2 types from Table 1. Thus, the translation
of extensional nouns as type-(σ →σ →σ → (ι → t)) constants facilitates the application
of translations of determiners to the translations of these expressions. To enable a
compositional translation of other complex expressions (e.g. the application of verb-
to name-translations), we use a permutation operation on the translations’ lambdas.



Codability and Robustness in Formal Natural Language Semantics 17

II. (i) (Bσ→β(Aσ))• = B• if β = t or β = (γ → t), where γ ∈ 2Type;
(Bα→β(Aα))• = (B•(A•)) otherwise;

(ii) (λxσ.Aβ)• = (A[x := @])• if β = t or β = (γ → t), where γ ∈ 2Type;
(λxα.Aβ)• = (λx•.A•) otherwise, if (α → β) = (α → β)♦;
(λxα.Aβ)• = (λX•

γ.(λx.A (X))•) otherwise, granted β := (γ → δ), w.
X the 1st variable that doesn’t occur free in A;

(iii) ⊥• = �⊥ ; (B → C)• = (B• →· C •)

In the first item from II.(ii), ‘A[x := @]’ denotes the result of replacing all bound
occurrences of x in A by ‘@’.

The translation rules from Definition 10 respect the behavior of the type con-
verter ξ from Definition 4. Thus, the relation • translates individual and proposi-
tional TY2 terms (e.g. ninety, xk, pk) into themselves, translates TY2 terms for
individual concepts (e.g. ninety , ck) into TY1 terms for proposition-to-individual
functions, and translates TY2 terms for parametrized sets of individuals (or of
individual concepts) (e.g.man, Pk; resp. temp, Tk) into TY1 terms for properties
of individuals (resp. for properties of proposition-to-individual functions).

The translation rules from clause II ensure the correct translation of com-
plex TY2 terms. Specifically, the rules for the TY1 translation of ⊥ and → (cf.
clause II.(iii)) associate the logical TY2 constants with their propositional corre-
spondents from TY1. From the translations in clauses I and II.(iii), the rules for
application and abstraction (clause II.(i), (ii)) enable the compositionalTY1 trans-
lation of all PTQ-translations from Definition 9. In these rules, the contraints on
abstraction block the undesired translation of type-(σ → t) terms as TY1 terms of
the type o → o. The constraints on application enable the translation of the result
of applying a type-(σ → t) (or type-(σ → (γ → t))) term to a type-σ term.

The translations of some example TY2 terms are given below. In these trans-
lations, the TY1 correlates of logical TY2 constants other than ⊥ and → are
obtained from the TY1 translations of ⊥ and → via the definitions of the remain-
ing logical TY2 constants from [7] and the conventions from Notation 1. In par-
ticular, the TY2 constant 
 is translated as follows:

The translations of ∀, ∃, =, ∧, and ↔ are analogously obtained, such that

(∀x.A)• = (
∧

x•.A•); (B = C)• = B • .= C •; (B ↔ C)• = (B • ↔· C •);
(∃x.A)• = (

∨
x•.A•); (B ∧ C)• = (B •∧ C •).

From the above translations, the translations of the copula is and of the
determiner the are obtained thus:



18 K. Liefke

Since the relation • respects the structure of each TY2 term from
Definition 9, the interpretation of the PTQ-fragment in the class of designated
TY1 models preserves the entailment relation which is imposed on this fragment
by its translation into the logic TY2. This observation is captured below:

Theorem 1 (Soundness of Translation). Let Γ and Δ, and Γ • := {γ• | γ ∈
Γ} and Δ• := {δ• | δ ∈ Δ} be sets of designated TY2 formulas and their TY1

translations. Then,
Γ • �TY1 Δ• iff Γ �TY2 Δ.

In the above case, we say that the TY2-to-TY1 translation is sound.

Proof. The proof relies on the definition of • and on the proof theories of TY2

and TY1.

4 Solving the Temperature Puzzle in EFL

To illustrate Theorem 1, we next show that the TY1(-via-TY2) translation of
the PTQ-fragment blocks Partee’s temperature puzzle. Since we use the strategy
of “try[ing] simplest types first” (cf. Tables 1 and 2, Definition 9), the applica-
tion of the TY2 (or TY1) translations of intensional expressions to the trans-
lations of other PTQ-expressions needs to be handled through type-shifting.
In particular, to apply17 the TY2 translations of determiners (e.g. the; type
(σ → (ι → t)) → (σ → ((σ → (ι → t)) → t))) to the TY2 translations of inten-
sional common nouns (e.g. temperature; type σ → ((σ →σ →σ → ι) → t)), we introduce
the extensionalization operator ext. This operator sends the designators of para-
metrized sets of individual concepts (type σ → ((σ →σ →σ → ι) → t)) to the designators
of parametrized sets of individuals (type σ → (ι → t)).

Definition 11 (Extensionalization). The function ext := λTλiλx∃c.T (i)(c)
∧ x = c (@) sends type-(σ → ((σ → ι) → t)) terms to type-(σ → (ι → t)) terms.

The operator ext enables the ‘extensionalization’ of the TY2 translation, temp,
of the noun temperature to the TY2 term λiλx∃c.temp (i)(c) ∧ x = c(@). This
term denotes a function from indices to the set of individuals whose members are
identical to the result of applying some type-(σ → ι) witness, c, of the property
denoted by temp to the current index. To prevent an extensional interpretation
of the second premise from (�) (cf. (ext -�)), we restrict ext to the translations
of nouns.

17 Here, the type of the argument is underlined.



Codability and Robustness in Formal Natural Language Semantics 19

The possibility of interpreting intensional nouns in the type σ → (ι → t)
enables the TY1 translation of the first premise from (�):

Notably, the term from (4.7) does not result from the term in the first premise
of (ptq -�) by replacing ‘c’ and ‘c1’ by ‘c’ and ‘c1’, and by replacing ‘temp’ and
‘rise’ by ‘temp’, resp. ‘rise ’. In particular, while the term in the first premise
of (ptq -�) states the existence of a unique witness of the type-((σ → ι)(σ → ι)(σ → ι) → t)
property of being a temperature, the term from (4.7) only states the existence of
a unique witness of the TY1 correlate of the type-(σ → (ιιι → t)) property of being
the temperature at the current index. Yet, since the occurrence of the temperature
in the first premise of (�) receives an extensional interpretation (type ι), this
weakening is unproblematic. We will see at the end of this section that (the TY2

correlate of) our weaker TY1 term still blocks Partee’s temperature puzzle.
To enable an intensional (type-(σ → ((σ → ((σ →σ →σ → ι) → t)) → t))) interpre-

tation of the phrase the temperature, we introduce the intensionalization operator
int. This operator sends the designators of individuals to the designators of indi-
vidual concepts, and sends the designators of functions from parametrized sets of
individuals to parametrized generalized quantifiers over individuals (type (σ →
(ιιι → t)) → (σ → ((σ → (ιιι → t)) → t))) to the designators of functions from
parametrized sets of individual concepts to generalized quantifiers over individual
concepts (type (σ → ((σ → ι)(σ → ι)(σ → ι) → t)) → (σ → ((σ → ((σ → ι)(σ → ι)(σ → ι) → t)) → t))).18

18 Since this operator is restricted to the types of proper names and determiners, it
cannot be used to provide an intensional translation of the first premise from (�)



20 K. Liefke

Definition 12 (Intensionalization). The operator ‘int’ then works as follows:

int (ninety) := ninety

int (λP2λiλP ∃x.P2(i)(x) ∧ P (i)(x)) := λT2λiλT ∃c.T2(i)(c) ∧ T (i)(c)
int (λP2λiλP ∀x.P2(i)(x) → P (i)(x)) := λT2λiλT ∃c.T2(i)(c) → T (i)(c)
int (λP2λiλP ∃x∀y.(P2(i)(y) ↔ x = y) ∧ P (i)(x))

:= λT2λiλT ∃c∀c2.(T2(i)(c2) ↔ c = c2) ∧ T (i)(c)

The operator int is an ‘ι-to-(σ → ι)’-restricted partial variant of the intension-
alization operator for extensional TY2 terms from [6] (cf. [3, Chap. 8.4]). This
operator systematically replaces each occurrence of ι in the type of a linguistic
expression by the type σ →σ →σ → ι. As a result, the type for parametrized generalized
quantifiers over individuals, σ → ((σ → (ιιι → t)) → t), will be replaced by the
type σ → ((σ → ((σ → ι)(σ → ι)(σ → ι) → t)) → t).

The interpretation of intensional noun phrases in the type σ → ((σ → ((σ →
ι) → t)) → t) enables the TY1 translation of the second premise from (�):

The possibility of interpreting proper names in the type for individual con-
cepts enables us to translate the conclusion from (�) as follows:

This completes our translation of the ‘ingredient sentences’ for Partee’s tem-
perature puzzle. The invalid inference from the conjunction of (4.7) and (5.5) to
(6.3) in the logic TY1 is captured below:

(and, hence, to ‘allow’ Partee’s temperature puzzle). I owe this observation to Ede
Zimmermann.



Codability and Robustness in Formal Natural Language Semantics 21

∨
x

∧
y.((

∨
c. temp (c) ∧ y

.= c (@@@)) ↔· x
.= y) ∧ x

.= ninety
∨
c

∧
c2.(temp (c2) ↔· c

.= c2) ∧ rise(c)
rise (ninety)

(efl -�)
/ / / / / / / / / /

In particular, while the formula in the second premise attributes the property
‘rise’ to the type-(o →o →o → ι) object which has the property of being a temperature,
the formula in the first premise attributes the property ‘is ninety’ only to the
result (type ι) of applying a temperature-object to the EFL-correlate of @. In
virtue of this fact – and the resulting invalidity of substituting ninety for c in
the second premise of (efl -�) −, the formula in the conclusion does not follow
from the conjunction of the two premise-formulas by the (classical) rules of TY1.

5 Conclusion

This paper has shown the possibility of interpreting Montague’s PTQ-fragment
in the class of EFL-models from [11], which only contain basic individuals and
propositions. We have obtained this result by coding the interpretations of the
PTQ-expressions from [12] into EFL-objects, and by translating the linguistically
relevant sublanguage of a streamlined version, TY2, of Montague’s logic IL into
the EFL-typed language TY1 which respects this coding. Since this translation
preserves the relation of logical consequence on the TY2 translations of PTQ-
sentences, it enables a new, extensional, solution to Partee’s temperature puzzle.

The previously-assumed impossibility of such a solution can be attributed to
the various challenges which emerge for any TY2-to-TY1 translation. These chal-
lenges include the different forms of the linguistically relevant TY2 and TY1 types,
and the unavailability of truth-functional connectives or quantifiers in the lan-
guage of TY1. Our solutions to these challenges build on existing work on the
relation between TY2 and IL types [14], and on hyperintensional semantics [17].

Our TY2-to-TY1 translation enables a transfer of the interpretive success of
PTQ-models to EFL-models (esp. w.r.t. the solvability of Partee’s temperature
puzzle) and a proof of the relative consistency of the two classes of models. At
the same time, it identifies the minimal semantic requirements on formal models
for the PTQ-fragment. Contrary to what is suggested by a comparison of [12]
and [11], suitable PTQ-models need not contain a designated type for indices.
We take these results to support the reduction view of formal natural language
semantics.

References

1. Church, A.: A formulation of the simple theory of types. J. Symbolic Log. 5(2),
56–68 (1940)

2. Cresswell, M.J.: The semantics of degree. In: Partee, B. (ed.) Montague Grammar.
Academic Press, New York (1976)

3. van Eijck, J., Unger, C.: Computational Semantics with Functional Programming.
Cambridge University Press, Cambridge (2010)



22 K. Liefke

4. Fox, C., Lappin, S.: An expressive first-order logic with flexible typing for natural
language semantics. Log. J. IGPL 12(2), 135–168 (2004)

5. Gallin, D.: Intensional and Higher-Order Modal Logic with Applications to Mon-
tague Semantics. North Holland, Amsterdam (1975)

6. de Groote, P., Kanazawa, M.: A note on intensionalization. J. Log. Lang. Inform.
22(2), 173–194 (2013)

7. Henkin, L.: Completeness in the theory of types. J. of Symb. Log. 15, 81–91 (1950)
8. Janssen, T.M.V.: Individual concepts are useful. In: Landman, F., Veltman, F.

(eds.) Varieties of Formal Semantics: Proceedings of the 4th Amsterdam Collo-
quium (1984)

9. Klein, E., Sag, I.: Type-driven translation. Linguist. Philos. 8, 163–201 (1985)
10. Loux, M.J.: Metaphysics: A Contemporary Introduction. Routledge, New York

(2006)
11. Montague, R.: English as a formal language. In: Thomason, R.H. (ed.) Formal

Philosophy: Selected papers of Richard Montague. Yale University Press, New
Haven (1976)

12. Montague, R.: The proper treatment of quantification in ordinary English. In:
Thomason, R.H. (ed.) Formal Philosophy: Selected papers of Richard Montague.
Yale University Press, New Haven (1976)

13. Muskens, R.: Anaphora and the logic of change. Log. AI 478, 412–427 (1991)
14. Muskens, R.: Meaning and Partiality. CSLI Lecture Notes. FoLLI, Stanford (1995)
15. Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Bauerle, R.,

Schwarz, C., von Stechow, A. (eds.) Meaning, Use and Interpretation of Language.
Walter De Gruyter, Berlin (1983)

16. Schönfinkel, M.: Über die Bausteine der mathematischen Logik. Math. Ann. 92,
305–316 (1924)

17. Thomason, R.H.: A model theory for the propositional attitudes. Linguist. Philos.
4, 47–70 (1980)



http://www.springer.com/978-3-662-48118-9


	Codability and Robustness in Formal Natural Language Semantics
	1 Introduction
	2 Partee's Temperature Puzzle and Montague's Solution
	3 Connecting PTQ and EFL
	3.1 Coding PTQ-Objects as EFL-Objects
	3.2 The Languages of TY2 and TY1
	3.3 Translating LTY2 into LTY1

	4 Solving the Temperature Puzzle in EFL
	5 Conclusion
	References


