
Chapter 8
AdS/CFT—Adding Probes

In real experiments, one often adds “probes” to a system to examine its response. Or one
adds impurities to a system to see how they change the properties of the system. In this
chapter, we discuss how to add probes in AdS/CFT. As a typical example, we add “quarks”
to gauge theories as probes and see the behavior of quark potentials.

Coupling new degrees of freedom to the original system often arises new phenomena.
Adding some new degrees of freedom to AdS/CFT should be also interesting. This
is practically important as well. The N = 4 SYM is clearly insufficient to mimic
real worlds completely since, e.g., it does not have quarks.

In string theory, there are various fields and branes, so one may would like to add
them. The resulting geometries or solutions have been known for some cases, but
it is in general very difficult to solve the Einstein equation when there are multiple
number of fields and branes.

So, one often adds them as “probes.” This is just like the particle motion analy-
sis in curved spacetime (Sects. 2.3 and 6.2). One fixes the background geometry
and considers the case where the backreaction of the probe onto the geometry is
negligible.

In this chapter, as a typical example, we add “quarks” to large-Nc gauge theories
as a probe and analyze quark potentials. In Sect. 14.3, we see another example of a
probe system, holographic superconductors.

8.1 Basics of Wilson Loop

The Wilson loop is an important observable in gauge theory, and it represents the
quark-antiquark potential physically. As an example, consider a U (1) gauge theory
with gauge transformation given by

φ(x) → eiα(x)φ(x), (8.1)

Aμ(x) → Aμ(x) + ∂μα(x). (8.2)
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Fig. 8.1 a Path P . b The
Wilson loop represents a
quark-antiquark pair

(a) (b)

A nonlocal operator such as φ(x)φ∗(y) is not gauge invariant in general and is not
an observable. But the following quantity is gauge-invariant:

φ(x)ei
∫

P dxμ Aμφ∗(y), (8.3)

where P is an arbitrary path from point x to y (Fig. 8.1a). It transforms as

φ(x)ei
∫

P dxμ Aμφ∗(y) → φ(x)eiα(x)ei
∫

P dxμ(Aμ+∂μα)e−iα(y)φ∗(y) (8.4)

= φ(x)ei
∫

P dxμ Aμφ∗(y). (8.5)

Or if one takes a closed path P , WP itself is gauge invariant. Thus, we define the
following operator:

WP (x, y) = ei
∫

P dxμ Aμ (Wilson line), (8.6)

WP (x, x) = ei
∮

dxμ Aμ (Wilson loop). (8.7)

The Wilson loop represents the coupling of the gauge field to a test charge. Con-
sider a charged particle with world-line yμ(λ). The current is given by

Jμ(x) =
∮

dλ
dyμ

dλ
δ
(
xμ − yμ

(
λ
))

. (8.8)

The sign of the charge depends on the sign of dy/dλ. Here, we take dy/dλ > 0 for a
positive charge. For a given closed path, dy/dλ can be both positive and negative, so
we have both a positive charge and a negative charge (Fig. 8.1b). Namely, the closed
path describes the process of creating a “quark-antiquark pair” from the vacuum,
pulling them a distance R apart, interacting for time T , and annihilating them. If
one uses Jμ, the coupling of the gauge field to the point particle action is written as
δS = ∫

d4x Aμ Jμ. This perturbed action δS can be rewritten as the exponent of the
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Wilson loop:

δS =
∫

d4x Aμ(x)Jμ(x) =
∮

dλ
dyμ

dλ
Aμ(y(λ)) =

∮
dyμ Aμ(y). (8.9)

Therefore, the Wilson loop represents a partition function in the presence of a test
charge:

〈WP 〉 = Z [J ]
Z [0] . (8.10)

Such a partition function gives the quark-antiquark potential. Let us write the
Euclidean partition function formally as

Z = 〈 f |e−HT |i〉 (8.11)

(|i〉 and | f 〉 are the initial state and the final state, respectively). If one uses a complete
set of energy eigenstates H |n〉 = En|n〉,

Z =
∑

n

e−EnT 〈 f |n〉〈n|i〉 T →∞−−−−→ e−E0T . (8.12)

Thus, in the T → ∞ limit, the Euclidean partition function is dominated by the
ground state and gives the ground state energy. When the kinetic energy is negligible,
it gives the quark-antiquark potential energy.1 Consequently,

〈WP 〉 � e−V (R)T . (8.13)

One can show that the horizontal parts of Fig. 8.1b are negligible in the largeT → ∞
limit.

When the quark is confined like QCD, the potential grows with the separation R,
so V (R) � σR(R � 1), where σ is called the string tension. Then,

〈WP 〉 � e−O(RT ) = e−σ A. (8.14)

The exponent is proportional to the area of the Wilson loop A = RT . This behavior
is known as the area law. An unconfined potential behaves differently. The Coulomb
potential decays with the separation, and one can show that

〈WP 〉 � e−O(R) (when R = T � 1). (8.15)

This is known as the perimeter law. In this way, the Wilson loop provides a criterion
for the confinement.

1 From tE = i t , the Lorentzian action SL , the Euclidean action SE , and the potential V are related
to each other by iSL = i

∫
dt (−V ) = − ∫

dtEV = −SE .
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Here, we consider only the U (1) gauge theory, but a similar discussion can be
done for a Yang-Mills theory.

8.2 Wilson Loops in AdS/CFT: Intuitive Approach

Let us consider the Wilson loop in AdS/CFT. The Wilson loop in AdS/CFT gives
a typical example of adding a probe system to the original system. The AdS/CFT
results can be understood intuitively. So, before we go through an actual computation,
we first explain what kind of results one can expect in various situations. Then, we
confirm our intuitive explanation via an actual computation.

The matter fields in the N = 4 SYM are all in the adjoint representation. So,
one first has to understand how to realize the fundamental representation such as a
quark in AdS/CFT. Below, we describe one simple way to add such matter.

To do so, recall how the adjoint representation appeared for the D-brane (Fig. 8.2a).
The open strings can have endpoints on a D-brane, but when there are multiple
number of D-branes, an open string can have endpoints in various ways; there are
N 2

c possibilities. This means that the string transforms as the adjoint representation
of SU (Nc) gauge theory.

Now, consider an infinitely long string (Fig. 8.2b). In this case, the string can
have endpoints in Nc different ways. This means that the string transforms as the
fundamental representation of SU (Nc) gauge theory. In this sense, such a long string
represents a “quark.” Such a string has an extension and tension, so the string has a
large mass, which means that the long string represents a heavy quark. We discuss
the Wilson loop in AdS/CFT using such a string.

We saw earlier that the string model of QCD does not describe potentials other
than the confining potential (Problem 2 of Sect. 5.1). However, one can avoid this
problem in AdS/CFT, and one can get the Coulomb potential which appears at short
distances in QCD. The AdS/CFT result differs from the simple string model one
essentially because of the curved spacetime effect as discussed below. Note that we
avoided Problem 1 of Sect. 5.1 by the same trick.

First, we discuss the simplest case, the pure AdS case, to understand the basic idea
of the AdS/CFT quark potential. In this case, one gets only the Coulomb potential.
We then consider a more generic AdS spacetime and get a confining potential as
well. Also, if we consider a black hole, we can recover behaviors in plasma phase.

Fig. 8.2 a An open string
can have endpoints on a
D-brane. The Nc coincident
D-branes represent a
SU (Nc) gauge theory.
b A long string represents a
massive “quark”

(a) (b)

http://dx.doi.org/10.1007/978-4-431-55441-7_5
http://dx.doi.org/10.1007/978-4-431-55441-7_5
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The pure AdS spacetime The AdS metric in Poincaré coordinates is written as

ds2 =
( r

L

)2
(−dt2 + dx2 + · · · ). (8.16)

The line element has the factor r2. We measure the gauge theory time and distance
using t and x , but they differ from the proper time and distance of the AdS spacetime.
This is the important point, and the qualitative behavior of the quark potential can
be understood using this fact.

Figure 8.3 shows the AdS spacetime schematically. Denote the quark-antiquark
separation as Δx = R. The quark-antiquark pair is represented by a string which
connects the pair. The string has the tension, so the tension tends to minimizes the
string length. At first glance, one would connect the pair by a straight string at r = ∞
(Fig. 8.4). But this does not minimize the string length. This is because the coordinate
distance does not represent a true distance (proper distance) in a curved spacetime.
The figure does not show the proper length properly, so one needs a care. For the
AdS spacetime, the proper length of the string actually gets shorter if the string goes
inside the AdS spacetime (r 	= ∞). The line element has the factor r2, so the proper
length rΔx gets shorter near the origin.

r = 0

r = 

x

r

Fig. 8.3 Schematically drawn AdS spacetime. The horizontal direction represents one of three-
dimensional space the gauge theory lives. The vertical direction represents the AdS radial coordinate.
The radial coordinate extends from r = 0 to r = ∞, but we draw in a compact region for illustration

Fig. 8.4 The straight string is not the lowest energy state (left), and the string which goes inside
the AdS spacetime is the lowest energy state (right)
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Fig. 8.5 The string which
connects the quark pair (left)
is approximated by a
rectangular string. The
energy of the horizontal
string gives the quark
potential

potential part

r = 

r = 0

According to the analysis of Sect. 8.4, this string is roughly divided into two parts:
the part the string extends vertically, and the part the string extends horizontally. So,
for simplicity, let us approximate the configuration by a rectangular string (Fig. 8.5).
Only the horizontal string contributes to the quark potential. This part varies as we
vary the quark separation R. On the other hand, the vertical string does not vary
much. This part simply describes the quark mass.

We need a little more information to compute the potential. The explicit compu-
tation shows that the string turning point r = rm behaves as

rm ∝ L2/R (8.17)

(Fig. 8.6). Also, the line element (8.16) gives two consequences. First, the proper
length of the horizontal string is (r/L)R, so the string energy E(r) is given by

E(r) ∝
( r

L

)
R. (8.18)

Second, this energy is the proper energy and not the gauge theory energy. The timelike
direction also has the factor r2 as in Eq. (8.16). The gauge theory time is the coordinate
time t not the proper time. As a result, the gauge theory energy differs from the proper
energy E(r). From Eq. (8.16), the proper time τr is related to the gauge theory time
by τr = (r/L)t , so the proper energy is related to the gauge theory energy Et by

Et =
( r

L

)
E(r). (8.19)

Fig. 8.6 The behavior of the
string as we vary the quark
separation. The larger R
lowers the string turning
point rm as rm ∝ 1/R

r = 

r = 0
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This is the UV/IR relation in Sect. 6.3 [1, 2]. Thus, the potential is given by

Et =
(rm

L

)
E(r) ∝

(rm

L

)2
R (8.20)

∝ L2

R
, (8.21)

where we also used Eq. (8.17). This result [3, 4] has two important points:

1. First, we obtained the Coulomb potential E ∝ 1/R not the confining potential
E ∝ R. Namely, the string connecting the quark-antiquark pair does not neces-
sarily implies a confining potential, but it can describe an unconfining potential
using the curved spacetime. In this way, we resolved Problem 2 of the string model
in Sect. 5.1. But then, how can we describe the confining potential in AdS/CFT?
We will discuss this point below.

2. Second, the potential is proportional to L2. According to the AdS/CFT dictionary,
L2 ∝ λ1/2, so the potential is proportional to (g2

YM Nc)
1/2. But perturbatively, the

potential is proportional to g2
YM Nc. This is because the AdS/CFT result corre-

sponds to the large-Nc limit and represents a nonperturbative effect.2

Let us evaluate the potential for a generic metric for later use. By repeating the
above argument, the potential energy becomes

Et = √−g00|rm E(r) = 1

2πl2
s

√−g00gxx |rm R, (8.22)

where the metric is evaluated at r = rm . We also included the factor of the string
tension T = 1/(2πl2

s ) which we ignored in Eq. (8.18).

The confining phase AdS/CFT can also describe the confining potential which the
old string model can describe qualitatively well. The pure AdS spacetime corresponds
to theN = 4 SYM not to QCD. TheN = 4 SYM is scale invariant and the confining
phase does not exist even at zero temperature. We need to modify the simple AdS
geometry to describe a theory which is closer to QCD.

Many examples are known about how the AdS spacetime is deformed if one
deforms the N = 4 SYM. But we use a simple model to simplify our analysis here
[7]. The AdS spacetime extends from r = ∞ to r = 0, but in this model, we cut off
the AdS spacetime at r = rc (Fig. 8.7). Let us suppose that the confinement happens
at a low-energy scale Λ. In AdS/CFT, the r -coordinate has the interpretation as the
gauge theory energy scale. So, the confinement means that the AdS spacetime is

2 For the N = 4 SYM at zero temperature, the potential is evaluated nonperturbatively from the
field theory point of view, and it indeed behaves as λ1/2 at strong coupling [5, 6].

http://dx.doi.org/10.1007/978-4-431-55441-7_6
http://dx.doi.org/10.1007/978-4-431-55441-7_5


124 8 AdS/CFT—Adding Probes

Fig. 8.7 In the cutoff AdS
spacetime, the string reaches
the end of the space, r = rc,
when the quark separation is
large enough

r = rc

r = 

Fig. 8.8 The plasma phase
case. The shaded region
represents the black hole

r = r0

r = 

r = 0

modified deep inside the AdS spacetime r ∝ Λ. The cutoff AdS roughly represents
this effect.3

Even though we modify the spacetime, there is little difference if the string is far
enough from the cutoff r = rc. One gets the Coulomb potential like the pure AdS
spacetime. But if the quark separation R is large enough, there is a new effect.

In the AdS spacetime, the turning point of the string behaves as rm ∝ 1/R. But in
the cutoff AdS spacetime, the string reaches at r = rc for a large enough R. Once the
string reaches there, the string cannot go further. Thus, from Eq. (8.22), the energy
of the horizontal string is given by

Et ∝ r2
c R � O(R), (8.23)

which is indeed the confining potential.
After all, what contributes to the potential energy is the string at the cutoff

r = rc, so the AdS/CFT computation essentially reduces to the old string model
one. AdS/CFT takes the advantage of the old string model and at the same time
overcomes the difficulty of the model.

The plasma phase We now consider the finite temperature case or the plasma
phase. According to AdS/CFT, the N = 4 SYM at finite temperature corresponds
to the AdS black hole (Fig. 8.8).

At finite temperature, there is a black hole horizon at r = r0. But if the string is far
enough from the black hole, the geometry is approximately the AdS spacetime, so
one approximately has the Coulomb potential. But if the string reaches the horizon,
there is a new effect.

3 The cutoff AdS is a toy model for the confinement, but we discuss an explicit example in Appendix.



8.2 Wilson Loops in AdS/CFT: Intuitive Approach 125

For a black hole, the line element in the timelike direction has the unique behavior,
and the relation (8.19) between E(r) and Et is modified. For the Schwarzschild-AdS5
(SAdS5) black hole, the line element is given by

ds2 = −
( r

L

)2
{

1 −
(r0

r

)4
}

dt2 + · · · , (8.24)

so g00 = 0 at the horizon r = r0. Thus, Eq. (8.22) gives

Et = 0. (8.25)

Namely, the horizontal string has no contribution to the energy. Thus, there is no
force when the quark separation is large enough. This is the Debye screening in
AdS/CFT [8–10].

Return of Wilson loops The Wilson loop argument here was proposed in less
than two weeks after the systematic AdS/CFT researches started in 1998. Various
extensions were made within a month. But people started to come back to such simple
analysis since 2006.

What changed the situation? In the past, such a computation was made to find
circumstantial evidences of AdS/CFT. Namely, one would like to check whether
AdS/CFT correctly reproduces the behavior of gauge theories or not. People do not
really have real applications in mind. This is understandable since supersymmetric
gauge theories are different from QCD, so probably one was reluctant to apply them
to the “real world.” But in recent years, people revisits such analysis and compute
various effects by taking into account the real experimental situations.

As discussed in Sect. 4.1.2, the perturbative QCD is not very effective even in the
plasma phase. Thus, heavy-ion physicists try to identify the typical “fingerprints” of
QGP. Some of the fingerprints discussed to date are

1. Small shear viscosity (Chaps. 4 and 12)
2. Jet quenching
3. J/Ψ -suppression

In the parton hard-scattering, jets are often formed. A jet is a collection of hadrons
which travel roughly in the same direction. If jets are formed in the plasma medium,
the energy of the jets are absorbed by the medium, so the number of observed hadrons
are suppressed. This is the jet quenching (Fig. 8.9).

Another fingerprint is the J/Ψ -suppression [11]. J/Ψ is a “charmonium” which
consists of cc̄. Since a charm quark is heavy (≈4.2 GeV), the charm pair production
occurs only at the early stage of heavy-ion collisions. Now, if the production occurs
in the plasma medium, the interaction between cc̄ is screened by the light quarks and
gluons in between, which is the Debye screening. Then, the charm quark is more
likely to bind with the plasma constituents rather than the charm antiquark. The result
is the suppression of J/Ψ production.

These phenomena have been discussed in AdS/CFT. For example, consider the
jet quenching [12–17]. So far, we considered the static quark to obtain the potential.

http://dx.doi.org/10.1007/978-4-431-55441-7_4
http://dx.doi.org/10.1007/978-4-431-55441-7_4
http://dx.doi.org/10.1007/978-4-431-55441-7_12
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Fig. 8.9 Left The collision
of nuclei in vacuum. Right
Jet quenching in the plasma.
The ellipsoid represents the
plasma

?

Jets

Fig. 8.10 Jet quenching in
AdS/CFT

v

energy

r = 

r = r0

r = 0

But in this case, one is interested in how the quark loses its energy. So, move the
quark (string) with velocity v along the x-direction. Then, the string is dragged as in
Fig. 8.10. The string is dragged because the energy of the string flows towards the
horizon. This energy loss is interpreted as the energy loss of the quark in the plasma
medium.

8.3 String Action

In order to confirm the intuitive explanation in the last section, let us first consider the
string action. The string action is obtained using the similar argument as the particle
action in Sect. 2.1. A particle draws a world-line in spacetime. Similarly, a string
sweeps a two-dimensional surface, a world-sheet, in spacetime (Fig. 8.11). We write
the particle action by the proper length of the world-line. Similarly, it is natural to
write the string action by the area A of the world-sheet:

S = −T
∫

d A. (8.26)

The parameter T has the dimensions [T] = L−2, which makes the action dimen-
sionless. Physically, it represents the string tension. It is convenient to introduce a

http://dx.doi.org/10.1007/978-4-431-55441-7_2
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Fig. 8.11 A string sweeps a
world-sheet in spacetime

0

1

x0

x1

parameter ls with the dimension of length and to write the tension as

T = 1

2πl2
s
. (8.27)

The parameter ls represents the characteristic length scale of the string (string length).
Just as the particle action, introduce coordinates σ a = (σ 0, σ 1) on the world-

sheet. Then, the world-sheet is described by x M (σ a). Using the world-sheet coordi-
nates σ a , the spacetime metric is written as

ds2 = ηMN dx M dx N = ηMN
∂x M

∂σ a

∂x N

∂σ b
dσ adσ b (8.28)

=: hab dσ adσ b, (8.29)

where hab is known as the induced metric. What we are doing here is essentially
the same as the embedding of a hypersurface into a higher-dimensional spacetime in
Chap. 6. For example, embed S2 into R

3:

ds2 = d X2 + dY 2 + d Z2 = dθ2 + sin2 θ dϕ2 (8.30)

In this case, we take S2 coordinates as σ a = (θ, ϕ), and the induced metric is given
by

hab =
(

1 0
0 sin2 θ

)

. (8.31)

Using the world-sheet coordinates, one can write the area element as

d A = d2σ
√−det hab. (8.32)

http://dx.doi.org/10.1007/978-4-431-55441-7_6
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For S2, d A = sin θ dθ dϕ, which is the familiar area element for S2. The coordinates
σ a are just parameterizations on the world-sheet, so the area element is invariant
under

σ a′ = σ a′
(σ b). (8.33)

The situation is similar to general relativity. In general relativity, one writes the
volume element as dd x

√−g, and the volume element is invariant under coordinate
transformations. The only difference is whether one considers a spacetime or a world-
sheet. In general relativity, one considers the volume element in spacetime and the
coordinate transformation in spacetime, whereas Eq. (8.32) is the area element on
the world-sheet and Eq. (8.33) is the coordinate transformation on the world-sheet.

Using Eq. (8.32), one gets the Nambu-Goto action:

SNG = −T
∫

d2σ
√− det hab. (8.34)

From Eq. (8.28), the induced metric is written as

hab =
(

ẋ · ẋ ẋ · x ′
ẋ · x ′ x ′ · x ′

)
(˙ := ∂σ 0 , ′ := ∂σ 1

)
. (8.35)

Just as in Eq. (8.31), this is a matrix on (a, b) indices. Using this, we can write the
Nambu-Goto action as

SNG = −T
∫

d2σ
√

(ẋ · x ′)2 − ẋ2x ′2. (8.36)

One can consider a few extensions of the action:

1. Here, we used the Minkowski spacetime as the ambient spacetime. But one can
get the curved spacetime case by replacing ηM N by gM N (x) like the particle
action case in Sect. 2.1.

2. A brane action is obtained similarly. For the Dp-brane, with the (p + 1)-
dimensional induced metric hab, one writes the action as4

SDp = −Tp

∫
d p+1σ e−φ

√−det hab . (8.37)

Such a brane can be added as a probe just like the string.

4 Note the factor of the dilation e−φ . The dilaton φ and the string coupling constant gs are related
by gs � eφ , so this factor means that the mass density of the D-brane is proportional to 1/gs
[Eq. (5.58)].

http://dx.doi.org/10.1007/978-4-431-55441-7_2
http://dx.doi.org/10.1007/978-4-431-55441-7_5
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8.4 Wilson Loops in AdS/CFT: Actual Computation

In this section, we confirm our intuitive explanation in Sect. 8.2 by an actual compu-
tation. As an example, we compute the Wilson loop in the pure AdS5 spacetime.

The quark potential is given by the energy of the string in AdS/CFT. So, the start-
ing point is the Nambu-Goto action (8.34). The action has the reparameterization
invariance on the world-sheet, so we can choose convenient world-sheet coordi-
nates by coordinate transformations (gauge fixing). Here, we take the static gauge5

(Fig. 8.12):
σ 0 = t, σ 1 = r, x = x(r). (8.38)

The induced metric on the AdS5 spacetime is given by

ds2
5 =

( r

L

)2
(−dt2 + dx2

3) + L2 dr2

r2 (8.39)

= −
( r

L

)2
dt2 +

{(
L

r

)2

+
( r

L

)2
x ′2

}

dr2 (′: = ∂r
)
, (8.40)

so the determinant of the induced metric becomes

−det hab = 1 +
( r

L

)4
x ′2. (8.41)

Then, the action is given by

S = − 1

2πl2
s

∫
d2σ

√−det hab = − T

2πl2
s

∫
dr

√

1 +
( r

L

)4
x ′2, (8.42)

where T is the time duration in t . The Lagrangian does not contain x , so there is a
conserved momentum px which is conjugate to x :

px = ∂L

∂x ′ ∝
( r

L

)4
x ′

√
1 + ( r

L

)4
x ′2

= (constant). (8.43)

Let us determine the constant. The string has the turning point at r = rm . At the
turning point, ∂r x |r=rm = ∞, so the constant is given by

5 The string has the turning point at r = rm , so our gauge is not well-defined in reality. But this is
no problem because it is enough to consider only the half of the string by symmetry. One normally
takes the gauge σ 0 = t , σ 1 = x , and r = r(x) instead of Eq. (8.38). The computation is slightly
easier in our gauge.
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Fig. 8.12 The configuration
to compute the Wilson loop

(constant) =
( r

L

)4
x ′

√
1 + ( r

L

)4
x ′2

∣
∣
∣
∣
∣
∣
r=rm

=
(rm

L

)2
. (8.44)

Solving Eq. (8.43) in terms of x ′, one gets

x ′2 =
(

L

r

)4 1
(

r
rm

)4 − 1
. (8.45)

One can determine the string configuration x(r) by solving Eq. (8.45). We take
x = 0 at r = rm , so x(r) is given by the integral

∫ x

0
dx =

∫ r

rm

(
L

r

)2 dr
√(

r
rm

)4 − 1

. (8.46)

In particular, x = R/2 at r → ∞, so Eq. (8.46) gives

R

2
= L2

rm

∫ ∞

1

dy

y2
√

y4 − 1
(y := r/rm) (8.47)

= L2

rm

√
2π3/2

Γ ( 1
4 )2

. (8.48)

From Eq. (8.48),

rm � L2

R
, (8.49)

which justifies Eq. (8.17). Also, when r � rm , Eq. (8.46) gives

R

2
− x = L2

rm

∫ ∞

r/rm

dy

y2
√

y4 − 1
� r−3. (8.50)
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The string quickly approaches x = R/2 for large r , which confirms the Fig. 8.5
behavior.

We determined the string configuration. We now evaluate the action (8.42) to
compute the quark potential. Substituting Eq. (8.45) into Eq. (8.42), one gets

S = − T

2πl2
s

∫ ∞

rm

dr

(
r

rm

)2

√(
r

rm

)4 − 1

. (8.51)

Then, the potential energy is given by

E = −2S
T

= 2

2πl2
s

rm

∫ ∞

1

y2dy
√

y4 − 1
. (8.52)

The integral actually diverges, but this reflects the fact that the quark is infinitely
heavy. We must subtract the quark mass contribution.6 The isolated string configu-
ration is given by x ′ = 0. By substituting x ′ = 0 into Eq. (8.42), one obtains the
quark mass contribution:

S0 = − T

2πl2
s

∫ ∞

0
dr, (8.53)

E0 = 2

2πl2
s

∫ ∞

0
dr. (8.54)

Thus,

E − E0 = 2

2πl2
s

rm

{∫ ∞

1

(
y2

√
y4 − 1

− 1

)

dy − 1

}

. (8.55)

The expression is proportional to rm , but rm � L2/R from Eq. (8.49), so we get the
Coulomb potential E � 1/R. The evaluation of the integral in Eq. (8.55) gives

E − E0 = − 4π2

Γ ( 1
4 )4

λ1/2

R
, (8.56)

which agrees with our intuitive explanation (8.21).

6 See Ref. [18] for a more appropriate procedure.
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8.5 Summary

• Adding probes to the original system is a simple but useful way to explore the
system further.

• As an example, we add Wilson loops to various asymptotically AdS spacetimes.
The Wilson loop is an important nonlocal observable in a gauge theory, and it
represents the quark-antiquark potential.

• In AdS/CFT, the Wilson loop corresponds to adding an infinitely long string
extending from the AdS boundary.

• In the pure AdS spacetime, the holographic Wilson loop gives the Coulomb poten-
tial which is a curved spacetime effect. The potential is proportional to (g2

YM Nc)
1/2

which represents a strong coupling effect.
• If one changes background geometries, one gets various quark potentials such as

the confining potential and the Debye screening. Also, if one considers dynamical
strings, one can discuss dynamical problems such as the jet quenching in the
plasma phase.

New keywords

Wilson loop induced metric
cutoff AdS spacetime Nambu-Goto action
jet quenching static gauge
J/Ψ -suppression [AdS soliton]

Appendix: A Simple Example of the Confining Phase

In the text, we discussed the cutoff AdS spacetime as a toy model of the confining
phase. Here, as an explicit example, we discuss the S1-compactified N = 4 SYM
and its dual geometry.

AdS soliton The SAdS5 black hole is given by

ds2
5 =

( r

L

)2 (−hdt2 + dx2 + dy2 + dz2) + L2 dr2

hr2 , (8.57)

h = 1 −
(r0

r

)4
. (8.58)

We now compactify the z-direction as 0 ≤ z < l.
However, the compactified SAdS5 black hole is not the only solution whose

asymptotic geometry is R1,2 × S1. The “double Wick rotation”

z′ = i t, z = i t ′ (8.59)
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of the black hole gives the metric

ds2
5 =

( r

L

)2 (−dt ′2 + dx2 + dy2 + hdz′2) + L2 dr2

hr2 , (8.60)

which has the same asymptotic structure R
1,2 × S1. The geometry (8.60) is known

as the AdS soliton [19].
As Euclidean geometries, they are the same, but they have different Lorentzian

interpretations. The AdS soliton is not a black hole. Rather, because of the factor h
in front of dz′2, the spacetime ends at r = r0 just like the Euclidean black hole. From
the discussion in the text, this geometry describes a confining phase.

For the SAdS black hole, the imaginary time direction has the periodicity β =
π L2/r0 to avoid a conical singularity. Similarly, for the AdS soliton, z′ has the
periodicity l given by

l = π L2

r0
. (8.61)

Wilson loop Let us consider the quark potential in this geometry. Take the quark
separation as R in the x-direction. This corresponds to a Wilson loop on the t ′ − x
plane. Since the geometry ends at r = r0, the formula (8.22) gives

Et ∝ √−gt ′t ′ gxx |r0 R =
(r0

L

)2
R, (8.62)

which is a confining potential.
In Sect. 8.2, we considered the Wilson loop in the SAdS black hole and discussed

the Debye screening. Here, we consider a Wilson loop in the same Euclidean geom-
etry, but the Wilson loop here is different from the one in Sect. 8.2:

• For the AdS soliton, we consider the Wilson loop on the t ′-x plane (temporal
Wilson loop), but as the black hole, this is a Wilson loop on the z-x plane or a
spatial Wilson loop.

• For the black hole, we considered the temporal Wilson loop on the t-x plane, but
as the AdS soliton, this is a spatial Wilson loop on the z′-x plane.

At high temperature T l > 1, the AdS soliton undergoes a first-order phase tran-
sition to the SAdS black hole (Sect. 14.2.1).
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