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1 Introduction

Game theoretical semantics suggests a very intuitive approach to formal seman-
tics. The semantic verification game for classical logic is played by two players,
verifier and falsifier who we call Heloise and Abelard respectively. The goal of
Heloise in the game is to verify the truth of a given formula in a given model
whereas for Abelard it is to falsify it. The rules are specified syntactically based
on the form of the formula. During the game, the given formula is broken into
subformulas step by step by the players. The game terminates when it reaches
the propositional literals and when there is no move to make. If the game ends up
with a propositional literal which is true in the model in question, then Heloise
wins the game. Otherwise, Abelard wins. Conjunction is ssociated with Abelard,
disjunction with Heloise. That is, when the main connective is a conjunction, it
is Abelard’s turn to choose and make a move, and similarly, disjunction yields
a choice for Heloise. The negation operator switches the roles of the players:
Heloise becomes the falsifier, Abelard becomes the verifier. The major result of
this approach states that Heloise has a winning strategy if and only if the given
formula is true in the given model. The semantic verification game and its rules
are shaped by classical logic and consequently by its restrictions. In this work,
we first observe how the verification games change in non-classical, especially
propositional paraconsistent logics, and give Hintikka-style game theoretical se-
mantics for them. We will obtain games in which winning strategies for players
are not necessary and sufficient conditions for truth values of the formulas.

Game theoretical semantics (GTS, for short) was largely popularized by Hin-
tikka and Helsinki School researchers even though earlier pointers to similar ideas
can be found in Parikh [12]. An overview of the field and its relation to various
epistemic and scientific topics can be found in [15]. Moreover, [9,14,15] provide ex-
tensive surveys of GTS. A game theoretical concept of truth and its relation to win-
ning strategieswere investigatedby [3]. Pietarinen considered various non-classical
issues including partiality and non-competetive games within the framework of
GTS with some connections to the Kleene logic without focusing on particular
(paraconsistent) logics [13,16,23]. Hintikka and Sandu discussed non-classicality
in GTS also without specifically offering any insight on paraconsistency [9,14]. Tu-
lenheimo studied languages with two negation signs, which can bear some resem-
bles to paraconsistent ideas on weak and strong negations [26]. Additionally, there
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were some technical work discussing the intersection of GTS and intuitionism in-
cluding some work on type-theoretical foundations [21]. An epistemic, first-order
extension of GTS, called “Independence-Friendly” logic, was suggested by Hin-
tikka and Sandu relating GTS to Henkin quantifiers [8,11]. Some discussions on
intuitionism from the viewpoint of GTS are worth noting. Tennant argued that
some aspects of GTS do not work intuitionistically [25]. Similarly, Hintikka noted
that the law of excluded middle may not hold in some instances since the lack of
a winning strategy for a player does not entail the existence of a winning strategy
for the other player [7]. However, Hintikka himself, perhaps with the exception of
independence-friendly logic, is not very clear on GTS and intuitionism, especially
when it comes to negation [25]. GTS relates directly to various issues in program-
ming languages, yet, this will not be our focus here.

In this work, we consider propositional paraconsistent logics. We define para-
consistent logic as any formal system that does not satisfy the explosion prin-
ciple: ϕ,¬ϕ � ψ for any ϕ, ψ. There exists a wide variety of paraconsistent
logics, and there are numerous ways to construct them [5,18,19]. Apart from its
proof-theoretical definition, paraconsistency can also be described semantically
suggesting that in paraconsistent logic some formulas and their negations can
both be true.

Apart from studying the underlying logic, GTS can also be approached from a
game theoretical perspective. It is then worthwhile to consider verification games
where i) Abelard and Heloise both may win, ii) Abelard and Heloise both may
lose, iii) Heloise may win, Abelard may not lose, iv) Abelard may win, Heloise
may not lose, v) There is a tie, vi) There is an additional player, vii) Players do
not take turns. Such different possibilities can occur, for instance, when both p
and ¬p are true, so that both players can have winning strategies. We can also
imagine verification games with additional truth values and additional players
beyond verifiers and falsifiers, and also construct games where players may play
simultaneously.

This paper investigates the logical conditions which entail such game theo-
retical conditions, and aims at filling the gap in the literature between GTS
and paraconsistency. In what follows, we consider a variety of well-known para-
consistent logics, offer a game semantics for them and observe how different
logics generate different verification games. This is also important philosophi-
cally especially when winning strategies are seen as constructive proofs for truth
in an intuitionistic sense or when they are seen as verifications [3]. Therefore,
by focusing on inconsistent formulas and associated winning strategies, we offer
(constructive) proofs for inconsistencies (cf. appendix) and expand the compu-
tational discussions on the connection between proofs, strategies and truth.

2 Game Semantics for Logic of Paradox

Logic of paradox (LP, for short) introduces an additional truth value P , called
paradoxical, which intuitively stands for both true and false [17].
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LP is a conservative extension of the classical logic, thus preserves the clas-
sical truth. The logics LP and Kleene’s three valued system K3 have the same
truth tables. However, they differ on the truth values that they preserve in
valid inferences, and how they read P . It is read as over-valuation in LP and
as under-valuation in K3. The truth values that are preserved in validities are
called designated truth values [20]. In LP, it is the set {T, P}; in K3, it is the
set {T }. Designated truth values can be thought of as extensions of the classical
notion of truth. Even if the truth tables of two logics are the same, different
sets of designated truth values produce different sets of validities, thus different
logics. For instance, p ∨ ¬p is a theorem in LP, but not in K3.

¬
T F
F T
P P

∧ T P F

T T P F
P P P F
F F F F

∨ T P F

T T T T
P T P P
F T P F

Fig. 1. The truth table for LP and K3.

We stipulate that the introduction of the third truth value requires an addi-
tional player that we call Astrolabe after Abelard and Heloise’s son. Astrolabe
is the paradoxifier in the game forcing the game to an end with P .

In GTS for LP, the first problem is to determine the turns of the players at
each connective. For instance, if the formula T ∧ P is considered, the problem
becomes evident. In this quick game, if we assume that it is Abelard’s turn then
he will not have a move that can bring him a win. From the truth table, it
can be seen that the formula evaluates to P , so Astrolabe can be expected to
have a winning strategy. In order to make it possible, then, Astrolabe must be
allowed to make a move at a conjunction, too. Similarly, if F ∨ P is considered,
which evaluates to P , Eloise cannot make a move that can bring him a win, and
Astrolabe needs to be given a turn to make a move to win the game. Therefore, we
associate disjunction with Heloise and Astrolabe, and conjunction with Abelard
and Astrolabe. This modification introduces parallel play where the players may
make moves in a parallel, concurrent fashion. In the case of a negation, Heloise
and Abelard will switch their role, and Astrolabe will keep his role as P is a fixed-
point for negation in LP. Astrolabe’s role always remains as the paradoxifier.

Let us now formally define GTS for LP following the terminology in [14].
First, we take the language L of propositional logic with its standard signature.
A model M is a tuple (S, v) where S is a non-empty domain on which the game
is played, and the valuation function v assigns the terms in L to truth values in
the logic. For simplicity, we assume L does not have → nor ↔. We define the
verification game as a tuple Γ = (π, ρ, σ, δ) where π is the set of players, ρ is
the set of well-defined game rules, σ is the set of positions, and δ is the set of
designated truth values. The set of positions is determined by the subformulas
of the given formula and remains unchanged in the logics we discuss as they use
the same propositional syntax. We embed the turn function at the positions into
the rules of the game for simplicity. A semantic verification game is defined as
Γ (M,ϕ) for a game Γ , model M and a formula ϕ ∈ L. A strategy for a player
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is a set of rules that tells him which move to make at each position where it
is his turn. A winning strategy is the one that guarantees a win for the player
regardless of the moves of the opponent(s). A winning strategy for a player does
not necessarily entail the lack of a winning strategy for the opponent(s). Let us
now reconsider the following example before determining the π and ρ for LP.

Example 1. Consider the formula (P ∧T )∨(P ∧F ) which evaluates to P . In this
game, Astrolabe has a winning strategy: at each end-node (P ∧T and P ∧F ), he
selects P . Here, we also observe that Abelard being stuck at some states (such
as P ∧ T ) does not necessarily entail a win for neither of the other players.

(P ∧ T ) ∨ (P ∧ F )

Heloise

P ∧ T

Abelard

P T

Astrolabe

P T

P ∧ F

Abelard

P F

Astrolabe

P F

Astrolabe

P ∧ T

Abelard

P T

Astrolabe

P T

P ∧ F

Abelard

P F

Astrolabe

P F

We call the verification game for LP as GTSLP. GTSLP is a non-zero sum
verification game where more than one player may have a winning strategy, and
making the opponent lose does not necessarily entail that it is a win for the
player himself. Also, as we shall see, in GTSLP admitting winning strategies
does not necessarily entail the truth value of the formula in question.

Definition 1. The tuple ΓLP = (π, ρ, σ, δ) is an LP verification game for LP
where π = {Astrolabe, Heloise, Abelard}, σ is as in classical logic, δ is {T, P}
and ρ is given as follows inductively for a game ΓLP(M,ϕ).
— If ϕ is atomic, the game terminates, and Heloise wins if ϕ is true, Abelard
wins if ϕ is false and Astrolabe wins if ϕ is paradoxical,
— if ϕ = ¬ψ, Abelard and Heloise switch roles, Astrolabe keeps his role, and
the game continues as ΓLP(M,ψ),
— if ϕ = χ∧ψ, Abelard and Astrolabe choose between χ and ψ simultaneously,
— if ϕ = χ∨ψ, Heloise and Astrolabe choose between χ and ψ simultaneously.

Correctness theorem for GTSLP follows.

Theorem 1. In a GTSLP verification game ΓLP(M,ϕ)
— Heloise has a winning strategy if ϕ is true in M ,
— Abelard has a winning strategy if ϕ is false in M ,
— Astrolabe has a winning strategy if ϕ is paradoxical in M .

LP distinguishes different trues and falses: trues that are only true (T ), falses
that are only false (F ), and trues that are also false (P ) and falses that are
also ture (P ). In GTS, this carries over to games allowing Astrolabe making
moves alongside Heloise and Abelard. In, GTSLP there are winning strategies
that causes a loss for the opponent, and there are winning strategies do not.
Additionally, there are winning strategies that cannot guarantee the logical truth
of formulas. A game for P ∧ F illustrate this point, where both Abelard and
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Astrolabe can have a winning strategy. But, this does not directly say anything
about the truth value of P ∧F . Therefore, in GTSLP, the immediate connection
between the existence of winning strategies and truth values becomes slightly
more complicated as the following theorem identifies.

Theorem 2. In a GTSLP verification game ΓLP(M,ϕ),
— If Heloise has a winning strategy, then ϕ is true in M ;
— If Abelard has a winning strategy, then ϕ is false in M ;
— If Astrolabe has a winning strategy, but not the other players, then ϕ is
paradoxical in in M .

Theorem 2 also indicates that Astrolabe’s strategy is the strictly dominated
in a sense that if some other player also has a winning strategy, then Astrolabe’s
strategy will not bring him a win. Based on this observation, it is possible to
change some game rules in order to give a biconditional correctness theorem
for GTSLP by prioritizing some players over the others. This will allow some
players to dominate the others reflecting the truth table for LP. In this new
and extended reading of GTSLP, such a move priority is given to the parents
(Abelard and Heloise), they are let to play first, then Astrolabe makes his move.
This extension prevents parallel moves and incorporates winning strategies into
the game rules. These additional rules are given as follows.

1. For propositional letters and negation, the rules are as before.
2. Disjunction belongs to Heloise and Astrolabe; conjunction belongs to Abelard

and Astrolabe.
3. If Heloise (resp. Abelard) has a winning strategy in the sub-game they

choose, the game proceeds with her (resp. his) move.
4. Otherwise, Astrolabe makes a move.

Example 2. Let us consider the formula in Example 1. Given (P ∧T )∨ (P ∧F ),
Heloise first attempts to choose either of them only to realize that she does not
have a winning strategy in either of the sub-games with P ∧T or P ∧F . So, she
cannot make a move, and it becomes Astrolabe’s turn. Astrolabe chooses P ∧T .
Now, Abelard attempts to choose either P or T only to realize that neither
brings him a win. So, he cannot make a move. Astrolabe makes a move, chooses
P , and wins - this is Astrolabe’s winning strategy. If Astrolabe chose P ∧F , then
first Abelard would make a move and choose F for a win. Yet, Abelard still does
not have a winning strategy in this game.

As we mentioned earlier, such a twist on GTSLP is ad-hoc. It incorporates
possessing winning-strategies, which is a meta-logical condition, into game rules,
which are supposed to be syntactic. This modification naturally provides a bi-
conditional Theorem 1 at the expense of violating the pure syntacticality of the
game rules, resulting in completely ad-hoc game rules.

3 Game Semantics for First-Degree Entailment

Semantic evaluations are generally thought of as functions from logical formulas
to truth values. This ensures that each and every formula is assigned a unique



Game Theoretical Semantics for Paraconsistent Logics 19

truth value. However, it is possible to replace the valuation function with a
valuation relation which can produce multiple truth values for logical formulas.
The system obtained in this manner is called First-degree entailment (FDE, for
short), and is due to Dunn [1,6].

For the given propositional language L, the valuation relation r is defined
on L × {0, 1}. By ϕr∅, we will denote the situation where ϕ is not related to
any truth value. By ϕr{0, 1}, we denote the situation when ϕ is related to both
truth values. FDE is a paraconsistent (inconsistency-tolerant) and paracomplete
(incompleteness-tolerant) logic. For formulas ϕ, ψ ∈ L, the valuation r is defined
inductively as follows.

– ¬ϕr1 iff ϕr0
– ¬ϕr0 iff ϕr1
– (ϕ ∧ ψ)r1 iff ϕr1 and ψr1

– (ϕ ∧ ψ)r0 iff ϕr0 or ψr0
– (ϕ ∨ ψ)r1 iff ϕr1 or ψr1
– (ϕ ∨ ψ)r0 iff ϕr0 and ψr0

Notice that LP can be obtained from FDE by imposing a restriction on FDE
that no formula gets the truth value ∅. We denote the GTS for FDE as GTSFDE.

What does the relational semantics correspond to in verification games? If
the truth value P in LP can intuitively be thought of as both true and false,
and if this allows concurrent moves in GTSLP, then the same approach works
in GTSFDE as well. In FDE, unlike LP, formulas can have no truth value which
suggests that neither Heloise nor Abelard may have a winning strategy. Also, in
FDE, both players can have winning strategies. We define the verification games
for FDE in the standard fashion as follows.

Definition 2. The tuple ΓFDE = (π, ρ, σ, δ) is a FDE verification game where
π = {Heloise, Abelard}, σ is as in classical logic, δ is {T } and ρ is given as
follows inductively for a game ΓFDE(M,ϕ).
— If ϕ is atomic, the game terminates, and Heloise wins if ϕr1, Abelard wins
if ϕr0, neither wins if ϕr∅,
— if ϕ = ¬ψ, players switch roles, and the game continues as ΓFDE(M,ψ),
— if ϕ = χ ∧ ψ, Abelard and Heloise choose between χ and ψ simultaneously,
— if ϕ = χ ∨ ψ, Abelard and Heloise choose between χ and ψ simultaneously.

The above rules determines the turn function for the GTSFDE which suggests
that both players make moves at all binary connectives. A simple example can
be helpful.

Example 3. Consider the formula p∧ (q ∨ r) where pr{0, 1}, qr∅ and rr0. Then,
this formula evaluates to 0. In the verification game, Abelard first chooses q ∨ r,
and then chooses r. Alternatively, he can also choose p as his winning strategy,
yet this also gives Heloise a win. This is also another case where existence of
winning strategies do not guarantee the truth value of the formula in question.

The correctness theorem for GTSFDE is given as follows.

Theorem 3. In a game ΓFDE(M,ϕ), we have the following:
— Heloise has a winning strategy if ϕr1,
— Abelard has a winning strategy if ϕr0,
— Either of the players or none of the players has a winning strategy if ϕr∅.
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The connection between FDE and LP can further be explicated as follows.

Corollary 1. For an LP model M and a formula ϕ, let M ′ be the model obtained
from M by maintaining the same carrier set and replacing the valuation function
of LP with the valuation relation of FDE as follows: T 	→ 1, F 	→ 0 and P 	→
{0, 1}. If Heloise or Abelard has a winning strategy in ΓLP(M,ϕ), then Heloise
or Abelard has a winning strategy in ΓFDE(M

′, ϕ) respectively. If only Astrolabe
has a winning strategy in ΓLP(M,ϕ), then both Heloise and Abelard have winning
strategies in ΓFDE(M

′, ϕ).

The converse of Corollary 1 is not true. In GTSFDE, for a game T ∧ F , both
Abelard and Heloise have winning strategies. Yet, in LP for a game T ∧ F ,
Astrolabe does not have a winning strategy.

The lack of biconditional correctness theorem for GTSFDE can be seen more
clearly once LP is considered as a restricted case of FDE.

4 Game Semantics for A Relevant Logic

Relevant logics define negation differently by resorting to possible worlds modal-
izing the negation operator. The idea is due to Routley and Routley, and we will
focus on their logic [22]. A Routley model is a structure (W,#, v) where W is a
set of possible worlds, # is a map from W to itself, and v is a valuation function
defined in the standard way. In this system, the semantics for disjunction and
conjunction is local, whereas for negation, possible worlds are needed.

v(w,¬ϕ) = 1 iff v(#w,ϕ) = 0
v(w,ϕ ∧ ψ) = 1 iff v(w,ϕ) = 1 and v(w,ψ) = 1
v(w,ϕ ∨ ψ) = 1 iff v(w,ϕ) = 1 or v(w,ψ) = 1

We call Routleys’ system RR, and denote its GTS as GTSRR. Notice that
if #w = w, then we have the classical truth conditions. Further connections
between RR and FDE or LP can be found in [19]. We define semantical games
in RR as ΓRR(M,ϕ,w) where M,ϕ are as before, and w ∈ W is a possible world.

Definition 3. The tuple ΓRR = (π, ρ, σ, δ) is a RR verification game where
π = {Heloise, Abelard}, σ is in the form of (ϕ,w) for ϕ ∈ L and w ∈ W , δ is
{T } and ρ is given as follows inductively for a game ΓRR(M,ϕ,w) where w is a
possible world.
– If ϕ is atomic, the game terminates, and Heloise wins if ϕ is true, Abelard
wins if ϕ is false,
– if ϕ = ¬ψ, the players switch roles, and the game continues as ΓRR(M,ψ,#w),
– if ϕ = χ ∧ ψ, Abelard chooses between χ and ψ,
– if ϕ = χ ∨ ψ, Heloise chooses between χ and ψ.

The correctness theorem is given as follows.

Theorem 4. In a game ΓRR(M,ϕ,w), Heloise has a winning strategy if ϕ is
true, and Abelard has a winning strategy if ϕ is false.
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The converse of Theorem 4 is not correct as the # operator can create incon-
sistencies. In order to see this, let w |= ¬ϕ and w′ |= ϕ. If #(w) = w′, then by
definition ϕ is both true and false at w′ satisfying an inconsistency.

5 Translating Games

It is possible to give a translation between three-valued logics and modal logic
S5 [10]. Modal logic S5 is defined as a system (W,R, V ) where W is a non-empty
set, R is an equivalence relation on W ×W and V is the valuation.

Now, we give a translation of LP (and K3) into S5 via GTS. The translation
is built on the following observation: “In an S5-model there are three mutually
exclusive and jointly exhaustive possibilities for each atomic formula p: either p
is true in all possible worlds, or p is true in some possible worlds and false in
others, or p is false in all possible worlds” [10].

Given the propositional language L, we extend it with the modal symbols �
and ♦ and close it under the standard rules to obtain the modal language LM .
GTS for modal logic is well-known. “Diamond” formulas are assigned to Heloise
whereas the “Box” formulas are assigned to Abelard. Also, similar to the RR,
formulas in LM are associated with a possible world, and when a move is made
from a modal formula, the next possible world is determined by R.

The translations TrLP : L 	→ LM and TrK3 : L 	→ LM for LP and K3
respectively are given as follows where p is a propositional variable [10].

TrLP (p) = ♦p
TrK3(p) = �p
TrLP (¬ϕ) = ¬TrK3(ϕ)
TrK3(¬ϕ) = ¬TrLP (ϕ)

TrLP (ϕ ∧ ψ) = TrLP (ϕ) ∧ TrLP (ψ)
TrK3(ϕ ∧ ψ) = TrK3(ϕ) ∧ TrK3(ψ)
TrLP (ϕ ∨ ψ) = TrLP (ϕ) ∨ TrLP (ψ)
TrK3(ϕ ∨ ψ) = TrK3(ϕ) ∨ TrK3(ψ)

The translation is a co-induction, and it generates fully modalized formulas.
As the authors underlined, for fully modalized formulas in S5, a formula is true
somewhere in an S5 model if and only if it is true everywhere in the model. This
fact is due to the frame properties of S5 [10].

Given ΓLP = (π, ρ, σ, δ), we define ΓS5 = (π′, ρ′, σ′, δ′) as follows: π′ =
{Heloise,Abelard}, ρ and σ′ are the rules and positions of verifications games of
S5, and δ′ = {1}. The correctness of the translation for LP is as follows.

Theorem 5. Let ΓLP(M,ϕ) be given. Then,
– if Heloise has a winning strategy in ΓLP(M,ϕ), then she has a winning strategy
in ΓS5(M,TrLP (ϕ)),
– if Abelard has a winning strategy in ΓLP(M,ϕ), then he has a winning strategy
in ΓS5(M,TrLP (ϕ)),
– if only Astrolabe has a winning strategy in ΓLP(M,ϕ), then both Abelard and
Heloise have winning strategies in ΓS5(M,TrLP (ϕ)).

For an LP valuation v, and a model M of S5, v and M are said to be TrLP -
equivalent if for all ϕ ∈ L we have (i) 1 ∈ v∗(ϕ) ⇔ M |=S5 TrLP (ϕ), and (ii)
0 ∈ v∗(ϕ) ⇔ M �|=S5 TrK3(ϕ), where v∗ is the (truth table) function based on v
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that maps formulas to truth values of LP. Based on various results in [10], we
now prove the following, the converse of Theorem 5.

Theorem 6. Let M be an S5 model, ϕ ∈ L with an associated verification game
ΓS5(M,ϕ). Then, there exists an LP model M ′ and a game ΓLP(M

′, ϕ) where,
— if Heloise has a winning strategy for ΓS5(M,ϕ) at each point in M , then
Heloise has a winning strategy in ΓLP(M

′, ϕ),
— if Abelard has a winning strategy for ΓS5(M,ϕ) at each point in M , then
Abelard has a winning strategy in ΓLP(M

′, ϕ),
— if Heloise or Abelard has a winning strategy for ΓS5(M,ϕ) at some points
but not all in M , then Astrolabe has a winning strategy in ΓLP(M

′, ϕ).

For an application of Theorem 5, consider the formula p ∨ q where p and q
have the truth values P, F respectively in LP. Then, Tr(p ∨ q) = ♦p ∨ ♦q where
p, q have the truth values {T, F}, {F} respectively in S5. Based on Theorem 5,
we expect both players to have winning strategies. First, Heloise has a winning
strategy in this game if she chooses p. Also, notice that all possible moves of
Heloise brings Abelard a win without him even not making any moves, due to
the truth values of p, q. Thus, both players have winning strategies in this game.

6 Conclusion

Giving a full picture of GTS for all paraconsistent logics goes beyond the limits
of this article. Some well-studied logics such as da Costa’s C-systems and LFIs
(Brazilian School), 4-valued Belnap logic, the modal extensions of the logics we
presented, and the preservationist approach (Canadian School) are the natural
next steps of this project [4,5,2,24].

The current work can be seen as a case for logical pluralism. The classical
GTS is essentially a very narrow and limited case with many additional and
auxiliary game theoretical and logical presuppositions. Once those assumptions
are set aside (or at least questioned) for various reasons, GTS turns out to be
expressive enough for a variety of non-classical logics as we have exemplified.
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Appendix: Proofs

Proof (Proof of Theorem 1). We start with the case for Heloise. We proceed by
induction on ϕ. Let ϕ be true in M .

If ϕ is a propositional letter p which is true in M , then Heloise wins the game
by definition, hence has a winning strategy.

Let ϕ = ¬ψ. Then, ψ is false. By the game rules, now the game continues
where Heloise is the falsifier. By the induction hypothesis (for falsifier), Heloise

http://www.illc.uva.nl/j50/.ILLC


24 C. Başkent

the falsifier has a winning strategy for ψ. Then, she has a winning strategy as
the verifier for ϕ.

Now, let ϕ be a conjunction of the form χ∧ψ. Since, ϕ is assumed to be true,
the only way to make it true is to have χ and ψ both true. Then, by the induction
hypothesis, Heloise has a winning strategy for both χ and ψ. Then, for ϕ, Abelard
and Astrolabe make moves. Yet, whichever move they make (whichever of χ or
ψ they choose), Heloise will have a winning strategy. Thus, for ϕ, she has a
winning strategy: whatever move Abelard and Astrolabe make, she has a win.

Let ϕ be a disjunction of the form χ ∨ ψ. Then, by the induction hypothesis,
Heloise has a winning strategy for either χ or ψ whichever is true. Then, choos-
ing the true disjunct is her winning strategy at ϕ, independent from whatever
Astrolabe chooses.

The case for Abelard is almost identical to that of Heloise’s, hence skipped.
For Astrolabe, we first assume that the given formula ϕ is paradoxical in M .

If ϕ is a propositional letter p which is paradoxical in M , then Astrolabe has a
winning strategy by definition. Similarly, if ϕ = ¬ψ, then, ψ is paradoxical, too.
By the game rules, Astrolabe’s rule remains the same. By the induction hypoth-
esis, he has a winning strategy for ψ, and thus for for ϕ by simply maintaining
the same role and the strategy, and proceeding with ψ.

For ϕ = χ∧ψ. Since ϕ is assumed to be paradoxical, we only have two options
for χ and ψ: (1) either one of them has the truth value P and the other has the
truth value T , (2) both have the truth value P . Therefore, Astrolabe has winning
strategy for at least one of χ and ψ, by the induction hypothesis. Then, for ϕ,
Astrolabe chooses the conjunct that has the truth value P for which he has a
winning strategy already. This forms his winning strategy for ϕ, independent
from whatever move Abelard makes.

If ϕ = χ∨ψ, then we have two options as well: (1) one of the disjuncts has the
truth value P and the other one has the truth value F , (2) both have the truth
value P . By a similar argument Astrolabe has a winning strategy for either case.

Proof (Proof of Theorem 2). The proof is by induction on ϕ for each player,
and the cases for Heloise and Abelard are very similar to the classical case.
Now, assume that for ϕ, only Astrolabe has a winning strategy. The cases for
propositional variables and negation are as above, hence skipped.

Now, let ϕ = χ ∧ ψ. If only Astrolabe has a winning strategy, this means,
Astrolabe has a winning strategy for either of the conjuncts (as he can choose
whichever he likes), say χ without loss of generality. Then, by the induction
hypothesis, χ is paradoxical. Since Abelard does not have a winning strategy,
by Theorem 1, then neither of the conjuncts is false. Thus, by the truth table
ϕ is forced to be paradoxical as χ is paradoxical. Otherwise, if Abelard had a
winning strategy, and if one of the conjuncts was F , then P ∧F would return F ,
not P disproving the claim. This is the reason why only Astrolabe is supposed
to have a winning strategy.

The case for disjunction for Astrolabe is very similar.

Proof (Proof of Theorem 3). We start with the case for Heloise. Suppose ϕr1.
The cases for propositional variables and negation are immediate. Let ϕ = χ∧ψ.
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If ϕr1, then we have both χr1 and ψr1. By the induction hypothesis, Heloise has
winning strategies for both χ and ψ. Thus, she has a winning strategy for ϕ. For
the failure of the reverse direction, assume that Heloise has a winning strategy,
that is, to choose χ (without loss of generality). Assume further that, Abelard
has a winning strategy as well, that is, to choose ψ. Then, by the indiction
hypothesis χr1 and ψr0 which forces ϕr0. Heloise’s case for disjunction is very
similar.

The interesting case is for ∅. Now, assume ϕr∅. If ϕ is a propositional vari-
able, by definition, no player wins. If ϕ = ¬ψ, then ψr∅, and by the induction
hypothesis, no player has a winning strategy.

Let ϕ = χ ∧ ψ. Then, we have two options: (1) both χr∅ and ψr∅, or (2) χr1
and ψr∅ (without loss of generality). If the prior one is the case, by the induction
hypothesis, no player has a winning strategy for χ or ψ. Thus, no player has a
winning strategy for ϕ. If the latter is the case, then Heloise can have a winning
strategy for ϕ as she can make a move at a conjunction which forms her winning
strategy for ϕ. Dually, if ϕ = χ ∨ ψ, then, we have two options: (1) both χr∅
and ψr∅, or (2) χr0 and ψr∅ (without loss of generality). If the prior one is the
case, by the same argument as above, no player has a winning strategy for ϕ. If
the latter is the case, as Abelard can make a move at a disjunction and choose
χ, then he can have a winning strategy for ϕ.

Proof (Proof of Corrolary 1). The first part about Heloise and Abelard follows
from Theorem 2 and Theorem 3. In other words, if Heloise has a winning strategy
in an LP game, then the formula is true in LP by Theorem 2. The translation
then translates T of LP to 1 of FDE. Then, by Theorem 3, Heloise has a winning
strategy in the FDE game. The argument is similar for Abelard.

If only Astrolabe has a winning strategy for the LP game for ϕ, then by
Theorem 2, ϕ is paradoxical. By the translation, then ϕ is related to both 0 and
1 in FDE. By Theorem 3, then both Heloise and Abelard has winning strategies
in the FDE game.

Proof (Proof of Theorem 4). The proof is by induction on ϕ. Let us see the case
for Heloise at w. The case for Abelard is very similar hence will be skipped.

If ϕ is a propositional letter p. Then, if p is true then, by definition, Heloise
has a winning strategy.

Let ϕ = ¬ψ. Then the game continues at # for ψ with switched roles, where
v(#w,ψ) = 0. Thus Heloise becomes falsifier. Then, by the induction hypothesis
(for Abelard), the falsifier has a winning strategy for the game at #w for ψ. Thus,
Heloise has a winning strategy at w for ¬ψ which forms her winning strategy
for ϕ. The cases for conjunction and disjunction are as expected thus omitted.

Proof (Proof of Theorem 5). The theorem is given for LP and S5. Yet, a similar
theorem for K3 and S5 can also be given. We will assume the correctness of such
a theorem for this proof as the translation co-depends on both LP and K3.

Assume that Heloise has a winning strategy for ϕ in LP. Let us proceed by
induction on ϕ. If ϕ is a propositional letter p, then p is true in LP. Then, it
translates to S5 as ♦p, which is a turn for Heloise. Then, the game in S5 starts
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by Heloise with ♦p, and she makes a move to p for which she has a winning
strategy.

For ϕ = ¬ψ, suppose Heloise has a winning strategy for ¬ψ in LP. By the
translation, she has a winning strategy for ¬TrK3(ψ) in S5. So, by the assumed
similar theorem for K3 and S5, Abelard has a winning strategy in S5 for TrK3(ψ).
Then, in S5 Heloise has a winning strategy for ¬TrK3(ψ) which is TrLP (¬ψ).
Thus, Heloise has a winning strategy for TrLP (ϕ) in S5.

The cases for conjunction and disjunction are immediate. Also the case for
Abelard is very similar, hence skipped. The case for Astrolabe is interesting.

Assume that only Astrolabe has a winning strategy for ϕ in LP. As the first
step of the induction, assume ϕ = p for a propositional variable p. So, p is
paradoxical. The translation of p into S5 is ♦p. Also, notice that for paradoxical
p, we have ¬p ≡ p. The translation of ¬p into S5 is ♦¬p. Thus, for a paradoxical
p, both players have a winning strategy in the game in S5.

Now, let ϕ = ¬ψ. Suppose that only Astrolabe has a winning strategy. By
the game rules of GTSLP, Astrolabe has a winning strategy for ψ as well as the
negation of a paradoxical formula is also paradoxical. Now, we will use the co-
inductive part of the argument. By the induction hypothesis for the same result
for K3, Abelard and Heloise have winning strategies in the translated game in
S5 for TrK3(ψ). Taking one step back, with their roles switched, both Abelard
and Heloise have winning strategies in a game for ¬TrK3(ψ), too. Then, by the
translation, they have winning strategies for TrLP (¬ψ), which is TrLP (ϕ) in S5.
A symmetric argument for the K3-S5 is straight forward.

The cases for the binary connectives are straight forward, hence skipped.

Proof (Proof of Theorem 6). In [10], while constructing the LP model based on a
given S5 model, the authors associate the propositions that are true everywhere
with the LP truth value T , the propositions that are true nowhere with F , and
the propositions that are true somewhere with P . They also show that the given
S5 model and the LP model obtained in this fashion are TrLP -equivalent [10].

Based on these observation, then, if Heloise has awinning strategy forΓS5(M,ϕ)
at all points in M , then ϕ has a truth value T in LP. By Theorem 1, Heloise has a
winning strategy in ΓLP(M

′, ϕ). Similarly, if Abelard has a winning strategy for
ΓS5(M,ϕ) at all points in M , then ϕ has a truth value F in LP. Again, by Theo-
rem 1, Abelard has a winning strategy in ΓLP(M

′, ϕ). Finally, if Astrolabe has a
winning strategy for ΓS5(M,ϕ) at some points in M , then ϕ has a truth value P
in LP. By Theorem 1, Astrolabe has a winning strategy in ΓLP(M

′, ϕ).
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