Static Analysis with Set-Closure in Secrecy

Woosuk Lee®™), Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon

Seoul National University, Seoul, South Korea
{wslee,kwang}@ropas.snu.ac.kr,
{hongsuk07, jhcheon}@snu.ac.kr

Abstract. We report that the homomorphic encryption scheme can
unleash the possibility of static analysis of encrypted programs. Sta-
tic analysis in cipher-world is desirable in the static-analysis-as-a-service
setting, because it allows the program owners to encrypt and upload
their programs to the static analysis service while the service provider
can still analyze the encrypted programs without decrypting them. Only
the owner of the decryption key (the program owner) is able to decrypt
the analysis result. As a concrete example, we describe how to perform
a pointer analysis in secrecy. In our method, a somewhat homomor-
phic encryption scheme of depth O(logm) is able to evaluate a simple
pointer analysis with O(logm) homomorphic matrix multiplications, for
the number m of pointer variables when the maximal pointer level is
bounded. We also demonstrate the viability of our method by imple-
menting the pointer analysis in secrecy.

1 Introduction

In order for a static-analysis-as-a-service system [1] to be popular, we need to
solve the users’ copy-right concerns. Users are reluctant to upload their source
to analysis server.

For more widespread use of such service, we explored a method of performing
static analysis on encrypted programs. Figure 1 depicts the system.

Challenge. Our work is based on homomorphic encryption (HE). A HE scheme
enables computation of arbitrary functions on encrypted data. In other words,
a HE scheme provides the functions fg and fa that satisfy the following homo-
morphic properties for plaintexts x,y € {0,1} without any secrets:

Enc(z @ y) = fo(Enc(z),Enc(y)), Enc(z Ay) = fa(Enc(z), Enc(y))

A HE scheme was first shown in the work of Gentry [14]. Since then, although
there have been many efforts to improve the efficiency [3,4,9,21], the cost is still
too large for immediate applications into daily computations.

Due to the high complexity of HE operation, practical deployments of HE
require application-specific techniques. Application-specific techniques are often
demonstrated in other fields. Kim et al. [8] introduced an optimization tech-
nique to reduce the depth of an arithmetic circuit computing edit distance on
© Springer-Verlag Berlin Heidelberg 2015

S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 18-35, 2015.
DOI: 10.1007/978-3-662-48288-9 2

Static Analysis with Set-Closure in Secrecy 19

encrypted DNA sequences. In addition, methods of bubble sort and insertion
sort on encrypted data have been proposed [6]. Also, private database query
protocol using somewhat homomorphic encryption has been proposed [2].

Our Results. As a first step, we propose a pointer analysis in secrecy. As
many analyses depends on the pointer information, we expect our work to have
significant implications along the way to static analysis in secrecy.

We first describe a basic approach. We design an arithmetic circuit of the
pointer analysis algorithm only using operations that a HE scheme supports.
Program owner encrypts some numbers representing his program under the HE
scheme. On the encrypted data, a server performs a series of corresponding homo-
morphic operations referring to the arithmetic circuit and outputs encrypted
pointer analysis results. This basic approach is simple but very costly.

To decrease the cost of the basic approach, we apply two optimization tech-
niques. One is to exploit the ciphertert packing technique not only for perfor-
mance boost but also for decreasing the huge number of ciphertexts required
for the basic scheme. The basic approach makes ciphertexts size grow by the
square to the number of pointer variables in a program, which is far from prac-
tical. Ciphertext packing makes total ciphertexts size be linear to the number of
variables. The other technique is level-by-level analysis. We analyze the pointers
of the same level together from the highest to lowest. With this technique, the
depth of the arithmetic circuit for the pointer analysis significantly decreases:
from O(m?logm) to O(nlogm) for the number m of pointer variables and the
maximal pointer level n. By decreasing the depth, which is the most important
in performance of HE schemes, the technique decreases both ciphertexts size and
the cost of each homomorphic operation.

The improvement by the two optimizations is summarized in Table 1.

Table 1. The comparison between the basic and the improved scheme

Multiplicative depth | # Ctxt
2

Basic O(m?logm) 4m
Improved | O(nlogm) (2n+2)m
m : the number of pointer variables in the
target program

n : the maximum level of pointer in the
program, which does not exceed 5in usual

Although our interest in this paper is limited to a pointer analysis, we expect
other analyses in the same family will be performed in a similar manner to our
method. Analyses in the family essentially compute a transitive closure of a
graph subject to dynamic changes; new edges may be added during the analysis.
Our method computes an encrypted transitive closure of a graph when both
edge insertion queries and all the edges are encrypted. Thus, we expect only a
few modifications to our method will make other similar analyses (e.g., 0-CFA)
be in secrecy.

20 W. Lee et al.
Program

A_> N
A S f B Bug finder

Bug report

Fig. 1. Secure static analysis is performed in 3 steps: (1) target program encryp-
tion (2)analysis in secrecy, and (3) analysis result decryption

2 Background

In this section, we introduce the concept of homomorphic encryption, and
describe the security model of our static analysis in secrecy.

2.1 Homomorphic Encryption

A homomorphic encryption (HE) scheme HE=(KG, Enc, Dec, Eval) is a quadruple
of probabilistic polynomial-time algorithm as follows:

— (pk, evk; sk) «+— HE.KG(1*): The algorithm takes the security parameter A as
input and outputs a public encryption key pk, a public evaluation key evk,
and a secret decryption key sk.

— €« HE.Encpk(pt, 7): The algorithm takes the public key pk, a single bit mes-
sage i1 € {0,1},! and a randomizer r. It outputs a ciphertext é. If we have no
confusion, we omit the randomizer r.

— 11— HE.Decg(€): The algorithm takes the secret key sk and a ciphertext
¢ = HE.Encpk (1) and outputs a message p € {0,1}

— ¢5 < HE.Evalew(f;¢1,...,¢): The algorithm takes the evaluation key evk, a
function f : {0,1}' — {0,1} represented by an arithmetic circuit over Z, =
{0,1} with the addition and multiplication gates, and a set of | ciphertexts
{¢ = HE.Enc(u;)}._,, and outputs a ciphertext ¢; = HE.Enc(f(u1,- -+ , 1))

We say that a scheme HE=(KG, Enc, Dec, Eval) is f-homomorphic if for any set
of inputs (p1,--- ,), and all sufficiently large A, it holds that

Pr [HE~DeCsk (HE.EVZ:\'er(f; Cly - 7El)) 7é f(;ula T 7Ml)] = negl()\),

where negl is a negligible function, (pk,evk;sk) « HE.KG(1}), and & <«
HE.Encpi(14i)-

If a HE scheme can evaluate all functions represented by arithmetic circuits
over Zg (equivalently, boolean circuits with AND and XOR gates?), the HE
scheme is called fully homomorphic.

! For simplicity, we assume that the plaintext space is Z» = {0, 1}, but extension to
larger plaintext space is immediate.
2 AND and XOR gates are sufficient to simulate all binary circuits.

Static Analysis with Set-Closure in Secrecy 21

To facilitate understanding of HE schemes, we introduce a simple sym-
metric version of the HE scheme [11] based on approximate common divisor
problems [19]:

— sk «+— KG(1*): Choose an integer p and outputs the secret key sk = p.

— ¢« Enc(p € {0,1}): Choose a random integer ¢ and a random noise integer
r with |r| < |p|. It outputs ¢ = pqg + 2r + p.

— 1 < Decg(€): Outputs p = ((¢ mod p) mod 2).

— Cadd < Add(él, 52)2 Outputs €igq = ¢1 + Co.

— Cmult < Mult(é1, ¢2): Outputs Gmur = €1 X Ca.

For ciphertexts ¢; <+ Enc(u1) and ¢ «— Enc(ug), we know each ¢; is of the form
¢i = pq; + 2r; + p; for some integer ¢; and noise r;. Hence ((¢; mod p) mod 2) =
i, if |27 + pi] < p/2. Then, the following equations hold:

G+ G =plq1 + q2) + 2(r1 + 7r2) + 1 + po,

¢ X G =p(pgiga+) +2(2rire + ripe + ropn) + p - fo

noise

Based on these properties,
DeCsk(é1 + C2) = 1 + po and Decsk(él X Co) = 1 - f2

if the absolute value of 2(2rire 4+ rips + rop1) + pipe is less than p/2. The
noise in the resulting ciphertext increases during homomorphic addition and
multiplication (twice and quadratically as much noise as before respectively). If
the noise becomes larger than p/2, the decryption result of the above scheme
will be spoiled. As long as the noise is managed, the scheme is able to potentially
evaluate all boolean circuits as the addition and multiplication in Zsy corresponds
to the XOR and AND operations.

We consider somewhat homomorphic encryption (SWHE) schemes that
adopt the modulus-switching [4,5,10,15] for the noise-management. The
modulus-switching reduces the noise by scaling the factor of the modulus in
the ciphertext space. SWHE schemes support a limited number of homomor-
phic operations on each ciphertext, as opposed to fully homomorphic encryption
schemes [7,11,14,23] which are based on a different noise-management tech-
nique. But SWHE schemes are more efficient to support low-degree homomorphic
computations.

In this paper, we will measure the efficiency of homomorphic evaluation by
the multiplicative depth of an underlying circuit. The multiplicative depth is
defined as the number of multiplication gates encountered along the longest
path from input to output. When it comes to the depth of a circuit computing
a function f, we discuss the circuit of the minimal depth among any circuits
computing f. For example, if a somewhat homomorphic encryption scheme can
evaluate circuits of depth L, we may maximally perform 2% multiplications on
the ciphertexts maintaining the correctness of the result. We do not consider

22 W. Lee et al.

the number of addition gates in counting the depth of a circuit because the
noise increase by additions is negligible compared with the noise increase by
multiplications. The multiplicative depth of a circuit is the most important factor
in the performance of homomorphic evaluation of the circuit in the view of both
the size of ciphertexts and the cost of per-gate homomorphic computation. Thus,
minimizing the depth is the most important in performance.

2.2 The BGV-type Cryptosystem

Our underlying HE scheme is a variant of the Brakerski-Gentry-Vaikuntanathan
(BGV)-type cryptosystem [4,15]. In this section, we only provide a brief review
of the cryptosystem [4]. For more details, please refer to [4,15]. Let #(X) be an
irreducible polynomial over Z. The implementation of the scheme is based on
the polynomial operations in ring R = Z[X]/ (?(X)) which is the set of integer
polynomials of degree less than deg(®). Let R, := R/pR be the message space
for a prime p and R, x R, be the ciphertext space for an integer ¢q. Now, we
describe the BGV cryptosystem as follows:

~ ((a,b);8) «+ BGV.KG(1*,0,q): Choose a secret key s and a noise polynomial
e from a discrete Gaussian distribution over R with standard deviation o.
Choose a random polynomial a from R, and generate the public key (a,b =
a-s+p-e) € Ry x Ry. Output the public key pk = (a,b) and the secret key
sk =s.

— € « BGV.Encp(p): To encrypt a message u € Ry, choose a random poly-
nomial v whose coefficients are in {0,+1} and two noise polynomials eg, e;.
Output the ciphertext ¢ = (co,c1) = (bv + peg + p, av + per) mod (g, P(X)).

— 1 BGV.Decg(€): Given a ciphertext ¢ = (cg, 1), it outputs p = (((co —¢1 -
s) mod ¢) mod p).

— Cadd < BGV.Addk(C1, C2;evk): Given ciphertexts € = BGV.Enc(u;) and €5 =
BGV.Enc(ps2), it outputs the ciphertext €,qq = BGV.Enc(p1 + p2).

— Cmuit < BGV.Multp (€1, €2;evk): Given ciphertexts ¢; = BGV.Enc(u) and
¢y = BGV.Enc(us2), it outputs the ciphertext Cmuyr = BGV.Enc(ug - o).

2.3 Security Model

We assume that program owners and analyzer servers are semi-honest. In this
model, the analyzer runs the protocol exactly as specified, but may try to learn
as much as possible about the program information. However, in our method,
since programs are encrypted under the BGV-type cryptosystem which is secure
under the hardness of the ring learning with errors (RLWE) problem (see [4] for
the details), analyzers cannot learn no more information than the program size.

3 A Basic Construction of a Pointer Analysis in Secrecy

In this section, we explain how to perform a pointer analysis in secrecy.

Static Analysis with Set-Closure in Secrecy 23

3.1 A Brief Review of a Pointer Analysis

We begin with a brief review of a pointer analysis. We consider flow- and context-
insensitive pointer analyses. To simplify our presentation, we consider a tiny
language consisting of primitive assignments involving just the operations * and
&. A program P is a finite set of assignments A:

A - x=&y|x=y|*xx=y]|x=1xy

We present a pointer analysis algorithm with simple resolution rules in a similar
manner to [18]. Given some program P, we construct resolution rules as specified
in Table 2. In the first rule, the side condition “if x = &y in P” indicates that
there is an instance of this rule for each occurrence of an assignment of the form
x = &y in P. The side conditions in the other rules are similarly interpreted.
Intuitively, an edge x — &y indicates that x can point to y. An edge x — y
indicates that for any variable v, if y may point to v then x may point to v. The
pointer analysis is applying the resolution rules until reaching a fixpoint.

Table 2. Resolution rules for pointer analysis.

— (if x = &y in P) (New) = (if x =y in P) (Copy)
x — &z . . x — &z . .
YTZ (lf y = *X 1n P) (Load) m (lf X =y 1n P) (Store)

x—z z— &y

x — &y (Trans)

3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a pro-
gram owner derives numbers that represent his program and encrypt them under
a HE scheme. The encrypted numbers will be given to an analysis server. Next,
the server performs homomorphic evaluation of an underlying arithmetic cir-
cuit representing the pointer analysis with the inputs from the program owner.
Finally, the program owner obtains an encrypted analysis result and recovers a
set of points-to relations by decryption.

Before beginning, we define some notations. We assume a program owner
assigns a number to every variable using some numbering scheme. In the rest of
the paper, we will denote a variable numbered i by x;. In addition, to express
the arithmetic circuit of the pointer analysis algorithm, we define the notations
0;; and m; ; in Z for 4,5 =1,--- ,m by

0;; 70 iff An edge x; — &x; is derived by the resolution rules.
n; 70 iff An edge x; — x; is derived by the resolution rules.

for variables x; and xj, and the number m of pointer variables.

24 W. Lee et al.

Inputs from Client. A client (program owner) derives the following numbers
that represent his program P (here, m is the number of variables):

{((5i,j,77i,j,ui7j,vi,j) S Y {O, 1} X {0, 1} | 1<4,5 < m}
which are initially assigned as follows:

5 1 if 3x; = &x; o 1 if3dx; =x50ri=j
J 0 otherwise g 0 otherwise

u-w—{l if dx; = *x; v"‘—{l if Ixy = x;

J 0 otherwise b 0 otherwise

In the assignment of J; ;, the side condition Jx; = &x; indicates that there is the
assignment x; = &x; in the program P. The other side conditions are similarly
interpreted.

The program owner encrypts the numbers using a HE scheme and provides
them to the server. We denote the encryption of d; ;, 7 j, wi ;, and v; ; by & ;,
7i.js Wi, and U; j, respectively. Therefore, the program owner generates 4 m?
ciphertexts where m is the number of pointer variables.

Server’s Analysis. Provided the set of the ciphertexts from the program owner,
the server homomorphically applies the resolution rules. With a slight abuse of
notation, we will denote + and - as homomorphic addition and multiplication
respectively to simplify the presentation.

We begin with applying the Trans rule in Table2. For ¢,57 = 1,--- ,m, the
server updates Si,j as follows:

) o
Oi,j < Dk ik * Ok,

If edges x; — xx and x, — &x; are derived by the resolution rules for some

variable xi, then the edge x; — &x; will be derived by the Trans rule and the

value d; ; will have a positive integer. If there is no variable x, that satisfies the

conditions for all £ =1,--- ,m, there will be no update on ¢; ; (" 1;; = 1).
Next, we describe applying the Load rule.

— — m — N
Mij < Mig + D Wik Ok j

If an edge x; — &x; is derived and the program P has a command x; := *xg
and for some integer k, then the edge x; — x; will be derived and 7; ; will have
a positive value. If none of variables x; satisfies the conditions, there will be no
update on 7; ;.

Finally, to apply the Store rule, the server performs the following operations:

_ _ m _ =
Mij < Mij + D1 Vjik * Oksi

Static Analysis with Set-Closure in Secrecy 25

If an edge xx — &x; is derived and the program P has a command *xy := x;
for some variable xy, then an edge x; — x; will be derived and 7; ; will have a
non-zero value.

Note that the server must repeat applying the rules as if in the worst case
since the server cannot know whether a fixpoint is reached during the operations.
The server may obtain a fixpoint by repeating the following two steps in turn
m? times:

1. Applying the Trans rule m times
2. Applying the Load and Store rules

The reason for doing step 1 is that we may have a m-length path through edges
as the longest one in the worst case. The reason for repeating the two steps m?
times is that we may have a new edge by applying the Load and Store rules, and
we may have at most m? edges at termination of the analysis.

We need O(m?logm) multiplicative depth in total. Because performing the
step 1 entails m homomorphic multiplications on each gm-, and repeating the
two steps m? times performs about mm’ homomorphic multiplications on each

0

VN

Output Determination. The client receives the updated {&; ; | 1 <1i,j < m}
from the server and recovers a set of points-to relations as follows:

{x; — &x; | HE.Dec () # 0 and 1 <4,5 < m}

Why Do We Not Represent the Algorithm by a Boolean Circuit? One
may wonder why we represent the pointer analysis algorithm by an arithmetic
circuit rather than a Boolean circuit. As an example of applying the Trans rule,
we might update &;; by 6;; < \/ 1ir A i ;. However, this representation
1<k<m

causes more multiplicative depth than our current approach. The OR operation
consists of the XOR and AND operations as follows: 2V y = (z Ay) & 2 & v.
Note that the addition and multiplication in Zy correspond to the XOR and AND
operations, respectively. Since the OR operation requires a single multiplication
over ciphertexts, this method requires m more multiplications than our current
method to update d; ; once.

4 Improvement of the Pointer Analysis in Secrecy

In this section, we present three techniques to reduce the cost of the basic app-
roach described in the Sect. 3.2. We begin with problems of the basic approach
followed by our solutions.

26 W. Lee et al.

4.1 Problems of the Basic Approach
The basic scheme has the following problems that make the scheme impractical.

— Huge # of homomorphic multiplications: The scheme described in the
Sect. 3.2 can be implemented with a SWHE scheme of the depth O(m?logm).
Homomorphic evaluation of a circuit over the hundreds depth is regarded unre-
alistic in usual. The depth of the arithmetic circuit described in the Sect. 3.2
exceeds 300 even if a program has only 10 variables.

— Huge # of ciphertexts: The basic approach requires 4 m? ciphertexts, where
m is the number of pointer variables. When a program has 1000 variables,
4 million ciphertexts are necessary. For instance, the size of a single ciphertext
in the BGV cryptosystem is about 2 MB when the depth is 20. In this case,
the scheme requires 7.6 TB memory space for all the ciphertexts.

— Decryption error may happen: In our underlying HE scheme, the message
space is the polynomial ring over modulus p. During the operations, J; ; and
74,; increase and may become p which is congruent to 0 modulo p. Since we
are interested in whether each value is zero or not, incorrect results may be
derived if the values become congruent to 0 modulo p by accident.

4.2 Overview of Improvement

For the number m of pointer variables and the maximal pointer level n, the
followings are our solutions.

— Level-by-level Analysis: We analyze pointers of the same level together
from the highest to lowest in order to decrease the depth of the arithmetic
circuit described in the Sect.3.2. To apply the technique, program owners
are required to reveal an upper bound of the maximal pointer level. By this
compromise, the depth of the arithmetic circuit significantly decreases: from
O(m?logm) to O(nlogm). We expect this information leak is not much com-
promise because the maximal pointer level is well known to be a small number
in usual cases.

— Ciphertext Packing: We adopt ciphertext packing not only for performance
boost but also for decreasing the huge number of ciphertexts required for the
basic scheme. The technique makes total ciphertext sizes be linear to the
number of variables.

— Randomization of Ciphertexts: We randomize ciphertexts to balance the
probability of incorrect results and ciphertext size. We may obtain correct
results with the probability of (1 — p%l)”(“og m1+3),

The following table summarizes the improvement.

Depth # Ctxt
2

Basic O(m?logm) | 4m

Improved | O(nlogm) | (2n+ 2)m

Static Analysis with Set-Closure in Secrecy 27

4.3 Level-by-level Analysis

We significantly decrease the multiplicative depth by doing the analysis in a
level by level manner in terms of level of pointers. The level of a pointer is the
maximum level of possible indirect accesses from the pointer, e.g., the pointer
level of p in the definition “int** p” is 2. From this point, we denote the level
of a pointer variable x by ptl(x).

We assume that type-casting a pointer value to a lower or higher-level pointer
is absent in programs. For example, we do not consider a program that has type-
casting from void* to int** because the pointer level increases from 1 to 2.

On the assumption, we analyze the pointers of the same level together from
the highest to lowest. The correctness is guaranteed because lower-level pointers
cannot affect pointer values of higher-level pointers during the analysis. For
example, pointer values of z initialized by assignments of the form x = &y may
change by assignments of the form x =y, x =y, or *p =y ("." p may point to
x) during the analysis. The following table presents pointer levels of involved
variables in the assignments that affects pointer values of x.

Assignment | Levels

x=y ptl(x) = ptl(y)

X =¥y pti(y) = pti(x) + 1

#p =y ptl(p) = ptl(x) + 1 A ptl(y) = ptl(x)

Note that all the variables affect pointer values of x have higher or equal pointer
level compared to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic
scheme. Before beginning, we define the notations 51(? and nz(ej)

1,...7mby

in Z for i,j =

5%') #0 iff An edge x; — &xj is derived and ptl(x;) = ¢
’71(? #0 iff An edge x; — x;j is derived and ptl(x;) = .

Inputs from Client. For the level-by-level analysis, a program owner derives
the following numbers that represent his program P (n is the maximal level of
pointer in the program):

{0) | 1<i,j <m 1 <e<nyU{(uig o) | 1<i,j <m}

(0)

where 51(? and n; ; are defined as follows.

5O — {1 if 3x; = &xy,ptl(xi) =4 (@) {1 if (3x; = x5 ori=j),ptl(xs) =7

“J 7 1 0o.w. Y 0 o.w.

28 W. Lee et al.

The definitions of u; ; and v; ; are the same as in the Sect.3.2. We denote the

NONS()

encryption of (5() and 17() by 6; , 7; ; » respectively.

Server’s Analysis. Server’s analysis begins with propagating pointer values of
the maximal level n by applying the Trans rule as much as possible. In other
words, for ¢,j = 1,--- ,m, the server repeats the following update m times:

5(n) m =(n) 35(n)
51‘,]' =D ey Nik 5k,j

Next, from the level n — 1 down to 1, the analysis at a level £ is carried out
in the following steps:

1. applying the Load rule: 771(j — 171(? + > Ui 5(”1)

2. applying the Store rule: 77() 'F]Z(ej + 3 Tk (13+1)

3. applying the Trans rule: repeatlng the following update m times
N _ z 0)
61(,) — Ek 17 (61(6 ,J

Through steps 1 and 2, edges of the form z; — z; are derived where either
x; or z; is determined by pointer values of the immediate higher level £+ 1. In
step 3, pointer values of a current level ¢ are propagated as much as possible.

We need O(n log m) multiplicative depth in total because repeating the above
3 steps n times entails maximally m™ homomorphic multiplications on a single
ciphertext.

Output Determination. The client receives the updated {52(? |1 <i,j5<
m,1 < ¢ < n} from the server and recovers a set of points-to relations as follows:

{i—>&xJ\HEDec5k()750 1<i,57<m, and1<{¢<n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (u1,- -, m), the BGV cryptosystem allows to obtain a
ciphertext ¢ « BGV.Enc(u1, -, tim)-

Furthermore, as each ciphertext holds a vector of multiple plaintexts,
homomorphic operations between such ciphertexts are performed component-
wise. For given ciphetexts ¢ = BGV.Enc(u11, - ,p1,m) and € =
BGV.Enc(uz.1,- - , ft2,m), the homomorphic addition and multiplication in the
BGYV scheme satisfy the following properties:

BGV.Add(€;, €2) returns a ciphertext BGV.Enc(p11 + f2,1, -, t1,m + H2,m)
BGV.Mult(€4, €2) returns a ciphertext BGV.Enc(u1.1 - 12,1, H1,m - #2,m)

Static Analysis with Set-Closure in Secrecy 29

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(tm, t1, -, hm—1) from BGV.Enc(u1, po, -, ttm))-
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on
encrypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic
matrix operations in more detail.

Principle of Ciphertext Packing. We begin with some notations. For an inte-
ger ¢, Z, e [—q/2,9/2) N Z and x mod ¢ denotes a number in [—q/2,q/2) N Z
which is equivalent to x modulo g. Recall that the message space of the BGV
cryptosystem is R, = Z[X]/ (p,®(X)) for a prime p and an irreducible poly-
nomial @(X). We identify the polynomial ring R, with {ag + a1 X + -+ +
adeggp,leeg@_l | a; € Z, and 0 < i < deg P}

In the basic approach, although the message space of the BGV scheme is
the polynomial ring R,,, we have used only constant polynomials (i.e., numbers)
for plaintexts. Thus, if a vector of plaintexts is represented as a single non-
constant polynomial, a single ciphertext can hold multiple plaintexts rather than
a single value. Therefore we can save the total memory space by using fewer
ciphertexts than the basic scheme. Suppose the factorization of @(X) modulo p is
&(X) =TI~, Fi(X) mod p where each F; is an irreducible polynomial in Z,[X].
Then a polynomial pu(X) € R, can be viewed as a vector of m different small
polynomials, (u1(X),- -, pm (X)) such that u;(X) = (u(X) modulo F;(X)) for
i=1,---,m.

From this observation, we can encrypt a vector g = (p1,- - , fm) of plain-
texts in [[~, Z, into a single ciphertext by the following transitions:

Lp X -+ X Ly - [Ti2) Z,[X]/ (Fi(X)) — Zy[X]/ (#(X)) — R,

d CRT BGV.Enc _
() == (i (X) (X)) 7 (X)) e
First, we view a component p; in a vector gt = (u1,- - , lhm) as a contant poly-

nomial p; € Zy[X]/ (F;(X)) for i = 1,--- ,m. Then, we can compute the unique
polynomial p(X) € R, satisfying p(X) = p; mod (p, F;(X)) for i = 1,--- ,m
by the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt
a vector p = (p1,--+ , pm) in [[~, Zp, we encrypt the polynomial p(X) € R,
into a ciphertext ¢ which is denoted by BGV.Enc (p1, -« , tr,) . For more details
to the ciphertext packing, we suggest that readers see the paper [22].

Homomorphic Matrix Operations. Applying the resolution rules in the
level-by-level analysis in the Sect. 4.3 can be re-written in a matrix form as shown
in Table 3. In Table 3, Ay = [65?], H, = [n§?]7 U = [u;;], and V = [v; ;] are mxm
integer matrices. Let the i-th row of Ay and Hy be JEZ) and ny) respectively. And
we denote the encryptions as 8\ = BGV.Enc(&Z@) and ﬁy) = BGV.Enc(nZ(-e)).

i

30 W. Lee et al.

Table 3. Circuit expression of the level-by-level analysis

Rule | Integer form Matrix form
Trans 61(? —>n, 775,2 . 5,222 Ap +— He - Ay

Load 7}1(3) — ?71(’[]) + Z;nzl U,k '5,(:?;_1) He — Hz =+ U - A4+1
Store 171(? — 771(? + > Uik 5,&%;” Hy— He+ (V- Agr)”

We follow the methods in [16] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [16]. For a given ciphertext ¢ = BGV.Enc(p1, -+ , tm), the operation
Replicate(c, i) generates a ciphertext BGV.Enc(u;, -+ ,pu;) for i = 1,--- m.
Using the operation, we can generate an encryption of the i-th row of (Hy - Ay)
as follows:

BGV.Mult (Replicate(ﬁz(-e), 1),3@) + .-+ BGV.Mult (Replicate(ﬁge),m),5$)>)
Note that this method does not affect the asymptotic notation of the multiplica-
tive depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [16]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig.3 in Appendix A.

4.5 Randomization of Ciphertexts

During the matrix multiplications, components of resulting matrices may become
p by coincidence, which is congruent to 0 in Z,,. In this case, incorrect results may
happen. We randomize intermediate results to decrease the failure probability.

To multiply the matrices H, = [771(?] and A, = [65?], we choose non-zero
random elements {r; ;} in Z, for 4,j = 1,---,m and compute H, = [r;; -
771([])] Then, each component of a resulting matrix of the matrix multiplication
(Hj - Ay) is almost uniformly distributed over Z,,.

Thanks to the randomization, the probability for each component of H'- A of
being congruent to zero modulo p is in inverse proportion to p. We may obtain a
correct component with the probability of (1— ﬁ) Because we perform in total
n([logm] + 3) — 2 matrix multiplications for the analysis, the probability for a
component of being correct is greater than (1 — p%l)”(ﬂog m1+3) For example,
in the case where n = 2,m = 1000 and p = 503, the success probability for a
component is about 95 %.

Putting up altogether, we present the final protocol in Fig. 2 in Appendix A.

5 Experimental Result

In this section, we demonstrate the performance of the pointer analysis in secrecy.
In our experiment, we use HElib library [16], an implementation of the BGV

Static Analysis with Set-Closure in Secrecy 31
Table 4. Experimental Result
Program LOC |# Var|Enc Propagation |Edge addition |Total Depth
toy 10 9 26s 28m 49s 5m 58s 35m 13s 37
buthead-1.0 46 |17 1m 26s|5h 41m 36s |[56m 19s 6h39m 21s |43
wysihtml-0.13|202 |32 2m 59s|18h 11m 50s|2h 59m 38s |21h 14m 27s|49
cd-discid-1.1 259 |41 3m 49s|32h 22m 33s|5h 22m 35s |37h 48m 57s|49

Enc : time for program encryption, Depth : the depth required for the analysis
Propagation : time for homomorphic applications of the Trans rule
Edge addition : time for homomorphic applications of the Load and Store rules

cryptosystem. We test on 4 small C example programs including tiny linux pack-
ages. The experiment was done on a Linux 3.13 system running on 8 cores of
Intel 3.2 GHz box with 24 GB of main memory. Our implementation runs in
parallel on 8 cores using shared memory.

Table 4 shows the result. We set the security parameter 72 which is usually
considered large enough. It means a ciphertext can be broken in a worst case
time proportional to 272. In all the programs, the maximum pointer level is 2.

Why “Basic” Algorithm? Many optimization techniques to scale the pointer
analysis to larger programs [12,13,17,18,20] cannot be applied into our setting
without exposing much information of the program. Two key optimizations are
the cycle elimination and the difference propagation. But neither method is
applicable. The cycle elimination [12,17,18,20] aims to prevent redundant com-
putation of transitive closure by collapsing each cycle’s components into a single
node. The method cannot be applied into our setting because cycles cannot be
detected and collapsed as all the program information and intermediate analy-
sis results are encrypted. The other technique, difference propagation [13,20],
only propagates new reachability facts. Also, we cannot consider the technique
because analysis server cannot determine which reachability fact is new as inter-
mediate analysis results are encrypted.

6 Discussion

By combining language and cryptographic primitives, we confirm that the homo-
morphic encryption scheme can unleash the possibility of static analysis of
encrypted programs. As a representative example, we show the feasibility of
the pointer analysis in secrecy.

Although there is still a long way to go toward practical use, the experi-
mental result is indicative of the viability of our idea. If the performance issue
is properly handled in future, this idea can be used in many real-world cases.
Besides depending on developments and advances in HE that are constantly
being made, clients can help to improve the performance by encrypting only sen-
sitive sub-parts of programs. The other parts are provided in plaintexts. In this

32 W. Lee et al.

case, analysis operations with the mixture of ciphertexts and plaintexts should
be devised. This kind of operations are far cheaper than operations between
ciphertexts because they lead to smaller noise increases.

A major future direction is adapting other kinds of static analysis opera-
tions(e.g., arbitrary U, C, and semantic operations) into HE schemes. For now,
we expect other analyses similar to the pointer analysis (such as 0-CFA) will be
performed in a similar manner.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments. The first and third authors were supported by the Engineering
Research Center of Excellence Program of Korea Ministry of Science, ICT & Future
Planning(MSIP) / National Research Foundation of Korea(NRF) (Grant NRF-2008—
0062609), and Samsung Electronics Software R&D Center (No. 0421-20140012). The
second and last authors were supported by Samsung Electronics Software R&D Center
(No. 0421-20140013).

A Algorithms

Figure 2 describes the protocol. Figure 3 describes the homomorphic matrix oper-
ations and necessary sub algorithms.

Main Protocol

Client Input: There are m pointer variables in the client’s program with the maximal pointer level
2 £ . . .
n. The sets {(65])7771(])) [1<4,7<m,1<¢< n} and {(ug,j,vi;) | 1 <4,57 < m} are initial-
ized as described in Section 3.2 and 3.5. For a security parameter A, the client generates the
parameters (pk, evk; sk) < BGV.KG(1*) of the BGV scheme.
Sub-algorithms: In this protocol, we use the sub-algorithms in Fig. 3.

— Program Encryption (Client’s work)

1. fot:(fz): 1 to n and fgzl)' i=1 t((z)m dc()[) o ®

2. 6, BGV.Enc((Si,17 sy 0)y My BGV.Enc(r]iyl, S ,771.,7”)

3. @; < BGV.Enc(uj, 1, ,%im), D; < BGV.Enc(vi1, + ,vim)

4. for £ =1 to n do ’ ”

5. Ay <3(1E)| s \3§£)> , Hy + <7’1(12)\ s |r’)£ﬁ)> // the i-th row of A, is 352).
6. U+ (1] |am)T, V < (¥1| -+ [¥m)T // the i-th row of U is a;.

7. Client sends the sets {(A¢, Hy) |1 <€ <n} and {(U,V)} to server.

— Analysis in Secrecy (Server’s work)

A,, + HE.MatMult (HE.MatPower(H,,,, m), A,L)

for {=n—1to 1l do
A + HE.MatMult(U, Ay 1), B + HE.MatTrans (HE.MatMult(V, Ag41))
H; <+ HE.MatAdd (HE.MatAdd(H,, A), B) // apply Load and Store rules
Ay + HE.MatMult (HE.MatPower(Hg77n), Az) // apply Trans rule

6. Server sends the ciphertext set {Sgl) [1<f¢<nand1<:< m} to client.

— Output Determination (Client’s work)

—

Uk W

1. for ¢ =1 to m and for ¢ =1 to n do B
2. Client computes (65?1), cee 755,27)71) “— BGV.Dec(&ED).

3. Client determines the set {xi — &xjy | 6523 #0,1<i,7<m,1<£< n}

Fig. 2. The pointer analysis in secrecy

Static Analysis with Set-Closure in Secrecy 33

// We assume that m is the same as the number of plaintext slots in the BGV scheme.
// A prime p is the modulus of message space in the BGV-type cryptosystem.

// We denote the encryption of the matrix A = [a;,;] € Z'*™ by A.

// The i-th row a; of A is the ciphertext BGV.Enc(a;,1, -+ ,ai,m) for i = 1, ,m.

// For ciphertexts €1, -+ , &y, we denote the matrix whose rows are ¢; by (cl\ em) T

HE.MatAdd(4, B)
// Input : A, B are encryptions of A = [a; ;], B = [b; j].
// Output : A+ B is an encryption of A + B = [a; ; + b j].

1 for i =1 to m do Z; + BGV.Add(a;, b;)

2 return Z < (z1|za| - |Zm)? // the i-th row of Z is z;
HE.MatMult(A, B)
// Input : A, B are encryptions of A = [a; ;], B = [b; j].

// Output : R4 - B is an encryption of R4 - B = [Zz;l Tik (a,;,kbk,7j)],

// where r;_; & [=p/2,p/2) N Z with r; j # 0.
1 R <+ HE.MatRandomize(A)
2 for i = 1 to m do Z; Z ™, BGV.Mult (HE.Replicate(¥;,j),b;) // ciphertext additions
3 return Z < (z1|za| - - |Zm) " // the i-th row of Z is z;

HE.MatPower (A, k)

// Input : A is an encryption of A.

// Output : A" is an encryption of A", where w = gflog k1,
1Z+ A
2 for i =1 to [log k] do Z <« HE.MatrixMult (Z, Z)
3 return Z

HE.MatTrans(A)

// Input : A is an encryption of A = [a; ;]

// Output : AT is an encryption of AT = [a; ;].
1 for i =1 to m do

2 for j =1tom do Zz,j < HE.Masking(a;, 7)
3 Z“l HE. Rotate(z, joJ —i+m)+ 377, HE.Rotate(Z;,;,j — i) // ciphertext additions
4 return Z — <z1\zz\ |Zm)T // the i-th row of Zis z;

HE.MatRandomize(A)

// Input : A is an encryption of A = [a; ;].

// Output : R4 is an encryption of Ra = [r;,; - a;,;], where r; ; & Zp with 7; ; # 0.
1 for i =1 to m do

2 Choose a vector r; = (15,1, ,Ti,m) & Z;” with 7; ; # 0 mod p.
3 z; < BGV.multByConst(r;, a;)
4 return Z < (z1|za| - |Zm)? // the i-th row of Z is z;

// The following algorithms are in the library HElib.
// Here, we only give preview of the algorithms.

HE.Replicate(c, k)

// The ciphertext € is the encryption of (w1, - , ftm)
return the ciphertext BGV.Enc(ug, - -+ , k)
HE.Masking(c, k)
// The ciphertext ¢ is the encryption of (w1, -+, tm)
return the ciphertext BGV.Enc(0, -+ ,0, ug,0---,0) // pg is the k-th plaintext slot.
HE.Rotate(c, k)
// The ciphertext ¢ is the encryption of (w1, - , ftm)
// This operation is the right rotation as a linear array
return the ciphertext BGV.Enc(ftm —k+2, > lm, 1, 5 m—k+1)

BGV.multByConst(r, €)
// The operation of the multiply-by-constant induces “moderate” noise-growth,
// while a multiplication of ciphertexts induces “expensive” noise-growth.

// The constant vector r = (11, ,7m) € Zp X + -+ X Ly
// The ciphertext € is the encryption of (w1, -+, tm)
return the ciphertext BGV.Enc(rip1, -, Tmfim)

Fig. 3. Pseudocode for the homomorphic matrix operations

34 W. Lee et al.
References
1. Software clinic service. http://rosaec.snu.ac.kr/clinic
2. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using

10.

11.

12.

13.

14.

15.

16.

17.

18.

somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P.,
Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102-118. Springer,
Heidelberg (2013)

Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868-886. Springer, Heidelberg (2012)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic
encryption without bootstrapping. In: ITCS (2012)

Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

Chatterjee, A., Kaushal, M., Sengupta, I.: Accelerating sorting of fully homomor-
phic encrypted data. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS,
vol. 8250, pp. 262-273. Springer, Heidelberg (2013)

. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:

Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315-335. Springer,
Heidelberg (2013)

Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance. In:
IACR Cryptology ePrint Archive, 2015:132. WAHC (2015) (to appear)

van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24-43. Springer, Heidelberg (2010)

Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446-464. Springer,
Heidelberg (2012)

van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24-43. Springer, Heidelberg (2010)

Fahndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in
inclusion constraint graphs. In: PLDI (1998)

Fecht, C., Seidl, H.: Propagating differences: an efficient new fixpoint algorithm for
distributive constraint systems. Nord. J. Comput. 5(4), 304-329 (1998)

Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850-867.
Springer, Heidelberg (2012)

Halevi, S., Shoup, V.: Algorithms in HEIlib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554-571. Springer, Heidelberg (2014).
http://eprint.iacr.org/

Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: PLDI (2007)

Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: a million lines of
C code in a second. In: PLDI (2001)

http://rosaec.snu.ac.kr/clinic
http://crypto.stanford.edu/craig
http://eprint.iacr.org/

19.

20.

21.

22.

23.

Static Analysis with Set-Closure in Secrecy 35

Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51-66. Springer, Heidelberg (2001)
Pearce, D., Kelly, P., Hankin, C.: Online cycle detection and difference propagation
for pointer analysis. In: SCAM (2003)

Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57-81 (2014)

Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. In: TACR
Cryptology ePrint Archive, 2011:133 (2011)

Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420-443. Springer, Heidelberg (2010)

2 Springer
http://www.springer.com/978-3-662-48287-2

Static Analysis

22nd International Symposium, SAS 2015, Saint-Malo,
France, September 9-11, 2015, Proceedings

Blazy, S5.; Jensen, Th. (Eds.)

2015, XV, 333 p. 90 illus., Softcover

ISEM: 978-3-662-48287-2

	Static Analysis with Set-Closure in Secrecy
	1 Introduction
	2 Background
	2.1 Homomorphic Encryption
	2.2 The BGV-type Cryptosystem
	2.3 Security Model

	3 A Basic Construction of a Pointer Analysis in Secrecy
	3.1 A Brief Review of a Pointer Analysis
	3.2 The Pointer Analysis in Secrecy

	4 Improvement of the Pointer Analysis in Secrecy
	4.1 Problems of the Basic Approach
	4.2 Overview of Improvement
	4.3 Level-by-level Analysis
	4.4 Ciphertext Packing
	4.5 Randomization of Ciphertexts

	5 Experimental Result
	6 Discussion
	A Algorithms
	References

