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Abstract. In the stable marriage and roommates problems, a set of
agents is given, each of them having a strictly ordered preference list over
some or all of the other agents. A matching is a set of disjoint pairs of
mutually acceptable agents. If any two agents mutually prefer each other
to their partner, then they block the matching, otherwise, the matching
is said to be stable. We investigate the complexity of finding a solution
satisfying additional constraints on restricted pairs of agents. Restricted
pairs can be either forced or forbidden. A stable solution must contain
all of the forced pairs, while it must contain none of the forbidden pairs.

Dias et al. [5] gave a polynomial-time algorithm to decide whether
such a solution exists in the presence of restricted edges. If the answer
is no, one might look for a solution close to optimal. Since optimality
in this context means that the matching is stable and satisfies all con-
straints on restricted pairs, there are two ways of relaxing the constraints
by permitting a solution to: (1) be blocked by as few as possible pairs,
or (2) violate as few as possible constraints on restricted pairs.

Our main theorems prove that for the (bipartite) stable marriage prob-
lem, case (1) leads to NP-hardness and inapproximability results, whilst
case (2) can be solved in polynomial time. For non-bipartite stable room-
mates instances, case (2) yields an NP-hard but (under some cardinality
assumptions) 2-approximable problem. In the case of NP-hard problems,
we also discuss polynomially solvable special cases, arising from restric-
tions on the lengths of the preference lists, or upper bounds on the num-
bers of restricted pairs.

1 Introduction

In the classical stable marriage problem (sM) [10], a bipartite graph is given,
where one color class symbolises a set of men U and the other color class stands
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for a set of women W. Man u and woman w are connected by edge vw if they find
one another mutually acceptable. Each participant provides a strictly ordered
preference list of the acceptable agents of the opposite gender. An edge uw
blocks matching M if it is not in M, but each of v and w is either unmatched or
prefers the other to their partner. A stable matching is a matching not blocked
by any edge. From the seminal paper of Gale and Shapley [10], we know that
the existence of such a stable solution is guaranteed and one can be found in
linear time. Moreover, the solutions form a distributive lattice [20]. The two
extreme points of this lattice are called the man- and woman-optimal stable
matchings [10]. These assign each man/woman their best partner reachable in
any stable matching. Another interesting and useful property of stable solutions
is the so-called Rural Hospitals Theorem. Part of this theorem states that if an
agent is unmatched in one stable matching, then all stable solutions leave him
unmatched [11].

One of the most widely studied extensions of SM is the stable roommates
problem (SR) [10,14], defined on general graphs instead of bipartite graphs. The
notion of a blocking edge is as defined above (except that it can now involve any
two agents in general), but several results do not carry over to this setting. For
instance, the existence of a stable solution is not guaranteed any more. On the
other hand, there is a linear-time algorithm to find a stable matching or report
that none exists [14]. Moreover, the corresponding variant of the Rural Hospitals
Theorem holds in the roommates case as well: the set of matched agents is the
same for all stable solutions [12].

Both sM and SR are widely used in various applications. In markets where
the goal is to maximise social welfare instead of profit, the notion of stability is
especially suitable as an optimality criterion [22]. For sM, the oldest and most
common area of applications is employer allocation markets [24]. On one side,
job applicants are represented, while the job openings form the other side. Each
application corresponds to an edge in the bipartite graph. The employers rank all
applicants to a specific job offer and similarly, each applicant sets up a preference
list of jobs. Given a proposed matching M of applicants to jobs, if an employer-
applicant pair exists such that the position is not filled or a worse applicant is
assigned to it, and the applicant received no contract or a worse contract, then
this pair blocks M. In this case the employer and applicant find it mutually ben-
eficial to enter into a contract outside of M, undermining its integrity. If no such
blocking pair exists, then M is stable. Stability as an underlying concept is also
used to allocate graduating medical students to hospitals in many countries [23].
SR on the other hand has applications in the area of P2P networks [9].

Forced and forbidden edges in SM and SR open the way to formulate various
special requirements on the sought solution. Such edges now form part of the
extended problem instance: if an edge is forced, it must belong to a constructed
stable matching, whilst if an edge is forbidden, it must not. In certain market
situations, a contract is for some reason particularly important, or to the con-
trary, not wished by the majority of the community or by the central authority
in control. In such cases, forcing or forbidding the edge and then seeking a sta-
ble solution ensures that the wishes on these specific contracts are fulfilled while
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stability is guaranteed. Henceforth, the term restricted edge will be used to refer
either to a forbidden edge or a forced edge. The remaining edges of the graph
are referred as unrestricted edges.

Note that simply deleting forbidden edges or fixing forced edges and searching
for a stable matching on the remaining instance does not solve the problem of
finding a stable matching with restricted edges. Deleted edges (corresponding
to forbidden edges, or those adjacent to forced edges) can block that matching.
Therefore, to meet both requirements on restricted edges and stability, more
sophisticated methods are needed.

The attention of the community was drawn very early to the characterization
of stable matchings that must contain a prescribed set of edges. In the seminal
book of Knuth [20], forced edges first appeared under the term arranged mar-
riages. Knuth presented an algorithm that finds a stable matching with a given
set of forced edges or reports that none exists. This method runs in O(n?) time,
where n denotes the number of vertices in the graph. Gusfield and Irving [12]
provided an algorithm based on rotations that terminates in O(|Q|?) time, fol-
lowing O(n?*) pre-processing time, where @ is the set of forced edges. This latter
method is favoured over Knuth’s if multiple forced sets of small cardinality are
proposed.

Forbidden edges appeared only in 2003 in the literature, and were first studied
by Dias et al. [5]. In their paper, complete bipartite graphs were considered, but
the methods can easily be extended to incomplete preference lists. Their main
result was the following (in the following theorem, and henceforth, m is the total
number of edges in the graph).

Theorem 1 (Dias et al. [5]). The problem of finding a stable matching in a
SM instance with forced and forbidden edges or reporting that none exists is
solvable in O(m) time.

While Knuth’s method relies on basic combinatorial properties of stable
matchings, the other two algorithms make use of rotations. We refer the reader
to [12] for background on these. The problem of finding a stable matching with
forced and forbidden edges can easily be formulated as a weighted stable match-
ing problem (that is, we seek a stable matching with minimum weight, where
the weight of a matching M is the sum of the weights of the edges in M). Let us
assign all forced edges weight 1, all forbidden edges weight —1, and all remaining
edges weight 0. A stable matching satisfying all constraints on restricted edges
exists if and only if there is a stable matching of weight |Q| in the weighted
instance, where @ is the set of forced edges. With the help of rotations, maxi-
mum weight stable matchings can be found in polynomial time [6,7,15,19].

Since finding a weight-maximal stable matching in SR instances is an NP-
hard task [6], it follows that solving the problem with forced and forbidden
edges requires different methods from the aforementioned weighted transforma-
tion. Fleiner et al. [8] showed that any SR instance with forbidden edges can
be converted into another stable matching problem involving ties that can be
solved in O(m) time [16] and the transformation has the same time complexity
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as well. Forced edges can easily be eliminated by forbidding all edges adjacent
to them, therefore we can state the following result.

Theorem 2 (Fleiner et al. [8]). The problem of finding a stable matching in
an SR instance with forced and forbidden edges or reporting that none exists is
solvable in O(m) time.

As we have seen so far, answering the question as to whether a stable solu-
tion containing all forced and avoiding all forbidden edges exists can be solved
efficiently in the case of both sM and SrR. We thus concentrate on cases where
the answer to this question is no. What kind of approximate solutions exist then
and how can we find them?

Our Contribution. Since optimality is defined by two criteria, it is straightfor-
ward to define approximation from those two points of view. In case BP, all
constraints on restricted edges must be satisfied, and we seek a matching with
the minimum number of blocking edges. In case CV, we seek a stable match-
ing that violates the fewest constraints on restricted edges. The optimization
problems that arise from each of these cases are defined formally in Sect. 2.

In Sect. 3, we consider case BP: that is, all constraints on restricted edges
must be fulfilled, while the number of blocking edges is minimised. We show
that in the sM case, this problem is computationally hard and not approximable
within n!=¢ for any ¢ > 0, unless P = NP. We also discuss special cases for
which this problem becomes tractable. This occurs if the maximum degree of
the graph is at most 2 or if the number of blocking edges in the optimal solution
is a constant. We point out a striking difference in the complexity of the two
cases with only forbidden and only forced edges: the problem is polynomially
solvable if the number of forbidden edges is a constant, but by contrast it is
NP-hard even if the instance contains a single forced edge. We also prove that
when the restricted edges are either all forced or all forbidden, the optimization
problem remains NP-hard even on very sparse instances, where the maximum
degree of a vertex is 3.

Case CV, where the number of violated constraints on restricted edges is
minimised while stability is preserved, is studied in Sect. 4. It is a rather straight-
forward observation that in SM, the setting can be modelled and efficiently solved
with the help of edge weights. Here we show that on non-bipartite graphs, the
problem becomes NP-hard, but 2-approximable if the number of forced edges is
sufficiently large or zero. As in case BP, we also discuss the complexity of degree-
constrained restrictions and establish that the NP-hardness results remain intact
even for graphs with degree at most 3, while the case with degree at most 2 is
polynomially solvable.

A structured overview of our results is contained in Table 1.

2 Preliminaries and Techniques

In this section, we introduce the notation used in the remainder of the paper
and also define the key problems that we investigate later. A Stable Marriage
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Table 1. Summary of results

Stable marriage Stable roommates

case BP: min # | NP-hard to approxi- | NP-hard to approximate within

blocking edges mate within n!=¢ nt=e

case CV: min # |solvable in polyno- | NP-hard; 2-approximable if |Q| is
violated restricted | mial time large or 0
edge constraints

instance (sM) Z = (G, O) consists of a bipartite graph G = (U U W, E) with n
vertices and m edges, and a set O: the set of strictly ordered, but not necessarily
complete preference lists. These lists are provided on the set of adjacent vertices
at each vertex. The Stable Roommates Problem (SR) differs from sM in one sense:
the underlying graph G need not be bipartite. In both sM and SR, a matching in
G is sought, assigning each agent to at most one partner. An edge uw € E\ M
blocks matching M if u is unmatched or it prefers w to its partner in M and w
is unmatched or it prefers u to its partner in M. A matching that is not blocked
by any edge is called stable.

As already mentioned in the introduction, an SR instance need not admit
a stable solution. The number of blocking edges is a characteristic property of
every matching. The set of edges blocking M is denoted by bp(M). A natural
goal is to find a matching minimising |bp(M)|. For convenience, the minimum
number of edges blocking any matching of an instance Z is denoted by bp(Z).
Following the consensus in the literature, matchings blocked by bp(Z) edges are
called almost stable matchings. This approach has a broad literature: almost
stable matchings have been investigated in sM [3,13,18] and SR [1,2] instances.

All problems investigated in this paper deal with at least one set of restricted
edges. The set of forbidden edges is denoted by P, while @) stands for the set of
forced edges. We assume throughout the paper that PN @Q = (). A matching M
satisfies all constraints on restricted edges if M NP =0 and M NQ = Q.

In Fig. 1, a sample SM instance on four men and four women can be seen.
The preference ordering is shown above or below the vertices. For instance,

w1, w3 w1, W4, W2 w3 W4, W3

(=) (=) () (=)
&) (=) O )

UL, u2 Uu2 Ug, UL, U3 U4q, U2

Fig. 1. A sample stable marriage instance with forbidden edges
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vertex uo ranks w; best, then w,, and ws last. The set of forbidden edges P =
{ugws, usws} is marked by dotted gray edges. The unique stable matching M =
{uiwy, ugws, usws, ugw, } contains both forbidden edges. Later on, we will return
to this sample instance to demonstrate approximation concepts on it.

The first approximation concept (case BP described in Sect.1) is to seek a
matching M that satisfies all constraints on restricted edges, but among these
matchings, it admits the minimum number of blocking edges. This leads to the
following problem definition.

Problem 1. MIN BP SR RESTRICTED

Input: T = (G, 0, P,Q); an SR instance, a set of forbidden edges P and a set of
forced edges Q.

Output: A matching M such that MNP =0, Q@ C M and |bp(M)| < |bp(M')]
for every matching M’ in G satisfying M' NP =0, Q C M’.

Special attention is given to two special cases of MIN BP SR RESTRICTED:
in MIN BP SR FORBIDDEN, @@ = (), while in MIN BP SR FORCED, P = (). Note
that an instance of MIN BP SR FORCED or MIN BP SR RESTRICTED can always
be transformed into an instance of MIN BP SR FORBIDDEN by forbidding all
edges that are adjacent to a forced edge. This transformation does not affect the
number of blocking edges.

According to the other intuitive approximation concept (case CV described
in Sect. 1), stability constraints need to be fulfilled, while some of the constraints
on restricted edges are relaxed. The goal is to find a stable matching that violates
as few constraints on restricted edges as possible.

Problem 2. SR MIN RESTRICTED VIOLATIONS

Input: T = (G, 0, P,Q); an SR instance, a set of forbidden edges P and a set of
forced edges Q.

Output: A stable matching M such that M NP|+|Q\ M| < |[M'NP|+|Q\ M|
for every stable matching M’ in G.

Just as in the previous approximation concept (referred to as case BP in
Sect. 1), we separate the two subcases with only forbidden and only forced edges.
If @ = (), SR MIN RESTRICTED VIOLATIONS is referred as SR MIN FORBIDDEN,
while if P = (), the problem becomes SR MAX FORCED. In case BP, the subcase
with only forced edges can be transformed into the other subcase, simply by
forbidding edges adjacent to forced edges. This straightforward transformation
is not valid for case CV. Suppose a forced edge was replaced by an unrestricted
edge, but all of its adjacent edges were forbidden. A solution that does not
contain the original forbidden edge might contain two of the forbidden edges,
violating more constraints than the original solution. Yet most of our proofs are
presented for the problem with only forbidden edges, and they require only slight
modifications for the case with forced edges.

A powerful tool used in several proofs in our paper is to convert some of
these problems into a weighted SM or SR problem, where the goal is to find a
stable matching with the highest edge weight, taken over all stable matchings.
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Irving et al. [15] were the first to show that the weighted sM can be solved
in O(n*logn) time (where n is the number of vertices) if the weight function
is monotone in the preference ordering, non-negative and integral. Feder [6,7]
shows a method to drop the monotonicity requirement. He also presents the best
known bound for the runtime of an algorithm for finding a minimum weight sta-
ble matching in sM: O(n? - log(Z + 2) - min {n, VK}), where K is the weight
of an optimal solution. Redesigning the weight function to avoid the monotonic-
ity requirement using Feder’s method can radically increase K. For weighted
SR, finding an optimal matching is NP-hard, but 2-approximable, under the
assumption of monotone, non-negative and integral weights [6]. These constraints
restrict the practical use of Feder’s results to a large extent. Fortunately, linear
programming techniques allow the majority of the conditions to be dropped
while retaining polynomial-time solvability. Weighted sM can be solved to opti-
mality with arbitrary real-valued weight functions [19], and a 2-approximation
for weighted SR can be found for every non-negative weight function [25].

In all discussed problems, n is the number of vertices and m is the number of
edges in the graph underlying the particular problem instance. When considering
the restriction of any of the above problems to the case of a bipartite graph sr
is replaced by sM in the problem name. Finally, we note that all proofs can be
found in the full version of the paper [4].

3 Almost Stable Matchings with Restricted Edges

In this section, constraints on restricted edges must be fulfilled strictly, while
the number of blocking edges is minimised. Our results are presented in three
subsections, and most of the results are given for MIN BP SM RESTRICTED. Firstly,
in Sect. 3.1, basic complexity results are discussed. In particular, we prove that
the studied problem MIN BP SM RESTRICTED is in general NP-hard and very
difficult to approximate. Thus, restricted cases are analyzed in Sect. 3.2. First we
assume that the number of forbidden, forced or blocking edges can be considered
as a constant. Due to this assumption, two of the three problems that naturally
follow from imposing these restrictions become tractable, but surprisingly, not
all of them. Then, degree-constrained cases are discussed. We show that the NP-
hardness result for MIN BP SM RESTRICTED holds even for instances where each
preference list is of length at most 3, while on graphs with maximum degree 2,
the problems become tractable. Finally, in Sect.3.3 we mention the problem
MIN BP SR RESTRICTED and briefly elaborate on how results established for the
bipartite case carry over to the SR case.

3.1 General Complexity and Approximability Results

When minimising the number of blocking edges, one might think that removing
the forbidden edges temporarily and then searching for a stable solution in the
remaining instance leads to an optimal solution. Such a matching can only be
blocked by forbidden edges, but as the upcoming example demonstrates, opti-
mal solutions are sometimes blocked by unrestricted edges exclusively. In some
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instances, all almost stable solutions admit only non-forbidden blocking edges.
Moreover, a man- or woman-optimal almost stable matching with forbidden
edges does not always exist.

Let us recall the sM instance in Fig. 1. In the graph with edge set E(G) \ P,
a unique stable matching exists: M = {ujwy, ugwy}. Matching M is blocked by
both forbidden edges in the original instance. On the other hand, matching M; =
{uwy, ugwy, uqws} is blocked by exactly one edge: bp(M7) = uqwy. Similarly,
matching My = {ujws, uswy, ugwy} is blocked only by wjwq. Therefore, M; and
My are both almost stable matchings and bp(Z) = 1. One can easily check that
M and M, are the only matchings with the minimum number of blocking edges.
They both are blocked only by unrestricted edges. Moreover, M; is better for
u1,w; and ws, whereas M, is preferred by us, us and wy.

We now present two results demonstrating the NP-hardness and inapprox-
imability of special cases of MIN BP SM RESTRICTED.

Theorem 3. MIN BP SM FORBIDDEN and MIN BP SM FORCED are NP-hard.

Theorem 4. FEach of MIN BP SM FORBIDDEN and MIN BP SM FORCED is not
approzimable within a factor of n'=¢, for any € > 0, unless P = NP.

3.2 Bounded Parameters

Our results presented so far show that MIN BP SM RESTRICTED is computation-
ally hard even if P = () or Q = ). Yet if certain parameters of the instance or the
solution can be considered as a constant, the problem can be solved in polyno-
mial time. Theorem 5 firstly shows that this is true for MIN BP SM FORBIDDEN.

Theorem 5. MIN BP SM FORBIDDEN is solvable in O(n?ml) time, where L =
|P|, which is polynomial if L is a constant.

In sharp contrast to the previous result on polynomial solvability when the
number of forbidden edges is small, we state the following theorem for the MIN
BP SM FORCED problem.

Theorem 6. MIN BP SM FORCED is NP-hard even if |Q| = 1.

On the other hand, a counterpart to Theorem 5 holds in the case of MIN
BP SM RESTRICTED if the number of blocking pairs in an optimal solution is a
constant.

Theorem 7. MIN BP SM RESTRICTED is solvable in O(mL+1) time, where L is
the minimum number of edges blocking an optimal solution, which is polynomial
if L is a constant.

Next we study the case of degree-constrained graphs, because for most hard
sM and SR problems, it is the most common special case to investigate [2,13,21].
Here, we show that MIN BP SM RESTRICTED remains computationally hard even
for instances with preference lists of length at most 3. On the other hand, the
problem can be solved by identifying forbidden subgraphs when the length of
preference lists is bounded by 2.
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Theorem 8. MIN BP SM FORBIDDEN and MIN BP SM FORCED are NP-hard even
if each agent’s preference list consists of at most 3 elements.

Theorem 9. MIN BP SM RESTRICTED is solvable in O(n) time if each preference
list consists of at most 2 elements.

Even with the previous two theorems, we have not quite drawn the line
between tractable and hard cases in terms of vertex degrees. The complexity of
MIN BP SM RESTRICTED remains open for the case when preference lists are of
length at most 2 on one side of the bipartite graph and they are of unbounded
length on the other side. However we believe that this problem is solvable in
polynomial time.

Conjecture 1. MIN BP SM RESTRICTED is solvable in polynomial time if each
woman’s preference list consists of at most 2 elements.

3.3 Stable Roommates Problem

Having discussed several cases of sM, we turn our attention to non-bipartite
instances. Since SM is a restriction of SR, all established results on the NP-
hardness and inapproximability of MIN BP SM RESTRICTED carry over to the non-
bipartite SR case. As a matter of fact, more is true, since MIN BP SR RESTRICTED
is NP-hard and difficult to approximate even if P = () and Q = ( [1]. We
summarise these observations as follows.

Remark 1. By Theorems 3 and 4, MIN BP SR FORBIDDEN and MIN BP SR FORCED
are NP-hard and not approximable within n'~¢, for any € > 0, unless P = NP.
Moreover Theorems 8 and 6 imply that MIN BP SR FORBIDDEN and MIN BP SR
FORCED are NP-hard even if all preference lists are of length at most 3 or, in
the latter case, |Q| = 1. Finally MIN BP SR RESTRICTED is NP-hard and not
approximable within n%_f, for any € > 0, unless P = NP, even if P = () and

Q=0

As for the polynomially solvable cases, the proofs of Theorems 5, 7 and 9
carry over without applying any modifications, giving the following.

Remark 2. MIN BP SR FORBIDDEN is solvable in polynomial time if |P| is a
constant. MIN BP SR RESTRICTED is solvable in polynomial time if the minimal
number of edges blocking an optimal solution is a constant.

4 Stable Matchings with the Minimum Number
of Violated Constraints on Restricted Edges

In this section, we study the second intuitive approximation concept. The sought
matching is stable and violates as few constraints on restricted edges aspossible.
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We return to our example that already appeared in Fig.1. As already men-
tioned earlier, the instance admits a single stable matching, namely M =
{uiwy, ugws, usws, ugw, }. Since M contains both forbidden edges, the minimum
number of violated constraints on restricted edges is 2.

As mentioned in Sect. 1, a weighted stable matching instance models SM MIN
RESTRICTED VIOLATIONS.

Theorem 10. SM MIN RESTRICTED VIOLATIONS is solvable in polynomaial time.

In the SR context, finding a minimum weight stable matching is NP-hard [6],
so the above technique for SM does not carry over to SR. Indeed special cases of
SR MIN RESTRICTED VIOLATIONS are NP-hard, as the following result shows.

Theorem 11. SR MIN FORBIDDEN and SR MAX FORCED are NP-hard.

In our proof, we reduce the Minimum Vertex Cover problem to these two
problems. Minimum Vertex Cover is NP-hard and cannot be approximated
within a factor of 2—¢ for any positive €, unless the Unique Games Conjecture is
false [17]. The reduction also answers basic questions about the approximability
of these problems. Since any vertex cover on K vertices can be interpreted as a
stable matching containing K forbidden edges in SR MIN FORBIDDEN and vice
versa, the (2 — €)-inapproximability result carries over. The same holds for the
number of violated forced edge constraints in SR MAX FORCED. On the positive
side, we can close the gap with the best possible approximation ratio if Q = ()
or |Q)] is sufficiently large. To derive this result, we use the 2-approximability of
weighted SR for non-negative weight functions [25]. Due to the non-negativity
constraint, the case of 0 < |Q| < |M] remains open.

Theorem 12. If|Q| > |M| for a stable matching M, then SR MIN RESTRICTED
VIOLATIONS s 2-approximable in polynomial time.

When studying SR MAX FORCED, we measured optimality by keeping track
of the number of violated constraints. One might find it more intuitive instead
to maximise |@Q N M|, the number of forced edges in the stable matching. Our
NP-hardness proof for SR MAX FORCED remains intact, but the approximability
results need to be revisited. In fact, this modification of the measure changes
the approximability of the problem as well:

Theorem 13. For SR MAX FORCED, the mazimum of |QNM| cannot be approz-
imated within n2 ¢ for any € > 0, unless P = NP.

We now turn to the complexity of SR MIN RESTRICTED VIOLATIONS and its
variants when the degree of the underlying graph is bounded or some parameter
of the instance can be considered as a constant.

Theorem 14. SR MIN FORBIDDEN and SR MAX FORCED are NP-hard even if
every preference list is of length at most 3.
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Theorem 15. SR MIN RESTRICTED VIOLATIONS is solvable in O(n) time if
every preference list is of length at most 2.

Theorem 16. SR MIN RESTRICTED VIOLATIONS is solvable in polynomial time
if the number of restricted edges or the minimal number of violated constraints
s constant.

5 Conclusion

In this paper, we investigated the stable marriage and the stable roommates
problems on graphs with forced and forbidden edges. Since a solution satisfying
all constraints need not exist, two relaxed problems were defined. In MIN BP SM
RESTRICTED, constraints on restricted edges are strict, while a matching with
the minimum number of blocking edges is searched for. On the other hand, in
SR MIN RESTRICTED VIOLATIONS, we seek stable solutions that violate as few
constraints on restricted edges as possible. For both problems, we determined
the complexity and studied several special cases.

One of the most striking open questions is the approximability of SR MIN
RESTRICTED VIOLATIONS if 0 < |@| < |M]. Our other open question is formu-
lated as Conjecture 1: the complexity of MIN BP SM RESTRICTED is not known
if each woman’s preference list consists of at most 2 elements. A more general
direction of further research involves the SM MIN RESTRICTED VIOLATIONS prob-
lem. We have shown that it can be solved in polynomial time, due to algorithms
for maximum weight stable marriage. The following question arises naturally: is
there a faster method for SM MIN RESTRICTED VIOLATIONS that avoids reliance
on Feder’s algorithm or linear programming methods?
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