
Efficient Counting with Optimal Resilience

Christoph Lenzen1 and Joel Rybicki1,2(B)

1 Max Planck Institute for Informatics, Saarbrücken, Germany
clenzen@mpi-inf.mpg.de

2 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University, Espoo, Finland

joel.rybicki@aalto.fi

Abstract. In the synchronous c-counting problem, we are given a syn-
chronous system of n nodes, where up to f of the nodes may be Byzan-
tine, that is, have arbitrary faulty behaviour. The task is to have all of
the correct nodes count modulo c in unison in a self-stabilising manner:
regardless of the initial state of the system and the faulty nodes’ behav-
ior, eventually rounds are consistently labelled by a counter modulo c at
all correct nodes.

We provide a deterministic solution with resilience f < n/3 that sta-
bilises in O(f) rounds and every correct node broadcasts O(log2 f) bits
per round. We build and improve on a recent result offering stabilisa-
tion time O(f) and communication complexity O(log2 f/ log log f) but
with sub-optimal resilience f = n1−o(1) (PODC 2015). Our new algo-
rithm has optimal resilience, asymptotically optimal stabilisation time,
and low communication complexity. Finally, we modify the algorithm to
guarantee that after stabilisation very little communication occurs. In
particular, for optimal resilience and polynomial counter size c = nO(1),
the algorithm broadcasts only O(1) bits per node every Θ(n) rounds
without affecting the other properties of the algorithm; communication-
wise this is asymptotically optimal.

1 Introduction

In this work, we seek to minimize the amount of communication required for fast
self-stabilising, Byzantine fault-tolerant solutions to the synchronous counting
problem. We are given a complete communication network on n nodes with
arbitrary initial states. There are up to f faulty nodes that may behave in an
arbitrary manner. The task is to synchronise the correct nodes so that they will
count rounds modulo c in agreement. For example, the following is a possible
execution for n = 4 nodes, f = 1 faulty node, and counting modulo c = 4; the
execution stabilises after T = 4 rounds:

3

*

0

2

1

*

2

0

1

*

0

2

3

*

0

2

2

*

2

2

3

*

3

3

0

*

0

0

1

*

1

1

Counting

Node 1

Node 2

Node 3

(faulty)

Stabilisation

Node 4

c© Springer-Verlag Berlin Heidelberg 2015
Y. Moses (Ed.): DISC 2015, LNCS 9363, pp. 16–30, 2015.
DOI: 10.1007/978-3-662-48653-5 2

Efficient Counting with Optimal Resilience 17

In the severe fault-model considered in this work, synchronous counting is an
important service for establishing the classic synchronous abstraction: even if a
common clock signal is available, local counters may become inconsistent due to
transient faults; these in turn induce arbitrary states, which is addressed by the
self-stabilisation paradigm. Many, if not most, synchronous algorithms require
synchronous round counters to operate correctly.

Synchronous counting is a coordination primitive that can be used e.g. in
large integrated circuits to synchronise subsystems to easily implement mutual
exclusion and time division multiple access in a fault-tolerant manner. Note
that in this context, it is natural to assume that a synchronous clock signal
is available, but the clocking system usually does not provide explicit round
numbers. Solving synchronous counting thus yields highly dependable round
counters for subcircuits.

If we neglect communication, counting and consensus are essentially equiv-
alent [3–5]. In particular, many lower bounds on (binary) consensus directly
apply to the counting problem [6,9,13]. However, the known generic reduction
of counting to consensus incurs a factor-f overhead in space and message size.
In recent work [12], we presented an approach that reduces the number of bits
nodes broadcast in each round to O(log2 f/ log log f + log c) at the expense of
reduced resilience of f = n1−o(1). In this paper, we improve on the technique to
achieve optimal resilience with O(log2 f +log c) bits broadcast by each node per
round.

1.1 Contributions

In this work, we take the following approach. In order to devise communication-
efficient algorithms, we first design space-efficient algorithms, that is, algorithms
in which each node stores only a few bits between consecutive rounds. This comes
with additional advantages:

– Local computations will (typically) be simple.
– Communication becomes simple, as one can afford to broadcast the entire

state.
– This reduces the complexity of implementations.
– In turn, it becomes easier to use reliable components for an implementation,

increasing the overall reliability of the system.

The key challenge that needs to be overcome in constructing space-efficient
(and fast) solutions to counting appears to be a chicken-and-egg problem: given
that the correct nodes agree on a counter, they can jointly run a (single) instance
of synchronous consensus; given that they can run consensus, they can agree on
a counter. In [12], this obstacle is navigated by making the statement more
precise: given that the correct nodes agree on a counter for a while, they can run
consensus. This is used to facilitate agreement on the output counter, in a way
which maintains agreement even if the unreliable counters used for stabilisation
fail later on.

18 C. Lenzen and J. Rybicki

The task of constructing counters that “work” only once in a while is easier;
in particular, it does not require to solve consensus in the process. The drawback
of the recursive solution in [12] is that, in order to be time-efficient, it sacrifices
resilience. Our main contribution is to provide an improved construction that
preserves optimal resilience.

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f-resilient
synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
requires O(log2 f + log c) bits to encode the state of a node.

The main hurdle that needs to be taken in order to arrive at this result when
building on the techniques of [12] is the following. In both approaches, the nodes
are partitioned into blocks, each of which runs a counter of smaller resilience; the
construction proceeds inductively on increasing values of f , so such a counter
exists by the induction hypothesis. In [12], it is assumed that a majority of these
blocks contains sufficiently few faulty nodes for the counter to be operational,
causing the relative resilience to deteriorate with each level of recursion in the
construction. To achieve optimal resilience, we must drop this assumption, in
turn necessitating novel ideas on how to establish a joint counter that is once
in a while counting correctly at all non-faulty nodes. We show how to obtain
such a counter based on simple local consistency checks, timeouts, and threshold
voting.

Last but not least, we show how to reduce the number of bits broadcast
after stabilisation to log c/ log κ + O(1) per node and κ rounds for an essentially
unconstrained choice of κ, at the expense of additively increasing the stabilisa-
tion time by O(κ). In particular, for the special case of optimal resilience and
polynomial counter size, we obtain the following result.

Corollary 1. For any n > 1 and c = nO(1) that is an integer multiple of n,
there exists a synchronous c-counter that runs on n nodes, has optimal resilience
f = �(n − 1)/3�, stabilises in O(n) rounds, requires O(log2 n) bits to encode
the state of a node, and for which after stabilisation correct nodes broadcast
(asymptotically optimal) O(1) bits every Θ(n) rounds.

1.2 Prior Work

In terms of lower bounds, several impossibility results for consensus directly yield
bounds for the counting problem as well [3]: counting cannot be solved in the
presence of at least n/3 Byzantine failures [13] and any deterministic algorithm
needs to run for at least f rounds [9] and communicate Ω(nf) bits to stabilise [6].

In contrast, there exist several algorithms to the synchronous counting prob-
lem, albeit these solutions exhibit different trade-offs in terms of resilience, sta-
bilisation time, space and/or communication complexity, or whether a source of
random bits is required. For a brief summary, see Table 1.

Designing space-efficient randomised algorithms for synchronous counting is
fairly straightforward [3,7,8]: for example, the nodes can simply choose random
states until a clear majority of nodes has the same state, after which they start

Efficient Counting with Optimal Resilience 19

Table 1. Summary of counting algorithms for the case c = 2. For randomised algo-
rithms, we list the expected stabilisation time. The solution from [10] relies on a shared
coin. “(*)” indicates that details vary, but all known shared coins with large resilience
require large states and messages.

resilience stabilisation time state bits deterministic ref.

f < n/3 (*) O(1) nO(1) (*) no [1]
f < n/3 O(f) O(f log f) yes [4]

f < n/3 22(n−f) 2 no [7,8]

f < n/3 min{22f+2 + 1, 2O(f2/n)} 1 no [3]
f = 1, n ≥ 4 7 2 yes [3]

f = n1−o(1) O(f) O(log2 f/ log log f) yes [12]

f < n/3 O(f) O(log2 f) yes here

to follow the majority. Likewise, given a shared coin, one can quickly reach agree-
ment by defaulting to the coin whenever no clear majority is observed [1]; alas,
existing shared coins are highly inefficient in terms of communication. Designing
quickly stabilising algorithms that are both communication- and space-efficient
has turned out to be a challenging task [3–5], and it remains open to what extent
randomisation can help in designing such algorithms.

In the case of deterministic algorithms, algorithm synthesis has been used
for computer-aided design of optimal algorithms with resilience f = 1, but the
approach does not scale due to the extremely fast-growing space of possible
algorithms [3]. In general, many fast-stabilising algorithms build on a connection
between Byzantine consensus and synchronous counting, but require a large
number of states per node [4] due to, e.g., running a large number of consensus
instances in parallel. In [12], the approach outlined earlier was leveraged to ensure
that each node participates in only O(log f/ log log f) instances of consensus,
resulting in small state and communication complexity, but reducing resilience
to f = n1−o(1).

As a side note, the recursive construction presented in this work bears simi-
larity to the recursive variant of the phase king algorithm [2], for which the goal
of the recursion was also to control the communication complexity (reducing it
from Θ(n3) to Θ(n2) for optimal resilience). In retrospect, the structural similar-
ity is striking; one may think of our algorithm as a generalization of the approach
to the case where there is no initial agreement on round numbers. The initial
lack of consistent round labels is what causes a roughly factor n larger commu-
nication complexity in our case, which then can be removed after stabilisation
leveraging consistent counters.

1.3 Structure of the Article

In the next section, we provide formal descriptions of the model and the problem,
and introduce some notation. In Section 3, we prove the main technical result on

20 C. Lenzen and J. Rybicki

optimal resilience boosting and infer Theorem 1. In Section 4, we describe how to
reduce the amount of bits communicated after stabilisation. Finally, in Section 5,
we discuss how randomisation can help in further reducing the communication
complexity and conclude the paper.

2 Preliminaries

In this section, we define the model of computation and the counting problem.

Model of Computation. We consider a fully-connected synchronous message-
passing network. That is, our distributed system consists of a network of n
nodes, where each node is a state machine and has communication links to
all other nodes in the network. All nodes have a unique identifier from the set
[n] = {0, 1, . . . , n−1}. The computation proceeds in synchronous communication
rounds. In each round, all processors perform the following in a lock-step fashion:
(1) broadcast their current state to all nodes, (2) receive messages from all nodes,
and (3) update their local state. We assume that the initial state of each node is
arbitrary and there are up to f Byzantine nodes. A Byzantine node may have
arbitrary behaviour, that is, it can deviate from the protocol in any manner. In
particular, the Byzantine nodes can collude together in an adversarial manner
and a single Byzantine node can send different messages to different correct
nodes.

Algorithms and Executions. Formally, we define an algorithm as a tuple A =
〈X, g, p〉, where X is the set of all states any node can have, g : [n] × Xn → X is
the state transition function, and p : [n] × X → [c] is the output function. That
is, at each round when node v receives a vector x = 〈x0, . . . , xn−1〉 of messages,
node v updates it state to g(v,x) and outputs p(v, xv). As we consider c-counting
algorithms, the set of output values is the set set [c] of counter values. Note that
the tuples passed to g are ordered according to the node identifiers, i.e., nodes
can identify the sender of a message (this is frequently referred to as source
authentication).

For any set of F ⊆ [n] of faulty nodes, we define a projection πF that maps
any state vector x ∈ Xn to a configuration πF (x) = e, where ev = ∗ if v ∈ F
and ev = xv otherwise. That is, the values given by Byzantine nodes are ignored
and a configuration consists of only the states of correct nodes. A configuration
d is reachable from configuration e if for every correct node v /∈ F there exists
some x ∈ Xn satisfying πF (x) = e and g(v,x) = dv. Essentially, this means
that when the system is in configuration e, the Byzantine nodes can send node
v messages so that it decides to switch to state dv. An execution of an algorithm
A is an infinite sequence of configurations ξ = 〈e0, e1 . . . , 〉 where configuration
er+1 is reachable from configuration er.

Synchronous Counters. We say that an execution ξ = 〈e0, e1 . . . , 〉 of algorithm
A stabilises in time T if there is some x ∈ [c] such that for every correct node
v /∈ F it holds that

p(v, eT+r,v) = r − x mod c for all r ≥ 0,

Efficient Counting with Optimal Resilience 21

where eT+r,v is the state of node v on round T + r.
An algorithm A is said to be a synchronous c-counter with resilience f that

stabilises in time T , if for every F ⊆ [n], |F| ≤ f , all executions of algorithm A
stabilise within T rounds. In this case, we say that the stabilisation time T (A)
of A is the minimal such T that all executions of A stabilise in T rounds. The
state complexity of A is S(A) = �log |X|
, that is, the number of bits required
to encode the state of a node between subsequent rounds. For brevity, we will
often refer to A(n, f, c) as the family of synchronous c-counters over n nodes
with resilience f . For example, A ∈ A(4, 1, 2) denotes a synchronous 2-counter
over 4 nodes tolerating one failure.

3 Optimal Resilience Boosting

In this section, we show how to use existing synchronous counters to construct
new counters in larger networks with higher resilience. The construction is simi-
lar in spirit to the one given in [12], but somewhat simpler and allows for optimal
resilience boosting. We first state the boosting theorem together with a general
overview of the approach, then provide our novel construction, and subsequently
discuss how to stabilise the output counters using the unreliable “helper” coun-
ters. Finally, we prove the main result.

3.1 The Road Map

The high-level idea of the resilience boosting method is as follows. We first
start with counters that have a low resilience and use these to construct a new
“weaker” counter that has a higher resilience but only needs to behave correctly
once in a while for sufficiently long. Once such a weak counter exists, it can be
used to provide consistent round numbers for long enough to execute a single
instance of a high-resilience consensus protocol. This can be used to reach agree-
ment on the output counter. Once we can boost resilience in the above manner,
we can recursively apply this approach to get the desired resilience.

We now focus on a single recursion step of the resilience boosting. As in [12],
the basic idea is to use multiple counters that run in parallel to perform a leader
election process that is guaranteed to consider each of the counters as leader
eventually. Eventually, a stabilised and correctly behaving counter is elected as
a leader for some time and can be used to clock the consensus protocol.

The approach in [12] is inefficient in the sense that using many parallel coun-
ters scales poorly in terms of how fast the process operates, which in turn results
in large stabilisation times. On the other hand, using only a small number of
parallel counters yields poor resilience. Here, we introduce an approach that
can—and in fact, must—operate with two counters only, resulting in optimal
resilience and fast stabilisation. The key idea is that by running only two coun-
ters in parallel, we can utilise all the nodes for filtering out “bad counter values”
for both counters and have the nodes carefully choose which counter to follow
(and for how long).

22 C. Lenzen and J. Rybicki

In each application of the resilience boosting, each of the two counters is run
by roughly half of the nodes. For f = 0, these counters are trivial: all nodes
simply reproduce a local counter of a designated leader node. For f > 0, we
assume that reliable counters for all f ′ < f already exist, and combine an f0-
resilient and an f1-resilient counter with f0, f1 < f so that f0 + f1 + 1 = f .
This implies that, no matter which nodes are faulty, one of the two counters will
eventually stabilise.

Our first goal is to construct a τ -counter that counts correctly only once in
a while; τ will roughly be the running time of the consensus protocol we will
execute later on. In order to do this, we take two counting algorithms Ai, i ∈
{0, 1} with different counter ranges. We will have these two counters alternatively
point to a “leader counter” for τ = Θ(f) rounds, simply by dividing the counters
by τ , rounding down, and taking the result modulo 2. However, to ensure that
each Ai is eventually considered the leader for τ rounds by both counters, we let
the pointer generated by A1 switch between leaders by factor 2 slower than the
one of A0.

Obviously, employing this approach naively is not good enough: since f >
max{f1, f2}, it may happen that either A0 or A1 never stabilises. However, we
are satisfied if nodes behave as if following an operational counter for τ rounds.
To this end, we apply for each node v executing Ai the trivial consistency check
whether the local output variable of Ai increases by 1 in each round. If not, it
will switch to using A1−i as reference for a sufficient number, in this case Θ(τ),
of rounds to ensure that both v and the nodes executing A1−i will consider A1−i

as the leader for sufficiently long.
This almost cuts it—except that two nodes w �= v executing Ai may have a

different opinion on the output variable for Ai, as there are more than fi faulty
nodes executing Ai. This final hurdle is passed by enlisting the help of all nodes
for a majority vote on what the current output of Ai actually is. Essentially,
here we use threshold voting, which in each round r at each node yields either
a globally unique counter value ci(r) for Ai or ⊥, indicating that Ai is not
operating correctly. This entails that, eventually,

– There are unique values ci(r) that increase by 1 in each round and are
considered to be the current counter value of Ai by all nodes executing Ai

that are not currently relying on the counter of A1−i.
– If a node executing Ai defaults to the counter of A1−i, there are fewer than

f1−i faulty nodes executing A1−i.
– Hence, all correct nodes consider Ai with fewer than fi faults for τ rounds

as the leader.

We leverage this last property to execute the phase king algorithm [2] in the
same way as in [12] to stabilise the output counters.

We remark that the stabilisation time on each level is the maximum of that
for the used counters plus O(f); by choosing f1 ≈ f2 ≈ f/2, we can thus ensure
an overall stabilisation time of O(f), irrespectively of the number of recursion
levels. Formally, we prove the following theorem:

Efficient Counting with Optimal Resilience 23

Theorem 2. Let c, n > 1 and f < n/3. Define n0 = �n/2�, n1 = �n/2
,
f0 = �(f −1)/2�, f1 = �(f −1)/2
, and τ = 3(f +2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists
a synchronous c-counter B ∈ (n, f, c) such that

– T (B) = max{T (A0), T (A1)} + O(f), and
– S(B) = max{S(A0), S(A1)} + O(log f + log c).

We fix the notation of this theorem for the remainder of this section, as it
is dedicated to its proof. Moreover, for notational convenience we abbreviate
T = max{T (A0), T (A1)} and S = max{S(A0), S(A1)}.

3.2 Agreeing on a Common Counter (Once in a While)

In this part, we construct a counter that will eventually count consistently at
all nodes for τ rounds. The τ -counter then will be used as a common clock for
executing the phase king algorithm.

First, we partition V = V0∪V1 such that V0∩V1 = ∅, |V0| = n0 and |V1| = n1.
We often refer to the set Vi as block i. For both i ∈ {0, 1}, the nodes in set Vi

execute the algorithm Ai. In case block i has more than fi faults, we call the
block i faulty. Otherwise, we say that block i is correct. By construction, at
least one of the blocks is correct. Hence, there is a correct block i for which Ai

stabilises within T rounds, i.e., nodes in block i output a consistent ci-counter
in rounds r ≥ T .

Lemma 1. For some i ∈ {0, 1}, block i is correct.

Proof. By choice of fi, we have f = f0 + f1 + 1. Hence, at least one of the sets
Vi will contain at most fi faults.

Next, we apply the typical threshold voting mechanism employed by most
Byzantine tolerant algorithms in order to filter out differing views of counter
values that are believed to be consistent. This is achieved by broadcasting can-
didate counter values and applying a threshold of n − f as a consistency check,
which guarantees that only one candidate value (besides the fallback value ⊥
indicating an inconsistency) can remain. This is applied for each block concur-
rently, and all nodes participate in the process, so we can be certain that fewer
than one third of the voters are faulty.

In addition to passing this voting step, we require that the counters also have
behaved consistently over a sufficient number of rounds; this is verified by the
obvious mechanism of testing whether the counter increases by 1 each round and
counting the number of rounds since the last inconsistency was detected.

In the following, nodes frequently examine a set of values, one broadcast by
each node, and determine majority values. Note that Byzantine nodes may send
different values to different nodes, that is it may happen that correct nodes output
different values from such a vote. We refer to a strong majority as at least n −
f nodes supporting the same value, which is then called the majority value. If a

24 C. Lenzen and J. Rybicki

…

* *

!!!

m0(v, r + 1) m1(v, r + 1)

c0(v, r)

v

M1(v, r + 2)

(1) Majority votes on
 both counters

(2) Threshold votes and
 consistency checks

(3) Choose a consistent
 counter

Block 0 Block 1

… w

Fig. 1. Forming an opinion. The white block depicts nodes in the set V0 running the
c0-counter, and the gray block the set V1 running the c1-counter. The white and gray
filled arrows indicate the messages output by the white or gray block, respectively. The
crosses denote Byzantine nodes with arbitrary output. In the above scenario, the white
block is faulty and node v observes that the c0-counter behaves inconsistently, hence
it chooses to use the majority output of block 1; node w in the same block still relies
on the c0-counter, as it appears consistent from the perspective of node w.

node does not see a strong majority, it outputs the symbol ⊥ instead. Clearly, this
procedure is well-defined for f < n/2.

We will refer to this procedure as a majority vote, and slightly abuse notation
by saying “majority vote” when, precisely, we should talk of “the output of the
majority vote at node v”. Since we require that f < n/3, the following standard
argument shows that for each vote, there is a unique value such that each node
either outputs this value or ⊥.

Lemma 2. If v, w ∈ V \F both observe a strong majority, they output the same
majority value.

Proof. Fix any set A of n − f correct nodes. As correct nodes broadcast the
same value to each node, v and w observing strong majorities for different values
would require that for each value A contains n−2f supporting it. However, this
is impossible since 2(n − 2f) = n − f + (n − 3f) > n − f = |A|.

We now put this principle to use. We introduce the following local variables
for each node v ∈ V , block i ∈ {0, 1}, and round r:

– mi(v, r) stores the most frequent counter value in block i in round r, which
is determined from the broadcasted output variables of Ai with ties broken
arbitrarily,

– Mi(v, r) stores the majority vote on mi(v, r − 1),
– wi(v, r) is a cooldown counter which is reset to 2c1 whenever the node per-

ceives “the” counter of block i behaving inconsistently, that is, Mi(v, r) �=
Mi(v, r − 1) + 1 mod ci. Note that this test will automatically fail if either
value is ⊥. Otherwise, if the counter behaves consistently, wi(v, r) =
max{wi(v, r − 1) − 1, 0}.

Figure 1 illustrates how the values of the mi and Mi are determined. Clearly,
these variables can be updated based on the local values from the previous round

Efficient Counting with Optimal Resilience 25

and the states broadcasted at the beginning of the current round. This requires
nodes to store O(log ci) = O(log f) bits.

Furthermore, we define the following derived variables for each v ∈ V , i ∈
{0, 1}, and round r:

– di(v, r) = Mi(v, r) if wi(v, r) = 0, otherwise di(v, r) = ⊥,
– �i(v, r) = �di(v, r)/(3iτ)� if di(v, r) �= ⊥, otherwise �i(v, r) = ⊥,
– for v ∈ Vi, �(v, r) = �i(v, r) if �i(v, r) �= ⊥, otherwise �(v, r) = �1−i(v, r), and
– d(v, r) = d�(v,r)(v, r) mod τ if �(v, r) �= ⊥, otherwise d(v, r) = 0.

These can be computed locally, without storing or communicating additional
values. The variable �(v, r) indicates the block that node v currently considers
leader.

We now verify that �i(v, r) has the desired properties. To this end, we analyse
di(v, r). We start with a lemma showing that eventually a correct block’s counter
will be consistently observed by all correct nodes.

Lemma 3. Suppose block i ∈ {0, 1} is correct. Then for all v, w ∈ V \ F ,
and rounds r ≥ R = T + O(f) it holds that di(v, r) = di(w, r) and di(v, r) =
di(v, r − 1) + 1 mod ci.

Proof. Within T (Ai) rounds, Ai stabilises. Moreover, any Byzantine tolerant
counter must satisfy that fi < ni/3, implying that mi(v, r + 1) = mi(v, r) +
1 mod ci for all r ≥ T (Ai). Consequently, Mi(v, r +1) = Mi(v, r)+ 1 mod ci for
all r ≥ T (Ai) + 1. Therefore, wi(v, r) cannot be reset in rounds r ≥ T (Ai) + 2,
yielding that wi(v, r) = 0 for all r ≥ T (Ai) + 2 + 2c1 = T + O(f). The claim
follows from the definition of variable di(v, r).

The following lemma states that if a correct node v does not detect an error
in a block’s counter, then this means that any other correct node considering the
block’s counter correct in any of the last 2c1 rounds computed a counter value
for that block consistent with the one of v.

Lemma 4. Suppose for i ∈ {0, 1}, v ∈ V \ F , and r ≥ 2c1 = O(f) it holds that
di(v, r) �= ⊥. Then for each w ∈ V \ F and each r′ ∈ {r − 2c1 + 1, . . . , r} either
di(w, r′) = di(v, r) − (r − r′) mod ci or di(w, r′) = ⊥.

Proof. Suppose di(w, r′) �= ⊥. Thus, di(w, r′) = Mi(w, r′) �= ⊥. By Lemma 2,
either Mi(v, r′) = ⊥ or Mi(v, r′) = Mi(w, r′). However, Mi(v, r′) = ⊥ would
imply that wi(v, r′) = 2c1 and thus

wi(v, r) ≥ wi(v, r′) + r − r′ = 2c1 + r − r′ > 0,

contradicting the assumption that di(v, r) �= ⊥. Thus, Mi(v, r′) = Mi(w, r′) =
di(w, r′). More generally, we get from r − r′ < 2c1 and wi(v, r) = 0 that
wi(v, r′′) �= 2c1 for all r′′ ∈ {r′, . . . , r}. Therefore, we have that Mi(v, r′′ + 1) =
Mi(v, r′′) + 1 mod c for all r′′ ∈ {r′, . . . , r − 1}, implying

di(v, r) = Mi(v, r) = Mi(v, r′) + r − r′ = di(w, r′) + r − r′,

proving the claim of the lemma.

26 C. Lenzen and J. Rybicki

The above properties allow us to prove a key lemma: within T +O(f) rounds,
there will be τ consecutive rounds during which the variable �i(v, r) points to
the same correct block for all correct nodes.

Lemma 5. Let R be as in Lemma 3. There is a round r ≤ R+O(f) = T +O(f)
and a correct block i so that for all v ∈ V \ F and r′ ∈ {r, . . . , r + τ − 1} it holds
that �(v, r′) = i.

Proof. By Lemma 1, there exists a correct block i. Thus by Lemma 3, variable
di(v, r) counts correctly during rounds r ≥ R. If there is no round r ∈ {R, . . . , R+
ci −1} such that some v ∈ V \F has �1−i(v, r) �= ⊥, then �(v, r) = �i(v, r) for all
such v and r and the claim of the lemma holds true by the definition of �i(v, r)
and the fact that di(v, r) counts correctly and consistently.

Hence, assume that r0 ∈ {R, . . . , R+ci −1} is minimal with the property that
there is some v ∈ V \ F so that �1−i(v, r0) �= ⊥. Therefore, d1−i(v, r0) �= ⊥ and,
by Lemma 4, this implies for all w ∈ V \ F and all r ∈ {r0, . . . , r0 + 2c1 − 1} that
either d1−i(w, r) = ⊥ or d1−i(w, r) = d1−i(v, r0) + r − r0. In other words, there is
a “virtual counter” that equals d1−i(v, r0) in round r0 so that during {r0, . . . , r0 +
2c1 − 1} correct nodes’ d1−i variable either equals this counter or ⊥.

Consequently, it remains to show that both �i and the variable �1−i derived
from this virtual counter equal i for τ consecutive rounds during the interval
{r0, . . . , r0 + 2c1 − 1}, as then �(v, r) = i for v ∈ V \ F and such a round r.
Clearly, the c1-counter consecutively counts from 0 to c1 −1 at least once during
rounds {r0, . . . , r0+2c1−1}. Recalling that c1 = 6τ , we see that �1(v, r) = i for all
v ∈ V \F with �1(v, r) �= ⊥ for 3τ consecutive rounds during {r0, . . . , r0+2c1−1}.
As c0 = 2τ , we have that �0(v, r) = i for all v ∈ V \ F with �0(v, r) �= ⊥ for
τ consecutive rounds during this subinterval. As argued earlier, �0(v, r) �= ⊥
or �1(v, r) �= ⊥ and hence �(v, r) = i for each such node and round. Because
r0 + 2c1 − 1 < R + 3c1 = T + O(f), this completes the proof.

Using the above lemma, we get a counter where all nodes eventually count
correctly and consistently modulo τ for at least τ rounds.

Corollary 2. There is a round r = T + O(f) so that (1) for all v, w ∈ V \ F it
holds that d(v, r) = d(w, r) and (2) for all v ∈ V \F and r′ ∈ {r+1, . . . , r+τ −1}
we have d(v, r′) = d(v, r′ − 1) + 1 mod τ .

Proof. By Lemma 5, there is a round r = T + O(f) and a correct block i such
that for all v ∈ V \ F we have �(v, r′) = i for all r′ ∈ {r, . . . , r + τ − 1}.
Moreover, r is sufficiently large to apply Lemma 3 to di(v, r′) = d(v, r′) for
r′ ∈ {r + 1, . . . , r + τ − 1}, yielding the claim.

3.3 Reaching Consensus

For every node v ∈ V , let a(v, r) denote the output variable of the synchronous
c-counting algorithm B we are constructing. Similarly as in a prior work [12], we
now apply the phase king consensus algorithm [2] to get all nodes in the network
agree on the output value of the c-counter. The phase king algorithm has the
following properties:

Efficient Counting with Optimal Resilience 27

– the algorithm tolerates f < n/3 Byzantine failures,
– the running time of the algorithm is O(f) rounds and it uses O(log c) bits

of state,
– if node v is correct, then agreement is reached if all correct nodes execute

rounds 3v, 3v + 1, and 3v + 2 consecutively,
– once agreement is reached, then agreement persists even when nodes execute

different rounds.

More formally, we have the following lemma:

Lemma 6 (Adapted from [12]). Let v ∈ [f + 2] be a correct node and r ≥ 0.

– If all correct nodes execute the instructions 3v+k of the phase king algorithm
during round r + k for all k ∈ {0, 1, 2}, then for any r′ > r + 2, we have
a(u, r′) = a(w, r′) and a(u, r′ + 1) = a(u, r′) + 1 mod c for all u,w ∈ V \ F .

– If a(u, r′) = a(w, r′) for all u,w ∈ V \ F , then a(u, r′ + 1) = a(w, r′ + 1) =
a(w, r′) + 1 mod c no matter which (even if different) instructions nodes u
and w execute on round r′.

3.4 Proofs of Theorems 1 and 2

We are now ready to prove our main results of this section.

Theorem 2. Let c, n > 1 and f < n/3. Define n0 = �n/2�, n1 = �n/2
,
f0 = �(f −1)/2�, f1 = �(f −1)/2
, and τ = 3(f +2). If for i ∈ {0, 1} there exist
synchronous counters Ai ∈ A(ni, fi, ci) such that ci = 3i · 2τ , then there exists
a synchronous c-counter B ∈ (n, f, c) such that

– T (B) = max{T (A0), T (A1)} + O(f), and
– S(B) = max{S(A0), S(A1)} + O(log f + log c).

Proof. First, we apply the construction underlying Corollary 2. Then we have
every node v ∈ V in each round r execute the instructions for round d(v, r) of the
phase king algorithm discussed in the previous paragraph. It remains to show
that this yields a correct algorithm B with stabilisation time T (B) = T + O(f)
and space complexity S(B) = S + O(log f + log c), where T = max{T (Ai)} and
S = max{S(Ai)}.

By Corollary 2, there exists a round r = T + O(f) so that the variables
d(v, r) behave as a consistent τ -counter during rounds {r, . . . , r + τ − 1} for all
v ∈ V \ F . As there are at most f faulty nodes, there exist at least two correct
nodes v ∈ [f +2]. Since τ = 3(f +2), for at least one correct node v ∈ [f +2]\F ,
there is a round r ≤ rv ≤ r + τ − 3 such that d(w, rv + k) = 3v + k for all
w ∈ V \ F and k ∈ {0, 1, 2}. By Lemma 6, it follows that the output variables
a(w, r′) count correctly and consistently for all r′ ≥ rv +3 and w ∈ V \F . Thus,
the algorithm stabilises in rv + 3 ≤ r + τ = r + O(f) = T + O(f) rounds.

The bound for the space complexity follows from the facts that, at each node,
we need (a) at most S bits to store the state of Ai, (b) O(log τ) = O(log f) bits
to store the auxilary variables underlying Corollary 2, (c) O(log τ) = O(log f)
bits for the helper variables underlying Lemma 6 [12], and (d) �log c
 bits to
store the output variable a(v, r).

28 C. Lenzen and J. Rybicki

Theorem 1. For any integers c, n > 1 and f < n/3, there exists an f-resilient
synchronous c-counter that runs on n nodes, stabilises in O(f) rounds, and
requires O(log2 f + log c) bits to encode the state of a node.

Proof. We show the claim by induction on f . The induction hypothesis is that
for all f > f ′ ≥ 0, c > 1, and n > 3f ′, we can construct B ∈ A(f ′, n, c) with

T (B) = 1 + αf ′
�log f ′�∑

k=0

(1/2)k and S(B) = β(log2 f ′ + log c),

where α and β are sufficienlty large constants and for f ′ = 0 the sum is empty,
that is, T (B) = 1. As

∑∞
k=0(1/2)k = 2, this will prove the theorem. Note that

for f ≥ 0 it is sufficient to show the claim for n(f) = 3f + 1, as we can easily
generalise to any n > n(f) by running B on the first n(f) nodes and letting
the remaining nodes follow the majority counter value among the n(f) nodes
executing the algorithm; this increases the stabilisation time by one round and
induces no memory overhead.

For the base case, observe that a 0-tolerant c-counter of n(0) = 1 node
is trivially given by the node having a local counter. It stabilises in 0 rounds
and requires �log c
 state bits. As pointed out above, this implies a 0-tolerant
c-counter for any n with stabilisation time 1 and �log c
 bits of state.

For the inductive step to f , we apply Theorem 2. For i ∈ {0, 1}, we have that
fi ≤ f/2, ni > 3fi, and ci = O(f). This implies by the induction hypothesis
that there are Ai(ni, fi, ci) with

T (Ai) = 1 +
αf

2

�log f/2�∑

k=0

(
1
2

)k

+ O(f) = 1 + αf

�log f�∑

k=0

(
1
2

)k

,

where in the last step we use that α is sufficiently large, and

S(B) = β

(
log2

f

2
+ log

f

2

)
+ O(log f + log c) = β

(
log2 f + log c

)
,

where we exploit that β is sufficiently large. Hence, the induction step succeeds.

4 Less Communication After Stabilisation

We now sketch how to reduce the number of bits broadcast by a node after
stabilisation; see [11] for the complete construction. The techniques we use are
very similar to the ones we used for deriving Theorem 1. Essentially, we devise a
“silencing wrapper” for algorithms given by Theorem 1. Let A be such a counting
algorithm. The high-level idea and the key ingredients are the following:

– The goal is that nodes eventually become happy : they assume stabilisation
has occured and check for counter consistency only every κ rounds (as self-
stabilising algorithms always need to verify their output).

Efficient Counting with Optimal Resilience 29

– Happy nodes do not execute the underlying algorithm A to avoid the
involved communication. This necessitates a fall-back stabilisation mecha-
nism covering the case that a subset of the correct nodes is happy, but does
not detect a problem.

– Using a cooldown counter with similar effects as shown in Lemma 4, we
enforce that all happy nodes output consistent counters.

– We override the phase king instruction of A if at least n − 2f ≥ f + 1 nodes
(claim to be) happy and propose a counter value x. Instead nodes adjust
their counter output accordingly to match x. If there is no strong majority
of happy nodes a supporting counter value, either all nodes become unhappy
or all correct nodes reach agreement and start counting correctly.

– If all correct nodes are unhappy, they execute A “as is” reaching agreement
eventually.

– The agreed-upon counters are used to make all nodes concurrently switch
their state to being happy (once the cooldown counters have expired), in a
way that does not interfere with the above stabilisation process.

The final observation is that happy nodes can communicate their counter
values very efficiently in a manner that self-stabilises within κ rounds. As their
counter increases by 1 modulo c in every round (or they become unhappy), they
can use κ rounds to encode a counter value; the recipient simply counts locally
in the meantime.

5 Discussion

We presented a deterministic counting algorithm that has low state and com-
munication complexity, optimal resilience, and asymptotically optimal stabilisa-
tion time. In addition, we gave a variant of the algorithm that communicates
extremely little once stabilisation is achieved. In [12], we consider the so-called
pulling model, in which nodes request messages from others instead of broadcast-
ing a message to everyone, and use randomisation to reduce the amount of bits
communicated (in contrast to broadcasting) by each correct node to logO(1) n
per round. We remark that this approach can also applied to the solution given
in this work.

From our point of view, the most thrilling open question is whether similar
ideas can be applied to randomised consensus routines in order to achieve sub-
linear stabilisation time with high resilience and small communication overhead.
Another point of note is that this general type of recursion, which we essentially
extended from its use for synchronous consensus [2] (where the clock is implicitly
given by the synchronous start), might also prove useful for deriving improved
pulse synchronisation [4] algorithms. Interestingly, no reduction from consensus
to pulse synchronisation is known, so there is hope for efficient deterministic
algorithms that stabilise in sublinear time.

Acknowledgments. We thank anonymous reviewers for helpful feedback and Jukka
Suomela for discussions and comments.

30 C. Lenzen and J. Rybicki

References

1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital
clock synchronization. In: Proc. 27th Annual ACM Symposium on Principles of
Distributed Computing (PODC 2008), pp. 385–394. ACM Press (2008). doi:10.
1145/1400751.1400802

2. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In:
Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989).
pp. 410–415. IEEE (1989). doi:10.1109/SFCS.1989.63511

3. Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen, C., Rybicki,
J., Suomela, J., Wieringa, S.: Synchronous counting andcomputational algorithm
design (2015). http://arxiv.org/abs/1304.5719v2

4. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite Byzantine
attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer,
Heidelberg (2007)

5. Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Synchronous
counting and computational algorithm design. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS,
vol. 8255, pp. 237–250. Springer, Heidelberg (2013)

6. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
Journal of the ACM 32(1), 191–204 (1985). doi:10.1145/2455.214112

7. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

Byzantine faults. Journal of the ACM 51(5), 780–799 (2004). doi:10.1145/1017460.
1017463

9. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive
consistency. Information Processing Letters 14(4), 183–186 (1982). doi:10.1016/
0020-0190(82)90033-3

10. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing Byzantine digital clock syn-
chronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 350–362. Springer, Heidelberg (2006)

11. Lenzen, C., Rybicki, J.: Efficient counting with optimal resilience (2015).
http://arxiv.org/abs/1508.02535

12. Lenzen, C., Rybicki, J., Suomela, J.: Towards optimal synchronous counting. In:
Proc. 34th Annual ACM Symposium on Principles of Distributed Computing
(PODC 2015), pp. 441–450. ACM Press (2015). doi:10.1145/2767386.2767423

13. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. Journal of the ACM 27(2), 228–234 (1980). doi:10.1145/322186.322188

http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1109/SFCS.1989.63511
http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://arxiv.org/abs/1508.02535
http://dx.doi.org/10.1145/2767386.2767423
http://dx.doi.org/10.1145/322186.322188

http://www.springer.com/978-3-662-48652-8

	Efficient Counting with Optimal Resilience
	1 Introduction
	1.1 Contributions
	1.2 Prior Work
	1.3 Structure of the Article

	2 Preliminaries
	3 Optimal Resilience Boosting
	3.1 The Road Map
	3.2 Agreeing on a Common Counter (Once in a While)
	3.3 Reaching Consensus
	3.4 Proofs of Theorems 1 and 2

	4 Less Communication After Stabilisation
	5 Discussion
	References

