Model-Based Approach for Engineering
Adaptive User Interface Requirements

Kibeom Park'™ and Seok-Won Lee’

! Graduate School of Software, Ajou University, Suwon, Republic of Korea
pkb@ajou.ac.kr
2 Department of Software Convergence Technology, Ajou University,
Suwon, Republic of Korea
leesw@ajou.ac.kr

Abstract. Although Model-Based User Interface (MBUI) design approaches
have been suggested and researched over a long period of time, the advantages
of adopting them into the development of Adaptive User Interface (AUI) have
not stood out. We believe that it is due to the lack of an integration of the Re-
quirements Engineering (RE) process, and methodologies for Model-based AUI
development. Since RE provides a solid base to the development of software,
requirements of AUI have to be preceded appropriately in the development
process. Previously, we suggested a RE method for AUI reflecting the
viewpoint of Self Adaptive System (SAS). In this paper, we elaborate on our
previous method grounded on a model-based approach. The proposed method is
illustrated with an example scenario, which makes adaptations of the user
interface at run-time by conforming to the context of users. Finally, an
evaluation of our method is provided by a case study at the end of the paper.

Keywords: Adaptive User Interface (AUI) - Model-Based User Interface
(MBUI) - Requirements Engineering (RE) - Self-Adaptive System (SAS) - User
Interface (UI)

1 Introduction

Due to the widespread popularity of mobile devices, demands of end users to be pro-
vided with personalized and customized services have been tremendously raised these
days. For achieving such a personalization of services, a system should fulfill dynamic
requirements varying in different contexts at runtime. One of these attempts to support
such runtime personalization is realizing the use of Adaptive User Interface (AUI).

AUI is a user interface (UI) that has the ability to adapt itself by reasoning a suita-
ble presentation of the service according to a situation at run-time. Realizing AUI is
considered a difficult challenge because a system needs to monitor and analyze the
context data of a user and his or her environment at run-time without any decisions
made by human. It demands several pre-defined rules and a knowledge base to make
proper adaptations of Ul to satisfy diverse user demands.

© Springer-Verlag Berlin Heidelberg 2015
L. Liu and M. Aoyama (Eds.): APRES 2015, CCIS 558, pp. 18-32, 2015.
DOI: 10.1007/978-3-662-48634-4_2

Model-Based Approach for Engineering Adaptive User Interface Requirements 19

AdaptiveUserlInterface H AdaptiveUserlnterface

You're Walking You're Walking

Walking is good for health

Walking is
good for
health

COR WRO
RECT NG

Fig. 1. Ul adaptation prototype when user is standing (left) and running (right)

Fig. 1 illustrates a simple prototype of AUI in healthcare mobile application. The
left side, which represents a normal version of Ul, has several Ul components; a title,
sub-title, picture, texts with a small-sized font, and two buttons. One of the require-
ments is that the screen displayed to the user should be adequately changed with dif-
ferent user activities. For example, the normal version of Ul is no longer usable when
the user is running, since the user finds it hard to recognize contents in the screen due
to the wobbling motion produced.

In this case, the UI can be adapted by increasing the font size and hiding some of
the unimportant content. One possible adaptation is provided on the right side. If we
assume that the subtitle and two buttons at the bottom are important, we can not only
hide picture and texts with a small-sized font (considered unimportant content), but
also increase the size of the subtitle and two buttons (important content). By doing so,
we now can preserve usability, readability and legibility. Fig 1. will be used again for
describing our method in section 3.

It is obvious that we cannot consider AUI just as a change of ‘views’, since it re-
quires considerable thoughts in ‘logic’ for monitoring context data, reasoning suitable
versions of Ul adaptation, etc. Therefore, it brings us to look at AUI from the domain
of software engineering.

For making a design of AUI, Model-based User Interface (MBUI) design ap-
proaches such as CAMELEON-RT [1] and several User Interface Description Lan-
guages (UIDLs) like UIML[2] and UsiXML[3] have been proposed for decades in the
Human Computer Interaction (HCI) research area. Even though these approaches
enable software engineers to develop infrastructure for AUI, it is still hard to apply
them to actual AUI development so far. One of the major reasons is the lack of con-
sideration of Requirements Engineering (RE). Since RE provides a solid base to the
development of software, requirements of AUI have to be preceded appropriately in
the development process.

In our previous work [4], we proposed requirements elicitation guidelines using
general concepts of a Self-Adaptive System (SAS). However, we did not adopt exist-
ing MBUI design research from the HCI area. There continues to be a gap between
RE for AUI in the software engineering area and MBUI in the HCI area.

20 K. Park and S.-W. Lee

In this paper, we extend our work by introducing the viewpoints of model-driven
development. We exploit the MBUI research, and accordingly, the benefits of MBUI
approaches are adopted into the RE method for AUI.

The rest of the paper is organized as follows: In section 2, we review the related li-
terature in three parts. The definition and the characteristics of AUI are surveyed in
the first part, and the previous MBUI design approaches are described in the second
part. We then review our previous requirements elicitation guidelines for AUI in the
last part. In section 3, we proposed an extended RE method for AUI by adopting a
model-based approach and show how our method works by illustrating an example
from the mobile application domain. Section 4 provides an evaluation of our method
by application to a case study. At last, we conclude the paper with the summary of
contributions and future works in section 5.

2 Literature Review

2.1 Adaptive User Interface

As we mentioned above, AUI is the UI that has an ability to adapt itself to the change
of the context of user and device. The term ‘context’ as used above can vary by many
design decisions of the developers. It can be the static context of individual user or
device, including user characteristics [5], the user’s physical capability, user prefe-
rence, device type, etc. It can be a dynamic context considering spatial or temporal
factors as well.

The term ‘adaptive’ should be distinguished from the term ‘adaptable’ [6]. One of
the main differences between Adaptable Ul and Adaptive Ul is that Adaptable Ul
uses only the static context of the user while Adaptive Ul uses both the static and
dynamic contexts of the user. Fig. 2 portrays the difference between those two ap-
proaches and their relationships with static context and dynamic context. This shows
that AUI is much broader concept than Adaptable UL

/

Adaptable Ul Adaptive Ul

O
@P@

ﬂ Adaptation | Adaptation

S/

Fig. 2. Difference between Adaptable Ul and Adaptive UL

Model-Based Approach for Engineering Adaptive User Interface Requirements 21

Adaptable UI requires user input on such things including preference, physical
capability, etc. The system then makes suitable Uls based on the user inputs. For
instance, imagine a system that requires user input on whether the user is visually
impaired or not, and then uses the response as a parameter for the proper adaptation.
If the user has difficulty seeing, a voice-guided Ul might be provided to the user in
this case. Another example is that the UI that changes itself depending on the device
type, such as display size. The system may choose a suitable version of UI for current
display size of the device amongst already designed Uls. Even though the system
could figure out the display size of the current device, it would be categorized as mak-
ing a choice based on user inputs among the design templates during the design time.

AUI, on the other hand, contains the intention of generating a design at run-time
rather than choosing a design at the design time. Instead of requiring user inputs, it
examines the context of the user itself. Therefore, AUI reduces the burden of the user
to respond in advance, unlike Adaptable UI. Furthermore, it makes reasoning about
the situation and adapting the UI at run-time possible.

2.2 Model-Based User Interface (MBUI) Design

MBUI approaches have been proposed for decades as a way of achieving a technical
basis for realizing AUI. The key concept is to separate Ul development in multiple
layers. One insightful paper addressing this concept is [7], which suggested the mod-
el-based Ul framework with three layers: an Abstract UI, Concrete Ul and a Final UL

Abstract UI describes what the user actually works with the system. Currently, in
the interactive system research area, researchers use a Task model and Domain model
for description of Abstract Ul. A Task model represents a task flow of user interac-
tions, and a Domain model describes the knowledge of Ul components which later
can be used for adaptation.

Concrete Ul describes more specific graphical representation based on Abstract UI.
In this layer, the Ul is dependent on platform or devices. It can be represented as a
high-level user interface description languages (UIDL) such as UIMLJ[2],
UsiXML[3], etc. It can contain several Ul design alternatives since it is written in
high level.

Final UI describes final Ul design decision. In this layer, high-level Concrete Ul
design is specified in more details. One of the examples of Final Ul is a choice be-
tween ‘radio button’ or ‘select box’, in case the Concrete Ul denotes ‘graphical selec-
tion’ as a high-level design decision.

Although an MBUI approach has been suggested and researched over a long period
of time, the advantages of adopting it in the development of AUI did not stand out
enough. A model-based approach in UI development focuses on solving device com-
patibility, but does not mention how they could be used in the development of AUI.
We insist that this problem is caused by a lack of the RE process and methodologies
for AUL Currently, the requirements are addressed only in Abstract UI and the mod-
els in this layer provide much too abstract requirements. For this reason, detailed re-
quirements that should exist according to specific domains are ignored and not ad-
dressed properly.

22 K. Park and S.-W. Lee

MDD MBUT

Fig. 3. A diagram mapping the relationship between Model-driven Development (MDD) and
Model-based User Interface (MBUI)

In this paper, we strongly believe that the strong points of adopting model-based
approach are also found in the development of AUI. A RE method, especially, can be
elaborated with such a kind of approach. The following are the benefits of MBUI
approach, which are normally addressed in the UI development. We will use these
criteria to evaluate our method, which benefits from these in section 4.

A. Reusability

Model-based approaches in Ul development enable the reuse of models, meta-
models and transformations of Ul components by separating the concerns of each
level. When the needs are changed, developers can easily choose another way of
specific adaptation alternatives easily without changing the high-level design. In
this case, developers are able to reuse designs available in high-level layers.

B. Run-time Adaptivity

Making different adaptations at run-time is most suitable since the layered model
explicitly structures a higher level goal and its related lower level design alterna-
tives accordingly. This makes a system knowledgeable to what to adapt in a specif-
ic way to satisfy the high-level goal.

C. Modifiability

One of the benefits of a MBUI approach is that it enables a choice between an al-
ternative design or to change the current design. The reason is that the designs are
separately made with three layers according to the level of abstraction, and then it
separates the concerns in the design. With layers, the detailed adaption logic can be
modified easily.

Model-Based Approach for Engineering Adaptive User Interface Requirements 23

2.3 Requirements Elicitation Method for Adaptive User Interface

Requirements elicitation is the first step in drawing the needs of users and various
stakeholders. Since AUI requires motives triggering Ul adaptation and several logics
for monitoring the context at runtime, it is obvious that the requirements for AUI
should be clearly elicited and well defined.

In fact, UI development has not been considered in the RE area well, as it has been
regarded more in the domain of HCI area. Also, researchers of MBUI have developed
different methodologies and terms that make it difficult to integrate that research into
a software engineering perspective. One example is that researchers of developing
Interactive System use different methodologies like a ‘Task model’ and ‘Domain
model’ instead of RE for handling the goal and flow of Uls. Although there exist
some research using those methodologies as a basis for RE [8], they do not expand its
coverage towards AUI. There continues to be a lack of research addressing adequate
RE methodologies for AUI.

For this reason, our previous work focused on how to elicit initial requirements of
AUI [4]. We proposed guidelines for eliciting AUI requirements using well-known
concepts from SAS research.

Our previous paper introduced a 3-step requirements elicitation process including
‘AREA — BASE — CONSEQUENCE’, focusing on AUI development in the domain
of the mobile application. In the first step ‘“AREA’, we considered context, property
and constraints of the domain. Then we re-defined the term ‘MAPE-K Loop’ [9],
‘Self-* Properties’ [10], and their elements considering the contents of AREA for
making them proper to the domain of mobile application. During the second step

AREA BASE CONSEQUENCE

® Sensors available

- . Monitor = Analyze 1f-Configuri
® Portability Required _ ® Self-Configuring

e . TN [N o Self-Healing
o Usability Required [> T | Knowledge [1_ [> e Self-Optimizing
o Fixed UI Elements I 4 .
Execute led Plan o Self-Protecting

® Resource Limitation

(a) Elicit initial requirements
considering contents of AREA.

(b) Specify each content of BASE
and elaborate requirements.

(c) Specify each content of
CONSEQUENCE as quality
attributes that can be achieved.

Fig. 4. Requirements Elicitation Method for AUI

24 K. Park and S.-W. Lee

‘BASE’, developers should use each element of MAPE-K Loop ‘Monitor’, ‘Analyze’,
‘Plan’, ‘Execute’ and ‘Knowledge’ as criteria for eliciting functional requirements. In
this way, requirements could be elaborated more upon according to different domains.
During the last step, ‘CONSEQUENCE’, re-interpreted Self-* Properties are used as a
guideline for eliciting quality attributes. These elements could be the minimum quali-
ty attributes for achieving an adaptivity. That is, Self-Configuring, Self-Healing, Self-
Optimizing, Self-Protecting should at least be elicited.

Previously, our work did not address how to bridge elicited requirements to MBUI
design approaches. If we integrated the merits of MBUI, we could exploit many bene-
fits of an MBUI approach in the development of AUI. In this reason, we extend our
previous method by introducing a model-based approach in the paper.

3 Model-Based Engineering for AUI Requirements

3.1 Adopting Model-Based Approach to AUI Requirements

Fig. 5 shows how we can adopt the notion of model-driven development into RE.
Three layered modeling from [7] is adopted to RE, respectively: Abstract Require-
ments for AUI, Concrete Requirements for AUI, and Final Requirements for AUI.

Abstract Requirements for AUI represent domain-independent AUI requirements
while Concrete Requirements for AUI represent domain-specific requirements of
AUI. Final Requirements for AUI mean detailed variation on UI elements.

Domain-Independent
Requirements

Abstract Requirements for AUL |:

Domain-Specific

Concrete Requirements for AUL |: .
Requirements

Final Requircments for AUL I:Detuilul Variation

Fig. 5. Model-based Requirements Engineering for AUI

Model-Based Approach for Engineering Adaptive User Interface Requirements 25

3.2 Proposing an Extended Method for AUI

In this section, we propose an extended requirements elicitation method for AUI by
bringing a model-based approach into RE. Our previous work is restructured with a
three-layered model-based notion in this paper. Fig. 6 gives an explanation of our
approach. Our method guides software engineers to specify AUI requirements with
three layers according to the level of abstraction.

N N
Abstract —
Requirements — Elicit initial requirements with abstract goal
tor AUI -
Prepare criteria considering domain characteristics
M| A e e,
K / o \
i (e
. Re-define each element Re-interpret Self-* Properties
Concrele :
) of MAPE-K Loop
Requirements
for AUI

Elaborate requirements with criteria

Functional M| A T T Quality
OoSelk) Ha
‘... Requirements

Requirements | .Llp

Specify variable parts of requirements in detail

Final
Requirements ! !
for AUI) 4 Y v N

\ Affected Self-* Properties

Fig. 6. Extended Requirements Engineering Method for AUI

A. Abstract Requirements for AUI

Abstract Requirements for AUI are described with the highest upper-level goals.
These requirements might correspond to the initial rough requirements with
goals and intentions. The requirements at this point are general, and not tailored
to specific machine or domain. Therefore, we can say that they are kept inde-
pendent on the specific domain, and it can be reused when the AUI should be
adopted into other domains or machines with similar purposes.

26 K. Park and S.-W. Lee

B. Concrete Requirements for AUI

Concrete Requirements for AUI are dependent on the certain areas where soft-
ware belong. In this layer, software engineers should consider the characteristics,
unique features, and standards of the specific domain area. When the software
engineer finds out the application domain area of software, the next thing to do is
to define each element of the MAPE-K Loop and interpreting each property of
Self* Properties, according to the domain. The elements of MAPE-K Loop are
Monitor/Analyze/Plan/Execute, and these are used as the criteria to verify
whether functional requirements are elicited well or not, in the perspective of a
self-adaptive system. The elements of Self-* Properties are Self-Configuring,
Self-Healing, Self-Optimizing, Self-Protecting, and these are consequences of
elicited requirements which can be used to verify whether quality attributes are
elicited in the perspective of self-adaptive system well or not. Each element of
Self-* Properties also should be specified in the step.

Following the criteria based on MAPE-K Loop and Self-* Properties,
software engineers can elicit AUI requirements easily. In addition, these
requirements would be elaborated on to comply with the criteria. In this step, re-
quirements should be more concrete than the previous step, but must not be too
specific as to disturb the modification of adaptation rules. Concrete requirements
for AUI should make room for the changeable part for the adaptation so that it
preserves modifiability.

C. Final Requirements for AUl

We mentioned that the requirements that are specified in the previous steps do
not contain too specific of requirements, such as detailed adaptation rules or Ul
elements to be adapted, in order to make a room for changeable parts. In this fi-
nal layer, detailed requirements that can be expected to be changed later are spe-
cified and analyzed. Final Requirements for AUI are domain/machine-dependent
requirements, and these can also cause changes of the quality attributes. There-
fore, quality attributes specified complying with Self-* Properties might be
changed accordingly. Related quality attributes are connected and traced through
higher layers.

The three steps above, which are divided by the level of abstraction, enable the se-
paration of the concerns in the requirements. Not only does it take the strong points of
a model-based approach, it also makes it easy to trace the related requirements and
change parts without changing the whole requirements. Moreover, this can be ex-
tended to each design level. We will later show the strengths of our method.

3.3 Method Illustration with an Example Scenario

For a deeper understanding of our method, we now illustrate our method with an
example scenario. We elicit, analyze, and specify AUI requirements by following our
model-based RE method for AUI. The results correspond to the requirements for
implementation of the right side of Fig. 1.

Model-Based Approach for Engineering Adaptive User Interface Requirements 27

The AUI scenario in our example is in the situation of the development of a health-
care mobile application. We assume that users might be everywhere, including both
inside and outside of their home. Also, users might have different characteristics and
ages, genders, characters, jobs, etc. The application can satisfy the personalized de-
mands of users by adopting AUI in the application, considering both the user’s situa-
tion and environments.

We assume that the initial goal to achieve from AUI is to make adaptations of UI at
runtime to conform to the context of users. For achieving our initial goal, initial re-
quirements from various stakeholders should be elicited. As one example, we would
use the following requirement in the Abstract Requirements for AUI layer: If the user
finds it hard to see UI clearly because of the changes of environment, AUI increases
its usability by changing its UI.

In the Concrete Requirements for AUI layer, in order to make unclear requirements
clear, the characteristics and constraints in the domain area of the software are consi-
dered. For example, Table 1 represents such considerations in the development of the
mobile application. In our previous paper, we elicited considerations of the mobile

domain from [11].

Table 1. Considerations of Mobile Domain

Consideration

Description

Sensors Available

Several sensors including an accelerometer are available.

Portability Demand It should be compatible among multiple platforms/machines.
Usability Demand Personalized user-centric service should be provided.
Fixed UI Elements It should use a Ul library that already exists.

Limited Resource

Resources such as battery, CPU, storage are limited.

Table 2. Re-defined Descriptions of MAPE-K Loop Elements
MAPE-K Loop Description
Monitor Data and its monitoring method for recognizing situation.
Analyze Rule for analyzing situation.
Plan Rule for adaptation.
Execute Actual Adaptation Behavior.
Knowledge Knowledge required for recognizing situation and adaptation.

Table 3. Re-interpreted Descriptions of Self-* Properties Elements

Consideration Description

Self-Configuring Personalization according to user characteristics and situation.

Self-Healing The ability to recover the usability when unexpected increase of Ul
complexity occurs,

Self-Optimizing Ul optimization according to machine profile and
resource(Battery, CPU, etc.) situation.

Self-Protecting Preventing Ul crashes or defending when Ul crashes.

28 K. Park and S.-W. Lee

MAPE-K Loop and Self-* Properties are re-defined or re-interpreted according to
the domain. In our case, we analyze them in the mobile domain. Table 2 represents
the re-defined descriptions of MAPE-K Loop elements considering the mobile do-
main. Table 3 represents the re-interpreted descriptions of elements in the Self-*
Properties.

The next step for software engineers is to specify concrete requirements according
to the criteria that we have constructed. Table 4 contains the requirements specifica-
tion of this step. Detailed types of sensors or rules for adaptation are not specified in
this step. That is because those parts have high possibility to change.

Detailed rules that have high chances of change are specified in the next step, the
Final Requirements for AUL In this layer, related quality attributes are revisited and
modified. The specification of Final Requirements for AUI is represented in Table 4.
These contain adaptation rules and situation recognition rules which can be modified
often due to the demands of stakeholders.

Table 4. Abstract, Concrete and Final Requirements of AUI

sensors that is

ation algorithm:

Increase text size and

used: Gyros- When gyroscope | hide unimportant Ul
cope data is above a elements.
certain level,
usability value
decreases.
Execute Knowledge

Trigger rule: When usability value

is under a certain level, adaptation

triggers.

Sensor monitoring
interval, usability me-
trics, Ul simplicity rule,
Adaptation rule.

Abstract | If the user finds it hard to see UI clearly because of the changes of environment,
Req. AUl increases usability by changing its UL
Concrete Monitor Analyze Plan Self-* Property
Req. The AUI moni- The AUI ana- The adaptation rule is a | Self-Configuring,
tors wobbles lyzes data and Ul simplicity rule that is | Self-Healing,
(shakes) determines performed when AUI Self-Optimizing
through sensors | whether the user | determines that usabili-
that Android is interrupted by | ty is getting too lower.
phone provides. | current wobble
or not.
Execute Knowledge
Plan is actually performed when the | Sensor monitoring
decision is triggered. interval, usability me-
trics, Ul simplicity rule,
Adaptation rule.
Final Monitor Analyze Plan
Req. The type of Usability evalu- | Ul simplicity rule:

Model-Based Approach for Engineering Adaptive User Interface Requirements 29

4 Evaluation

In this section, we design a case study for evaluating our method by following the
case study design methodology in [12].

4.1 Study Questions

Our model-based RE method for AUI in this paper also uses the advantages of using
model-based approach in the UI development that we described in the section 2.2. We
previously described three benefits of using a model-based approach: Reusability,
run-time adaptability and modifiability. Our proposed method also introduces the
traceability. In addition, this makes requirements to be easily extended to the design.
To prove that these advantages are obtained by using our method, following questions
are discussed.

QO1I. Does it support reusability?

Q2. Does it support run-time adaptivity?
03. Does it support modifiability?

04. Does it support traceability?

05. Is it extendable to design level?

4.2 Case Study

Table 6 shows the evaluation of our method by answering each question. Each answer
shows whether it is enough to support each question, and if so, the evidence that sup-
ports it.

Table 5. Method Evaluation

Method Evaluation Table

Study Question Support Evidence
When the domain or machine targeting is
Q1 | Does it support reusability? Yes changed, requirements of upper layer can
be used.

Q2 | Does it support run-time adaptivity? Yes It controls UI elements separately since it

can have knowledge about adaptation.

When adaptation rules should be changed,
software engineers can change only local
Q3 | Does it support modifiability? Yes parts, instead of changing the whole part,

because it is only related to the Final re-

quirements.
Q4 | Does it support traceability? Yes Requirements among layers and their
affected quality attributes are easily found.
Q5 | Isit extendable to design level? Yes Design and implementation are performed

from requirements.

30

K. Park and S.-W. Lee

A. Reusability

It is reusable because it separates the concerns into three layers, and upper layers
are still preserved when changes need to occur locally. For example in our scena-
rio, when software engineers decide to support a desktop application, they can
reuse Abstract Requirements for the desktop application.

B. Run-time Adaptivity

It supports run-time adaptivity because it allows AUI to have knowledge about
the adaptation. Unlike traditional adaptable UI, which only allows for a few ver-
sions of whole U, our method supports the development of a lot of versions of
AUI That is because our method can control each Ul element individually and it
is possible to adopt more detailed adaptations. For example, UI simplicity rules
contain knowledge about the importance of each UI element, which enables sep-
arate control of each element.

C. Modifiability

It is modifiable because it separates the concerns into three layers, and without
changing the whole AUI, software engineers can change only the local part in
question. For example in our scenario, when software engineers decide to change
the Ul simplicity rule, they can specify only the Final Requirements for AUI
again.

D. Traceability

Traceability is ensured because it has been derived from requirements from the
upper layer. For example, when Final requirements should be changed, corres-
ponding Concrete Requirements of AUI and their quality attributes are easily
found.

E. Extendibility to Design

The model-based requirements can be easily extended to design and implementa-
tion. We designed the logic of the simple prototype of Android application, and
it is shown in Fig. 1. In our design, Concrete Requirements for AUI are made to
a Java Interface that includes Monitor, Analyze, Plan, Execute as the methods,
and Knowledge as variables. Then, we implement FinalUI, which satisfies the
ConcreteUI.

package pkb.nise.ajou.ac.kr.adaptiveuserinterface.aui;

* Created by AJOU on 2015-06-25.

public interface ConcreteUI {
public void startMonitoringS8ensor() :
public void stopMonitoringSensor();
public void analyzeUserMoveStatus() ;
public void planToSimplifyUTI();
public void executeAdaptation():

}

Fig. 7. Extending Concrete Requirements to the Design of Java Interface

Model-Based Approach for Engineering Adaptive User Interface Requirements 31

Through the design and implementation, we found that our method allows for ex-
tending requirements easily to design and implementation. Fig. 7 shows the possibili-
ty of extending the design.

5 Conclusion and Discussions

Requirements elicitation process and methodologies for AUI development have not
been defined well so far. Although our previous work suggested a guideline for AUI
requirements, it did not reflect the advantages of MBUI design approaches.

In this paper, we proposed an extended RE method for AUI by adopting a model-
driven approach. We showed how our method works by illustrating case study exam-
ples. By using our method, software engineers can effectively elicit requirements in
AUI development step by step.

However, this paper contains several points of discussion, which can be seen as
follows. First, the approach we suggest is still at a very high level or can be consi-
dered too general, in that many details are omitted. There remain questions about how
to transform requirements in different layers. Furthermore, RE processes after the
elicitation is not addressed well. In the future, we plan to focus on this question to
elaborate our method.

Second, the evaluation is not enough since we conducted only one case study. In
addition, the metrics for evaluation hold some threats to its validity. We will conduct
more case studies for a better evaluation in the future.

Lastly, it is not clear how existing RE approaches can be integrated into the pro-
posed framework or design approaches. For example, there is already much research
that address the model-based AUI design approach such as that in [13]. We will
bridge our RE method to the design method of AUI by further research.

Acknowledgment. This research was supported by the Next-Generation Information Compu-
ting Development Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT & Future Planning (2013M3C4A7056233).

References

1. Balme, L., Demeure, A., Barralon, N., Calvary, G.: CAMELEON-RT: a software architec-
ture reference model for distributed, migratable, and plastic user interfaces. In: Markopou-
los, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295,
pp- 291-302. Springer, Heidelberg (2004)

2. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.: UIML: an
appliance-independent XML wuser interface language. Computer Networks 31(11),
1695-1708 (1999)

3. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lépez-Jaquero, V.: USIXML:
a language supporting multi-path development of user interfaces. In: Feige, U., Roth, J.
(eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 200-220. Springer, Heidelberg
(2005)

32

10.

11.

12.

13.

K. Park and S.-W. Lee

. Park, K., Lee, S.W.: Requirements Elicitation for Mobile Adaptive User Interface based on

Concepts from Self-Adaptive Software. In: Korea Conference on Software Engineering
2015. Korean Institute of Information Scientists and Engineers Software Engineering
Society (2015)

. Kithme, T.: A user-centered approach to adaptive interfaces. In: Proceedings of the 1st

International Conference on Intelligent user Interfaces, pp. 243-245. ACM (1993)
Stephanidis, C., Paramythis, A., Sfyrakis, M., Stergiou, A., Maou, N., Leventis, A.,
Karagiannidis, C.: Adaptable and adaptive user interfaces for disabled users in the
AVANTI project. In: Trigila, S., Mullery, A., Campolargo, M., Vanderstracten, H.,
Mampaey, M. (eds.) Intelligence in Services and Networks: Technology for Ubiquitous
Telecom Services., vol. LNCS, pp. 153—166. Springer, Heidelberg (1998)

. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A

unifying reference framework for multi-target user interfaces. Interacting with Computers
15(3), 289-308 (2003)

. Reichart, D., Forbrig, P., Dittmar, A.: Task models as basis for requirements engineering

and software execution. In: Proceedings of the 3rd annual conference on Task models and
diagrams (pp. 51-58). ACM (2004)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41-50
(2003)

Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4(2), 14 (2009)
Wasserman, A. L.: Software engineering issues for mobile application development. In:
Proceedings of the FSE/SDP Workshop On Future Of Software Engineering Research,
pp. 397-400. ACM (2010)

Lee, S. W., Rine, D. C.: Case Study Methodology Designed Research in Software
Engineering Methodology Validation. In: SEKE, pp. 117-122 (2004)

Akiki, P. A., Bandara, A. K., Yu, Y.: Adaptive model-driven user interface development
systems. ACM Computing Surveys, 47(1), In-press (2015)

2 Springer
http://www.springer.com/978-3-662-48633-7

Requirements Engineering in the Big Data Era
Second Asia Pacific Symposium, APRES 2015, Wuhan,
China, October 18-20, 2015, Proceedings

Liu, L.; Aoyama, M. (Eds.)

2015, XMV, 185 p. 74 illus. in color., Softcover

ISEM: 978-3-662-48633-7

	Model-Based Approach for Engineering Adaptive User Interface Requirements
	1 Introduction
	2 Literature Revie ew
	2.1 Adaptive User Inte erface
	2.2 Model-Based User Interface (MBUI) Design
	2.3 Requirements Elicitation Method for Adaptive User Interface

	3 Model-Based Engineering for AUI Requirements
	3.1 Adopting Model-Based Approach to AUI Requirements
	3.2 Proposing an Extended Method for AUI
	3.3 Method Illustration with an Example Scenario

	4 Evaluation
	4.1 Study Questions
	4.2 Case Study

	5 Conclusion and Discussions
	References

