
Chapter 2

Basic cryptosystems

This chapter starts with a look at some of the most popular cryptosystems.
The description in this chapter focusses on the fundamental properties and
leaves out some details, in particular proofs why certain things work the
way they do. The complete underpinnings for these methods are provided
in later chapters.

We learn to ask the fundamental questions: does it work correctly?
How easy is the system to use for its legitimate players? How hard is it
to break for others? In other words: what can we say about its security?

The first system is the Advanced Encryption Standard (AES), chosen
from 15 candidates in a competition launched in 1997 by the National
Institute of Standards and Technology (NIST), a US government institu-
tion. This system is an example of a symmetric cryptosystem in which
the two protagonists (sender and receiver) share the same key. AES is
characterized by its simplicity, good structure, and efficiency.

We briefly discuss two fundamentally different types of cryptosystems
that we will encounter: symmetric vs. asymmetric systems. In the first
type, sender and receiver share the same secret key, while in the latter
type, only the receiver needs a secret key to decrypt an encrypted message
and all other information is publicly available. If you have not yet seen
such systems, stop here for a moment! Does this not sound contradictory?
How could it possibly work?

We describe the RSA system named after its inventors Rivest, Shamir
& Adleman. The security of this asymmetric or public key cryptosystem
is somewhat related to the difficulty of factoring large integers into their
prime factors.

The third example is the Diffie & Hellman key exchange protocol. Here
the goal is not to send a secret message, but slightly more modest: the
two players just want to agree on a common secret key (which they may

19© Springer-Verlag Berlin Heidelberg 2015
J. von zur Gathen, CryptoSchool, DOI 10.1007/978-3-662-48425-8_2

20 Chapter 2. Basic cryptosystems

then use in some other cryptographic setting). This example introduces
the idea of doing cryptography in groups. The security of such systems
relies on the difficulty of computing discrete logarithms in these groups.

We then discuss Shamir’s scheme for sharing a secret among many
players so that together they know the secret but any coalition of fewer
than all players has no knowledge about it. This is based on polynomial
interpolation.

The final example is Naor & Shamir’s visual cryptography. We include
it here because of its striking effect: you have two random pictures, one
on paper and one on a transparency, and when you overlay them, you can
see a secret message.

2.1. Goals of cryptography

Electronic transactions and activities play an ever increasing role in our
lives. Many of these need to be protected against all kinds of interference,
accidental or malicious. This is the general task of information technol-
ogy security. Cryptography provides some basic building blocks for secure
electronic systems. Its most fundamental task is secure information trans-
mission: someone wants to send a message over an insecure channel such
as the internet to a recipient, and a third party listening in should not be
able to understand the message. Following a long-standing tradition, the
computers involved are personalized as Bob sending a message to Alice,
and Eve eavesdropping on the line. This is achieved by Bob encrypting
his message x with a key K and sending the result y = encK(x) to Alice,
and then Alice decrypting y with her own key S to recover x = decS(y).
In some systems they share the same key: K = S. Both Bob and Alice

should be able to do their work efficiently, but Eve, knowing only y (and
also K in some systems; then K �= S), should not be able to decipher the
message, that is, to recover x with reasonable effort.

In addition to this fundamental task, there are many other objectives
in cryptography, such as securely signing a message or establishing one’s
identity. Can you imagine how one would do that over the internet, with-
out meeting in person? These questions are discussed in later chapters.

Coming back to the fundamental task, we have to clarify what the “ef-
ficiency” of Bob’s and Alice’s actions might mean, and the inability of
Eve to recover the message. Some systems, such as AES in Section 2.2, are
completely fixed. Then efficiency means that it has to be implementable
for the purpose at hand, maybe for secure transmission of a pay-TV video
signal at a rate of megabits per second. Eve’s inability to decipher the
message without the secret key might mean that it is, as far as we know,
beyond the power of any adversary for as long as its secrecy is important.

2.1. Goals of cryptography 21

In other systems, such as RSA or Diffie-Hellman (Sections 2.5 and 2.6), we
have a security parameter n which may, in principle, be chosen arbitrar-
ily. Then the standard notion from Theoretical Computer Science is that
“efficient” should mean that Bob and Alice work in time polynomial in
n, and that Eve is not able to discover x in polynomial time.

The concepts of complexity theory provide a precise framework in
which to state the latter task. But its basic questions, such as whether
P �= NP, are unresolved at this time, and the design of a system secure
in this sense is an open and extremely difficult question. However, a
reasonable modification asks not for an absolute proof that Eve is unable
to recover the original message from the transmission, but to relate it to
other problems: if she could find the message, then she would also be able
to solve a well-studied open problem.

The question can be formulated as the quest for a one-way function
f : given x, it should be easy to compute y = f(x), but given some y,
which occurs as an image under f , it should be hard to find an x with
f(x) = y. Furthermore, Alice has some (small) secret S with whose help
it is actually easy to find x from y; then f is called a trapdoor function .
An example of a one-way function is multiplication: it is easy to multiply
two integers, say two large prime numbers p and q, and find N = p ·q. But
computationally it is quite difficult to recover p and q from N , although
they are completely determined by N . Thus x = (p, q) with p < q and
f(x) = p · q is a one-way function. No trapdoor is known for this f ,
but a closely related trapdoor function is used in the RSA cryptosystem
(Section 2.5).

There are many variations of what it means for Eve to break such a
system. Clearly it should be infeasible to efficiently recover x or Alice’s
secret key S from y. But also much weaker achievements might be con-
sidered fatal, for example if she can find out some information about the
message x: is it an English text message? Does some specific word occur,
such as “MasterCard” or “bomb”? It would even be dangerous if she could
not do this all the time, but only for some messages, just slightly better
than guessing.

Eve might have some knowledge about the possible values of x. For
example, she might know (or guess) that x is a string of 1024 bits repre-
senting the Extended ASCII encoding of a 128-letter English text. Only
a tiny fraction of the 21024 possible x’s are of that form: we have a sparse
message space.

In Chapter 9, we study security notions which consist of resources and
attack goals. One possible resource is that Eve may be able to see encK(x)
for many x’s of her choice: chosen plaintext attack (CPA). A strong and
hence desirable concept is the chosen ciphertext attack, where she can see

22 Chapter 2. Basic cryptosystems

x for several y’s of her choice with encK(x) = y. Among the various attack
goals, recovering the secret key or the plaintext come to mind at first. A
weak and hence desirable notion here is indistinguishability: Eve submits
two plaintexts and receives an encryption y0 of one of them, chosen with
equal probability. As above, she may ask for as many pairs (x, y) with
y = encK(x) as she wants, where she may specify either x or y; of course,
with y �= y0. Then she has to distinguish which of the two plaintexts was
chosen, with probability better than just guessing. Indistinguishability
means resistance against such an attack.

A combination of allowed resources and desired attack goal defines a
security notion. A cryptographic system is secure in this notion if the goal
cannot be accomplished with those resources, for example, if encryptions
cannot be distinguished as above even using chosen ciphertexts. These
things are further explained in Chapter 9 and throughout the text. For a
brief impression, the reader might take a peek at Figure 9.5. An important
aspect of these notions is that no specific method of attack is assumed,
rather just the tools allowed and the goal to be achieved.

2.2. Advanced Encryption Standard (AES)

In the early 1970’s, a team at International Business Machines devel-
oped a cryptosystem which became known as the Data Encryption Stan-
dard (DES). The US National Bureau of Standards (NBS) published it in
FIPS PUB 46 on 15 January 1977 as a standard for US government crypto-
graphy, for documents that are sensitive but not classified. (The National
Security Agency (NSA) is responsible for higher levels of security.) As a
consequence, any software or hardware system with cryptographic capa-
bilities tendered to the US government had to be based on DES. Sales to
government agencies can be highly lucrative, and any company interested
in them had to use DES. Thus it quickly found widespread use.

Over the years, many attacks on DES were developed, most notably
differential cryptanalysis and linear cryptanalysis (Chapter 6). In re-
sponse to this and concerns about its small key space, DES was strength-
ened by tripling its number of “rounds”: triple-DES or 3-DES. In DES,
the so-called S-boxes provide the only nonlinear functions. They are op-
timized with respect to resistance to differential cryptanalysis, but their
structure is rather opaque.

From the start, experts harbored suspicions—never substantiated—
that the NSA might have built a “trapdoor” into DES that enabled it to
decipher encrypted messages. Already in 1981, Deavours warned that

The agency [NSA] is currently capable of breaking DES
using probable plaintext. The major cryptanalytic hardware

2.2. Advanced Encryption Standard (AES) 23

involved is rumored to consist of 4 CRAY-1 computers. Anal-
ysis takes less than a day, on the average.

Finally, on 17 July 1998 the Electronic Frontier Foundation (EFF)
presented its US$ 250,000 DES breaker. DES was dead, for most practical
purposes. But it was still the standard and thus in heavy use . . . The
standard was finally withdrawn in 2005. The US NIST, successor agency
of the NBS, opened on 12 September 1997 a competition for AES, to
replace DES. The requirements were for a block cipher with blocks of 128
bits, and possible key lengths of 128, 192, and 256 bits. Not surprisingly,
the specifications were rather more precise than in their 1973 competition
which led to the adoption of DES. 15 candidates were submitted to NIST,
and pared down to a short list of five systems by August 1999. These
included MARS from IBM’s Don Coppersmith, one of the chief designers
of DES, RC6, developed by Ron Rivest and three collaborators from RSA
Laboratories, Serpent by Anderson, Biham, and Knudsen, and Twofish by
Bruce Schneier’s Counterpane Company. On 2 October 2000, the NIST
announced the winner: AES, a system developed by the Belgian crypto-
graphers Joan Daemen and Vincent Rijmen and originally called Rijndael.
NIST expects this system to be secure for at least thirty years.

NIST was generally lauded for an open and well-documented proce-
dure. One of its requirements was to make plausible that there are no hid-
den trapdoors, thus alleviating some of the concerns that had surrounded
the DES standardization in 1977.

The features that secured Rijndael’s first place in a tough compe-
tition are security—resistance against all currently known attacks—and
efficiency—on a wide variety of platforms, from 8-bit smartcards to 32- or
64-bit processors. Furthermore, it has a simple algebraic description with
few unexplained choices (see the end of this section), and it is implausible
that they could hide a trapdoor. No effective attack is known in 2015.

AES encrypts a message of 128 bits using a key of 128, 192, or 256
bits, distinguished by designations like AES-128. It is an iterated cipher,
in which a sequence of four operations is applied a certain number of times.
Namely, it consists of 10 rounds at key length 128 (12 rounds at 192 and
14 rounds at 256 bits) and each round performs these four operations, ex-
cept that the last one leaves out MixColumns. Furthermore, there is an
additional initial round, executing only AddRoundKey. Each operation
turns a 128-bit word into another 128-bit word. To describe the opera-
tions, each 128-bit word (or state in AES) is treated as a 4× 4 matrix (or

24 Chapter 2. Basic cryptosystems

array, or block) of 8-bit bytes:

(2.1)

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

.

The four operations have the following features:

◦ SubBytes substitutes each single byte by another value,

◦ ShiftRows permutes the bytes in each row,

◦ MixColumns performs a linear transformation on each column of
the matrix,

◦ AddRoundKey adds the round key to the whole matrix.

128-bit key 128-bit input

key schedule AddRoundKey

SubBytes

ShiftRows

MixColumns

key schedule AddRoundKey

SubBytes

ShiftRows

key schedule AddRoundKey

128-bit output

repeat 9 times

Figure 2.1: AES with a 128-bit key.

Figure 2.1 illustrates the global view. The four operations in the mid-
dle constitute one round. For the initial round, the round key is explicitly

2.2. Advanced Encryption Standard (AES) 25

SubBytes

ShiftRows

MixColumns

AddRoundKey

Figure 2.2: One round of AES.

26 Chapter 2. Basic cryptosystems

Applying SubBytes to every byte.

S

Figure 2.3: The SubBytes operation.

provided as the secret key to the procedure. From this, the round keys
for the later rounds are calculated by the key schedule; see Section 2.3.

We now describe in more detail the four operations, assuming that
the reader is familiar with the material in Sections 15.1 through 15.4. We
see many cryptosystems in this book, including RSA and group-based
cryptography, say with elliptic curves, which by their nature require some
algebra. But AES is the winner in a competition for bit-oriented (or
Boolean) cryptography. The elegant algebraic description that follows is
witness to the unreasonable effectiveness of algebra in cryptography.

SubBytes. The basic processing unit is an 8-bit byte

(2.2) a = (a7, a6, a5, a4, a3, a2, a1, a0) ∈ {0, 1}8.
The fundamental operations on these bytes are addition and multiplica-
tion. The sum

c = a+ b

of two bytes simply is the bitwise sum modulo 2 (exclusive-or, XOR):

ci = ai + bi

for 0 ≤ i ≤ 7. For example, if we take

(2.3) a = (10011011), b = (11001101),

then

(2.4) c = a+ b = (01010110).

2.2. Advanced Encryption Standard (AES) 27

In hexadecimal notation, we have a = 9B, b = CD, and c = 56.
For multiplication, we first consider the byte a to represent the poly-

nomial
a7t

7 + a6t
6 + · · ·+ a1t+ a0,

so that a as in (2.3) now represents

t7 + t4 + t3 + t+ 1 ∈ F2[t].

The product a · b of two bytes a and b is calculated by multiplying the
two polynomials, giving a polynomial of degree not more than 14. For the
two polynomials from (2.3), this is

p = t14 + t13 + t11 + t10 + t8 + t6 + t5 + t3 + t2 + t+ 1 in Z2[t].

Since we work over F2, all coefficients are reduced modulo 2. More
details are given in Section 15.1.

We have an obvious problem: the result has up to 15 bits, but we
should come up with just one byte. Algebra provides an elegant solution:
reduce modulo a polynomial of degree 8. Indeed, in AES we work in the
finite field F256 defined by the irreducible polynomial

(2.5) m = t8 + t4 + t3 + t+ 1 ∈ F2[t],

so that a mod m ∈ F2[t]/(m) = F28 = F256. Now we divide p by m with
remainder, obtaining

p = (t6 + t5 + t3) ·m+ (t4 + t2 + t+ 1) inF2[t],(2.6)

9B · CD = a · b = (00010111) = 17 in F256.

Thus we are back to degree at most 7, or 8 bits. Multiplication in F256

maps two bytes to one byte. But in SubBytes, we have only one byte as
input. How can we use the arithmetic in F256? The answer is: inversion.

Since F256 is a field, every nonzero element a ∈ F×
256 has an inverse

a−1 ∈ F×
256. This can be calculated by the Extended Euclidean Algorithm

(Section 15.4). We extend this mapping to all of F256 by simply sending
zero to itself:

(2.7) inv(a) =

{
a−1 if a �= 00,
00 if a = 00,

where 00 = (00000000). This is called the patched inverse. In our example
(2.3), the Extended Euclidean Algorithm produces

(2.8) (t7 + t3) · a+ (t6 + t3 + t2 + t+ 1) ·m = 1 in F2[t],

28 Chapter 2. Basic cryptosystems

F256 = F28 � a = a7t
7 + a6t

6+ a5t
5+ a4t

4 + a3t
3 + a2t

2 + a1t+ a0,
with all ai ∈ F2 = {0, 1}.
Representation: 8 bits for an element = 1 byte.
Addition: XOR, (a+ b)i = ai + bi.
Multiplication: as for polynomials modulo t8 + t4 + t3 + t+ 1.
Example 57 · 83 = C1:

(t6 + t4 + t2 + t+ 1) · (t7 + t+ 1)

= t13 + t11 + t9 + t8 + t7

+ t7 + t5 + t3 + t2 + t

+ t6 + t4 + t2 + t+ 1

= t13 + t11 + t9 + t8 + t6 + t5 + t4 + t3 + 1 in Z2[t]

= t7 + t6 + 1 in Z2[t]/(t
8 + t4 + t3 + t+ 1).

Figure 2.4: The byte field F256.

as calculated in Example 15.20 (ii), so that indeed gcd(a,m) = 1 in F2[t],
and

inv(a) = (10001000) = 88 in F256.

In a surprising connecting with elliptic curves, we show in Section 6.4
that the patched inverse is nearly optimal in its resistance against a par-
ticular attack, namely, linear cryptanalysis.

AES also uses a similar, yet different, algebraic structure on bytes,
namely the ring R = F2[t]/(t

8+1). This is not a field, since t8+1 = (t+1)8

is not irreducible in F2[t]; see (15.4). Thus a byte a as in (2.2) now
represents the element

a7t
7 + a6t

6 + a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 inR.

Addition is, again, just the bitwise addition (or XOR). Thus (2.4) is also
valid in R. Multiplication of two such polynomials gives a polynomial of
degree at most 14, whose remainder modulo t8 + 1 has again degree at
most 7. Reduction modulo t8+1 is particularly easy, since it corresponds
to just adding the lower and the upper halves of the polynomial, in the
following sense. We split

c = c1t
8 + c0

into its upper and lower parts c1, c0 ∈ F2[t] of degree at most 7. Then

c = c1(t
8 + 1) + (c1 + c0) = c1 + c0 in R.

2.2. Advanced Encryption Standard (AES) 29

To multiply the two bytes a and b of (2.3) in this new representation,
we write their product as

p = (01101101) · x8 + (01101111) = 6D · x8 + 6F,(2.9)

and then their product in the ring R is the sum of these two bytes:

9B · CD = (10011011) · (11001101) = (00000010) = 02 inR.

In AES, actually only multiplication in R by the fixed polynomial

t1 = (00011111) = 1F = t4 + t3 + t2 + t+ 1

is used, and only the polynomial

t0 = (01100011) = 63 = t6 + t5 + t+ 1

is added to others. Since t1 is invertible modulo t8 + 1, multiplication
of bytes by t1 corresponds to an invertible linear transformation over F2.
For a byte b, the bits in

c = t1 · b+ t0

can also be described by the affine linear transformation

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c7
c6
c5
c4
c3
c2
c1
c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b7
b6
b5
b4
b3
b2
b1
b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To sum up, SubBytes consists of applying to each byte a in the block
individually the following steps:

a ← inv(a) in F256,(2.10)

a ← t1 · a in R,

a ← a+ t0.

Its description involves some algebra, but SubBytes is most efficiently
implemented by a 256-byte look-up table. It is the only nonlinear opera-
tion in AES and is sometimes called its S-box, in analogy with DES.

30 Chapter 2. Basic cryptosystems

F256 −→ F256 −→ F256,

S : a 	−→ inv(a) =

⎡⎢⎢⎢⎢⎣
b7
b6
b5
b4
b3
b2
b1
b0

⎤⎥⎥⎥⎥⎦	−→
⎡⎢⎢⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
b7
b6
b5
b4
b3
b2
b1
b0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎣
0
1
1
0
0
0
1
1

⎤⎥⎥⎦

a 	→ 05 · a254 + 09 · a253 + F9 · a251 + 25 · a247 + F4 · a239
+ 01 · a223 + B5 · a191 + 8F · a127 + 63

Figure 2.5: The SubBytes S-box.

The four rows are shifted cyclically to the left by zero, one, two,
and three bytes, respectively.

Figure 2.6: The ShiftRows operation.

ShiftRows. The operation ShiftRows shifts each of the four rows
cyclically to the left by 0, 1, 2, and 3 places, respectively. Thus
ShiftRows applied to the block (2.1) yields the array

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32

.(2.11)

2.2. Advanced Encryption Standard (AES) 31

Each column is considered as an element of F256[y]/(y
4 + 1)

and multiplied by c = 03y3 + 01y2 + 01y + 02.
Inverse: multiply with 0By3 + 0Dy2 + 09y + 0E.

·c

Figure 2.7: The MixColumns operation.

This is illustrated in Figure 2.6.

MixColumns. Here we consider an array a = (a3, a2, a1, a0) of four
bytes a3, a2, a1, and a0 as a polynomial

a3s
3 + a2s

2 + a1s+ a0 ∈ F256[s]

of degree at most 3. Addition of such polynomials again corresponds
to a bit-wise XOR. Multiplication gives a polynomial of degree at most 6
which is then decreased to degree at most 3 by reducing the result modulo
s4 + 1 ∈ F256[s]. Thus in effect we are working in the ring

S = F256[s]/(s
4 + 1)

with 2564 elements. As t8+1 above, s4+1 = (s+1)4 is not irreducible in
F256[s], hence S is not a field. Reduction modulo s4+1 is again particularly
easy. If b0, b1 ∈ F256[s] have degree at most 3, then

b1s
4 + b0 = b1 + b0 in S.

In fact, this multiplication is only applied when one factor is the fixed
polynomial
(2.12)

c = (00000011) · s3 + (00000001) · s2 + (00000001) · s+ (00000010)

= 03 · s3 + 01 · s2 + 01 · s+ 02

32 Chapter 2. Basic cryptosystems

in F256[s]. The product of c with a = (a3, a2, a1, a0) can also be described
as the 4-byte word b = (b3, b2, b1, b0) given by the matrix-vector product⎛⎜⎜⎝

b3
b2
b1
b0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
02 01 01 03

03 02 01 01

01 03 02 01

01 01 03 01

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
a3
a2
a1
a0

⎞⎟⎟⎠ .

The operations on individual bytes are those in F256 = F2[t]/(m), as
above. We take the example⎛⎜⎜⎝

a3
a2
a1
a0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
A0

80

01

02

⎞⎟⎟⎠ .

Then

b3 = 02 · A0+ 01 · 80+ 01 · 01+ 03 · 02
= t · (t7 + t5) + 1 · t7 + 1 · 1 + (t+ 1) · t
= t8 + t7 + t6 + t2 + t+ 1.

Since t8 = t4 + t3 + t+ 1 in F256, we have

b3 = t7 + t6 + t4 + t3 + t2 = (11011100) = FC inF256.

It is interesting to note the three roles that the byte 11011100 plays here:
first as an element of F256, represented by a polynomial in F2[t] of degree
7, then as an 8-bit string, and finally a 2-letter hexadecimal word. It
is also the binary representation of the decimal integer 220. Even more
interesting is the fact that we consider the byte as elements of different do-
mains, such as in the inversion in F256 or in the second step in SubBytes,
and then a multiplication on the same data may yield completely different
results depending on the underlying domain. This versatility is another
aspect of the unreasonable effectiveness of algebra in cryptography.

AddRoundKey. The 128-bit block and a round key of the same size
are added bitwise.

This concludes our general description of the four AES operations. In
a software implementation, it is ususally advantageous to replace calcula-
tions by table look-up as far as possible. Using a table of 4 kB, a round
of AES can be executed with 16 table look-ups and 16 XORs of 32 bits.

AES evolved from earlier ciphers like SHARK (Rijmen et al. 1996)
and Square (Daemen et al. 1997). Its design philosophy aimed at resis-
tance against linear and differential cryptanalysis (Chapter 6) and high

33

⊕ =

Figure 2.8: The AddRoundKey operation.

throughput. The choices that this entailed are explained in Daemen &
Rijmen (2002b). As examples, SubBytes using inversion was suggested
in Nyberg (1994), and the modulus m is the first of 30 irreducible polyno-
mials in Table C of Lidl & Niederreiter (1983). MixColumns is based on
matrices in which every square submatrix is nonsingular, a notion from
the theory of error-correcting codes (MacWilliams & Sloane 1977, Chap-
ter 11, Theorem 8). These have good diffusion properties. Namely, if F is
a field, M ∈ Fn×n is MDS and x, x∗ ∈ Fn distinct, then the two vectors
(x,Mx) and (x∗,Mx∗) in F 2n have Hamming distance at least n + 1,
that is, the two vectors differ in at least n+ 1 positions. The authors say
convincingly: “We believe that the cipher structure does not offer enough
degrees of freedom to hide a trapdoor.” .

The omission of MixColumns in the last round — or generally a
final permutation step — is quite common, because it does not decrease
security (ciphertext bits are just permuted in a publicly known way), but
enables decryption with a similar structure; see Exercise 6.1.

As required in the AES competition, the algorithm is fast on a large va-
riety of platforms. Software implementations can reach over 12 GB/sec.

Experts and the relevant standardization institutions consider AES
secure. The strongest attack publicly known in 2015 (Bogdanov et al.
2011) has a cost of 2126.1 operations, compared to 2128 for exhaustive key
search for AES-128. It does not constitute a serious threat to the security
of AES. The most effective attacks are not on the system itself, but
on specific implementations. Even the NSA seems stymied: “Electronic
codebooks, such as the Advanced Encryption Standard, are widely used
and difficult to attack cryptanalytically. NSA has only a handful of in-
house techniques.”

2.2. Advanced Encryption Standard (AES)

34 Chapter 2. Basic cryptosystems

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128- to 256-bit key.

Figure 2.9: The AES key schedule.

2.3. The AES key schedule

AES allows keys of 128, 192, or 256 bits, which corresponds to �k many
32-bit words for �k = 4, 6, or 8. The number �r of rounds after the initial
one is given in Table 2.10.

key length
in bits in �k words �r rounds
128 4 10
192 6 12
256 8 14

Table 2.10: Key lengths and number of rounds in AES.

Each word has the format of a single column in an array like (2.11),
but with 6 or 8 columns at the larger key lengths. In each round we need
a round key array of �k words, and one more for the initial round. Thus
we require a total of �k(�r + 1) round key words.

We first explain this for 128-bit keys K, so that �k = 4. The secret
key K makes up the first four 4-byte words E0, E1, E2, E3 of the extended
key E0, . . . , E4(�r+1)−1, consisting of 4(�r+1) such words. We produce the
others one by one, using the previous ones. Then our round keys consist
of one block of four words after the other from the extended key.

For most indices i ≥ 4, Ei is simply the sum in Z32
2 (bitwise XOR) of

Ei−1 and Ei−4:
Ei = Ei−1 +Ei−4.

If i is a multiple of 4, then first a transformation is applied to Ei−1.
Namely, the four bytes (a3, a2, a1, a0) of Ei−1 are right-shifted cyclically

2.3. The AES key schedule 35

Ri :

(F256)
4 −→ (F256)

4,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
	−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

S (b) + ti/4

S (c)

S (d)

S (a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ Ei−4

Figure 2.11: The nonlinear part of the key schedule for 128-bit keys and
a multiple i of 4.

to give (a0, a3, a2, a1). If we think of the word as an element a of S =
F256[s]/(s

4+1), this is simply multiplication by s3 inS. Then SubBytes

is applied to each byte individually, and a constant round word ci/4 is
added. These cj are defined as

(2.13) cj = (0, 0, 0, tj−1) = tj−1 in S.

Thus cj is constant in that it does not depend on the plaintext or the key.
It is also a “constant” in S in that a general element of S is of the form
a3s

3 + a2s
2 + a1s+ a0, but for cj we have a3 = a2 = a1 = 0.

We recall that �k can take the values 4, 6, and 8. In the last case, a
further transformation is applied. Namely, if i is 4modulo 8, then Ei−1 is
replaced by SubBytes (Ei−1). Putting this together, the key expansion
runs as follows for all three key lengths.

Algorithm 2.14. AES key expansion.

Input: A key K0, . . . ,K�k−1 consisting of �k many 4-byte words Ki.
Output: An extended key E0, . . . , E�k(�r+1)−1 consisting of �k(�r+1) many

4-byte words Ei.

1. For i from 0 to �k − 1 do
2. Ei ← Ki,
3. For i from �k to �k(�r + 1) do steps 4 to 10
4. L ← Ei−1,
5. If �k divides i then
6. c ← (0, 0, 0, ti/�k−1)
7. L ← SubBytes (s3 · L) + c,

36 Chapter 2. Basic cryptosystems

E0 = K0 =
[
00 00 00 00

]
, E1 = K1 =

[
00 00 00 00

]
,

E2 = K2 =
[
00 00 00 00

]
, E3 = K3 =

[
00 00 00 00

]
,

E4 = K4 =
[
00 00 00 00

]
, E5 = K5 =

[
00 00 00 00

]
,

E6 =
[
62 63 63 63

]
, E7 =

[
62 63 63 63

]
,

E8 =
[
62 63 63 63

]
, E9 =

[
62 63 63 63

]
,

E10 =
[
62 63 63 63

]
, E11 =

[
62 63 63 63

]
,

E12 =
[
9B 98 98 C9

]
, E13 =

[
F9 FB FB AA

]
,

E14 =
[
9B 98 98 C9

]
, E15 =

[
F9 FB FB AA

]
,

E16 =
[
9B 98 98 C9

]
, E17 =

[
F9 FB FB AA

]
,

E18 =
[
90 97 34 50

]
, E19 =

[
69 6C CF FA

]
,

E20 =
[
F2 F4 57 33

]
, E21 =

[
0B 0F AC 99

]
,

E22 =
[
A6 A7 44 62

]
, E23 =

[
9F A2 37 0C

]
, . . .

Figure 2.12: Key expansion in AES-192 for the key consisting of all zeroes.

8. If �k = 8 and i is 4 modulo 8 then
9. L ← SubBytes (L),

10. Ei ← Ei−�k + L.

Example 2.15. For a 192-bit key, messages consist of four words of four
bytes each, and the cipher key of �k = 6 such words K0, . . . ,K5. From
Table 2.10, we have �r = 12 rounds, and thus need an extended key of
6 · (12 + 1) = 78 words. The first 24 are illustrated in Figure 2.12 for the
key consisting of all zeroes. ♦

We have now described the operations for one round and the key
schedule. It remains to specify the I/O convention and how the whole
system is put together.

Input and output are arrays of sixteen 8-bit bytes as in (2.1), 128 bits
in total. The conversion to and from a 4 × 4 block is columnwise, so
that the array a00, a10, a20, a30, a01, . . . corresponds to the block (2.1). In
the same manner, the cipher key of 4�k bytes is fed into the first words
E0, . . . , E�k−1 of the extended key.

Finally, the whole system operates as follows, as in Figure 2.1:

1. inital round: AddRoundKey

2.4. Asymmetric vs. symmetric cryptography 37

2. for i from 1 to �r − 1 do

◦ SubBytes

◦ ShiftRows

◦ MixColumns

◦ AddRoundKey

3. final round:

◦ SubBytes

◦ ShiftRows

◦ AddRoundKey

The round keys are taken consecutively from the extended key.

2.4. Asymmetric vs. symmetric cryptography

In a symmetric (or secret key) cryptosystem, the same key is used for
encryption and for decryption. All cryptographic methods were of this
type until the 1970s, and so is AES. But then Diffie & Hellman made
their revolutionary proposal for asymmetric (or public key) cryptosystems:
each player uses a public key and a secret key. The public key of, say, Bob

is used by everybody to encrypt messages to Bob. With his secret key,
Bob can easily decrypt these messages, but without it, nobody should be
able to do this.

Cryptosystems
symmetric asymmetric

examples one-time pad,

Caesar, DES, AES

RSA, Diffie-Hellman,
ElGamal

speed + −
authentication + −
key exchange − +

Table 2.13: Symmetric vs. asymmetric cryptosystems.

At the current state of the art, both types of systems have their pros
and cons. Table 2.13 lists some systems, to be explained later. The
basic advantage of some symmetric systems is their speed, for example,
over 12 GB/sec for AES. Their disadvantage is that a previous exchange
of the common key is necessary; see Chapter I for drastic illustrations of
the ensuing problems, sometimes costing the lives of thousands. A further
advantage of symmetric cryptosystems is that the recipient can feel secure

38 Chapter 2. Basic cryptosystems

about the sender’s identity, while in the asymmetric situation additional
measures have to be taken against impostors; identification schemes and
authentication are discussed in Chapter 10. But for modern cryptography,
“symmetric vs. asymmetric” is not a competition, rather both sides win!
We use asymmetric systems to share the common keys in a symmetric
system, and then the latter for high-throughput communication.

Wonderful! Three examples illustrate this: we have already seen the
symmetric system AES, next comes the asymmetric Rivest, Shamir and
Adleman (RSA) system, and finally the asymmetric Diffie-Hellman key
exchange.

2.5. The RSA cryptosystem

As the first realization of the abstract public key cryptosystem model
suggested by Diffie & Hellman (1976), Rivest, Shamir & Adleman (1977)
invented the Rivest-Shamir-Adleman cryptosystem (RSA).

We follow the long-standing tradition of calling the two players Alice

and Bob. Our scenario is that Alice wants to send a message to Bob that
he should be able to read, but nobody else. To this end, Bob generates
a secret key sk and a public key pk. Anybody can read pk; imagine it is
posted on the internet or in some large database. But Bob guards sk

carefully as his secret. Alice uses pk to encrypt her message for Bob.
Bob uses sk to decrypt it. In a symmetric cryptosystem like AES, the
encryption and decryption keys are (essentially) the same, but here pk

and sk are different, and in fact sk cannot be computed easily from pk

(hopefully).
The messages to be sent may be text, digitized pictures, movies, or

corrrect, data or program files, etc. But we assume here and always in the
future that the messages have been converted into some standard form,
say into a (possibly very long) string of bits 0 and 1. How to perform this
conversion best depends on the type of data. For text, a common way
is to use ASCII or extended ASCII encoding of letters into 7-bit or 8-bit
strings, respectively. In practice, RSA is mainly used to transmit a secret
key, and the (short) message is derived from the key. Digital signatures
can also be produced via RSA (Section 8.1).

Suppose that Alice wants to send a (long) string of bits. There is a
security parameter n to be explained in a minute. Alice splits her string
into blocks of n − 1 bits each, and transmits each block separately. So
we now explain how to transmit a single block (x0, . . . , xn−2) of n − 1
bits in the RSA system. We interpret the block as the binary represen-
tation of the natural number x =

∑
0≤i≤n−2 xi2

i. This number shall be
transmitted.

2.5. The RSA cryptosystem 39

The idea is the following. Bob chooses two prime numbers p and
q at random with n/2 bits each, and so that their product N = p · q
has n bits. He also chooses some random integer e with 1 ≤ e < N
and gcd(e, (p − 1)(q − 1)) = 1. Bob’s public key is pk = (N, e). Alice

looks it up and sends the encryption y = xe in ZN to Bob, that is, the
remainder of xe on division by N . The magic now is that Bob can recover
x from Alice’s message with the help of his private information derived
from (p, q). Here is the system described in full. The required algebraic
terminology is explained in the computer algebra toolbox of Chapter 15.
Throughout this text, the notation a ←−− A denotes a uniformly random
choice of a from the finite set A, so that for any b ∈ A the random variable
a assumes the value b with probability 1/#A.

Cryptosystem 2.16. RSA.

Key Generation keygen.

Input: Security parameter n.
Output: secret key sk and public key pk.

1. Choose two distinct primes p and q at random with 2(n−1)/2 < p,
q < 2n/2.

2. N ← p · q, L ← (p− 1)(q − 1). [N is an n-bit number, and L = ϕ(N)
is the value of Euler’s ϕ function.]

3. Choose e ←−− {2, . . . , L− 2} at random, coprime to L.
4. Calculate the inverse d of e inZL.
5. Publish the public key pk = (N, e) and keep sk = (N, d) as the secret

key.

Encryption enc.

Input: x ∈ ZN , pk = (N, e).
Output: encpk(x) ∈ ZN .

6. y ← xe in ZN .
7. Return encpk(x) = y.

Decryption dec.

Input: y ∈ ZN , sk = (N, d).
Output: decsk(y) ∈ ZN .

8. z ← yd in ZN .
9. Return decsk(y) = z.

40 Chapter 2. Basic cryptosystems

After the key generation, Alice may forget p, q, and ϕ(N), and erase
them on her computer. N is included in the secret key only for symmetry.
Here is a simple example.

Example 2.17. We take n = 6. Literally, we would be looking for primes
between 6 and 7, but at such small values we have to be a bit more liberal
and choose p = 5 and q = 11. Thus N = 55 is a 6-bit number, and L = 40.
We choose e = 13. Using the Extended Euclidean Algorithm 15.4, we find
in a single step that −3 · 13 + 40 = 1, so that d = e−1 = −3 = 37 in Z40.
Thus Bob publishes his public key pk = (55, 13) and keeps his secret key
sk = (55, 37). This finishes the key generation.

Now Alice wants to send a message to Bob, say x = 7. Thus she
has to calculate y = xe = 713 in Z55. The obvious way to do this is to
compute the integer 713 and take its remainder modulo 55. This would
be quite cumbersome here, and utterly infeasible at practical values of
the security parameter n, where xe would have more bits than there are
elementary particles in the universe. But there is an easy way out: the
repeated squaring Algorithm 15.48 uses fewer than 2m operations in ZN

for an m-bit exponent. This is illustrated in Figure 2.14. Its first column

instruction value exp bit in Z55

y0 ←− x x 1 1 7

y1 ←− y20 x2 10 49

y2 ←− y1 · y0 x3 11 1 13

y3 ←− y22 x6 110 0 4

y4 ←− y23 x12 1100 16

y5 ←− y4 · y0 x13 1101 1 2

Figure 2.14: Computing x13.

shows the instruction, the second one the value as a power of x, the third
column the binary representation of the exponent in column two, the
fourth column the corresponding bit in the binary representation 1101 of
13, and the last column the value for x = 7 in Z55. By a squaring, a 0 is
appended to the right of the exponent’s representation, and a subsequent
multiplication by y0 = x turns this into a 1. This multiplication is done
if and only if the corresponding bit is 1. Then the representation of the
exponent is an initial segment of the representation of 13; this is the case
just above the horizontal lines. All intermediate results are taken modulo

2.5. The RSA cryptosystem 41

N = 55 and never get larger than N .
Now Alice has done her share of calculation and sends y = enc55,13(7)

= 2 to Bob. He decrypts in the same way, using the binary representation
100101 of 37, and computes the following sequence of results in Z55:

2, 4, 16, 36, 17, 14, 31, 7.

Thus dec55,37(2) = z = 237 = 7 in Z55 and indeed, this is the message
that Alice wanted to send to Bob. ♦

Because of its importance, we assemble the notation of Figure 2.15 for
RSA, which will be used repeatedly in this text. The length of the public
key (N, e) is 2n, and also for the secret key.

security parameter n,
distinct random primes p and q of at least n/2 bits,
and so that N = pq has n bits,
L = ϕ(N) = (p− 1)(q − 1),
e, d ∈ ZL with ed = 1 in ZL,
plaintext x, ciphertext y, decryption z, all in ZN ,
y = xe, z = yd.

Figure 2.15: The RSA notation.

We have to address several questions.

Correctness: Is z = x?

Efficiency: How to calculate fast . . .

◦ . . . large primes at random?

◦ . . . d from e?

◦ . . . powers modulo N? This has to be done for each message,
and speed is even more a concern than for the previous two
points.

Security: Suppose that an eavesdropper—traditionally called Eve—
listens in to the communications between Alice and Bob. Thus
Eve knows y and, of course, (N, e), and she would like to compute
x. In fact, x is uniquely determined! But how long does it take to
calculate this value? Is this difficult enough to provide security?

Some of these questions are addressed in Section 3.1. The tools for an
efficient implementation of RSA will only be discussed there, but we state

42 Chapter 2. Basic cryptosystems

a precise version of efficient now. It is the fundamental notion of poly-
nomial time, which will be familiar to any student of computer science.
In the key generation, we have to make random choices and thus require
a probabilistic algorithm. This is the standard type of algorithm in this
text. Its expected runtime for a fixed input is obtained by averaging over
the algorithm’s internal random choices. Thus a bound on the runtime
has to hold for all inputs; there is no averaging over the inputs. For RSA
encryption and decryption, no random choices are required. This spe-
cial type of probabilistic algorithms is called deterministic. We recall the
notions of “easy” and “hard” from Definition 15.29.

For the cryptographic protocols discussed in this text, efficiency always
means that the operations performed by the legitimate players are easy.
On the other hand, we want an adversary’s problem to be hard. This leads
to the security notions of Chapter 9. It turns out that RSA is not secure
in the most demanding sense; see Example 9.22. For practical purposes,
the current recommendation is to use a security parameter n ≥ 3000; see
Table 5.12.

Cryptographers at the British government agency CESG (Communications-
Electronics Security Group) had invented, starting in 1970, many ingredi-
ents of public-key cryptography and the RSA and ElGamal cryptosystems
before they were published in the open literature.

2.6. The Diffie-Hellman key exchange

For symmetric cryptosystems like AES, the shared secret key has to be
chosen and communicated between all involved (and authorized) parties.
In practice this agreement is a crucial difficulty in secret-key cryptography.
A historical example is in Chapter I on the Zimmermann telegram. Dur-
ing the First World War, the Germans were cut off from their overseas
embassies. They suspected that their old codes were broken, and sent a
new code to Washington by U-boat. But it could not be forwarded to
Mexico. An important secret message was sent safely to Washington in
the new code, but then had to be transmitted in the old code to Mexico—
and was duly broken. A safe public way of exchanging secret keys might
have prevented this.

Can two players agree upon a shared secret key (for a symmetric cryp-
tosystem) when they are forced to use an insecure channel? Stop here for
a moment and convince yourself that this is impossible. The—somewhat
surprising—correct answer is: yes, they can!

We cannot simply transmit the shared secret key, because the channel
is insecure. Instead, each player sends a disguised version of the key from
which the other player can assemble the shared key, but an eavesdropper

2.6. The Diffie-Hellman key exchange 43

cannot. To achieve this, Diffie and Hellman proposed to use a prime p and
work with the integers that are not divisible by p, and their multiplicative
properties. These numbers form the group Z×

p of units modulo p. There
are p − 1 of them, the product of two of them is again not divisible by
p, and any of them has a multiplicative inverse. This inverse can be
computed via Euclid’s algorithm. Furthermore, this group G = Z×

p is
cyclic, meaning that there is an element g ∈ G, called a generator, whose
powers comprise all of G =

{
1 = g0, g, g2, g3, . . . , gp−2

}
. The details are

discussed in the computer algebra toolbox of Chapter 15.
It turns out that the latter properties are also sufficient. Chapter 4

is dedicated to cryptography in groups, and we now describe the Diffie-
Hellman key exchange in this general setting. So we have a finite cyclic
group G = 〈g〉 and a generator g ∈ G. The group G, the generator g and
all transmitted messages are public, so they are known not only to Alice

and Bob but also to any unauthorized eavesdropper Eve. The order of
G, that is, the number of elements of G, is denoted as d = #G. There
is a global security parameter n, and d is an n-bit number. Then the
elements of G can be represented by n-bit strings. A basic requirement is
that the description of G can be provided with polynomially in n many
bits, and the group operations can be executed on the representations of
the elements of G in polynomially in n many bit operations. The latter
two requirements are usually satisfied in an obvious way.

Some examples for G are:

1. the multiplicative group G = Z×
p of units modulo a prime p,

2. the multiplicative group G = F×
q of a finite field Fq,

3. cyclic subgroups of elliptic curves (Chapter 5) over finite fields.

We use the following example for illustration.

Example 2.18. Let G = Z×
2579 be the multiplicative group of units mod-

ulo the prime number 2579. Because d = ϕ(2579) = 2578 = 2 · 1289 with
2 and 1289 prime, and 22 = 4 and 21289 = −1 in Z×

2579 are both different
from 1, we conclude from Corollary 15.59 that g = 2 ∈ G is a generator
of G. The description of G consists of a few bits saying that “G is of the
form Z×

p ”, for example the ASCII encoding of the phrase in quotes plus
the binary representation of p, 101000010011 in this case. G is identified
with a subset of {0, . . . , p − 1}, and the binary representation of these
integers provides the representation of the elements of G. The tools for
efficient arithmetic in Chapter 15 show that the group operations can be
performed at cost quadratic (hence polynomial) in n, with n = 12 in this
example. ♦

44 Chapter 2. Basic cryptosystems

We now describe the Diffie-Hellman key exchange. First Alice and
Bob individually choose a secret key a and b, respectively, randomly in
Zd. Then they publish their public keys A = ga and B = gb, respectively,
maybe by posting them in a large internet database. After this asym-
metric set-up, they can now both compute, maybe for use in a symmetric
cryptosystem, the shared secret key

gab = Ba = Ab,

since

(2.19) Ba = (gb)a = gab = (ga)b = Ab.

Figure 2.16 gives a graphical representation of the system.

public: finite cyclic group G = 〈g〉 with
a generator g ∈ G and d = #G elements.

Alice

create keys
secret: a ←−− Zd

public: A = ga
�

A = ga

send A, get B

compute

gab = Ba

Bob

create keys
secret: b ←−− Zd

public: B = gb

send B, get A

compute

gab = Ab

�
B = gb

Figure 2.16: Diffie-Hellman key exchange.

Here is a formal description of the protocol.

Protocol 2.20. Diffie-Hellman key exchange.

Set-up.

Input: security parameter n.
Output: G, g and d as below.

1. Determine a description of a finite cyclic group G = 〈g〉 with d = #G
elements and a generator g of G, where d is an n-bit integer.

2.6. The Diffie-Hellman key exchange 45

Key exchange.

2. Alice chooses her secret key a ←−− Zd. She computes her public key
A ← ga ∈ G.

3. Bob chooses his secret key b ←−− Zd. He computes his public key
B ← gb ∈ G.

4. Alice and Bob exchange their public keys A and B.
5. Alice computes the shared secret key kA = Ba.
6. Bob computes the shared secret key kB = Ab.

We continue our little example.

Example 2.18 continued. Recall that G = Z×
2579 and g = 2 ∈ G.

2. Alice chooses her secret key a = 765 and computes her public key
A = 2765 = 949 in G.

3. Bob chooses his secret key b = 853 and computes his public key
B = 2853 = 435 in G.

4. Alice and Bob exchange their public keys A = 949 and B = 435.

5. Alice computes the shared secret key kA = B765 = 2424 in G.

6. Bob computes the shared secret key kB = A853 = 2424 in G.

And lo and behold, the system works not only in general, but also in this
particular case: Alice and Bob share the key kA = kB . ♦

In order to analyze this protocol, we should answer the three usual
questions:

Correctness: Do Alice and Bob get the same shared key?

Efficiency: Can Alice and Bob do their computations efficiently?

Security : Is it hard for Eve to get information on the shared key?

The correctness is shown in (2.19), and Alice and Bob indeed possess
the same shared key kA = kB .

Concerning efficiency, the most costly operation is exponentiation in
G. Figure 2.14 presents an example for the efficient algorithm of repeated
squaring for computing ge ∈ G, given g ∈ G and e ∈ N; see also Sec-
tion 15.13. We may assume that 0 ≤ e < d by Corollary 15.57 and then
it uses O(n) multiplications in G.

In order to discuss security, we slip into the rôle of Eve who works on
the following task.

46 Chapter 2. Basic cryptosystems

Diffie-Hellman Problem 2.21 (DHG). Given a group G = 〈g〉 of
order d and A and B inG, compute C ∈ G so that

A = ga, B = gb, C = gab,

for some a and b in Zd.

Definition 2.22. Let G = 〈g〉 be a group of order d, let a, b, c ∈ Zd and
A = ga, B = gb, and C = gc in G. If ab = c in Zd, then (A,B,C) is a
Diffie-Hellman triple.

Thus DHG asks, for given A,B ∈ G, to find some C ∈ G so that
(A,B,C) is a Diffie-Hellman triple. There is also the following, possibly
easier, version of DHG.

Decisional Diffie-Hellman Problem 2.23 (DDHG). Given a group
G = 〈g〉 of order d and A, B, C in G, decide whether (A,B,C) is a Diffie-
Hellman triple.

If DHG can be solved efficiently, then so can DDHG. But the reverse is
conjectured to be false in general.

Instead of sending the public versions A = ga and B = gb of a and
b, Alice and Bob might of course send the secret values a and b. But
then they have no secret hidden from Eve. More generally, if Eve can
compute a from A, g, and G, then she only has to compute Ba ∈ G to
get the common key, just like Alice does. We have already noted that
raising to a power can be done efficiently. The “inverse” task amounts to
the following.

Discrete Logarithm Problem 2.24 (DLG). Let G be a group, and
g, x ∈ G two group elements. Decide whether x is in the subgroup 〈g〉 ⊆ G
generated by g, and if so, compute some a ∈ Z with ga = x.

A refined version of this problem is described in Definition 4.2. The
Discrete Logarithm Problem 2.24 is of great importance in cryptography
and occupies a prominent place in this book. In Chapter 4, we discuss
various ways to solve it, and also the “generic model” of computation which
says that unless you have a special insight into your group G, the discrete
log problem is hard. Chapter 5 is devoted to a type of groups—elliptic
curves—for which no-one seems to have the required “special insight” so
far, and which are currently popular in cryptography. As noted above,
if Eve can solve the discrete logarithm problem efficiently, then she also
can break the Diffie-Hellman Problem fast. The reverse DLG ≤p DHG is
also true for “most” groups G under some plausible assumptions.

2.6. The Diffie-Hellman key exchange 47

We have discussed security under the assumption that Eve attacks
our protocol in a passive way so far. The bad guy only listens to the
transmission and tries to compute results without disturbing the commu-
nication between Alice and Bob. But can we assume Eve to be passive?
This leads to a more general question on security: Can Eve get secret
information without solving the Diffie-Hellman Problem 2.21?

One attack that works in this case is the woman-in-the-middle attack:
Eve pretends to be Alice when talking to Bob and to be Bob when
exchanging data with Alice. Both legitimate players think they have the
right partner. And Eve can act in the expectedly evil way by generating
her own part of the used shared key(s). This is illustrated in Figure 2.17.

public: finite cyclic group G = 〈g〉 with d = #G.

Alice

create keys
secret: a ←−− Zd

public: A = ga

�
A

send A, get E

compute:
gea = Ea

Bob

. create keys
secret: b ←−− Zd

public: B = gb

�
B send B, get E

compute:

geb = Eb

Eve

create keys
e ∈ Zd

public: E = ge

�
E

�
E

send E,
get A and B

compute:
gae = Ae

gbe = Be

Figure 2.17: Woman-in-the-middle attack on the Diffie-Hellman key ex-
change.

Bob now believes that his shared key with Alice is gbe, but the unsus-
pecting Alice knows nothing about this; only Eve does. And similarly
the other way around. In effect, Eve can read all information encrypted
with the supposedly “shared” keys geb or gea, respectively. She can decrypt
any message and re-encrypt it with the other key to hide the attack. Bob

and Alice may not recognize this active attack until Eve stops “trans-
lating” the encrypted messages.

This is clearly a killer for the system, and Alice and Bob have to
thwart this attack. Of course, they can simply compare whether the
“shared” keys are identical. If they are not, they can be sure that someone
has been messing around. But how can they be sure to compare to the

48 Chapter 2. Basic cryptosystems

right key without identifying their partner and without disclosing their
common key? How does Bob tell Alice from Eve? They have to find
a way to identify each other. In the “non-cryptographic world”, we know
each other’s voices or faces, and we can use identity cards or passports
when introducing ourselves to a stranger. Alice and Bob have to use
similar tools within the protocol. Such electronic tools do indeed exist,
and we discuss them in Chapter 10.

2.7. Block ciphers

We now give a more formal description of encryption. Some theoreti-
cal framework is necessary to put examples into perspective. It remains
bloodless until infused with specific instances; we have already seen AES
and RSA, and more examples will follow.

Definition 2.25. A block encryption scheme (block cipher) S consists
of four probabilistic algorithms S = (set-up, keygen, enc,dec). We have a
security parameter n ∈ N and for each n a key space Kn, a plaintext space
Pn, and a ciphertext space Cn, all of which are finite and publicly known.
Often they consist of all (or most) bit strings of a certain length. The
value n may be restricted to some set of integers. We let K =

⋃
n∈NKn.

set-up : on input n, it outputs descriptions of Kn, Pn, Cn,

and of the encryption scheme used.

keygen : N −→ K2,

keygen(1n) = (sk, pk) ∈ K2
n,

and for each n

enc : Kn × Pn −→ Cn,

encpk(x) = y,

dec : Kn × Cn −→ Pn,

decsk(y) = z.

The options for the descriptions are determined by the larger system
that uses S. For example, set-up(3000) = (3000, “RSA”) might mean that
3000-bit RSA is used, and Pn = {0, 1}n and Cn = {0, 1}n+1 consist of
the binary representations of numbers modulo the RSA modulus. The
input to keygen is the integer n, represented in unary as a string of n
ones. The values sk, pk, x, and y are arbitrary elements of Kn, Kn, Pn,
and Cn, respectively, and those in dec need not be related to those in enc.
The “probabilistic encryption” enc is not a function in the usual sense,

2.7. Block ciphers 49

but rather a “function ensemble”, that is, a probabilistic distribution on
the functions Kn×Pn −→ Cn. The distribution is given by enc’s internal
randomization. We require three properties of S.

Correctness: The decryption of an encrypted plaintext equals the plain-
text. That is, for all n ∈ N and x ∈ Pn, if keygen(1n) outputs
(sk, pk), then

decsk(encpk(x)) = x.

Efficiency: The three “function ensembles” keygen, enc, and dec can be
computed by probabilistic polynomial-time algorithms, where the
algorithm for dec is further restricted to be deterministic.

Security: This is the most nontrivial requirement, and various aspects of
it will be discussed later; see Chapter 9.

This text sometimes uses appropriate modifications of these notions.
For the security, the resources at an adversary’s disposal may be of differ-
ent types. If neither pk nor sk is allowed to be known, we might as well
replace both of them by the pair (sk, pk), so that sk = pk afterwards.

Definition 2.26. In a symmetric (or secret key) encryption scheme, we
have sk = pk. In an asymmetric (or public key) encryption scheme, pk is
known to an adversary.

An early block cipher is the Caesar cipher (Section A.3) in which the
encryption replaces each letter by another one, three positions later in
the alphabet. This is a secret key encryption scheme of block size 1, with
P1 = C1 = K1 being the alphabet (which here replaces {0, 1}). If we allow
a shift by an arbitrary number of positions, then this number is the secret
key sk. In Caesar’s system, we have sk = 3 and enc3(crypto) = fubswr
(using the English alphabet). Decryption consists of shifting back each
letter by three positions, and dec3(fubswr) = crypto.

In a fixed system like AES, there is no security parameter, and we only
have the three key lengths of 128, 192, and 256 bits. Then Kn = {0, 1}n
and Pn = Cn = {0, 1}128 for n ∈ {128, 192, 256}, since all plaintexts and
ciphertexts consist of 128 bits. All other Kn, Pn and Cn are empty. Say,
we consider n = 256. Then Definition 2.25 simplifies as follows:

keygen : {256} −→ K256,

keygen(256) = sk ∈ K256,

encsk : K256 × P256 −→ C256,

decsk : K256 ×C256 −→ P256.

50 Chapter 2. Basic cryptosystems

The last two requirements stated above have to be modified. Efficiency
now means fast enough on current computers, and security means to resist
the known attacks; see Chapter 6.

2.8. Stream ciphers and modes of operation

In a stream cipher, one has an input stream whose length is not known in
advance, and encodes the message as it flows by. As an example, we can
single out the one-time pad, in which the ciphertext bits are obtained by
binary addition (XOR) of the plaintext and the key bits:

yi = xi ⊕ ki,

where yi, xi, and ki denote the ith bit of the ciphertext, plaintext, and
key, respectively. This system is perfectly (information-theoretically) se-
cure provided the key is “truly random” (Section 9.4). Such a scheme is
difficult to implement for long plaintexts, since the key is as long as the
plaintext. We mention a related system, the synchronous additive stream
cipher, in Section B.1. These ciphers played an important role in the his-
tory of cryptography, associated with the names of Trithemius, Vigenère,
and Vernam, and include the German Siemens Geheimschreiber and the
British Typex from the Second World War. Such a stream cipher usually
produces a stream of pseudorandom bits (Chapter 11) and uses it like the
one-time pad above.

In this text we discuss mostly block ciphers, encrypting blocks of some
length n. Examples so far are AES (with n = 128) and RSA (with variable
n). However, we have to consider how to encrypt long messages with one
of our block ciphers (keygen, enc,dec) of fixed message length n. There
are several ways of doing this. First, we might simply chop the message
into blocks of length n and encrypt each block separately. This is called
the Electronic Codebook (ECB) and actually not a good idea. A passive
adversary, intercepting many encryptions, would then know which data
are identical to those in other messages.

In order to mitigate this problem, we can chain the encryptions to-
gether, so that the encryption of each block depends on the previous
blocks. We split our input, as it streams by, into blocks x0, x1, x2, . . .,
each of n bits. For i = 0, 1, 2, . . ., we calculate some n-bit zi which is
transmitted. In the cipher block chaining mode (CBC), zi is obtained by
encrypting the sum (bitwise XOR) of xi and zi−1. (With an initial value v
for z−1; often one takes v = 0, but this is less secure than a random v.) In
the cipher feedback mode,zi is the sum of xi−1 and encK(xi), again with
an initial value for x−1. The same key is used for all encryptions. One
might also consider transmitting zi = encK(xi) ⊕ encK(zi−1), or use the

2.9. Secret sharing 51

· · · xi−1xixi+1 · · · · · · xi−1xixi+1 · · · xi−1xixi+1 · · ·
↓ ↓

yi = xi ⊕ zi−1 yi = encK(zi−1)
↓ ↓

zi = encK(xi) zi = encK(yi) zi = yi ⊕ xi

ECB CBC CFB

· · · xi−1xixi+1 · · · · · · xi−1xixi+1 · · · · · · xi−1xixi+1 · · ·
↓ ↓

yi = encK(zi−1) yi = encK(v ⊕ i)
↓ ↓

zi = encK(xi)⊕ yi zi = encxi−1(xi) zi = yi ⊕ xi

OFB autokey CTR

Figure 2.18: Modes of operation for block ciphers.

plaintext itself as key, assuming a key of length n : zi = encxi−1(xi). The
former is the output feedback mode (OFB) and the latter is called au-
tokey and was invented by Vigenère; see Section C.4. The counter mode
(CTR) uses an initial vector (or nonce) v and a counter which, in the
simplest case, is increased by one for each new block. The ith ciphertext
then is zi = encK(v ⊕ c)⊕ xi, where c is the binary representation of the
counter, padded with leading zeroes to the appropriate length. CBC and
OFB suffer from the problem of error propagation: an error in one encryp-
tion may contaminate subsequent blocks; see Exercise 2.10. Figure 2.18
summarizes these six modes of operation.

2.9. Secret sharing

The basic task for this section is the following: we want to distribute
shares of a secret among n players so that together they can reconstruct
the secret, but no proper subset of the players can. You may think of
sharing access to your bowling club account with your friends, or of other
people, possibly not your friends, sharing access to a nuclear first strike
capability.

Shamir (1979) presents an elegant solution on just two pages. We
identify possible secrets with elements of the finite field Fp = Zp for an ap-
propriate prime p. Some bank cards for Automatic Teller Machine (ATM)
access have four-digit decimal numbers as their secret Personal Identifi-

52 Chapter 2. Basic cryptosystems

cation Number (PIN) codes. To distribute such a secret PIN to n players,
we may take the smallest prime p = 10007 with five decimal digits. Then
we choose 2n − 1 random elements f1, . . . , fn−1, u1, . . . , un ←−− Fp uni-
formly and independently with all ui nonzero, call our secret f0 ∈ Fp, set
f = fn−1x

n−1 + · · · + f1x + f0 ∈ Fp[x], and give to player number i the
value f(ui) ∈ Fp. If ui = uj for some i �= j, we have to make a new
random choice; this is unlikely to happen if n is much smaller than

√
p,

according to the birthday Theorem 3.41 and Exercise 3.18 (iv). Then all
players together can determine the (unique) interpolation polynomial f of
degree less than n, and thus f0. But if any smaller number of them, say
n−1, get together, then the possible interpolation polynomials consistent
with this partial knowledge are such that each value in Fp of f0 is equally
likely: they have no information on f0. The tools for interpolation are
described in Section 15.10.

We verify this security claim for a coalition of the n − 1 players
1, . . . , n − 1. There is a unique interpolation polynomial g ∈ Fp[x] of
degree at most n − 2 for their values, so that g(ui) = f(ui) for all
i < n ≤ p. All possible interpolation polynomials for n players are of
the form s = g + h

∏
1≤i<n(x − ui), with h ∈ Fp[x]. The degree of the

product is n − 1, and the degree of the sum is deg s = n − 1 + deg h,
which is less than n—as required for f—if and only if deg h ≤ 0, that is,
if and only if h is a constant. Now the constant term of the product is
u = (−1)n−1

∏
1≤i<n ui �= 0, by the choice of the ui’s. Thus the constant

term
s(0) = g(0) + h · u

of s may be any value v ∈ Fp for the appropriate unique choice

h = (v − g(0))/u

of h. In other words, the n − 1 players have no information about
f0 = f(0), since any value for it is consistent with their knowledge
f(u1), . . . , f(un−1).

Example 2.27. Suppose that n = 3, p = 7, and the secret is f0 = 6. We
choose randomly u1 = 2, u2 = 3, u3 = 5, f1 = 4, f2 = 2. Then the three
players receive:

player i 1 2 3

point ui 2 3 5
value f(ui) 1 1 6

Together they can compute the unique interpolation polynomial f =
f2x

2 + f1x + f0 = 2x2 + 4x + 6 and, in particular, the secret f0 = 6.

2.10. Visual cryptography 53

But if only, say, players 2 and 3 collaborate, their unique interpola-
tion polynomial is g = 6x + 4 of degree 1. All quadratic polynomials
sh = g + h · (x − 3)(x − 5) with h ∈ F7 interpolate these two values, and
the constant term of sh is sh(0) = h+ 4. When h runs through F7, every
value in F7 appears exactly once as h+ 4; for example, s6 = 6 + 4 = 3 in
Z7. The “correct” value h = 2 is as likely as any other. ♦

This secret sharing scheme is information-theoretically secure: no matter
how large the computational resources of players 2 and 3 are, they cannot
find out anything about the secret f0.

We can extend this scheme to the situation where k ≤ n and each
subset of k players is able to recover the secret, but no set of fewer than
k players can do this. This is achieved by randomly and independently
choosing n + k − 1 elements u0, . . . , un−1, f1, . . . , fk−1 ∈ Fp and giving
f(ui) to player i, where f = fk−1x

k−1+ · · ·+f1x+f0 ∈ Fp[x] and f0 ∈ Fp

is the secret as above. Again, it is required that ui �= uj �= 0 if i �= j.
Since f is uniquely determined by its values at k points, each subset of
k out of the n players can calculate f and thus the secret f0, but fewer
than k players together have no information on f0.

2.10. Visual cryptography

The system discussed here provides a visual representation of a secure
symmetric cryptosystem such as the one-time pad; see Sections 2.8 and
9.4. In its simplest variant, this scheme of Naor & Shamir (1995) transmits
an image by first creating a random image as secret key and then a second
image depending on it and the message. By itself, this second image is
again randomly generated, but the two images are highly correlated.

For illustration, suppose a company manager stays at a hotel for ne-
gotiations with another company. If she requires information from home,
maybe a blueprint or picture, her company sends her the second image
by fax. Anyone seeing this fax alone obtains no information. But she can
superimpose her secret key slide, which she took with her, on the fax and
see the message.

How is this achieved? The plaintext image is split into square pixels,
each of which is either black or white. Each pixel is further divided equally
into four square subpixels. Both in the random key and in the encrypted
message, exactly two of the four subpixels are black, and two are white.
There are six possible arrangements of two blacks in a 2× 2 square as in
Figure 2.19. For the random key, one of the six is chosen uniformly at
random, and independently for each of the many pixels. For the encryp-
tion, we choose the same arrangement as on the key if the plaintext pixel
is white, and the complementary one if the plaintext pixel is black. If we

54 Chapter 2. Basic cryptosystems

enc enc

dec
+

dec
+

keygen

Figure 2.19: Visual cryptography—single pixel operation.

then superimpose the key and the encryption, we have exactly two or four
subpixels black if the plaintext pixel is white or black, respectively.

More information about the VisKy system of visual encryption is avail-
able on the book’s website, including examples and javascript software
that allows you to encrypt your own images.

Notes 2.1. AES is not completely fixed, but rather there are three choices for the key
length.

2.2. EFF’s website is http://www.eff.org/.

For the AES selection process, see http://csrc.nist.gov/archive/aes/. AES was
announced by NIST as US FIPS PUB 197 on 26 November 2001 which became effective
on 26 May 2002. It may be used in the United States up to the top secret level. Rijndael
is related to the Flemish word for Rhine valley and a play on the inventors’ names.
A visual presentation of AES is available at the book’s website. Matrix entries are
usually read row-before-column, as a00, a01, . . ., but AES uses a different convention
for its 4× 4 blocks.

Hamming (1980) coined “the unreasonable effectiveness of mathematics”.

http://www.eff.org/
http://csrc.nist.gov/archive/aes/

Notes 55

Osvik et al. (2010) report a throughput of 12.9 GB/sec for AES on an NVIDIA Graphics
Processing Unit 8800 GTX running at 1.35 GHz. See Bingmann (2008) for an exten-
sive but slightly more dated comparison of various platforms and standard software
packages.

The expected cost of exhaustive search for a 128-bit key is 2127 operations. The quote
at the end of the section is from an undated NSA document provided by Edward
Snowden and published in the article Appelbaum et al. (2014). Attacks on specific
AES implementations are known that use differential power analysis, fault attacks,
cache misses, or cold boot.

2.5. The three inventors of RSA were postdocs at MIT at that time. They later rose
to prominent positions in science, at MIT, the Weizmann Institute, and the University
of Southern California, respectively. They founded in 1982 a company now called RSA
Labs, sold it in 1996, and its present owner acquired it in 2006 for 2.1 billion US$.

Alice and Bob were both born on 4 April 1977, or at least we found the first usage of
these names as players in a cryptosystem in the technical memo MIT/LCS/TM-82 of
that date, in which the inventors of RSA present their system and write about users
“A and B (also known as Alice and Bob)”.

There are several ways of prescribing the generation of the RSA modulus N precisely;
see Loebenberger & Nüsken (2014) for a discussion.

According to the memos posted on the web page http://www.cesg.gov.uk/about/
nsecret.htm, James Henry Ellis put forward in 1970 the idea of public key crypto-
graphy, which he called non-secret encryption. Clifford Christopher Cocks proposed in
1973 a practical implementation which was essentially equivalent to RSA (using e = N
in the RSA notation), and Malcolm Williamson suggested the Diffie-Hellman key ex-
change in Z×

p in 1976 (with a precursor in 1974). The CESG, based in Cheltenham,
Gloucestershire, and today called the GCHQ is a descendant of the Government Code
and Cypher School (GCCS) of Enigma-breaking fame; see Chapter J.

2.6. The key exchange idea was first published by Diffie & Hellman (1976). Their
proposal used the only type of group then under consideration in cryptography, namely
the group of units modulo a prime. The generalizaton to arbitrary cyclic groups is
straightforward. In Figure 2.17, Eve might also use two different values of e, one for
Alice and one for Bob.

We do not discuss efficient pairings on an elliptic curve E in this text. In such groups E,
DDHE is easy, but before the advances in discrete logarithms mentioned in Section 4.8,
DHE looked hard.

It is not known whether DLG ≤p DHG, but this was shown to be true under some
plausible assumptions by Maurer & Wolf (1999). They take a cyclic group G with
order d = #G and bit size n ≈ log2 d, and assume that the set P of prime factors
of d is given. According to Figure 4.6, even the case P = {d} is of great interest.
For p ∈ P with p2 dividing d, they assume that p ∈ poly(n). For any prime p, they
consider the Hasse interval Ip = {i : |i − p − 1| ≤ 2

√
p} of sizes of elliptic curves over

Zp (Theorem 5.10). Furthermore, ν(p) denotes the smallest integer s for which there
exists an s-smooth integer in Ip, and m = max{ν(p) : p ∈ P}. Maurer & Wolf exhibit a
reduction from DLG to DHG using time

√
m ·poly(n). Under the plausible assumption

that ν(p) = (log p)O(1), the running time is polynomial in n. Proving this assumption
seems out of reach for current methods in number theory. Even showing that ν(p) ≤ pα

for all α > 0 is an open question; see Granville (2008), Section 4.4, for a description of
the state of the art in smoothness bounds throughout his survey.

2.7. For an n-bit RSA modulus N , it would be more natural to take ZN as plaintext and
ciphertext spaces. The bit lengths n and n+1 only depend on n and are chosen because,

http://www.cesg.gov.uk/about/nsecret.htm
http://www.cesg.gov.uk/about/nsecret.htm

56 Chapter 2. Basic cryptosystems

identifying numbers and their binary representations, we have {n-bit integers} ⊆ ZN =
{0, . . . , N − 1} ⊆ {(n+ 1)-bit integers}.
2.8. Here is a potential attack on ECB. The adversary sets up an internet shop and
sells laptops at slightly lower prices than everybody else. He intercepts the encrypted
versions of bank transfers from his clients to him, and might actually deliver the goods.
Suppose that the beneficiary’s account in a transfer is in the fourth of twenty blocks.
He now has the encryptions of this fourth block and can insert it into later transfers
that he intercepts. These monies would then end up in his account. (An attack might
not work this way, but it illustrates the idea.)

A variant of the OFB mode is used in the ISO 10116 standard. A security reduction for
the counter mode is in Rackoff (2012). Goldreich (2004), Chapter 5, discusses security
aspects of various modes.

2.10. Visual cryptography was invented by Naor & Shamir (1995). Several variations
and generalizations have been studied in the literature; see Cimato (2011).

Exercises.

Exercise 2.1 (Birth number). Let d be your date of birth in the format Year-
MonthDay, so that 24 May 1990 gives d = 19900524. Let N = 216 + 1, a = d in ZN

with 0 ≤ a < N , b = (d− a)/N = �d/N�, and c = a+ b in ZN . Thus c = 43116 in the
example. See Section 15.3 for division with remainder. We call c your birth number
and will use it in several exercises. Now interpret the low-order eight bits a∗, b∗, c∗ of
the binary representations of a, b, c, respectively, as elements of F256, just as in AES.
Compute

(i) a∗ + b∗, and compare to c∗,

(ii) a∗ · b∗,
(iii) inv(a∗). State your year of birth and give a date in the same year for which

a∗ = 0.

Exercise 2.2 (One round of AES). In this exercise we compute the first round of
AES by hand. We start with an input matrix⎛

⎜⎜⎝
01 11 21 31

02 12 22 32

03 13 23 33

04 14 24 34

⎞
⎟⎟⎠

and a key ⎛
⎜⎜⎝
AA BB CC DD

AA BB CC DD

AA BB CC DD

AA BB CC DD

⎞
⎟⎟⎠ ,

where all entries are in hexadecimal representation.

(i) Compute AddRoundKey for the first two bytes.

(ii) Compute SubBytes for the two bytes that result in (i).

(iii) After SubBytes, the matrix looks like⎛
⎜⎜⎝

∗ ∗ 55 CE

C2 D3 28 DF

D3 C2 DF 28

E4 79 9B 1E

⎞
⎟⎟⎠ .

Exercises 57

Compute ShiftRows of this matrix.

(iv) Compute MixColumns for the last column of the matrix that results in (iii).

Exercise 2.3 (Encryption and decryption with AES). Consider t1, t0 ∈ R as in
SubBytes.

(i) Check that gcd(t1, x
8 + 1) = 1 in F2[x].

(ii) Compute the inverse of t1 in F2[x]/(x
8 + 1).

(iii) Prove that t1 · a+ t0 = t1 · (a+ (00000101)) for all bytes a ∈ F256.

(iv) Compute the inverse P−1 of the following matrix P modulo 2:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Is there any relation to your result from (ii)?

(v) Show that for all bytes a ∈ F256, we have inv(a) = a254. Use Fermat’s Little
Theorem 15.56.

(vi) Given an output of the function SubBytes , how can you compute the corre-
sponding 1-byte input?

(vii) Verify that (0By3+0Dy2+09y+0E)·(03y3+01y2+01y+02) = 1 in F256[y]/(y
4+1).

(viii) SubBytes is given by the polynomial expression a 	→ 05 · a254 + 09 · a253 +
F9 · a251 + 25 · a247 + F4 · a239 + 01 · a223 + B5 · a191 + 8F · a127 + 63. What
does this mean? Where do the various operations take place? Illustrate each by
an example which is not in this text.

(ix) Specify a decryption algorithm AES−1 that recovers the plaintext from an AES
encryption and the secret key.

Exercise 2.4 (The two byte rings). The elements of the AES-rings F256 and R =
F2[x]/(x

8 + 1) can each be encoded using 8 bits per element. Show that the two rings
are not isomorphic; see Section 15.2.

Exercise 2.5 (Commuting steps?). Do the following operations commute? That is,
is the sequence in which you apply them irrelevant?

(i) SubBytes and ShiftRows.

(ii) ShiftRows and MixColumns.

(iii) MixColumns and AddRoundKey.

(iv) AddRoundKey and SubBytes.

58 Chapter 2. Basic cryptosystems

Exercise 2.6 (Skipping a step). Consider the four operations (SubBytes,
ShiftRows, MixColumns and AddRoundKey) performed in each round of AES.
An obvious proposal to speed up the encryption is to omit one of the steps. Comment
on the security of a modified 128-bit AES, where each round leaves out the following
step.

(i) SubBytes,

(ii) ShiftRows,

(iii) MixColumns,

(iv) AddRoundKey.

Exercise 2.7 (AES operations). Take Baby-AES from Section 6.1 and do the
following for all four AES operations X ∈ {SubBytes,ShiftRows,MixColumns,
AddRoundKey}.

(i) For which blocks a is X(a) = a?

(ii) Given a block b, describe how to compute a block a with X(a) = b.

(iii) Do (i) and (ii) for the real AES of Section 2.2.

You may make reasonable assumptions about the key.

Exercise 2.8 (RSA keys). We want to build an RSA system using the prime numbers
p = 251 and q = 337. (In practice, these numbers are much too small.) Furthermore
we choose e = 54323 and N = p · q for our public key. Use the Extended Euclidean
Algorithm (Section 15.4) to compute the matching secret key d with e ·d = 1 in Zϕ(N).

Exercise 2.9 (3RSA). The RSA system can be generalized to allow for products
of more than two distinct prime numbers. Consider the RSA system for products
N = p1 · p2 · p3 of three distinct primes:

Algorithm. 3RSA key generation with security parameter n.

1. Choose three distinct prime numbers p1 < p2 < p3 < 2p1, so that

2n−1 < N = p1 · p2 · p3 < 2n.

2. Compute ϕ(N) = (p1 − 1) · (p2 − 1) · (p3 − 1).
3. Choose the public exponent e ←−− {2, 3, . . . ϕ(N) − 2} so that gcd(e,ϕ(N)) = 1.
4. Compute the secret exponent d so that d · e = 1 in Zϕ(N).
5. Now (N, e) is the public key and (N, d) is the secret key.

With these keys, the remainder of the system is identical to the one using products of
two distinct primes.

(i) Prove that the system works correctly.

(ii) Which advantages and disadvantages of this system over standard RSA do you
see? Efficiency? Security?

(iii*) Generalize the RSA system to products N = p1 · p2 · · · pr of r primes. Are there
noteworthy differences?

59

Exercise 2.10 (Modes of operation). Answer the following questions concerning
error propagation for each of the six modes of operation described in Section 2.8. Let
t be the time to encrypt one block of n bits.

(i) How many text blocks are incorrect if one of the transmitted blocks is corrupted?

(ii) How many text blocks are incorrect if one of the transmitted blocks is dropped
and this is not noticed?

(iii) How many text blocks are incorrect if one of the block encryptions outputs a
wrong result?

(iv) How long does it take to encrypt a message of k · n bits?

(v) Draw conclusions from your observations.

(vi) We define a further mode Plain Block Chaining that adds the plaintext xi−1 to
the encryption of xi as in the following picture.

· · ·xi−1xixi+1 · · ·
↓

yi = encK(xi)
↓

zi = yi ⊕ xi−1

PBC

Answer the questions (i)–(v) also for this mode.

Exercise 2.11 (Caesar). We consider the 1-letter block cipher Caesar3 and the plain-
text CryptoSchool. Calculate the six encryptions according to the six chaining meth-
ods in Section 2.8. Use the English alphabet and IV = x where needed.

Exercise 2.12 (Secret sharing). As an example for the secret sharing method of
Section 2.9, we take p = 10000019, n = 5, and u1 = 1484998, u2 = 8055552, u3 =
412501, u4 = 8994679, u5 = 236054.

(i) Compute the secret from f(u1) = 2016419, f(u2) = 951970, f(u3) = 9707737,
f(u4) = 6395629, f(u5) = 8552973.

(ii) Can you find a value for f(u5), so that the corresponding secret f(0) is your
birth number from Exercise 2.1, without changing the other values?

We investigate which data yields sensitive information and which data does not. We
set p = 1009 so that iterations over all of Fp are reasonable, and n = 7. Let f0 be your
birth number (Exercise 2.1) in F1009, choose u0, . . . , u6, f1, . . . , f6 ∈ F1007 at random
with the ui nonzero and pairwise distinct, and u1, . . . , u6 not 1008.

(iii) Suppose that u0 = 1008 and that a coalition of the secret bearers 1 through
6 learns this by an indiscretion. Compute the distribution of possible secrets.
That is, try all values for f(u0) and count how many times each possible secret
occurs as the value f(0).

(iv) Now suppose that f(u0) = 1008 and a coalition of secret bearers 1 through 6
learns this fact. Compute the distribution of possible secrets by trying all values
for u0 and counting the number of times that each possible secret occurs as the
value f(0).

(v) Compare the results: is one of the indiscretions a problem for secret bearer
number 0? Which one? Why? Can you describe “how much” information was
disclosed?

Exercises

60

Hanc Graecis conscriptam litteris mittit,
ne intercepta epistola nostra ab hostibus consilia cognoscantur.1

CAESAR (c. 50 BC)

It must have been one of those ingenious secret codes which
mean one thing while they seem to mean another.

I must see this letter. If there were a hidden meaning in it,
I was confident that I could pluck it forth.

SIR ARTHUR CONAN DOYLE (1893)

La cifera semplice per ciò à lungo andare può più facilmente
essere intesa per coniettura, senza contracifra,
però si è trovato di formare le cifere più varie

et con caratteri doppii e tripplicati et con molte altre cose,
per iugannare li decifratori.2

MATTEO ARGENTI (c. 1605)

The inclusion of references in other languages may help
to break down the linguistic provincialism which,

ostrichlike, takes refuge in the mistaken impression
that everything worthwhile appeared in,

or has been translated into, the English language.
CARL BENJAMIN BOYER (1968)

‘The letter?—Oh!—The letter! Keep looking at me between the
eyes, please. It was a string-talk letter, that we’d learned the way
of it from a blind beggar in the Punjab.’ I remembered that there
had once come to the office a blind man with a knotted twig and

a piece of string which he wound round the twig according to
some cipher of his own. He could, after the lapse of days or
weeks, repeat the sentence which he had reeled up. He had

reduced the alphabet to eleven primitive sounds, and tried to
teach me his method, but I could not understand.

RUDYARD KIPLING (1888)

1He sent this letter written in Greek characters, lest by intercepting it the enemy
might get to know of our designs.

2The simple cipher can, because of this, in the long run rather easily be broken by
guessing, without the key, but one has found how to design more varied ciphers with
double and triple characters and many other things, to fool the decipherers.

http://www.springer.com/978-3-662-48425-8

	Chapter 2 Basic cryptosystems
	2.1. Goals of cryptography
	2.2. Advanced Encryption Standard (AES)
	2.3. The AES key schedule
	2.4. Asymmetric vs. symmetric cryptography
	2.5. The RSA cryptosystem
	2.6. The Diffie-Hellman key exchange
	2.7. Block ciphers
	2.8. Stream ciphers and modes of operation
	2.9. Secret sharing
	2.10. Visual cryptography
	Exercises

