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Abstract. We study the efficiency of allocations in large markets with
a network structure where every seller owns an edge in a graph and every
buyer desires a path connecting some nodes. While it is known that sta-
ble allocations can be very inefficient, the exact properties of equilibria
in markets with multiple sellers are not fully understood, even in single-
source single-sink networks. In this work, we show that for a large class
of buyer demand functions, equilibrium always exists and allocations can
often be close to optimal. In the process, we characterize the structure
and properties of equilibria using techniques from min-cost flows, and
obtain tight bounds on efficiency in terms of the various parameters gov-
erning the market, especially the number of monopolies M.

Although monopolies can cause large inefficiencies in general, our main
results for single-source single-sink networks indicate that for several nat-
ural demand functions the efficiency only drops linearly with M. For
example, for concave demand we prove that the efficiency loss is at most
a factor 1+ % from the optimum, for demand with monotone hazard rate
it is at most 1 + M, and for polynomial demand the efficiency decreases
logarithmically with M. In contrast to previous work that showed that
monopolies may adversely affect welfare, our main contribution is show-
ing that monopolies may not be as ‘evil’ as they are made out to be.
Finally, we consider more general, multiple-source networks and show
that in the absence of monopolies, mild assumptions on the network
topology guarantee an equilibrium that maximizes social welfare.

1 Introduction

The mechanism governing large decentralized markets is often straightforward:
sellers post prices for their goods and buyers buy bundles that meet their require-
ments. Given this framework, the challenge faced by researchers has been to
characterize the equilibrium states at which these markets operate. More con-
cretely, consider a market with multiple sellers that can be represented by a
directed graph G as follows:

— Every seller owns an item, which is a link in the network.
— Every infinitesimal buyer seeks to purchase a path in the network (set of
items) connecting some pair of nodes.
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In addition to actual bandwidth markets where users purchase capacity on
links for routing traffic, networks are commonly used in the literature to model
combinatorial markets where the items are a mix of substitutes and comple-
ments [3,14,18]. For instance, in a computer market, each link could represent
some component (e.g., a processor or video card) and buyers require a set of parts
to assemble a complete computer system. In ad-markets, the buyers (advertis-
ers) may want to purchase ads from a satisfactory combination of websites to
reach a target audience. Our goal in this paper is to analyze the effects of price
competition in such networked markets, i.e., the pricing strategies employed by
competing sellers and their effect on equilibrium welfare.

An extensive body of work has culminated in the design of pricing mech-
anisms for a variety of markets with a single central seller (for example,
see [9,15,17] and the references therein). In contrast, there has been very little
focus on even simple decentralized markets where multiple price-setting sellers
operate, and buyers require bundles of goods. With the exception of a few spe-
cific but incomparable settings (homogeneous goods [7,8], single buyer [10]), our
understanding of how different parameters affect equilibrium in markets with
price competition is quite limited. With this in mind, we seek to answer the
following questions:

1. What conditions on the market structure guarantee equilibrium existence?
2. How efficient are the equilibrium allocations and how do they depend on buyer
demand and network topology?

Model and Equilibrium Concept. We model the interaction between buyers
and sellers as a two-stage pricing game. Each seller e controls a single good
or link in a network G; he can produce any quantity = of this good incurring
a production cost of C.(x). Every buyer i in the market wants to purchase an
infinitesimal amount of some path connecting a source and a sink node for which
she receives a value v;. For the majority of this work, we will focus on single-
source, single-sink networks, i.e., markets where every buyer wants to purchase
a path between the same source node s and sink node ¢. Such networks capture
combinatorial markets where buyers are interested in a single type of good; e.g.,
all buyers desire a computer but may have different valuations (v;) for the same.
We consider a full information game where sellers can estimate the aggregate
demand. In the first stage of the game, sellers set prices on the edges and in the
second stage, buyers buy edges along a path. For any seller e, if at a price of p,
per unit amount of the good, a population x. of buyers purchase the good, then
the profit is pexe — Ce(x.). The buyer’s utility is v; minus the total price paid.
A solution is said to be a Nash Equilibrium if (i) Every buyer receives a utility
maximizing bundle, i.e., the cheapest s-t path with price at most v;, (ii) No seller
can unilaterally change his price and improve his profit at the new allocation.

Bertrand Competition with Monopolies. Our work is most closely related
to the model of Bertrand Competition in networks with supply limited sellers
studied in [14] and later in [13]. Our model is more general as the production
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costs (that we consider) are a substantial generalization of limited supply. The
behavior of Bertrand networks with seller costs was posed as an open question
n [14]. We address this question by applying techniques from the theory of
min-cost flows. The above papers also considered the efficiency of supply-limited
markets and showed that in the worst case the equilibrium solution can be
arbitrarily worse than the social optimum, and in some special cases it decreases
exponentially with the length of longest s-t path in the network. Our paper
provides a nuanced understanding of efficiency in terms of the buyer demand
and the network topology. One of our high-level contributions in this paper is
breaking down the dependence of efficiency on topology into a single parameter
M: the number of monopoly edges in the graph G = (V, E).

(Set of monopoliesin G) M := {e | (s, t) are disconnected in (V, E — {e})}.

Monopolies offer a natural market interpretation: these are the items which
are not substitutable. It is not surprising, although also not obvious, that monop-
olies are the main cause of inefficiencies in markets where the items are a mix of
substitutes and complements. What may be extremely surprising, and what we
view as one of the main contributions of our paper, is that in many reasonable
settings the effect of the monopolies on equilibrium efficiency is very limited.
Our results show that having a few monopolies is still not so bad: high ineffi-
ciency only occurs when the number of monopolies is large. This is in contrast to
conventional wisdom that monopolies are ‘evil’, and even a single monopoly can
cause a significant loss in social welfare [22]. More concretely, our main result is
that for a large class of natural demand functions, equilibrium not only exists,
but the loss in efficiency is at most a factor (1 + M) from the optimum solution.
We interpret this as a positive result for the following reason:

— Given previous results [13,14] that in the worst-case, social welfare can drop
exponentially as M increases, a linear loss in welfare for many natural market
types establishes a crucial separation between theoretical worst-case analysis
and settings that are more likely to arise.

The Inverse Demand Function. In this work, our primary focus will be on
single-source single-sink networks where every buyer has a different value v;,
although we do look at more general models in Sect.5. In markets with many
buyers, it is common to consider a ‘full information in the large’ game where the
sellers know exactly how many buyers value the s-t path at v or more. This can be
estimated, for instance, using prior data. Formally, we define an inverse demand
function A(x) such that for any v, A(x) = v implies that exactly  amount of
buyers value the path at v or larger. For example, suppose that A(z) = 1 — z.
Then, A(0.25) = 0.75, i.e., one-fourth of the buyers have a value of 0.75 or more
for the s-t paths.

1.1 Owur Contributions

Our objective in this paper is to characterize the quality of equilibrium in terms
of the inverse demand function, and specifically to show the effect of monopolies
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on efficiency. Therefore, our efficiency bounds depend only on the number of
monopolies M = |M|. Note that we define efficiency to be the ratio of the
optimum social welfare of the market to that at equilibrium.

Single-Source Single-Sink Networked Markets
Our first results concern existence and uniqueness. We show that:

1. There exists a Nash Equilibrium Pricing in every market under a very mild
assumption on the demand function. Moreover, there exists a Nash Equi-
librium Pricing satisfying several desirable properties, including individual
rationality, Pareto-optimality, and robustness to small perturbations. We call
such a solution a focal equilibrium.

2. We further prove the uniqueness of focal equilibria. Our result is constructive:
we explicitly characterize the prices and allocations in the focal equilibrium
and provide an algorithm to efficiently compute them.

Since the focal equilibrium solution is the unique one satisfying many properties
that one would expect from a market equilibrium, we believe that this is the
correct equilibrium to study, and the one which is likely to arise in a real system.
Because of this we mainly focus on analyzing the efficiency of focal equilibria.

Efficiency. We consider the following hierarchy of inverse demand functions
Uniform C Polynomial C Concave C Log-Concave = MHR.

Our main result is that for every function in this hierarchy, the efficiency of
the focal equilibrium drops only linearly as the number of monopolies increases.
Specifically, we show the following,

(Informal Theorem). If the inverse demand function has a monotone hazard
rate (MHR), the loss in efficiency at equilibrium is bounded by a factor of 1+ M.
This result is quite general as the MHR class encapsulates all demand func-
tions satisfying log-concavity. Moreover, some of the popular demand functions
considered in the literature happen to be Concave or Polynomial (see Sect. 2 for
examples). We show improved efficiency bounds for these classes, namely,

— (Uniform Demand) The Nash equilibrium maximizes welfare.

— (Polynomial Demand) Efficiency drops logarithmically as M increases.

~ (Concave Demand) The efficiency loss is 1+ 2.

All of our efficiency bounds are tight. The main conclusion to draw from this
is that monopolies do not completely destroy efficiency: it crucially depends on
the nature of buyer demand and the number of these monopolies. We reiterate
that since production costs strictly generalize limited supply, all of our efficiency
bounds hold for the type of market considered in [13,14] as well. We make
absolutely no assumption on the production cost function other than convexity,
which is standard in the literature.

Multiple-Source Networks. We provide a first step towards understanding
efficiency in multiple-source networked markets by tackling a question of special



20 E. Anshelevich and S. Sekar

interest: what conditions cause equilibrium to be fully efficient in such markets?
Our main result is the following: even when buyers desire different paths, as long
as the network has a series-parallel topology, the absence of monopolies guaran-
tees an efficient equilibrium. In contrast, without the series-parallel structure,
even simple networks with no monopolies may have inefficient equilibria. We
also show conditions on the buyer demand that lead to optimal equilibrium. We
briefly discuss our novel contributions and the techniques that enable our results:

1. Production costs are a non-trivial addition to the Bertrand model. In par-
ticular, the pricing strategies used in [13,14] do not extend to our model as
we cannot price all non-monopoly edges at zero and choose equal prices for
the monopolies. Instead, we extensively apply techniques from the theory of
min-cost flows to compute equilibrium prices. Specifically, the property that
the flow is ‘balanced’ across paths is utilized to set prices on the edges.

2. In order to show efficiency bounds for MHR demand, we establish a new
connection between the sellers’ profit and the ‘lost welfare’ at equilibrium.
This approach may be useful in other settings involving MHR functions.

Relation to Other Concepts. For markets with multiple buyers and sellers,
the standard solution concept used in the literature is the Walrasian Equilibrium:
a set of prices such that when both buyers and sellers act as ‘price-takers’, the
market clears. Walrasian Equilibria are indeed attractive: they always exist in
large markets [6] and are often guaranteed to be optimal. However, the idea that
prices are just ‘handed out’ so that the market clears may not be applicable
in a decentralized market. In contrast, the body of work on price-setting sellers
(e.g., [2,7,21]) takes the view that the sellers control their own prices in order
to maximize profit. Therefore, our motivation is to analyze the two-stage game
where sellers set prices and buyers purchase bundles. Our work also differs from
the papers in Mechanism Design that study settings with strategic buyers and a
single seller [17]. Instead, we consider a market with many strategic sellers and
a continuum of buyers. In such a model, it is reasonable to assume that buyers
behave as price-taking agents since their individual demand is infinitesimal.

1.2 Related Work

As mentioned earlier, the study of Bertrand competition in networks was ini-
tiated in [13,14], which gave worst case bounds on efficiency over all demand
functions. Despite our model being more general, we show that for many impor-
tant classes of demand, the efficiency is much better than the bound shown in the
above papers. Price competition between sellers was also studied in [10], where
it was shown that in markets with a single buyer, equilibrium allocations are effi-
cient. The Uniform demand case that we study is similar in spirit to what they
consider, but our main results are for more complex demand functions. Finally,
our work bears broad similarities to recent papers that also study existence or
efficiency in somewhat specific settings with multiple sellers [7,8,19]. However,
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their models are not comparable to ours. In [8], all sellers possess a single homo-
geneous good but buyers may not have access to all of them; in [7,19], there is a
single buyer but sellers may own more than one good. In contrast, we consider a
market with multiple buyers where every seller controls one good but the goods
are not homogeneous.

Some researchers have also considered more sophisticated pricing mecha-
nisms like non-linear pricing(see [16,18]). While complex mechanisms do some-
times lead to an improvement in efficiency, they are not commonly used as they
impose a large overhead on buyers who have to anticipate the change in price
due to others’ demands. In this work, we study the more natural fixed pricing
mechanism and attempt to provide additional insight on the quality of equilib-
rium.

Finally, one line of research that has gained traction in recent years [2,3] is
pricing in networked markets with congestion, i.e., buyers pay the price on each
edge, but also incur a delay due to congestion. In contrast, we share the view
taken by Shenker et al. [21] that ‘congestion costs are inherently inaccessible
to the network’. Due to the underlying complexities of this model, most of the
results are only known for simple networks such as parallel paths. One exception
is [20], which considers a unique one-sided model where the routing decisions are
taken locally by sellers and not buyers as in our paper. They show that in the
absence of monopolies, local decisions by sellers can result in efficient solutions.

2 Definitions and Preliminaries

An instance of our two-stage game is specified by a directed graph G = (V, E),
a source and a sink (s,t), an inverse demand function A(z) and a cost function
C.(x) on each edge. There is a population T of infinitesimal buyers; every buyer
wants to purchase edges on some s-t path and x amount of buyers hold a value
of A\(x) or more for these paths. A buyer is satisfied if she purchases all the edges
on some path connecting s and ¢ and is indifferent among the different paths.

We define M to be the number of monopolies in the market: an edge e is a
monopoly if removing it disconnects the source and sink. We make the following
standard assumptions on the demand and cost functions.

1. The inverse demand function A(z) is continuous on [0, 7] and non-increasing,
implying that demand decreases as price increases.

2. C¢(x) is non-decreasing and convex Ve, which is the standard way to model
production costs. Moreover, C(z) is continuous, differentiable, and its deriv-
ative c.(z) = %C’e(a:) satisfies c.(0) = 0.

Nash Equilibrium Pricing. A solution of our two-stage game is a vector of
prices on each item p and an allocation or flow @ of the amount of each s-t path
purchased, representing the strategies of the sellers and buyers respectively. The
total flow or market demand is equal to the number of buyers with non-zero
allocation = ) . pxp, where P is the set of s-t paths. We can also decompose
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this flow « into the amount of each edge purchased by the buyers (x.)eck-
Given this solution, the total utility of the sellers is ) . p(pexe — Ce(x,)) and
the aggregate utility of the buyers is ftio A(t)dt =3 c g Pee. The social welfare
is simply [,”, A(t)dt — ", Ce(.), i.e., prices are intrinsic to the system and do
not appear in the welfare.

We use the standard definition of Nash equilibrium for two-stage games to
model the stable states of our market. Formally, an allocation « is said to be a
best-response by the buyers to prices p if buyers only buy the cheapest paths
and for any cheapest path P, A(z) = > . p pe. That is, buyers act as price-takers
and any buyer whose value is at least the price of the cheapest path will purchase
some such path. A solution (p, ) is a Nash equilibrium if @ is a best-response
allocation to the prices and, Ve if the seller unilaterally changes his price from
Pe to pl., then for every feasible best-response flow («.) for the new prices, seller
e’s profit cannot increase, i.e., p.x. — Ce(ze) > plal — Ce(z)). Our notion of
equilibrium is quite strong as the seller does not have to anticipate the resulting
flow: for every best-response by the buyers, the seller’s profit should not increase.

Classes of inverse demand functions that we are interested in For ease of
exposition, we assume that both the inverse demand and the production costs are
continuously differentiable. However, all our results hold exactly even without
this assumption. Note that \'(x) cannot be positive since A\(x) is non-increasing.
The reader is asked to refer to the full version of this paper [5] for additional
discussion on these classes of demand.

Uniform Demand: \(z) = Ao > 0 for x < T. In other words, a population of
T buyers all have the same value Ay for the bundles.

Polynomial Demand: A(z) = Ag(a — 2*) for a > 1. Polynomial demand
functions are quite popular [11], especially linear inverse demand (A(z) =
a—x).

Concavg Demand: X' (7) is a non-increasing function of z.

Monotone Hazard Rate (MHR) Demand: )/‘\((':)) is non-increasing or h(zx) =

‘/E\/((;))l is non-decreasing in x. This is equivalent to the class of log-concave

functions [4] where log(A(x)) is concave. Example function: A(z) = e~ 7.

It is not hard to see that Uniform! C Polynomial C Concave C MHR. We

remark that the MHR and Concave classes are quite general whereas Uniform
or Polynomial demand are more common due their tractability.

Min-Cost Flows and the Social Optimum: Since an allocation vector x is
equivalent to a s-t flow, we briefly dwell upon minimum cost flows. Formally, we
define R(x) to be the cost ) Ce(z.) of the min-cost flow of magnitude x > 0
and r(z), its derivative, i.e., r(z) = £ R(z). Both the flow and its cost can be
computed via a simple convex program given the graph. The min-cost function

R(z) obeys several desirable properties that we use later including:

L Uniform = lima— 0 Ao(1 —z%).
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Proposition 1. R(x) is continuous, non-decreasing, differentiable, and convex.

From the KKT conditions, we have that for a min-cost flow =, r(z) =
> ecp Ce(we) for any path P with non-zero flow. Using this property, we obtain
the following characterization of the welfare maximizing solution in terms of

R(x).

Proposition 2. The solution mazimizing social welfare is a min-cost flow of
magnitude x* satisfying M(x*) > r(z*). Moreover, A\(z*) = r(z*) unless * =T.

3 Existence, Uniqueness, and Computation

In this section, we prove that a Nash equilibrium is guaranteed to exist under the
very mild assumption that the demand function has a monotone price elasticity.
Moreover, we show that there always exists a unique ‘focal equilibrium’ that
satisfies several desirable properties. We also provide an algorithm to compute
this important equilibrium.

Before proving our general existence result, it is important to understand
the different types of equilibria that may exist in networked markets. In markets
such as ours, an existence result by itself is meaningless because a large sub-class
of instances admit trivial and unrealistic equilibria.

Trivial Equilibrium: In a networked market where all paths have a length of
at least 2, it is easy to see that every seller setting an unreasonably high price
(say larger than A(0)) would result in a Nash equilibrium with zero flow. The
existence of such unrealistic equilibria was also observed in [13], where they were
referred to as trivial equilibria.

Our goal in this paper is to analyze the equilibrium operating states of actual
markets. Given that our model admits such uninteresting equilibria, it is impor-
tant that any existence result be characterized by properties that one might
come to expect from equilibria that are likely to arise in practice; for example,
one might expect that a meaningful equilibrium has non-zero flow, is not domi-
nated by other equilibria and most importantly from the perspective of a large
market, is robust to small perturbations (we define these formally below). Our
main existence result is that under a very mild condition on the demand, there
exists a ‘nice’ equilibrium that satisfies many such desiderata.

We first formally define what it means for the price elasticity of a demand
function to be monotone. This condition is quite minimal: it is obeyed by almost
all of the demand functions in the literature (for example: [1,4,11,13]).

Definition 3. Monotone Price Elasticity (MPE) An inverse demand func-
tion A(x) is said to have a monotone price elasticity if its price elasticity %

s a non-decreasing function of x which approaches zero as x — 0.

All the classes of demand functions listed in the previous section satisfy the MPE
condition. At a high level, the MPE condition simply implies that a market’s
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responsiveness at low prices cannot be too large compared to its responsiveness
at a high price. Even more intuitively, MPE functions are concave if plotted on
a log-log plot, and are essentially all functions which are “less convex” than x=".
Theorem 4. For any given instance of a networked market where the inverse
demand function \(x) has a monotone price elasticity, there exists a Nash Equi-
librium (p)eck, (T)ecr satisfying the following properties

Non-Trivial Pricing (Non-zero flow)

Recovery of Production Costs (Individual Rationality)
Pareto-Optimality

Local Dominance (Robustness to small perturbations)

Lo de =

We now formally define these properties and argue why it is reasonable to
expect an actual market equilibrium to satisfy them. For example, although they
are not stable solutions for our price-setting sellers, it is not hard to see that
Walrasian Equilibria satisfy all of these properties.

1. (Non-Trivial Pricing): Every edge that does not admit flow must be priced
at 0. This guarantees that the equilibrium has non-zero flow.

2. (Recovery of Production Costs): Given an equilibrium (p,x), every
item’s price is at least c.(x.). This property is similar in spirit to individ-
ual rationality and ensures that the prices are fair to the sellers. Suppose
that p. < ce(x.), this means that the seller is selling at least some fraction
of his items at price smaller than its cost of production, and therefore, would
have no incentive to produce the given quantity of items.

3. (Pareto-Optimality): A Pareto-optimal solution over the space of equilib-
ria is an equilibrium solution such that for any other equilibrium, at least
one agent (buyer or seller) prefers the former solution to the latter. Pareto-
Optimality is often an important criterion in games with multiple equilibria;
research suggests that in Bertrand Markets, Pareto optimal equilibria are the
solutions that arise in practice [12].

4. (Local Dominance): Given an equilibrium (p, «), consider a different flow
assignment for the same prices (p, «’), differing only in which cheapest paths
are taken by the buyers. Local Dominance means that the profit of each seller
must be larger at the equilibrium solution than at any (p, x’). The essence of
this property is that the solution is resilient against small buyer perturbations.
In other words, if instead of changing his price (which we know no seller would
do at equilibrium), a seller instead convinced some buyers to take different
paths of the same total price, then this seller still could not benefit from the
resulting new flow. If this were not the case, then a seller may be able to
attract a small fraction of buyers towards his item and improve his profit,
indicating that the original equilibrium is not robust.

(Proof Sketch of Theorem 4) The proof proceeds by analyzing the behavior of
monopolies and non-monopolies at equilibrium: every monopoly behaves as if it is
a part of a two-link serial network where the rest of the network can be composed
into a single serial link. This allows us to derive a sufficient condition on a
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monopoly’s price at equilibrium that is independent of every other link (namely,
Pe = Ce(Z) + Z|N(Z)]). In contrast, non-monopolies at equilibrium behave as
if they are a part of a two-edge parallel network. A crucial ingredient of our
result is the application of min-cost flows to link the behavior of monopolies and
non-monopolies. Namely, the property that the (marginal) flow cost is balanced
across all paths is used to choose the price of every edge. Once we have explicitly
constructed the equilibrium prices, the rest of the theorem involves showing
that these prices result in a non-trivial best-response flow. Note that standard
techniques such as fixed point theorems cannot be used here since the solution
space is not convex: small changes in price may result in large deviations. B
The full proofs of all the theorems can be found in a full version of this paper [5].
The next corollary, which is the main ingredient in all of our efficiency bounds
essentially characterizes the equilibrium structure by expressing the equilibrium
flow (Z) as a function of only the number of monopolies in the network.

Corollary 5. For any demand \ satisfying the MPE condition, 3 a Nash equi-
librium with a min-cost flow (Z.) of size T < x* such that,

FEither w =z|N(z)| or & =2z, the optimum solution.

We now show that the equilibrium from Theorem 4 (which we will refer to as
the focal equilibrium) is the unique solution that satisfies the useful desiderata
defined above. In order to truly understand the equilibrium efficiency of our
two-stage game, it does not make sense to show a blanket bound on all stable
solutions since some of these are highly unrealistic (for example, Price of Anarchy
is almost always unbounded due to the presence of trivial equilibria). However,
since the focal equilibrium solution is the unique one satisfying many properties
that one would expect from a market equilibrium, we focus on analyzing its
efficiency in the rest of this paper.

Theorem 6. For any given instance with strictly monotone MPE demand and
non-zero costs, we are quaranteed that one of the following is always true:

1. There is a unique non-trivial equilibrium that satisfies Local Dominance. (or)
2. All non-trivial equilibria that satisfy Local Dominance maximize welfare.

Moreover, we can compute this equilibrium efficiently.

For the purposes of studying efficiency, the above theorem provides a useful
baseline: either all equilibria are fully efficient or it suffices to bound the efficiency
of the unique equilibrium that satisfies Corollary 5 (which we do in Sect.4).
As always in the case of real-valued settings (e.g., convex programming, etc.),
“computing” a solution means getting within arbitrary precision of the desired
solution; the exact solution could be irrational.
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4 Effect of Monopolies on the Efficiency of Equilibrium

In this paper, we are interested in settings where approximately efficient out-
comes are reached despite the presence of self-interested sellers with monopo-
lizing power. While for general functions A(x) obeying the MPE condition, the
efficiency can be exponentially bad, we show that for many natural classes of
functions it is much better, even in the presence of monopolies.

We begin with a more fundamental result that reinforces the fact that even in
arbitrarily large networks (not necessarily parallel links), competition results in
efficiency, i.e., when M = 0, the efficiency is 1. This result is only a starting point
for us since it is the addition of monopolies that leads to interesting behavior.

Claim 7. In any network with no monopolies (i.e., you cannot disconnect s, t
by removing any one edge), there exists a focal Nash Equilibrium mazimizing
social welfare.

We remark that our notion of a “no monopoly” graph is weaker than what
has been considered in some other papers [16,20] and therefore, our result is
stronger. We are now in a position to show our main theorem. The largest class
of inverse demand functions that we consider are the MHR or Log-Concave
functions. Note that all MHR functions satisfy the MPE condition and thus
existence is guaranteed. Our main result is that for all demand functions in this
class, the efficiency loss compared to the optimum solution is 1 + M. We believe
that this result has strong implications. First, log-concavity is a very natural
assumption on the demand; these functions have received considerable attention
in Economics literature(see [4] and follow-ups). Secondly, it is reasonable to
assume that even in multi-item markets, the number of purely monopolizing
goods is not too large: in such cases the equilibrium quality is high.

Theorem 8. The social welfare of the Nash equilibrium from Sect. 8 is always
within a factor of 1 + M of the optimum for MHR X\, and this bound is tight.

(Proof Sketch). The proof relies crucially on our characterization of equilibria
obtained in Corollary 5, and the following interesting claim for MHR functions
linking the welfare loss at equilibrium to the profit made by all the sellers: ‘the
loss in welfare is at most a factor M times the total profit in the market at
equilibrium’. In addition, it is also not hard to see that in any market, the profit
cannot exceed the total social welfare of a solution.

Why is this claim useful? Using profit as an intermediary, we can now com-
pare the welfare lost at equilibrium to the welfare retained. This implies that
the welfare loss cannot be too high because that would mean that the profit
and hence the welfare retained is also high. But then, the sum of welfare lost +
retained is the optimum welfare and is bounded. Therefore, we can immediately
bound the overall efficiency. Mathematically, our key claim is,

*
x

Lost Welfare = /~ Az)dx — [R(z*) — R(Z)] < M (p% — R(%)),

x
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where p is the payment made by every buyer, & is the amount of buyers in the
equilibrium solution and z*, in the optimum. The integral in the LHS can be

rewritten as f; (M) —7(z))dz. Now, we apply some fundamental properties of

MHR functions (A) and show that for all > %, the following is true, % <
% = MZ. The final equality comes from our equilibrium characterization

in Corollary 5. Therefore, we can prove the key claim as follows:

/:(/\(x) —r(z))de < Mz /: N (2)|dz

< Mx( () — AM(z¥)) ( A(z)is non-increasing and & < z*)
M)z - R(2))  (A«")T = r(@")T > r(2)Z > R(T))

The total payment p on any path must exactly equal A\(Z) B

Tighter Bounds for Sub-classes. We now consider log-concave demand func-
tions that satisfy additional requirements, namely Uniform, Polynomial, and
Concave demand. For these classes, we show much stronger bounds on the effi-
ciency loss at equilibrium.

Theorem 9. The following bounds on the efficiency are tight

— FEvery instance with Uniform demand admits a fully efficient focal Nash equi-
librium.

— For any instance with Polynomaial demand, the inefficiency of focal equilib-
rium is at most (1 + Moz)é, where o > 1 is the degree of the polynomial.
When a > M, this quantity is approrimately 1 + %.

— When the demand is Concave, the inefficiency of focal equilibrium is 1+ %

The efficiency bound for Polynomial demand extends to more general poly-
nomials of the form A\(z) = ag — Zle a;x® with o now defined as min; «;.

Concave-Log Demand. In this paper, we considered MPE functions (concave
on a log-log plot) and log-concave functions (concave on a semi-log plot). For
the sake of completeness, we also consider functions that are not log-concave but
still obey the MPE condition. One such important class consists of Concave-Log
demand functions, which are in some sense the opposite of log-concave functions;
in other words A(zx) is concave against a logarithmically varying buyer demand
(i.e., A(log(x)) is concave). This class of functions was considered in [13], where
an efficiency bound of e” was shown: D being the length of the longest s-t path
in the network which could potentially be much larger than M. We generalize
their results to markets with cost functions, and further are able to improve
upon the bound in [13].

Claim 10. For any instance with concave-log demand, the inefficiency of the
focal equilibrium is at most MleM L for M > 2.

We reiterate here that all of our results require no assumption on the graph
structure and only the ones mentioned in Sect. 2 for the cost functions.
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5 Generalizations: Multiple-Source Networks

We now move on to more general networks where different buyers have different
si-t; paths that they wish to connect and the demand function can be different
for different sources. Unfortunately, our intuition from the previous sections
does not carry over. Even when buyers have Uniform demand, Nash equilibrium
may not even exist whereas in the single-source case, equilibrium was efficient.
Perhaps more surprisingly, we give relatively simple examples in which perfect
efficiency is no longer achieved in the absence of monopolies. Nevertheless, we
prove that for some interesting special cases, fully efficient Nash equilibrium
still exists even when buyers desire different types of bundles. In particular, we
believe that our result on series-parallel networks is an important starting point
for truly understanding multiple-source networks.

Claim 11. There exist simple instances with two sources and one sink such that

1. Nash equilibrium may not exist even when the buyers at each source have
Uniform demand.
2. All Nash equilibria are inefficient even when no edge is a monopoly.

Series-Parallel Networks: In some sense, Claim 7 embodies the very essence
of the Bertrand paradox, the fact that competition leads to efficiency. So it is
surprising that this does not hold in general networks. However, we now show
that for a large class of markets which have the series-parallel structure, the
absence of monopolies still gives us efficient equilibria. Series-Parallel networks
have been commonly used [16,18] to model the substitute and complementary
relationship that exists between various products in combinatorial markets.

We define a multiple-source single-sink graph to be a series-parallel graph
if the super graph of the given network obtained by adding a super-source and
connecting it to all the sources has the series-parallel structure. The notion of
“no-monopolies” for a complex network has the same idea as a single-source
network: there is no edge in the graph such that its removal would disconnect
any source from the sink. We are now in a position to show our result.

Theorem 12. A multiple-source single-sink series-parallel network with no
monopolies admits a welfare-maximizing Nash FEquilibrium for any given
demand.

Finally, we show additional conditions on both the network topology and
demand that lead to efficient equilibria, even in the presence of monopolies.

Claim 13. There ezists a fully efficient equilibrium in multiple-source multiple-
sink networks with Uniform demand buyers at each source if one of the following
is true: (i) Buyers have a large demand and production costs are strictly convez,
(i) Every source node is a leaf in the network.

The second case commonly arises in several telecommunication networks, where
the last mile between a central hub and the final user is often controlled by a
local monopoly and thus the source is a leaf.
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6 Conclusions

In this work, we initiate the study of Bertrand price competition in networked
markets with production costs. Our results provide an improved understanding of
how monopolies affect welfare in large, decentralized markets. Our main contri-
bution is that as long as the inverse demand obeys a natural condition (monotone
hazard rate), the efficiency loss is at most 1 + M for single-source single-sink
networks, with stronger results for other important classes. Cast in the light of
previous work [13,14], our result establishes that the inefficiency for commonly
used demand is much better than the worst-case exponential inefficiency. Finally,
for markets where buyers desire different paths, we identify series-parallel net-
works topology as a condition for efficiency. We believe this result is a useful first
step in understanding the impact of monopolies on multiple-source networks. In
a full version of this paper [5], we extend all our results to markets without a
network structure where all buyers desire the same bundles.
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