Chapter 2
Bond Graph Modelling Overview

2.1 Introduction

The bond graph physical modelling analogy provides a powerful approach to
modelling engineering systems in which the power exchange mechanism is
important, as is the case in mechatronics. In this chapter we give an overview of the
bond graph modelling technique. The intention is not to cover bond graph theory in
detail, for there are many good references that do this well, e.g. [1-3]. The purpose
is to introduce the reader to the basic concepts and methods that will be used to
develop a general, systematic, object-oriented modelling approach in Chap. 3.

2.2 Word Models

Many engineering systems consist of components, e.g. electric motors, gears,
shafts, transistors etc. (Fig. 1.3). Simulation models of such components can be
represented as objects in the computer memory and depicted on the screen by their
word model, i.e. a word description chosen to describe the component (Fig. 2.1).

The component name is useful for reference to the model. But, what is more
important, the word model represents also how the component is connected to other
components. When we look at a component, the internals of its design are usually
hidden (e.g. by its housing). What are seen are the locations where it is connected to
other components. These places—such as are electrical terminals, output shafts,
fixing places, hydraulic ports, and boundary surfaces across which heat transfer
takes place—are termed ports. In Fig. 2.1 the ports are shown by short lines.

When the component is connected and the system is energized from a suitable
power source, there is a flow of power through these ports. Also, some ports serve
to monitor or control the component. Thus, the ports serve as places where power or
information exchange takes place. This is explained in Sect. 2.3.
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A component represented by its word description (its “name”) and its ports is
taken as the most fundamental representation of a component model and is termed
the word model. The word model is used as the starting point of component model
development.

2.3 Ports, Bonds, and Power Variables

Ports, as noted in Sect. 2.2, are places where interactions between components take
place. These interactions can be looked on as power or information transfer. Thus,
two types of ports are defined.

Ports characterised by power flow into or out of a component are termed power
ports. Such ports are depicted by a half arrow (Fig. 2.2). The half arrow pointing to
the component describes power inflow. It is assumed that at such a port there is
positive power transfer into the component. Similarly, a half arrow pointing away
from the component depicts power outflow from the component and the corre-
sponding power transfer is then taken as negative.

Another type of port is characterised by negligible power transfer, but high
information content. These are termed control ports and are depicted by a full
arrow. The arrow pointing to the component denotes transfer of information into
the component (control input). Similarly the port arrow pointing away from the
component denotes information extracted from the component (control output).

The word model, i.e. the component represented by the name and the ports, is
taken as the lowest level of component abstraction (Fig. 2.2). Components interact
with other components through their ports. These interactions are looked on as
power or information transfer between components and are depicted by lines
connecting corresponding component ports (Fig. 2.3a). The lines that connect
power ports are termed bond lines, or bonds for short. A bond line joins a power
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Fig. 2.3 Connecting components: a connecting ports by bond lines, b line and connected ports
represented by bond line only

outflow port of one component and a power inflow port of the other and clearly
shows the assumed direction of power transfer between components. Similarly,
lines connecting control output ports and control input ports are termed active or
control bonds. These lines show the direction of information transfer between
components. When a bond line is drawn, ports and connecting lines appear as a
single line with a half or full arrow at one of its ends (Fig. 2.3b). In the bond graph
literature emphasis is put on the bonds, with ports playing a minor role. In our
approach just the opposite point of view is taken: Ports, the places where
inter-component actions take place, receive the emphasis.

Power or information exchange between component ports can be quite complex.
It generally depends on the processes taking place in the components. In the
simplest case the process in the component as seen at a power port can be described
by a pair of power variables, the effort and flow variables. Their product is the
power through the port (Sect. 1.3). Connecting such ports by a bond simply implies
that effort and flow variables of interconnected ports are equal. Similarly, infor-
mation at component control ports can be described by a single control variable
(signal). Connecting an output port of a component to an input port of the other just
means that these two control variables are equal.

In general, the situation is not this simple. Thus, the revolute joint illustrated
schematically in Fig. 2.4a may be used to connect robot links or, a door in a
door-frame. The joint can be represented by a word model (Fig. 2.4b), with ports
representing the parts of the joint provided for the connection.

The function of the joint is to enable rotation of the connected bodies about the
joint axis. To describe the interactions at the joint connection properly, pairs of
effort and flow vectors are used. The effort vector can be represented by three
rectangular components of the forces and torques, and likewise the flow vector by
the rectangular components of linear and angular velocities. The meaning of these

Fig. 2.4 Revolute joint:
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variables can be explained by defining a detailed model of the joint and the bodies
in question. Hence the connection of a body to the joint can be represented by a
bond, which denotes again that the efforts and flows of connected parts are equal.
This time the power variables are not simple one-dimensional variables, but vector
quantities.

Complex interactions at the ports can also be represented using multidimensional
bond notation known as multibonds [4, 5]. We do not use this approach here, but
instead treat the component ports as compounded. This means that the component
ports are not simply objects, but define the structure of the mathematical quantities
that describe the processes taking place inside the component. The bond lines
simply define which port is connected to which, and hence which mathematical
quantities should be equal. To define the structure of the ports the component model
is developed in more detail.

2.4 Component Model Development

The detailed model of a component represented by the word model (Fig. 2.5,
top-left) can be described in a document framed by a rectangle (Fig. 2.5, on the
right). We call it a document because it will be represented on the computer screen
in a document window and saved in a file (Chap. 3). The document title uses the
name of the component that it models. The document contains ports represented by
short strips placed just outside of the frame rectangle. These document ports cor-
respond to the ports of the component: Every component port has a document port.
The component Comp A in Fig. 2.5 has three ports: a power-in port, a power-out
port, and a control-out port. Thus, there are exactly three document ports of the
same type. The document ports are depicted in the positions around frame rectangle
that corresponds to the position of the component ports around the component text
(name). This way it is easy to see which port corresponds to which.

Component: Comp A

e

~ B

f

-h' CompA =

Document port 1

Fig. 2.5 Concept of component model
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To develop the model, the component is analysed to identify the components of
which it consists. Each is represented by its word model. Thus, in Fig. 2.5 there are
four such components, named B, C, D, and E. Next we determine how these
components are interconnected. Some are connected only internally, and this is
represented by bonds connecting their respective ports, e.g. component B to
component C. Some of the components are connected to the outside. In this case the
respective component ports should be connected by the bonds to the document port
strips, e.g. component B ports should be connected to the left and the right docu-
ment ports.

Thus, document ports serve for the internal connection of the contained com-
ponents. The document strip allows more than one bond to be connected to the port.
We also assume that these bond connections are ordered, e.g. from top to bottom
and from left to right. Hence, a component port (Fig. 2.5, left top) is represented by
an array of internal component connections (Fig. 2.5 on the right).

When all the word models of the contained components are connected, we
obtain a diagrammatical representation of the component model structure termed
the bond graph. To complete the model it is necessary to continue developing the
models of all contained components, which are represented by their word models,
e.g. components B, C, etc. (Fig. 2.5).

The important question is how and when we end this process of systematic
model decomposition. Formally, this happens when we get to a component that is
fundamental, i.e. it doesn’t contain simpler components. This is the problem of the
level of abstraction we use when developing a model.

Normally we start model development from the system level (Sect. 1.2). At that
level we define the model as a bond graph of the components. This is the lowest
level of problem abstraction and component word models at this level usually
correspond to the real-world components. In the next step we describe a model of
the component by identifying the basic physical effects in the component, ignoring
other, less important effects. Thus, the electrical resistor or mechanical spring can
be described by an elementary model, such as Ohms law or the linear spring
force-extension relationship. But we can also include the inductivity effect of the
resistor or inertial effects in the spring. Hence, even in such simple cases we can use
either simple or compounded component models. In other more complex devices
such as robot arms, we identify real components that constitute such an arm, e.g.
links, joints, base, etc. But even then we reach a stage at which we decide on the
level of detail to be included in the underlying model. Physical processes are
usually distributed over the component space, not restricted to small regions only.
In such cases distributed models are usually discretized and can be represented by
bond graphs of the components.

The bond graph modelling analogy enables the representation of models of basic
physical processes taking place in engineering systems in the form of elementary
components (Sect. 1.3). These components are described in more detail in Sect. 2.5.
In addition, signal processing can also be described by several elementary opera-
tions (Sect. 2.6). Thus, starting from the system level, it is possible to develop the
model gradually by applying the component decomposition technique. At every
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level of decomposition the components can be represented as elementary, or by a
word model that is developed further. The resulting model thus can have one or
more levels of decomposition. This depends on the system under study and the
accepted level of abstraction of the problem being solved.

2.5 Modelling Basic Physical Processes

2.5.1 Elementary Components

The notion of elementary components has already been introduced in Sects. 1.2 and
1.3. These have a simple structure and serve as the building blocks of complex
component models. In the bond graph method such components represent basic
physical processes. Sometimes such components can be used as simplified repre-
sentations of real components, such as bodies, springs, resistors, coils, or
transformers.

There are, altogether, nine such components that represent underlying physical
processes in a unique way. These are

Inertial (I), Capacitive (C) and Resistive (R) components
Sources of efforts (SE) and of flows (SF)

Transformers (TF) and Gyrators (GY)

Effort (1) and flow (0) junctions

The standard symbols used for the components are given in the parentheses.

In this way multi-domain physical processes, typical of mechatronics and other
engineering systems, can be modelled in a unified and consistent way. A review of
all the elementary components is given in Fig. 2.6. Components are described by
their constitutive relations in terms of variables and physical parameters.

The components can have one or more power ports. The processes seen at these
ports are described by pairs of power variables: effort e and flow f. In addition,

(a)‘bl [h}‘t‘c ((‘JL =
(d) (e) (f

SE™  SF> STF>
(2) th) b @ 4

Fig. 2.6 Elementary components: a inertial, b capacitive, c resistive, d source effort, e source
flow, f transformer, g gyrator, h effort junction, i flow junction
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certain components have internal state variables. The next sub-sections give a
detailed description of each component (Sects. 2.5.2-2.5.7). In Sect. 2.5.8 the
controlled elementary components are described, i.e. common components with
added control ports. At the control ports a control variable c is defined that is used
for supplying information to, or extracting information from, the component.

2.5.2 The Inertial Components

The inertial component is identified by the symbol I and has at least one power port
(Fig. 2.6a). This component is used to describe the inertia of a body in translation or
rotation, or the inductivity of an electrical coil.

The port variables are effort ¢ and flow f. In addition, there is an energy variable,
generalised momentum p, defined by the relationship

e=p (2.1)

The generalised momentum can be viewed as the accumulation of effort in the
component,

t

p=po+ /edt (2.2)
0

The constitutive relation of the process reads

p=1I1-f (2.3)
where [ is a parameter. The constitutive relation also can be non-linear, of the form
p = @(f,par) (2.4)

or, alternatively,

f =" (p,par) (2.5)

where @ is a suitable non-linear function and par denotes the parameters.
If the component has n ports, the constitutive relation at the ith port generally has
the form

Pi :q)i(fjvpar)a(iaj: 1,...,1/1) (26)
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or, alternatively,

fi=®; (pj,par), (i, j=1,...,n) (2.7)

where ®; are suitable multivariate functions.
A process represented by an inertial component is characterised by the accu-
mulation of power flow into the component in form of energy

1

E:E0+/€'fdt

0

Using (2.1) we get

1

E(p) = E(po) + / fdp (2.8)

0

2.5.3 The Capacitive Components

The capacitive component is identified by the symbol C and has at least one power
port (Fig. 2.6b). This component is used to model mechanical springs, electrical
capacitors, and similar processes.

The port variables are effort e and flow f. In addition, there is an energy variable,
generalised displacement g, defined by relation

f=4q (2.9)

Thus, generalised displacement can be viewed as the accumulation of the flow in the
component,

qg=qo+ [ fdr (2.10)
/

The constitutive relation of the process reads
qg=C-e (2.11)
where C is a parameter. The constitutive relation also can be nonlinear, i.e.

q = ®(e, par) (2.12)
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or, alternatively,
e =0 (q,par) (2.13)

where @ is a suitable non-linear function and par denotes parameters.
If the component has n ports, the constitutive relation at the ith port generally is
of the form

q,-:(Di(ej,par), (i,j=1,..,n) (2.14)

or, alternatively,

e,-:(l),-<qj,par), (i,j=1,..,n) (2.15)

and ®; are suitable multivariate functions.
A process represented by a capacitive component is characterised by the accu-
mulation of power flow into the component in form of energy

t

E = EO —+ /e fdl
0
or by (2.9)
E(q) = E(go) + / edq (2.16)
0

2.5.4 The Resistive Components

The resistive component is identified by the symbol R and, like the inertial and
capacitive components, has at least one port (Fig. 2.6c). This component models
friction in mechanical systems, or electrical resistors.

The port variables are effort ¢ and flow f. The component constitutive relation is
given by

e=R-f (2.17)
where R is a parameter. The constitutive relation can also be non-linear

e = O(f, par) (2.18)



32 2 Bond Graph Modelling Overview
or, alternatively,
f =@ (e, par) (2.19)
where @ is a suitable non-linear function and par denotes parameters.
If the component has n ports, the constitutive relation at the ith port generally has
the form
ei = O;(fi,par), (i,j=1,...,n) (2.20)
or,

f,-:(l)lfl(ej,par), (i,j=1,...,n) (2.21)

and @; are suitable multivariate functions.

2.5.5 The Sources

Sources are components that represent power generation (or power sinks) such as
voltage and current sources, certain types of forces (e.g. gravity), volume flow
sources (such as pumps) etc. In these sources efforts or flows are almost inde-
pendent of the other power variable. It is possible to define two types of source
components: source efforts, designated by SE; and source flows, designated by SF
(Fig. 2.6d, e). These are, basically, single port components. Denoting the port effort
by e and port flow by f, the corresponding constitutive relations are given by the
following relationships depending on the source type.

2.5.5.1 Source Efforts SE
e=F, (2.22)
or, more generally,
e = ®(t, par) (2.23)
2.5.5.2 Source Flows SF

f=F (2.24)
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or, more generally,
f = ®(t,par) (2.25)

In the relationships above, Ey, Fy, and par are suitable parameters, and @ is a
function of time ¢.

2.5.6 The Transformers and Gyrators

The transformer TF and the gyrator GY are two important components that rep-
resent transformations of the power variables between their ports (Fig. 2.6f, g).
Both have two ports; power is directed into the component at one port, and out of
the component at the other. Thus, power is assumed to flow through the component.

An important characteristic of these components is the conservation of power
flow, i.e. power inflow is equal to power outflow. If we denote the corresponding
power ports effort-flow variables by e; and f; (i = 0,1), this fact can be expressed by
the relationship

e(]f() = eLfl (226)

2.5.6.1 Transformer TF

The transformer models the levers, gears, electrical transformers, and similar
devices. In robotics and multi-body mechanics, transformers are extensively used
for the transformation of power variables between body frames.

In the transformer there is a linear relationship between the same types of port
variables, i.e. effort to effort and flow to flow. Denoting the transformation ratio by
m, we have

e = m-e¢

(2.27)
Jo=m-fi
These relationships satisfy the power conservation relationship given by (2.26).
It is sufficient to define one of these relationships; the other follows due to the
power conservation requirement. There is some ambiguity in how to define the
transformation ratio because the power conservation relation is also satisfied by the
inverse equations

e =k-e

2.28
fi=k-fo (2.28)
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The transformation ratio k in the last pair of the equations is just the reciprocal of
ratio m in the former equations, i.e. k = 1/m. The form to use is left to the discretion
of the modeller.

2.5.6.2 Gyrators GY

The gyrator is similar to the transformer, but relates the different types of ports
variables, i.e. the efforts to flows. Denoting the gyrator ratios by m and k, the
corresponding equations are

@=m-fi } (2.29)

er=m-fo
and alternatively,

fo=k-a (2.30)

fi=k-eo
The gyrators have their roots in the gyration effects well known from mechanics.
Their use is essential in rigid-body dynamics. The gyrator is a more fundamental
component than the transformer [1]. Two connected gyrators are equivalent to a
transformer. A gyrator and an inertial component are equivalent to a capacitive
element. Similarly, a source effort connected to a gyrator is equivalent to a source
flow. Using such combinations makes it possible to reduce the set of elementary
components necessary for physical modelling. We do not follow this approach here;
there is little to be gained by using a smaller number of elementary components, as
the resulting model would be more complicated and more abstract than necessary.

2.5.7 The Effort and Flow Junctions

Physical processes interact in such a way that there are restrictions on the possible
values that efforts and flows can attain. Many physical laws express such con-
straints. In mechanics, forces and moments—including inertial effects—are gov-
erned by the momentum and the moment-of-momentum laws. In electricity, there is
the Kirchhoff voltage law, and there are similar laws in other fields. Similar con-
straints on flows in rigid body mechanics are governed by the kinematical relative
velocity laws, by the law of continuity of fluid flow in fluid mechanics, the
Kirchhoff current law in electricity, etc. To satisfy such laws elementary compo-
nents defined previously are connected to the junctions that impose constraints on
efforts or flows. Such junctions are known as effort and flow junctions (Fig. 2.6h, 1).
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2.5.7.1 Effort Junctions

The effort junction is a multi-port component into which power flows in or out. The
traditional symbol for this junction is 1. This junction also is called a common flow
junction because the flows at all junction ports are the same, i.e.

fo=fi==f (2.31)

where n is the number of ports at the junction. There is no power accumulation
within the junction; thus the sum of the power inflows and outflows equals zero,

Tefy Leifi - Eenify1 =0 (2.32)

In this equation the plus sign is used for the ports pointing towards the junction
(positive power) and the minus sign for ports pointing away from the junction
(negative power). Using (2.31) we get equation of effort balance at the junction

ieoiel---ien,l =0 (233)

2.5.7.2 Flow Junctions

The flow junction is similar to the effort junction, with the roles of efforts and flows
exchanged. The flow junction is a multi-port component traditionally denoted by
the symbol 0. This junction is also known as a common effort junction, as the efforts
at all ports are the same, i.e.

ep)=¢€ = " =¢€y—1 (234)

There also holds the conservation of power of flows through the junction (2.32).
Thus, by (2.34) we get an equation of balance of flows at the junction

ThEfi--£fi1=0 (2.35)

2.5.8 Controlled Components

The component constitutive relations introduced so far depend on port and internal
variables only (and fime which is the global variable). In many instances it is also
necessary to permit dependence on some external variables. This is the case when
modelling controlled hydraulic restrictions in valves, variable resistors; capacitors,
sources and other controlled components in electronics; and coordinate transfor-
mations in multi-body mechanics. For this purpose bond graphs use so called
modulated components—modulated source efforts MSE and sources flows MSF,
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modulated transformers MTF and gyrators MGY. Some authors introduce other
modulated components as well. We do not introduce such special components, but
allow components to have control ports in addition to power ports.

Figure 2.7 shows components with added control ports. The most elementary
components in Fig. 2.6 can have can have an input port. The only components that
cannot have control input ports are effort and flow junctions. The components with
control input ports are called controlled and their constitutive relations (see
Sects. 2.5.2-2.5.6) depend also on the corresponding control variables. The
transformers and gyrators must satisfy also the power conservation requirement.
But this is not a problem because it is satisfied not only by constant transformer and
gyrator ratios, but also by the ratios that dependent on a control variable c¢. Thus,
e.g. the corresponding constitutive relations for controlled transformer and gyrators
can have the same forms as given by (2.27)—(2.30), but with variable transformer
and gyration ratios, e.g.

e; =m(c) - ey
2.36
fo=mle) -1 } (236
and,
eo = m(c) - fi
2.37
"o ) )
respectively.

In addition we may define one specific component called the switch, denoted by
Sw (Fig. 2.7b). This component has one power port and one control input port. The
constitutive relation for the component is

e=0, ¢>0
(2.38)
f=0, ¢<0
Fig. 2.7 Components with (a)
control ports: a inputs, &) o ENY P SR +SE = —»SF =
b switch component,
¢ outputs b 1

~TF >  SGY->

& Swe
(c)
f i
aqn e N - el s SR
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where e and f are the power port effort and flow variables of, and ¢ is the control
variable. This component can be viewed as a controlled source that imposes zero
effort or zero flow condition, depending on the sign of the control variable. This
component models hard stops and clearances in machines, switches and relays in
electronics, and possibly other discontinuous processes. The component can be
generalised to allow effort or flow expressions, such as in sources (2.22)—(2.25) and
in systems with more complex switching logic than in (2.38).

Finally, control output ports are used to access the component variables that
cannot be accessed other way (Fig. 2.7c). Control output ports are commonly used
for extraction of information on junction variables (efforts or flows). We also use
such ports for access to the internal variables of inertial and capacitive components
(momenta and displacements) and for extraction of information from other com-
ponents, too.

2.6 Block Diagram Components

2.6.1 Introduction

Processes inside a system can be represented, either partially or completely, by
signals (see Sect. 1.4). Thus, to complete the arsenal of components for modelling
mechatronic systems, we define components that describe the input-output opera-
tions (Fig. 2.8). These are in effect the word model components of Fig. 2.2, which
has only control ports. They may serve to define the basic block diagram operations
in the system, e.g. they can be used to define control laws of mechatronic devices,
the processing inside the system, or post processing of the simulation results.

The signals in a system can be broadly classified as continuous-time and
discrete-times ones. The first type describes processes that are defined at every
instant of time over some interval. These are commonly termed analog processes
and usually represent different physical quantities, e.g. voltages, velocities, etc. The
basic input-output components used to model continuous-time processes are
described in Sect. 2.6.2.

In discrete-time processes the relevant quantities are defined only at discrete
points in time. Such processes can be generated by sampling the continuous-time
signal at the discrete times (Fig. 2.9). If the sampling frequency f; is constant then
the signal is wuniformly sampled with sampled time index k given by
ty = kT, (k=1,2,...), where T, = 1/f; is the sampling interval. This is typically
the case in microprocessor-controlled systems where sampling is achieved by
analog to digital converters (ADC). The basic components used to model
discrete-time processes are discussed in Sect. 2.6.3.

Fig. 2.8 Block-diagram of a Input signal Output signal
component — | Component | ——
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Fig. 2.9 Ideal sampling of a I
continuous-time signal %
x(t) x(kTs)

2.6.2 Continuous-Time Components

Some of fundamental input-output components are shown in Fig. 2.10. These
components are well-known from control theory and will be reviewed briefly.

2.6.2.1 Input Components

The input components (Fig. 2.10a) generates control input action. These compo-
nents can have only single control output port. This component generates the output
in the general form

Cour = D(t, par) (2.39)

where @ is a suitable function of time and the parameters.
These components typically are used to generate step inputs, sinusoidal inputs,
pulse trains, and other input functions.

2.6.2.2 Output Components

The output components (Fig. 2.10b) display output signals. They can have one or
more input ports. Typically such components are used for collecting signal for
displaying as x-t and x-y plots. These components can be also represented by
graphical symbols which resemble x-y plotters. Such a component is called
Display.

(a) IN-= (b) -=OUT
{C}—bFUN—o (d] —DJ‘—D (e) -=D/IDt -

“‘] -5 & {g) - =+
t )

Fig. 2.10 Basic block diagram components: a input, b output, ¢ function, d integrator,
e differentiator, f summator, g node
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2.6.2.3 Function Component

The function components (Fig. 2.10c) generates output as linear or non-linear
functions of its inputs. The component can have one or more control input ports and
single output port. The output generated by the function generally can have the
form

Cout = (D(CO7 Cly-- o Cnfl,PaV) (240)

where co, ci,..., ¢,—1 are the inputs, and par are the parameters.

Such a function can be used to represent linear gains, multiplications of the
inputs, or other non-linear operation on the inputs. Often instead of generic symbol
FUN more specific words can be used, which better describe the function, such as k
for k-gains, Limiter for functions that limits the output, etc.

2.6.2.4 Integrator

As its name implies, this component evaluates the time integral of its input
(Fig. 2.10d), i.e.

1

Cout = cout(o) + /Cin(l)dt (241)
0

Obviously, this is a single input-single output component. Important parameter
of the function is the initial value of the output.

2.6.2.5 Differentiator

In parallel with the integrator we introduce the differentiator (Fig. 2.10e), as
component which generates the time derivative of its input, i.e.

dCin
out — 2.42
Cour =" (242)

However, it is not a proper input-output component, because time derivative of a
time function is not well defined operation. This is reason why such an operation is
not usually met among block diagram components. Here it is included because, as
will be show later, the system model that we use are in the form of semi-implicit
differential-algebraic equations (DAEs), which are solved using a method based on
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differentiation (so called backward differentiation formula BDF). Therefore, such a
function is legitimate, but will be solved differently than the other input-output
functions.

The differentiator can be used to model D component of PID controllers, and
also if time-derivatives are explicitly needed.

2.6.2.6 Summator

The summator (Fig. 2.10f) gives the sum of its inputs, with optional positive or
negative signs, i.e.

Cout = £coE£cy - £ (2.43)

At every input port there is associated a plus or minus sign, which indicates
whether the corresponding input is added or subtracted when evaluating the output.
Often instead of s (for summation), more common symbols such as X, @ , or ® are
used.

2.6.2.7 Node

The node (Fig. 2.10g) serves for branching signals. This component has a single
input and one or more outputs. Usually, instead of symbol n (for node), a large dot *
is used.

2.6.3 Discrete-Time Components

Many continuous-time input-output components have their discrete-time counter-
parts. This is the case with the Input, Output, Function, Summator and Node
components. However, there are components that are specific to discrete-time
processes, in particular digital ones. These are Analog to Digital Converters (ADC),
Digital to Analog Converters (DAC), Clocks and Memory (delay) components
(Fig. 2.11).

The /D component in Fig. 2.11a describes the quantization of the input signal,
which can be described by the relationship."

Cour = q - round(cin/q) (2.44)

"This component corresponds to Quantizer block in Matlab-Simulink.



2.6 Block Diagram Components 41

(a) (b)
—AD — — DIA —

(d) (e) (

(c)
@Tv = P — Component—

Activation port

Fig. 2.11 Basic discrete components and ports: a analog to digital converter, b digital to analog
converter, ¢ clock with activation port, d delay, e triggered component

where c;, is the analog input signal and c,,,, is the quantized output signal, and ¢ is
the quantization interval (Fig. 2.12). Function round converts the ratio of input
signal and the quantization interval to the lower integer value.

A clock component (Fig. 2.11c) can be used to synchronize the discrete oper-
ations in the system. It can be created in the form of a unit integrator, i.e.

t

/ 1dt

0

which generates the outputs every sampling interval T, (Sect. 2.6.3). Note that the
clock has a special port called the activation port which activates the part of the
system following the point of connection of the clock.

As an illustration of the application of the last two components consider the
model of the A/D conversion in Fig. 2.13. The input to the A/D conversion is the
analog signal, and the output is a digital number. If the range of the input is
cint — Cing, than the linear gain of M-bit converter is given by [6]

oM 1
K=——— (2.45)
CinH — CinL
Fig. 2.12 Quantization of the A
input signal Cout

q

Cin
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Fig. 2.13 Model of A/D - K—— A/D—— Limiter— ¢ =
converter s
6

Thus, if the input range of 24 bit converter is £2.5 V the linear gain is
3355443 1/V. This gain is represented in Fig. 2.13 by continuous-time function K.

The A/D component converts the scaled output to a discrete value using a
suitable quantization interval. Ideally, the quantization interval should be based on a
number of possible binary values, i.e. ¢ = 1 bit. However, due to noise such low
resolution cannot be achieved. The minimum change in input voltage required to
guarantee a change in the discrete output value is called the least significant bit
(LSB). Thus in the above example if the LSB is 5 puV (ideally it is 1/K = 0.3 uV) the
corresponding quantization interval q = 5 uV « 3355443 V' ~ 17 bits. The
Limiter limits the converter output to a maximum and minimum binary values
that the converter can generate. Finally, there is a clock connected to the corre-
sponding node. The clock defines the sampling rate of the converter and the starting
and ending activation times.

The D/A component in Fig. 2.11b converts a discrete-time signal to the corre-
sponding continuous-time one. There are various possible ways how to do this. The
most popular way to generate the signal values over the next sampling interval is to
hold the value of the signal at the constant value. Because the constant is zero-order
polynomial this method is known as zero-order hold. Sometimes a linear inter-
polation is used (first-order hold), but it is generally accepted that zero-order hold is
satisfying and is widely used. Note that there is a scaling involved between the
digital input and analog output, and a similar gain function should be applied as in
Fig. 2.13.

An important component that is often used in digital systems is the delay or D
component (Fig. 2.11d). This component stores the current input value into a
corresponding memory location. Because this value is available at the next sam-
pling interval it is described by the relationship

Cout[l] = Cin [0] = Cp (246)

Coul[k} = Cin[k - 1]7 k>1 }

Therefore, the output of the component at the current sampling instance is equal

to the value of the input at the previous instance. This function is, therefore, a unit

delay function. In order to be defined at the first sample instance, i.e. when k = 1, it

is necessary to define the initial value of the input, c;,[0]. The D function is anal-
ogous to the integrator in continuous-time processes (2.41).

The discrete components discussed so far are fundamental to modelling discrete

(digital) processes. It is possible of course to define additional more specific
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components as well. We will conclude the discussion of discrete component by
discussion of one special port introduced and shown in Fig. 2.11e. This is the
trigger port and serves to activate or deactivate processing inside a discrete block to
which it is added if an external signal connected to the port satisfies suitable
conditions.” Such a component is termed a triggered component. Using an external
signal it is possible to control when processes in a component are starting and
ending. The conditions under which it happens are defined by the trigger port. Thus,
it is possible to define that processes starts when a rising input signal goes through
zero, or when a dropping signal crosses some value, or when some other condition
is satisfied.

2.7 Modelling Simple Engineering Systems

The approach outlined in the previous sections can be used for the systematic
computer-aided model development of engineering problems. We apply this
approach to two simple, well-known problems, one from mechanical engineering
and the other from electrical engineering. The technique is compared with the
common bond graph modelling technique as given e.g. in [1]. We also consider a
more complicated practical example from mechanical engineering (the See-saw
problem).

2.7.1 Simple Body Spring Damper System

The first example models a single-degree-of-freedom mechanical vibration system
(Fig. 2.14a). It consists of a body of mass m that translates along a floor, and is
connected to a wall by a spring of stiffness &, and by a damper with a linear friction
velocity constant b. An external force F acts on the body. We neglect the Coulomb
friction between the block and the floor for simplicity, as well as the weight of the
body. In Fig. 2.14b the system is decomposed into its basic components. This is the
free-body diagram well known from engineering mechanics. This decomposition
clarifies the power flow direction assignment of the component ports.

The bond graph model of the system is shown at the top of Fig. 2.15. The system
consists of three components: Spring, Damper, and Body represented by the
corresponding word models. The Wall (and floor) constitutes a component
belonging to the system environment and is represented by the word model. The
power ports of Spring and Damper and corresponding ports in Wall and Body
are connected by the bond lines. The body is acted upon also by an external force,
represented by a SE (Source Effort) elementary component, and is connected to the

2Its function is similar to Triggered Subsystems in Matlab-Simulink.
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X, v
O g k F,
e VAVAVAVAVA
F
F b F
d — d
e m

Fig. 2.14 Body spring damper system: a schematic representation, b free body diagram
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corresponding Body port by a bond. There is also a control-out port on the Body
which is used to extract information on the body position. This port is connected to
the Out(put) port for display of body position during the simulation.

The model at this level of abstraction has a structure that closely corresponds to
the scheme of the system in Fig. 2.14a. The direction of power flow in the model is
taken from the SE through the body, then through the spring and damper, and
finally to the wall.
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This corresponds to the physical situation in Fig. 2.14b. If the sense of the
external force and the body velocity are as shown, the power at the external force
port is positive; i.e., it is directed info the body. Assuming that the spring and
damper resist the movement of the body—i.e., the sense of their forces is opposite
to that of the body velocity—the powers at the corresponding ports are negative,
and the power port arrows are directed out of the body. At the spring and damper
ports, power again is positive, flowing into these components. Because of the
direction of the body’s force, according to Newton'’s Third Law their forces act in
the opposite sense. A similar conclusion can be drawn regarding the wall side ports.
Hence, by joining mechanical ports Newton’s Third law is satisfied. Thus, to
construct the bond graph model it is not necessary to draw the free-body diagram at
all.

Next we develop the component models (Fig. 2.15). The force generated by the
spring depends on the relative displacement (extension) of the spring. Thus, the
model of the spring can be represented by a flow junction with three ports, two for
connecting internally to the spring end ports and the third for the connection of the
capacitive element that models the elasticity of the spring (Fig. 2.15 Spring). The
junction variable is the force F; in the spring; and the extension of the spring x, is
the generalized displacement of the capacitive element, with spring stiffness k taken
as the element parameter. Thus, the constitutive relations for the capacitive element
are (see (2.9) and (2.11))

Ve = X (2.47)
and
Fv =k- Xs (248)

where v, is the relative velocity of the spring ends.

The damper has a similar model, with the resistive element used to model
mechanical dissipation in the damper (Fig. 2.15 Damper). The junction variable F,
represents the force developed by the damper, v, is the relative velocity of the
damper ends and the velocity constant b is a parameter of the element. Assuming a
linear constitutive relation for the resistive element we have (see (2.17))

Fi=b-v (2.49)

The third component of the system is the body of mass m (Fig. 2.15 Body). This
component uses an effort junction to describe the balance of forces applied to the
body including the inertial force of the body. This junction has four power ports:
three for internal connections to the body ports and fourth for the connection of an
inertial element. Denoting the body velocity taken as the junction variable by v (see
Fig. 2.14a) and the inertial force of the body of mass m taken as parameter by F},
the constitutive relations of the inertial element are (see (2.1) and (2.3))
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Fy,=pp (2.50)
and
pp =my (2.51)

To calculate the body position, a control output port is added to the junction, and
the junction variable is fed to an integrator that outputs the body position x. The
corresponding equation can be written as

i=v (2.52)

The next component is simply the source effort element SE, which generates the
driving force on the body

F =) (2.53)

The spring and damper are connected to the fixed wall. The model of the wall is
given in Fig. 2.15 Wall. The component uses an effort junction with three ports,
which describes the force balance at the wall. Two ports serve for the internal
connection to the wall ports, where the spring and damper are connected, and the
third is for connecting to the source flow, which imposes a zero wall velocity
condition. The junction velocity is v,,. Thus, the relation for the source flow is

vy =0 (2.54)

To complete the mathematical model of the system the equations of the effort and
flow junctions are added. Corresponding variables can be found by following the
bonds connected to junction ports until some elementary component is found that
completes the bond. Thus, for the body effort junction in Fig. 2.15 Body, the port
effort variables are the spring force F§, damper force F, inertia force F, and driving
force F, respectively. The equation of the effort balance at the junction thus reads

—F,—F;—F,+F=0 (2.55)

If we denote by F,, the total force at the wall, the equation of effort balance at the
wall junction reads (Fig. 2.15 wall)

Fy+Fy—F,=0 (2.56)

A similar equation can be written for the flow junctions. This time the sum-
mation is on the flows. Thus, we have (Fig. 2.15 Spring)

—Vy —Vs+v=0 (2.57)
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and (Fig. 2.15 Damper)
—Vy —Vg+v=0 (2.58)

We, therefore, may describe the motion of the system by eight equations of
elements that describe the physical processes in the system, i.e. (2.47)—(2.53), and
four equations which involve the junctions (2.54)—(2.58). There are, altogether,
twelve differential and algebraic equations that have to be satisfied by twelve
variables: Fy, vy, x5, Fy, vg, Fp, v, pp, F, F,,, v, and x. Although we have arrived at a
relatively large number of equations of motion for this simple problem, the equa-
tions are very simple, having on average only 27/12 = 2.25 variables per equation.

The structure of the matrix of these equations is very sparse; this simplifies the
solution process. We can simplify these equations further. Direct processing can be
used to eliminate some, or all, of the algebraic variables (i.e., variables that are not
differentiated). We can also simplify the bond graph first, and then write the cor-
responding equations. We consider the second approach in more detail, as it leads
to the sort of bond graphs usually found in the literature.

We can simplify the model by substituting every component at the top of
Fig. 2.15 by its corresponding model, given at the bottom part of the same figure.
The resulting bond graph is shown in Fig. 2.16a.

The source flow on the left imposes zero wall velocity; thus, we can remove the
effort junction and the source flow, as well as the two bonds connecting to the flow
junctions. We also remove the corresponding ports at the junctions. This yields a
bond graph represented by Fig. 2.16b. We should also eliminate these flow junc-
tions, for they are trivial, having only one power input port and one power output
port. Thus, the C and R element ports can be connected directly to the effort junction
ports on the right. This results in the bond graph of Fig. 2.16c.

The model in Fig. 2.16¢ is much simpler than that in Fig. 2.15. The resulting
equations now consist of

V=X

F,=k-x,

Fd:b-v

Fo=p (2.59)
pp=m:-v

F=0()

—F,—-F;,—F,+F=0

xX=v

We have reduced the system to eight equations with eight variables Fj, x;, F,
Fy,, v, pp, F, and x. This was achieved, however, by eliminating some variables that
can be of interest, e.g. total force transmitted to the wall. This bond graph can be
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(a)

L, I X . ouT L j' £ ,out
Fig. 2.16 Simplification of the bond graph of Fig. 2.15

developed directly from Fig. 2.16a by the application of classical methods of bond
graph modelling, as explained in [1].

Using this form of bond graph model, the equations of motion of the system can be
developed in an even simpler form than that given above. It should be noted, how-
ever, that this is not true in general for engineering systems of practical interest. We
address this matter in more detail in Sects. 2.9 and 2.10. The reduced model is, on the
other hand, much more abstract. This makes it more difficult to understand and
interpret: Unlike the component model of Fig. 2.15, there is no topological similarity
to the system represented in Fig. 2.14a. A change in any part of the model affects the
complete model. On the other hand, in the model of Fig. 2.15 we can change some of
the components, leaving the others unchanged. Such a model can be refined much
more easily, thereby retaining the overall topological similarity to the physical model.

2.7.2 The Simple Electrical Circuit

The second example considers the electrical Resistor Inductor Capacitor circuit
(RLC circuit) shown in Fig. 2.17. The circuit consists of a series connection of a
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Fig. 2.17 Simple electrical i I
circuit

-

voltage source generating an electromotive force (e.m.f.) VS, a resistor R, an
inductor L, and a capacitor C. The polarities of the voltage drop across the electrical
components are also shown, as well as the assumed direction of the current flow.
We can develop a bond graph model using an approach similar to the mechanical
system analysed previously.

We can represent the electrical components by suitable word models. But instead
of the component names, we use the common electrical symbols. Standard com-
ponent names—such as resistor, capacitor, and the like—may be retained internally
for compatibility with the usual word model representation. The resulting bond
graph is shown at the top of Fig. 2.18.

The source voltage supplies electrical power to other parts of the circuit. The
power port corresponding to the positive terminal is taken to be directed outward,
and the other port inward. Power from the source flows through the resistor,
inductor, and capacitor until the node component is reached where a part of the
power flow branches to the ground component. (Later it is shown that there is no
power flow to the ground.) The other part returns back to the voltage source. The
model has a very similar appearance to the electrical scheme in Fig. 2.17. What is
different is the presence of power ports showing the assumed direction of power
flow in the circuit. Thus, the correspondence of the bond graph model and the
electrical scheme is really very close. Note that for the output component a com-
ponent graphically resembling x-y plotter (Display) is used.

Component models for the voltage source VS, resistor R, inductor L, and the
capacitor C are shown in the lower part of the Fig. 2.18. The components have two
ports used for connecting to other components. Their models are represented by
three ports effort junctions 1. Two of these are used for internal connection to the
component’s ports, and the third is used for connection of the elementary com-
ponents that describe the physical processes in the components. Power flow is
chosen to flow into these elementary components. Thus, the effort of the elementary
component port represents the voltage difference across the component. We model
the components by the idealized linear elements.
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Fig. 2.18 Bond graph model
of circuit of Fig. 2.17
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In the case of the resistor, the junction variable is the current ir flowing through
the component, and the voltage drop is Vg. Thus, the constitutive relation for the
resistor is given by (2.17)

Ve =R-ix (2.60)

with R the resistance parameter.

Similarly for the inductor, the junction variable is the current i; through the
inductor and the voltage drop is V. If we denote the flux linkage of the coil by p,,
the constitutive relations read (see (2.1) and (2.3))

V. =pL (2.61)
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and

where L is the inductance parameter of the inductor.

For the voltage source the joint variable is the current i through the source
terminals (ports). The voltage E generated is described by the source effort element.
The constitutive relation reads

E = O(z) (2.63)
Finally, for the capacitor, the junction variable is the current i~ through the

component and the voltage drop is V. If we denote the capacitor charge by gc, the
constitutive relations can be written as (see (2.9) and (2.11))

ic = qc (2.64)
and
Ve =qc/C (2.65)

where C is the capacitance.

The node component is simply another representation of the flow junction, and
the ground is just the ground potential source effort. The node variable is the ground
potential vs. We take the ground potential as zero, hence the ground component
constitutive relation reads

Vo =0 (2.66)

If we start from any of the component effort junctions and follow the bonds
connected internally to the port, then out of the component to the next component
port, and again into the component, we find that all effort junctions are intercon-
nected. We, thus, can treat all these junctions as a single junction, the result being
that all junction variables are, in essence, the same variable, i.e.

i=ir=iL=ic (2.67)

Counting only ports connected to other components, the balance of efforts reads
as follows

Ve6+E—-Vr—V,—Vc—=V5=0 (2.68)
After cancellation of the ground potential v, we get
E—-Vg—V,—Vc=0 (2.69)

This is the Kirchhoff voltage law for the circuit.
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Finally, if we denote the current drawn by the ground by ig, the balance of flows
at the node reads

—i—ig+i=0 (2.70)
Again, due to the cancellation of current i, we obtain
ic=0 (2.71)

This lengthy derivation shows that we arrive at the circuit equation by using the
constitutive equations for elementary components and symbolically simplifying the
junction equations. Thus, the mathematical model of the circuit consists of nine
differential-algebraic equations (2.60)—(2.66), (2.69), and (2.71) with nine variables
E, Vg, 1, Vi, pr, Vo, qc, Vg and ig. Equations (2.66) and (2.71) are trivial and could
be eliminated from the system.

As in the previous example, we can simplify the bond graph instead of the
equations. We first substitute the bond graph model of the components from the
lower part of Fig. 2.18 into the system bond graph at the top. Also the node is
changed to the flow junction and the ground to source effort. We thus obtain bond
graph shown in Fig. 2.19a.

Fig. 2.19 Simplification of (a) R 1
model of Fig. 2.18 1
SE—=1 1—=c
|
0w
L |
SE
(b) WR ! (c) T I
SE—1——C SE—>1—
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We again see that the four effort junctions are interconnected and can be con-
densed into a single junction, retaining only the ports connected to other compo-
nents. In addition, we see that this junction is connected to the same flow junction
by two ports of opposite power-flow sense. Hence, such ports can be disconnected,
and then removed. The corresponding ports of the flow junction must be removed,
too. This yields the bond graph shown in Fig. 2.19b. We now have a flow junction
connected only to a ground source effort. These can be removed, too. This results in
the final simplified system bond graph (Fig. 2.19c). The last bond graph can be
described by the same equations as before, but without (2.66) and (2.71).

The above procedure shows that, instead of the simplification of junction (2.68)
and (2.70), we could directly arrive at (2.69) and (2.71) by noting that intercon-
nected effort junctions are connected to the same flow junction. Corresponding
junction ports then could be treated as internal, and not taken into account when
writing the junction equations.

Comparing bond graphs in Figs. 2.18 and 2.19¢, we draw similar conclusions as
in the previous example: The model in Fig. 2.18 is much easier to interpret and
upgrade. Even people who are not too familiar with bond graphs could understand
such a model. On the other hand, it retains the advantages that bond graphs enjoy
over other modelling methods.

2.7.3 A See-Saw Problem

As a third problem, we develop a model of a simple see-saw often found in
children’s playgrounds (Fig. 2.20). On a much larger scale, this same problem is
known as the swing boat at the fair ground. The system consists of a platform that
can rotate around a horizontal pin O, fixed in a frame, and having a body at each
end, e.g. a boy and a girl sitting on the see-saw seats. If one of the bodies is pushed
down, and then released, the system will begin to oscillate around its equilibrium
position.

Fig. 2.20 See-saw problem y

Frame /Pi\-'ot

Body 1

T Platform
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This problem is more complicated than those presented previously, as it consists
of three interconnected bodies moving in the vertical plane. The model could be
developed easily by treating the system as a physical pendulum. Instead, we con-
sider it as a multi-body system and demonstrate how the model can be developed
systematically by decomposition.

We start by defining the overall model structure (Fig. 2.21). The word models
Body 1 and Body 2 represent the bodies on the platform. They each have a port
that corresponds to the location where the body acts on the platform. The com-
ponent Plat form has four ports, two of which correspond to the places where the
bodies act, a third for connecting to the Pivot component, and the last for the
input of information on the rotation angle. The Pivot permits only rotation of the
platform about a horizontal pin fixed in the Frame.

We assume that the bodies are firmly placed on the platform and move with it.
Hence, we join the ports of the bodies to the corresponding platform ports by bonds.
We assume the power flow sense from Body 1 and Body 2 through the
Platform and Pivot to the Frame. Further, the information on the force at the
pivot is of interest. Thus, we take the rectangular components of force F, and F, on
the Pivot and feed them to the Display. Similarly, we extract information on
the rotation angle Phi and feed it to the node. This information branches further to
the Platform and to Display. Note, Display is output component in form of
x-y plotter (see Sect. 2.6.2).

We proceed by developing models of the components. This requires defining the
interactions taking place between them. Motion of the system is described in global
co-ordinate frame Oxy, with origin O at the point of rotation of the platform in the
vertical plane, axis y directed upward, and x to the right (Fig. 2.20).

The Body1l and Body2 models are shown in Fig. 2.22 Body 1 and Body 2.
Separate effort junctions are used for the summation of the x and y components of
forces acting on the bodies. The junction variables are the x and y components of
the velocities of the bodies. The junctions are connected internally to their
respective ports. The order of connection going from the left to the right is the
x component first, then the y component,. This order of connection is also used for
the other ports. Hence, Body1l and Body?2 port variables are pairs of effort flow
vectors Fy,v; and F,,v,, respectively.

Fig. 2.21 Overall structure of Frame

the see-saw P 1 — l_
ivot —l J

Body1 Body2

.

Platform
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Fig. 2.22 Dynamics of
bodies attached to the see-saw
platform

55

Body 2

The inertial effects of the bodies in the x- and y-directions are represented by the
inertial elements I connected to the corresponding effort junctions, with power flow
directed into the inertial elements. The weights of the bodies, acting in the y di-
rection only, are represented by source efforts connected to the y component
junctions, with power flow directed into the junctions. The equations of motion of
the bodies can be obtained directly from the bond graphs of Fig. 2.22. The masses
of the bodies are m; and m,, and g is the gravitational acceleration. The relevant
variables are also shown in the figure.

Body 1:

Body 2:

Doix = Fpix
Poly = Fpiy
Pbix = My - Vix
Pbly = My - Viy

Gly =—m-g

*le*Fblx:()
_Fly_Fbly+G1y:0

DProx = Fiox
Pray = Fpay
Phox = My -V
P2y = My - Vy

G2y =—my-g

—Fy — Fippe =0
—Fyy — Fipy+Goy =0

(2.72)

(2.73)
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The Frame simply fixes the pivot, about which the platform rotates, against
translation and rotation (Fig. 2.23). The equations are:

Frame:
Vpy = 0
vpy =0 (2.74)
wp = 0

The Pivot allows rotation only about the pin (Fig. 2.24). Two flow junctions
are inserted to extract information on pin force components. Rotation is assumed
frictionless, but friction can be added if required, e.g. by a resistive component R
used instead of the source effort. The relative angular velocity of the platform is
denoted by w,. The signal taken from the effort junction is integrated to get the
platform rotation angle ¢. The governing equations are again very simple:

Frame
Pin translation Pin rotation
Pin
translation
SF
. SF SF
Pin
rotation - M| o,
Folv
Fig. 2.23 Model of the see-saw frame
Pivot Translation
4 4 Rotation
Vi | Ve, - B
W,
Translation _| Fro o,
4 4 M, 0—>1—LxgE
Rotation —I" Fr0 B |—>I —I_
} b
w
Vi | Vy

Fig. 2.24 Model of the see-saw pivot
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Pivot:

Viy — Vpx = 0
V3y — Vpy = 0

w—wp—w =0

Mo — My — 0 (2.75)
Mp =0
(-b = a)r

The platform acts as a transformer of the velocities of the attached bodies.
Simultaneously, the transformation of the reaction forces of the bodies also takes
place. To develop the bond graph model of the platform we analyse the plane
motion of the platform in the global co-ordinate frame Oxy (Fig. 2.25).

The position and orientation of the platform is defined by the body frame Cxy
with the origin at its mass centre. The position vector of the origin C is described by
a column vector of its global co-ordinates, i.e.

re = <XC> (2.76)
yc

Orientation of the body is defined by the rotation matrix (see e.g. [7])

R — (cos @ —sin (p> (2.77)

sin @  cos @

Fig. 2.25 See-saw platform
plane motion
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The vector of the position of a point P in the body with respect to the origin of
the body frame can be expressed in the body frame by a vector of its coordinates

X
fop = (_CP> (2.78)
ycp

The position of the same point P with respect to the global frame is defined by
the vector of its global co-ordinates

rp = (x”> (2.79)
yp

The relationship between these vectors is given by
Ip =rc+rcp (2.80)

Note that vector rcp is the relative vector expressed in the global frame, i.e.

X
rep = ( CP) (2.81)
ycp

The relationship between the vectors of (2.78) and (2.81) is given by the
co-ordinate transformation

Icp = Rf'cp (282)

Substituting the rotation matrix of (2.77) and evaluating the resulting expression
yields

(-XCP) — (xCPCOS(p_yCPSian> (283)

ycp Xcp sin @ +ycp cos @

The velocity of a point P in the body can be found by taking the time derivative
of (2.80), i.e.

Vp = Vc + Vcp (284)

which relates the velocity of the point P to the velocity of the origin C of the body
frame and to the relative velocity of the point P with respect to the point C. These
velocity vectors are expressed by their components in the global frame as
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Vpyx Vex Vcprx
Vp = i , Vo= . , Vecp = cr (285)
Vpy Vey Vcpy

and are defined by

dl’P - dl‘c dl'cp

_are _ 4rc _ der 2.86
Vp=— Ve=—5, Vo= (2.86)

Taking the time derivative of (2.82), and noting that F¢p is a constant vector, we
arrive at the expression for the relative velocity of point P:

dR _
Vep = ErCP (2.87)

The time derivative of the rotation matrix R in (2.77) yields

dR ([ —sing —cosq) do
E_(cosq) —sin(p>'E (2.88)

The time derivative of the body rotation angle is the body angular velocity

do
=T 2.89
»=— (2.89)
Thus, substitution of (2.88) and (2.89) into (2.87) yields
ver = To (2.90)

where T is the transformation matrix, given by

—Xcp Sin @ — ycp cOS
T — ( _CP ¢ )iCP . €0> (2.91)
Xcp COS @ — ycp SIN @

Compared with (2.83), this matrix also can be expressed as

T= ( - C”) (2.92)
Xcp

Equations (2.84) and (2.89)-(2.91) are the basic relations describing the kine-
matics of rigid body motion in a plane. Next, we consider the kinetic relationships
relating the forces and moments applied to the platform.

A force F applied to the platform can be described by a vector of its rectangular
components in the global frame, i.e.
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F = <§y> (2.93)

The power delivered at point P is given by vAiF, where the superscript 7 denotes
matrix transposition. From (2.84) and (2.90) we get

viF = viF+ T'Fo (2.94)

Evaluating the leading part of the second term on the right of (2.94) yields
T'F = —ycpF, + xcpF, (2.93)

We recognise this as the moment M of the force at P about point C, thus
Mc =T'F (2.96)

By substituting in (2.94), we finally arrive at the equations of power transfer
across the body

ViF = vVEF + Mco (2.97)

This equation can be read as a statement of force equivalents, well known from
Engineering Mechanics (see e.g. [8]). That s, a force applied at a point P is equivalent
to the same force applied at a different point C plus the moment of force about C. If at
point P a torque also acts, its moment Mp should be added, too. Equations (2.96) and
(2.97), jointly with (2.84) and (2.89)—(2.91), constitute the fundamental equations of
rigid-body motion in a plane. To complete the dynamical equations we need to add
the inertias of translation and rotation. These equations clearly show how to represent
the dynamics of the platform (see Fig. 2.26 Platform).

At every point of application of a force (platform ports) we introduce a com-
ponent O corresponding to summation of the velocities, as given by (2.84). These
components contain two flow junctions. The corresponding junction variables are
the x and y components of the force at the port (Fig. 2.26 0). The effort junction 1 is
used to represent the angular velocity of the body, and the component CM
describing the motion of the mass centre (Fig. 2.26 Platform and CM). We
connect the junctions O to the angular velocity junction 1 by the components
LinRot, and to the mass centre motion component cm?

The LinRot components represent the linear to rotation transformations given
by (2.90) and (2.96). The components consist of two transformers, which imple-
ment the transformations by matrix given by (2.91), and an effort junction that sum
up the moments according to (2.96) (see Fig. 2.21 LinRot). The necessary

3Because of space limitation, only one of the 0 and LinRot components are shown. The others
have a similar structure.
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Fig. 2.26 Model of the platform
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information on the angle of rotation of the see-saw platform is taken from the input
port. In addition to these force effects, any moment at a port is transmitted directly
to the rotation effort junction 1. An inertial element added to the junction represents
the rotational inertia of the platform with respect to mass center. The body trans-
lation inertia with mass center is represented by component CM which consists of
two effort junctions that add inertial elements corresponding to the x and y motion

(Fig. 2.26 CM). The platform gravity is also added there.

The mathematical model of the platform can be written directly from the
Fig. 2.26. Respective variables are given in the figure and parameters a, b, and ¢ are
dimensions shown in Fig. 2.25; m is the platform mass, and I is its mass moment

of inertia about its mass centre.
The equations read:
Platform—Ieft side:

Vix —Veix — vexr =0

Viy = Veiy — vey =0

verr = (a-sing+c-cos@) - w
vely = (—a-cos@+c-sing) -
My, = (a-sinp+c-coso) - Fiy
M,y = (—a-cos@+c-sing) - Fy,
—Mci +My+My, =0

(2.98)



62

Platform—right side:

2 Bond Graph Modelling Overview

Vox — Veox — Vex = 0

Vay — Ve2y — Vey = 0

Vear = (—a-sinp+c-cos@) - w
vy = (a-cos@+c-sing) -

My = (—a-sin +c-cos @) - Fy,
My, = (a-cosp+c-sing) - Fyy

—Mcy +Mo+M, =0

Platform—upper side:

— Vix F Vo3 +Vex = 0

— V3y +Ve3y +Vey = 0

vese = —(b-
vesy = —(b-
Max = —(b

M;, = —(b-

cos Q) - w
sin) - w

-cos @) - Fpy

sin @) - Fpy

Mcs — M3, — M3, =0

Platform—mass centre motion:

Pox = Fex
pr = FCy
Pcx = m - Vey
Pcy = m - Vgy
G, = —mg

F1x+F2x_FPx_FCx:O

Fiy+ Fay — Fpy— Fey + G, =0

Platform—rotation:

Kc = Mc
KC:IC'CO

Mci+Mco —Mcz —Mp —Mc =0

(2.99)

(2.100)

(2.101)

(2.102)

The model consists of fifty-four very simple equations. No substitutions or other
simplifications have been made, as we wished to develop the model strictly by
describing every elementary component in terms of its variables and parameters.
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Fig. 2.27 Single level model SF SF  SF
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This procedure, based on the systematic decomposition, results in multi-level
models. Such models can be developed and changed more easily, if necessary, than
conventional “flat” models. Some of the components can also be reused in other
models. For example, the P1at form component can be used for problems dealing
with the plane motion of rigid bodies. For comparison, a flat model corresponding
to the model developed above is shown in Fig. 2.27. Such a model, however, is not
easy to follow, particularly for people unfamiliar with bond graphs: There are many
bonds, and it is not easy even to draw them correctly! It is thus more susceptible to
errors and more difficult to change.

2.8 Causality of Bond Graphs
2.8.1 The Concept of Causality

The concept of causality, or cause-effect relationships, was introduced in the bond
graph method to define the computational structure of the resulting mathematical
equations at bond-graph level. Thus, the physical and computational structure of the
model is defined in parallel during the modelling stage. It should be stressed that
physical laws do not imply any causal preference: There is no physical reason to
treat forces as the cause, and velocities of the body motions as effects; or voltages as
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(a) = (b) &
Element1 4,!.‘ Element2 Element! — Element?
f

(c) (d)
e €

Element! ———> Element2 Element! < Element2
S/ f

Fig. 2.28 Causality assignment: a and ¢ possible stroke attachments, b and d meaning of the
attachments

the cause, and currents in circuits as effects. The assignment of causality can be
looked on as a convenient—but not an essential—part of the modelling task.
Further it is arguable that it is convenient at all, in particular when using the
object-oriented paradigm in simulation model building. We nevertheless briefly
describe causality and its consequences in bond graphs because of their close
connection with bond graph theory (see e.g. [1, 2]).

Causality means that, at every port of an elementary component, one of the
power variables is the input (cause) and the other is the output (effect). Because
bond lines in bond graphs connect the ports, the same variable is the input variable
at one port and the output variable at the other connected port. Causal relationships
between connected port variables are depicted in the bond graph literature by causal
strokes. These are short lines drawn at one bond end (port) perpendicular to the
bond (Fig. 2.28). This stroke denotes that the effort at the port is the input to the
element and the flow variable is the output (Fig. 2.28a, b). At the other port just the
opposite relation is valid; that is, the flow variable is the input and the effort variable
is the output. Causal stroke assignment is independent of the power flow direction
(Fig. 2.28a, ¢).

2.8.2 Causalities of Elementary Components

The causality assignment defines the input-output relationship of the elementary
component constitutive relations. Possible types of causalities of elementary
component ports are summarised in Fig. 2.29.

Source effort ports (Fig. 2.29a) can have only one possible type of causality, i.e.
the effort is always the output, because flow at the input port is not defined.
Similarly, at source flow ports the output is the flow, because the effort is not
defined (2.29b). Thus, sources have fixed causalities.

The inertial component can have one of two possible causalities. If effort at the
port is the input and the flow is output (Fig. 2.29¢), the constitutive relations are
then given by (2.2) and (2.5)
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Fig. 2.29 Causalities of elementary components

t

=po+ | edt
p=ro 0/ (2.103)
f= q)_l(p,par)

Such causality is known as integrating causality because integration is used to
calculate the output flow.

The other possibility is that the flow is the input and effort is the output
(Fig. 2.29d). In this case evaluation proceeds by (2.4) and (2.1), i.e.

(2.104)

pP= (D(fvpar )
e=p

This type of causality is known as differentiation causality because differentia-
tion is used to calculate the output.

Analogous causal forms exist for capacitive ports. If we take the flow variable as
input and the effort variable as output (Fig. 2.29¢), by (2.10) and (2.13) we have

t
=qo+ |[ fdt
= O/f (2.105)
e =" (q,par)

In this case we have integrating causality. On the other hand, if effort is the input
and flow is the output (Fig. 2.24f), the calculation proceeds by (2.12) and (2.9), i.e.
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(e, par) } (2.106)

q =
f=4q
This yields differentiation causality.
Of these two possible causalities, integrating causality is preferred because
integration is more easily implemented than differentiation. This is because inte-
gration works on the past values, whereas differentiation involves prediction.

For the resistor there are also two possible causalities. If the flow is the input and
effort is the output (Fig. 2.29g), evaluation of the output is done using (2.18), i.e.

e = O(f, par) (2.107)

On other hand, if the effort is input (Fig. 2.29h) and the flow is output, calcu-
lation is implemented by (2.19), i.e.

f =@ (e, par) (2.108)

The first one is sometimes called resistive causality, and the other conductive
causality. Preference of one over the other depends on which form is better defined,
as some non-linear constitutive relationships are not invertible.

Transformers can also have two possible types of causality. If the effort at one
port is the input, then at the other port the effort has to be the output; the same
applies to the flows. For causality as expressed in Fig. 2.29i, the constitutive
relations are given by (2.27), i.e.

er=mm-co (2.109)
Jo=m-fi

On other hand, if causality is as in Fig. 2.29j, the constitutive relations are given
by (2.28), i.e.

e":k'e‘} (2.110)
h=k-fo

Two possible causalities for gyrators are shown in Fig. 2.29k, 1, respectively.
Inputs at the gyrator ports can represent either the efforts or the flows. For the case
in which inputs are efforts, output flows are given by (2.30), i.e.

j:‘:];:)} (2.111)
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Similarly, if the inputs are flows, the output efforts are given by (2.29), i.e.

e =m-/ } (2.112)

(] :m'fo

Effort junctions represent the balance of efforts at the junction ports. Hence, one
effort can only be the output at one port; all others must be inputs. For the effort
junction in Fig. 2.29m, the effort at port 2 is taken as the output and all others are
inputs. Thus, output effort e, is given by

ey = —eyg+e;

A similar statement holds for the flow junctions: Flow can only be the output at
one port; all other flows must be inputs. For the flow junction in Fig. 2.24n, the
output flow f; is given by

h=fh-rH

In the expression for output effort or flow, the sign of all input efforts or flows
should be positive if the sense of the power flow is opposite to the sense of the
output power flow. Otherwise, the sign is negative.

2.8.3 The Procedure for Assigning Causality

The causalities of junction, transformer, and gyrator ports are interrelated and thus
imply constraints on the causalities of connected elements. The causalities of the
complete bond graph can be assigned in a systematic way. The usual procedure is
known generally as the sequential causal assignment procedure (SCAP) [1]. This
procedure is summarised as follows:

1. Choose a source effort or source flow and assign causality to it. Extend the
causality assignment, if possible, to the connected effort and flow junctions, the
transformers, and the gyrators. Proceed in a like fashion until the causality of all
sources has been assigned.

2. Choose an inertial or a capacitive element and assign to it the preferred (inte-
grating) causality. Extend the causality assignment as in 1. Proceed until the
causality of all such elements has been assigned. Otherwise, if the causality
assignment of the all bonds is not achieved, go to the next step.

3. Assign causality to an unassigned resistor using any acceptable causality.
Extend the assignment to the connected effort and flow junctions, transformers,
and gyrators. Proceed until the causality of all resistors has been assigned.
Otherwise, if the causality of all bonds is not already assigned, go to the next
step.
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4. Assign causality to any remaining bond. Extend the causality assignment to
effort and flow junctions, transformers, and gyrators. Proceed until the causality
of all bonds is assigned.

The bond graph to which causality has been assigned usually is termed a causal
bond graph. Otherwise, it is termed an acausal bond graph.

The procedure can be illustrated on the simple body-spring-damper problem of
Sect. 2.7.1. Other more complex examples can be found in, for example, [1]. Here
we use the simplified bond graph of Fig. 2.16¢, which is repeated in Fig. 2.30a.

We start with the source effort SE (step 1 of SCAP) and assign its causality as
shown in Fig. 2.30b. We cannot extend the causality assignment immediately to the
effort junction, as the connected port is an effort input port. There are no more
sources, thus we proceed with step 2 of SCAP. We can choose to assign causality to
either the inertial or the capacitive element. Let us choose to assign integration
causality to the inertial element I (Fig. 2.30c). We now can extend the causality
assignment to the effort junction, because the port connected to the inertial port is an
effort output port, and all other junction ports must be effort input ports (Fig. 2.30d).
This completes the causality assignment of the bond graph.

We have obtained integration causality of the capacitive element C, as well. If
we start at step 2 by choosing the capacitive element instead of the inertial element,
we would have to assign the causality of the inertial element before we could
proceed to the effort junction. The first procedure is somewhat shorter.

The causal assignment of Fig. 2.30 defines the order of evaluation of the
equations. This is shown by the block diagram of Fig. 2.31.

We start with the SE first. Next, we calculate the output flow of the inertial
element. This is the input to the effort junction and the output of its all other ports. It

CN
F

Fy X ‘i/ ) i
B =] ouT R s [ ——ouT

Fig. 2.30 Illustration of the causality assignment procedure
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Fig. 2.31 Computational order of the bond graph Fig. 2.30d

is the input to the capacitor and the resistor used to calculate their outputs. These,
together with the source effort output, are used to calculate the output of the effort
junction, hence the inertial element input. Independently, it is used as input to the
integrator to calculate body position.

2.9 The Formulation of the System Equations

The bond graph of a system completely defines its mathematical model. In Sect. 2.7 it
was shown that the model could be generated directly from the bond graph by
describing the elementary components, including junctions, in terms of their con-
stitutive relations. This way of representing mathematical models is known as the
descriptor form [9] and is widely used in electrical circuits. This is a non-minimum
form because the equations are not expressed using the minimal number of variables.
Some variables could be eliminated, e.g. by substituting into the equations of flow and
effort junctions. This approach is in effect used in modified nodal analysis (MNA) of
electrical circuits [10, 11]. This also is the case with certain approaches used in
multi-body dynamics [7]. In Sect. 2.7 it was shown that the matrix of the equations is
typically very sparse, and this can be used to advantage in their solution.

The descriptor form of equation formulation leads to the model in the form of
systems of differential-algebraic equations (DAEs). The success or failure of the
descriptor formalism depends to a large extent on the possibility of solving equa-
tions in DAE form efficiently and reliably. Solving such equations has a relatively
long history and started with the famous DIFSUB routine of CW Gear [12] for stiff
systems. The work reported in this book also has its roots in software that solves
DAE:s in a way that is based on the DIFSUB routine. From that time significant
advances have been achieved in the theory of DAEs and their application [13, 14].
Today this is a viable approach to solving simulation models. We return to this
again in Chap. 5.

Another common approach is to formulate the system in state space form. This
technique uses a minimal set of independent variables to formulate the governing
equations. It has its roots in the generalised coordinate methods of Analytical
Mechanics [15], but it also is used widely, and is perhaps better known, from
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Control Theory. The theory of state-space equations has been a topic of research for
a long time and is well understood. This approach is followed not only in bond
graph theory, but is also used in many continuous system simulation languages
(Sect. 1.7).

The usual approach in continuous system simulation languages is to create a
system of sorted equations that is solved sequentially. Such systems can be solved
relatively easily. Unfortunately, in many engineering problems of practical interest
it is not easy to put the equations in such a form.

The sequential causal assignment procedure of Sect. 2.8.3 was really designed as
an aid to the generation of mathematical model equations in sorted form. From that
the equations can be reduced to the state space form. The bond graphs with
completed causality assignment can be put in such a form if inertial and capacitive
elements have integrating causality, and if there are no algebraic loops [1, 16]. We
illustrate this with the body-spring-damper system represented by the causal bond
graph of Fig. 2.30d (or, equivalently, by the block diagram of Fig. 2.31). More
elaborate examples can be found elsewhere [1].

We start with the source effort (sixth of (2.59)), following the order of causal
assignment of Sect. 2.8,

F=®(r) (2.113)
The output of the inertial element I is given by (see (2.103) and fifth (2.59))
v=py/m (2.114)

The variable v (by the effort junction) is used as the input to the capacitor C,
resistor R, and the integrator. The order of evaluation of these elements is imma-
terial. From the first (2.105), written in derivative form, or first (2.59), we get

Xs=v (2.115)
Output of the capacitor is given by the equation (see (2.105) and second (2.59))
Fs=k- x; (2.116)

Output of the resistor (see (2.107) or the third (2.59)) is
Fi=b-v (2.117)

Hence, all the inputs to the summator are found and we can calculate its output
as

F,=F—F,—F, (2.118)
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The output of the summator is the input to the inertial element. Thus, from the
first equation of (2.103), written in differential form, or fourth (2.59), we get

pr=Fp (2.119)
To these equations we add the output of the integrator written as (the last (2.59))
x=v (2.120)

This completes the generation of the system of sorted equations.

The equations above consist of differential equations (2.115), (2.119) and
(2.120), and algebraic equations (2.113), (2.114), (2.116), (2.117), and (2.118).
Hence, it is a differential/algebraic system of equations (DAE), but of a special
structure. We classify all variables in these equations as being either differentiated
or participating in algebraic operations only. The first are called differentiated
variables, i.e. x;, x and p,. The others are algebraic variables; in the equations
above these are F, v, Fy, F,, F;. All algebraic variables above can be expressed as
functions of the differentiated variables and time. We see that the variables F, v, and
F are already in this form (see (2.113), (2.114) and (2.116)). Eliminating v from
(2.117) and (2.114) we get

b
Fd =—" Db (2121)
m

Finally, substituting from (2.113), (2.116), and (2.121) into (2.118) we obtain
b

F,=0()—k-x;——pp (2.122)
m

We now substitute these expressions into the differential equations (2.115), (2.119),
and (2.120). We, thus, obtain

iy = py/m (2.123)
. b
pr=00)—k-xy——"pp (2.124)
m
X =pp/m (2.125)

Note that (2.123) and (2.125) has the same form, but generally different initial
conditions, because the first refers to the spring extension, and the second to the
body position.

Equations (2.123)—(2.125) represent the model in the state-space form. Variables
X5, Pp and x constitute a minimal set of independent variables that completely define
the state of the system. Solving these equations with suitable initial conditions, the
all other variables can be found from (2.113), (2.114), (2.116)—(2.118).
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In general, if all capacitive and inertial ports have integrating causality, then the
corresponding differentiated variables, i.e. generalised moments and displacements
of Sects. 2.5.2 and 2.5.3 can be looked upon as independent variables where
accumulation of past histories of the efforts and flows take place. Such variables
completely determine the future state of the system and usually are called state
variables. All other variables can then be determined if the state of the system is
known. If, in addition, there are no algebraic loops—that is, there are no implicit
algebraic equations between variables—then all other variables can be eliminated
from the governing equations. Thus, if all state variables are represented by a vector
p and all external inputs (represented by the sources) by a vector u, then a change of
system state can be described by a vector equation

p=®(p,u,1) (2.126)

where @ is a suitable vector-function of the state, inputs, and eventually time. This
is an ordinary differential equation that can be solved given the initial state of the
system. Such an equation is termed the state-space equation of the system.

2.10 The Causality Conflicts and Their Resolution

The sequential causal assignment procedure (SCAP) of Sect. 2.8.3, in many cases
of practical interest, leads to a causally augmented graph that cannot be described
by equations in state space form [1, 17, 18, 19]. We illustrate this using the
examples of Sect. 2.7.

We first analyse the electrical circuit of Fig. 2.18, but with the resistor replaced
by a diode (Fig. 2.32a).

If we model the diode as a non-linear resistor, we get the equivalent causally
augmented bond graph shown in Fig. 2.32b (see Fig. 2.19c). The problem here is
that the diode is a non-linear element normally described in conductive form, i.e.
the diode current is a function of the voltage across the diode. It is thus in conflict
with the assigned causality that implies resistive causality. In order to resolve
conflicts caused by non-linear elements, the relaxed causal assignment procedure
was proposed in [20] and its modification in [21]. This procedure requires that, at
step 2 of the SCAP (Sect. 2.8.3), propagation of causalities over junctions may not
violate the fixed causality of non-linear elements. Thus, applying the causal
assignment procedure again results in the augmented bond graph of Fig. 2.32c. The
conflict caused by the fixed causality of the diode disappears, but a causal conflict
appears at the effort junction because there is more than one output. Thus, the
equation corresponding to the effort junction constitutes an algebraic constraint that
the variables have to satisfy. The procedure permits casual conflicts at effort or flow
junctions as an indication that the mathematical model is of the
differential-algebraic equations (DAE) form, rather than of the state space form.
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In the see-saw problem (Sect. 2.7.3) there also is a causality problem. The
see-saw is a single-degree-of-freedom mechanical system. The motions of the
bodies depend on the motion (rotation) of the platform, which is represented in
Fig. 2.26 by the LinRot transformers. To show this we apply the SCAP to the
bond graph of Fig. 2.27. The resulting causally augmented bond graph is shown in
Fig. 2.33. There is only one inertial element with integrating causality. All others
have differential causalities.

This bond graph is rather complicated, so numbers are used to indicate the order
of the causality assignments. Selection of the preferred (integrating) causality for
one inertial element, e.g. the platform rotation, implies derivative causalities for all
other inertial elements. Hence, there is only one state variable and all other gen-
eralized variables are non-state variables. The model again is a system of
differential-algebraic equations.

There have been attempts to resolve causality conflicts by, for example, adding
‘parasitic’ compliances or inertias [22, 23]. This is not an acceptable approach,
however, because, in the first instance, it is not clear how to do this without
adversely changing the model behaviour. On the other hand, such modified models
are not much easier to solve numerically than the corresponding DAE models
because they are very stiff.

The causality assignment defines the model’s computational scheme based only
on the model’s structure. In cases in which the model changes sufficiently, such a
priori schemes can lead easily to a loss of efficiency and even failure of the equation
solving routines. This is the case with models that have discontinuities.

Discontinuities are present in engineering systems in various forms, e.g.
switches in electrical circuits, hard stops, clearances, and dry friction. For example,
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Fig. 2.33 Causal bond graph of Fig. 2.27

the diode represented in the circuit of Fig. 2.34a is modelled as a switch in
Fig. 2.34b.

If the diode is forward-biased (conducting), then the switch behaves as a source
effort implying a zero voltage drop across the diode (Fig. 2.34c). When, on the
other hand, the diode is reverse-biased, the switch behaves as a flow source of small
reverse saturated current (Fig. 2.34d). The model structure and causalities are
apparently different for these two states. In the conducting regime the system has
two state variables, while in the non-conducting regime it has only one.

There have been various attempts to solve causality problems with switches
[24-28]. Overall, these procedures are not completely satisfactory in the general
case. This is particularly true if the discontinuities are not confined to switch
elements, but appear in the element constitutive relations, too.
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The concept of causality is generally not suitable for use in an automated
object-oriented modelling environment. It is not only too restrictive with respect to
the forms of models that can be used, but also puts restrictions on the design and
usability of models libraries. A component that has one causality pattern in one
system can have a quite different one when inserted in another system. We disre-
gard causality issues when developing models of general engineering and mecha-
tronic systems. Modelling is treated as a separate task from model simulation. The
models will be generated in the form of DAE systems and solved as such.
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