
A Negotiation Method for Task Allocation
with Time Constraints in Open Grid
Environments

Yan Kong, Minjie Zhang, Dayong Ye and Xudong Luo

1 Introduction

In recent years, more and more attention has been paid to task allocation both in
research [17, 21] and applications [4, 18]. Generally speaking, task allocations are
carried out mainly in two circumstances: (i) agents are cooperative, and (ii) agents
are noncooperative (also known as market-based), and this paper addresses the task
allocation in noncooperative grid environment. In a cooperative circumstance, agents
work cooperatively to finish tasks trying tominimize the team’s cost (ormaximize the
team’s profit). In a market-based circumstance, some agents provide their resources
to others for earning profits, while some agents consume others’ resources to execute
their tasks. The agents that provide resources are called providers or sellers, while
the agents who consume others’ resources are called consumers or buyers. Both
providers and consumers always try to maximize their own profits while overlook
others’ profits. The most initial market-based task allocation is from Amazon that
attempts to make profit(s) through renting its resources,1,2 and a variety of both
system [11, 13] and market [3, 16] structures for task allocation have been explored
recently.

Some approaches have been developed for market-based task allocation [6, 8].
In the early research of market-based task allocation, auction method, such as

Y. Kong (B) · M. Zhang · D. Ye
School of Computer Science and Software Engineering, University of Wollongong,
Wollongong 2522, Australia
e-mail: yk573@uowmail.edu.au

X. Luo
Institute of Logic and Cognition, Sun Yat-sen University,
Guangzhou 510275, Guangdong, China

1 http://aws.amazon.com/ec2/.
2 http://aws.amazon.com/ebs/.

© Springer Japan 2015
K. Fujita et al. (eds.), Next Frontier in Agent-Based Complex Automated
Negotiation, Studies in Computational Intelligence 596,
DOI 10.1007/978-4-431-55525-4_2

19

http://aws.amazon.com/ec2/
http://aws.amazon.com/ebs/


20 Y. Kong et al.

the Vickrey-Clarke-Groves auction [5], was introduced, in which all the resource
consumers submit their needed resource information and bids to an auctioneer. How-
ever, auction suffers from the single point of failure problem. If the single point of
failure happens, the entire system will stop working. Hence, it is undesirable in any
system with a goal of high availability or reliability, for example, business practices,
software applications, or other industrial systems [9]. Moreover it is also difficult to
choose an agent that runs the auction and will be trusted by other agents due to the
selfishness of agents [2].

To address the issue, many researchers tried to introduce negotiation-based meth-
ods to solve task allocation problems. For example, Jennings et al. introduced the
prospects and challenges of negotiation in task allocation in [14]. Fatima et al. intro-
duced negotiation-based method when allocate tasks and resources in [10]. Gatti
et al. [12] proposed a negotiation-based method for task allocation with uncertain
negotiation deadlines. Later on, An et al. [1] proposed another negotiation-based
method that dealt with both the deadline and reserve price. In [2], An et al. further
considered resource competition, deadline, reserve price and cost for negotiation.

With the development of grid systems and applications in broad domains and the
nature of Internet, most grid environments have become open and dynamic, in which
grid consumers and providers can enter and leave at any time. The problem of task
allocation in such a grid environment is how to assign a set of resources to a set of
tasks in the circumstances that both resources and tasks may change unpredictably
as time progresses [17].

To address the challenge of dynamics and openness of grid environments, this
paper presents a negotiation-based task allocation method. Due to the dynamics and
openness, it is hard to apply a central controller. Hence, in this method, there is no
central controller. Each agent only has a local view and consumers find potential
resources through peep-to-peer (p2p) neighborhood relationships. The resources in
our method include loosely coupled resources in grids, such as the grid computing,
the computer storage, or even some virtual resources, for example, the electric data
library of some university. The resources can be used for only one task at a moment,
and it can be used to another task as soon as it is released from the current task. Each
agent can contain multiple types of resources in our method. Because a p2p net-
work is decentralized in nature, the proposed method can meet the decentralization
requirement in general grid environments. After finding the potential resources, con-
sumers begin to negotiate with the resource providers. Because of the dynamics and
openness of the environment, it is difficult for agents to decide the optimal contract
prices, so that agents are allowed to negotiate with more than one opponents, and
thus the decommitment and penalty are necessary and considered for negotiation.

We evaluate our method through comparing it with the two other methods of task
allocation (i.e., the method proposed in [2] and the method proposed in [7]). The
experimental results show that our method outperforms the two state-of-art methods
in terms of success rate of task allocation and the total profit agents gained in the
grid environment in some specific circumstances.

The rest of this paper is organized as follows. Section2 describes the problems
and introduces the procedure of our task allocation method. Section3 presents the



A Negotiation Method for Task Allocation with Time Constraints … 21

negotiationmethod. Section4presents the experimental results and analysis. Section5
discusses the related work. Finally, Sect. 6 concludes the paper and points out the
future work.

2 Problem Description and the Procedure of the Task
Allocation

The problem that this paper will solve is how to allocate tasks under time constraints
in dynamic, open grid environments. A task in this paper is specified by required
resources, the generation time, the deadline (i.e., the latest start time) of the task,
and the maximum reward that the task’s owner can gain when the task is allocated
successfully (we assume that a task will be completed as long as it is allocated
successfully). Formally, a task can be defined as follows:

Definition 1 A task, denoted as τk , is 5-tuple (Rk , tg , tls , r , td ), where Rk is the
resource set required by τk , i.e., all the resources required by τk , tg is the generation
time of τk , tls is the deadline (i.e., the latest start time) of τk , r represents themaximum
reward that τk’s owner can gain after τk is completed successfully, and td is the
duration time of τk , i.e., the time needed to complete τk .

Each node in the grid environment is an agent, and each agent has its own unique
ID, resource set, and neighborhood. When an agent needs other agents’ resources
to execute its own tasks, it is called a consumer; when an agent provides its own
resources to other agents, it is called a provider. An agent can be either a consumer
or a provider or even both. Formally, we have:

Definition 2 Agent ai is 3-tuple (IDi , Ri , Seti ), where IDi (a non-negative integer)
is the unique identifier of ai , Ri is the resource set that ai owns, i.e., all the resources
owned by ai , and Seti = {ai1, . . . , aik} is ai ’s neighbor set where k (a positive
integer) is the number of a j ’s neighbors.

The communication between any two agents is through passing messages. In
general, messages can be classified into the following five types. (i) Request message
for building up neighborhood (ReqNeighbor): When agent ai enters into the grid
environment, in order to build up its neighborhood, it sends ReqNeighbor to the
randomly chosen agents. (ii) Reply message for accepting RepNeighbor: If agent a j

receives a request message, ReqNeighbor, from agent ai , a j will accept the request
by sending back a reply message, RepNeighbor, to ai . (iii) Request message for
executing tasks (ReqExecute):When agentai needs other agents’ resources to execute
its tasks, it sends request messages (ReqExecute) to all of its neighbors. (iv) Reply
message for executing tasks (RepExecute): When agent a j receives a ReqExecute
message from agent ai , a j checks whether or not its own resources can meet the
task’s resource requirements. If so, a j will send a reply message, RepExecute, back
to ai . (v) Heart beat message, which is used by agents to keep neighborhoods. These
five types of messages can be formally defined as follows:



22 Y. Kong et al.

Definition 3 A request message sent from agent ai to agent a j for building up
neighborhood is 2-tuple (ReqNeighborij, IDi ), where ReqNeighborij represents the
message is sent from agent ai to request building up neighborhood with a j , and IDi

is the ID of agent ai .
When agent a j receives a requestmessage (ReqNeighborij , IDi ) from ai , it replies

ai with a reply message defined as follows:

Definition 4 Areplymessage sent froma j toai to reply themessage (Reqneighborij,

IDi ) is 2-tuple (RepNeighborji, ID j ), where RepNeighborji represents that the mes-
sage is sent by agent a j to reply the request message sent from ai and ID j is the ID
of agent a j .

Due to the dynamics and openness of grid environment, in our method, there is
no central controller. The agents judge whether their neighbors are still active in the
environment through heart beat messages which will be defined by:

Definition 5 A heart beat message sent from ai to a j is 3-tuple (HeartBeatij,

IDi , ID j ), where IDi and ID j are the ID numbers of ai and a j , respectively.
In particular, an agent keeps sending heart beat messages to its neighbors once

each time period. If an agent does not receive any heart beat message from a neighbor
in the past one time period, it assumes that the neighbor has left the grid environment.

The above are the definitions of the messages for neighborhoods, while the fol-
lowing definitions are the messages for executing tasks.

Definition 6 A request message sent from ai to a j for executing ai ’s task is 4-tuple
(ReqExecuteij, IDi , τk, HL), where ReqExecuteij represents that the message is sent
from agent ai to request a j to execute task τk of ai . HL ≥ 1 is a hop limitation,
which prevents the request message from being transmitted endlessly.

Definition 7 A reply message sent from a j to ai for (ReqExecuteij, IDi , τk, HL) is
4-tuple (RepExecuteji, ID j , ts, τk), where RepExecuteji represents that the message
is sent from a j to ai to reply the message (ReqExecuteij, IDi , τk, HL) from ai , ts is
the start time for a j to execute τk and ts has to meet the condition that ts ≤ tls, where
tls is the deadline of the task.

We assume that a new task, say τk , is generated by agent ai now and a j is one of
ai ’s neighbors. ai sends a request message (ReqExecuteij, IDi , τk, HL) to a j . After
receiving the request message, a j will check whether its own resource set R j can
meet the resource requirement of τk or not. If R j ⊇ Rk (Rk is the requested resource
set by τk , see Definition1), a j will send a reply message (RepExecuteji, ID j , ts, τk)

back to ai . Otherwise, a j will check whether HL = 0. If HL = 0, a j will give up this
request message, while if HL ≥ 1, HL will be subtracted by 1 and then the request
message, (ReqExecuteim, IDi , τk, HL − 1), will be transmitted by a j to all of a j ’s
neighbors, and m is the ID number of the message’s destination agent. Each time the
request message is transmitted, HL will be subtracted by 1. The transmitting process
will be terminated once the value of HL becomes 0 or the receiver’s resource set can
meet the resources requested by τk .



A Negotiation Method for Task Allocation with Time Constraints … 23

If ai receives a reply message (RepExecuteji, ID j , ts, τk) for executing task from
a j , ai will begin to negotiate with a j . The negotiation method will be specifically
described in Sect. 3.When the negotiation succeeds, it is possible that both the parties
will sign a contract (we will discuss this in Sect. 3.1), which is an agreement between
ai and a j for executing τk .

Definition 8 A contract between ai and a j is 6-tuple conij(τk, prcon, ts, tcon, proi ,

pro j ), where prcon is the price that ai should pay to a j , ts is the start time for a j to
execute τk , tcon is the time that the contract is signed, and proi , pro j are the profits
ai and a j gain from this contract, respectively.

In our method, any agent can negotiate with more than one opponents because
in dynamic and open environment, it is hard for an agent to make a decision to get
an optimal price. Hence, decommitment is necessary but should only be allowed
before the task has started to be executed. The agent that initially decommits from
the contract has to pay a penalty to the other party of the contract. Furthermore, the
later the decommitment, the higher the penalty will be because of the pressure of the
deadline of the task.

Definition 9 The penalty that agent ai pays to a j if ai decommits from the contract
conij (τk, prcon, ts, tcon, proi , pro j ) is calculated by:

pelij = t − tcon

ts − tcon
pro j (1)

where t is the time of the decommitment, and tcon ≤ t ≤ ts .
Because the role of an agent can be either a consumer or a provider or even both,

the profit of an agent is defined as follows:

Definition 10 The profit agent ai gains totally is:

proi =
m∑

i=1

(ri − pi ) +
n∑

l=1

(pl − cl(R)) +
k∑

j=1

pel j (2)

where m is the number of successfully allocated tasks of ai , ri is the reward ai gains
from task τi and and pi is the price ai pays to the executor of τi ; n is the number of
tasks that are successfully allocated to agent ai , pl and cl(R) are the price that the
owner of τl pays to ai for executing τl and the cost that ai spends to execute τl ; and
k is the number of agents that pay penalties to ai and ai pays penalties to. When ai

pays penalty to a j , pel j is a negative number; while if a j pays penalty to ai , pel j is
a positive number.

Based on the definitions given above, the procedure of task allocation of our
method include three main steps.

Step 1: Building up neighborhoods of newly arrived agents.
When an agent, say ai , enters into the grid environment newly, it selects several

agents from the grid randomly and sends request messages for building up neighbor-
hood (see Definition 3) to the selected agents. After receiving the request message for



24 Y. Kong et al.

building up neighborhood, the message receiver, say a j , sends back a reply message
for building up neighborhood (see Definition 4) to ai . Then ai and a j become neigh-
bors and keep sending heart beat messages (see Definition 5) to each other, until one
or both of them leave off the grid environment.

Step 2: Finding potential resources for consumers.
When a new task, say τi , is generated, the owner agent of τi , say ai , sends request

messages for executing task (see Definition 6) to all of its neighbors. We assume
that a j is one of the agents that receive the message. After receiving the request
message, a j checks whether its own resources can meet the resource requirement
of τi . If so, a j sends back a reply message (see Definition 7) to ai . Otherwise, a j

transmits the request message to all of a j ’s neighbors.
Step 3: Negotiation.
After ai receives a reply message for executing task τi from a j , ai and a j begin to

negotiate with each other. The negotiation method will be specifically described and
formulated in Sect. 3.

3 Negotiation Method

This section presents our negotiation method for task allocation specifically. The
proposed negotiation-based task allocation method using local information (NTAL
for short) extends the alternating offers protocols in [2, 19].

3.1 Offer Generation and Sign Contract

When a consumer c calculates its offer price opc(t, ts) at time t , based on the start time
ts provided by the provider, the following factors will be taken into consideration.

(i) The start time ts . With the pressure of the start time, that is, with the eager-
ness of the consumer getting heavier and heavier, the consumer will give more
concessions. Hence, the nearer ts is, the higher opc(t, ts) is. Especially when
t = tg , opc(t, ts) should be the lowest and its value should be c(R). However,
this is an ideal situation that hardly happens because tg is the generation time
of the task.

(ii) The number of replymessages for executing task the consumer has received, i.e.,
reptc. Taking the number of reptc into consideration is in order to consider the
specific situations. The fewer reply messages for executing task (RepExecute)
the consumer has totally received, the higher opc(t, ts) will be. If a resource
consumer ai calculates its offer price to the provider a j , that represents that ai

has received at least one reply message RepExecute, i.e., the RepExecute sent
from a j , thus, the minimum value of reptc is 1, once opc(t, ts) is calculated.
When the value of reptc is 1 and the time t = tst , the offer price opc(t, ts) is



A Negotiation Method for Task Allocation with Time Constraints … 25

the highest and its value is the reserve price of the provider rpc(ts). In order to
meet this situation, we use lg2 in the following Eq. (3).

(iii) Reward that the consumer gains: r(ts) is the reward that the consumer will gain
if its task can start to be executed at time ts .

(iv) The according reserve price based on the start time ts . rpc(ts), i.e., the reserve
price of the consumer during the negotiation and rpc(ts) = r(ts). The offer
price opc(t, ts) is closely related with rpc(ts), the higher the rpc(ts), the higher
opc(t, ts), and the maximum value of opc(t, ts) is rpc(ts).

According to the above justification, opc(t, ts) can be calculated as follows:

opc(t, ts) = c(R) + (rpc(ts) − c(R))
t − tg

(ts − tg)lg2(reptc + 1)
(3)

where tg ≤ t ≤ ts .
When a provider calculates the counter offer price opp(t, ts) at time t , the provider

will consider the following factors:

(i) The start time ts . With the pressure of the start time ts , the provider will also
give more concessions. Thus, the nearer ts is, the lower opp(t, ts) is.

(ii) The number of request messages for executing task (ReqExecute) that the
provider has received. The more request messages (ReqExecute) the provider
has received, the higher opp(t, ts) is. If a resource provider a j calculates its
counter offer price to a consumer ai , that represents that a j has received at least
one request message ReqExecute, i.e., the ReqExecute sent from ai , thus, the
minimum value of reptp is 1, once opp(t, ts) is calculated. When the value of
reqtp is 1 and the time t = tg (t = tg is an ideal situation that hardly happens),
the counter offer price opp(t, ts) is the highest. In order to meet this situation,
we use lg2 in the following Eq. (4).

(iii) The cost of the provider’s resource to execute the consumer’s task. The higher
the cost of resources c(R) is, the higher opp(t, ts) is.

Accordingly, opp(t, ts) is formulated as follows:

opp(t, ts) = c(R)

(
1 + ts − t

ts − tg
lg2(reqtp + 1)

)
(4)

where tg ≤ t ≤ ts .
From Eq. (4), we can see that when t = tg , opp(t, ts) is the highest and the value

is c(R)(1 + lg2(reqtp + 1)). However, this is an ideal situation that hardly happens
because tg is the generation time of the task. When t = ts , the value of opp(t, ts) is
the lowest and opp(t, ts) = c(R).

The negotiationwill terminatewhen at least one of the following situations occurs:
(i) the task of agent ai starts to be executed by another provider; (ii) the negotiation
opponent terminates the negotiation; (iii) the negotiation succeeds; and (iv) the dead-
line of the task arrives.



26 Y. Kong et al.

We assume that ai and a j are the both parties of a negotiation, and the current total
profits of ai and a j are proi and pro j , respectively. When the negotiation succeeds,
the total profits of ai and a j will become pro′

i and pro′
j , respectively, if ai and a j

will sign a contract. The condition that ai and a j will sign a contract is: pro′
i > proi

and pro′
j > pro j .

The negotiation strategies of consumers and providers are detailed in Algorithms
1 and 2, respectively. In the both algorithms, we assume that ai is the consumer
and a j is the provider. Let proi and pro j are the current total profits of ai and a j ,
respectively.When the negotiation succeeds, if ai and a j can sign a contract, the total
profits of ai and a j are pro′

i and pro′
j , respectively. Hence, if ai and a j will sign a

contract, pro′
i −proi is the profit that ai will gain from this contract, and pro′

j −pro j
is the profit that a j will gain from this contract. t is the synchronization time.

Algorithm 1: Consumer’s strategy
After receiving a reply message (RepExecuteji,

ID j , ts , τk ) from a j , ai calculates opi (t, ts) by
Eq. (3) and sends opi (t, ts) to a j ;
1 While t < ts and the task has not started to be
2 executed by any other agent (because any agent
3 is allowed to negotiate with more than one
4 opponents, it is possible that ai has signed a
5 contract for τk with another provider, and there
6 is a start time in that contract) do
7 if ai receives op j (t, ts) from a j then
8 ai calculates opi (t, ts) by Eq. (3);
9 if op j (t, ts) ≤ opi (t, ts) then
10 negotiation succeeds; break;
11 else
12 ai calculates opi (t, ts) based on the
13 synchronization time again by
14 Eq. (3) and sends opi (t, ts) to a j ;
15 end
16end while
17 if negotiation succeeds then
18 ai calculates pro′

i by Eq. (2);
19 if pro′

i > proi and a j is also willing to
20 sign a contract then
21 ai and a j sign a contract
22 conij(τk , prcon, ts , tcon, pro′

i − proi , pro′
j − pro j )

23 end if

In Algorithm 1, when t < ts , and the task does not start to be executed by any
other provider (lines 1–6), if the consumer ai receives the counter offer, op j (t, ts),
from a j (line 7), it calculates the maximum value of opi (t, ts) that ai can accept
at that moment (line 8). If ai will accept the counter offer price of a j (line 9), the
negotiation succeeds (line 10), then both ai and a j calculate their new profits if they
will sign a contract, i.e., pro′

i and pro′
j respectively (line 18). If pro′

i − proi > 0 and
pro′

j − pro j > 0, ai and a j will sign a contract (lines 19–22). Otherwise, ai will



A Negotiation Method for Task Allocation with Time Constraints … 27

calculate the new offer price opi (t, ts) in the new round of the negotiation, and sends
the offer price to a j (lines 12–14).

Algorithm 2: Provider’s strategy
1 While t < ts and the task has not started to be
2 executed by any other agent do
3 if a j receives opi (t, ts) from ai , then
4 a j calculates op j (t, ts) by Eq. (4);
5 if opi (t, ts) ≥ op j (t, ts) then
6 negotiation succeeds; break;
7 else
8 a j calculates op j (t, ts) based on the
9 synchronization time again by
10 Eq. (4) and sends op j (t, ts) to ai ,
11 after receiving the new offer price from ai ;
12 end
13 end while
14 if negotiation succeeds then
15 ai calculates pro′

j by Eq. (2);
16 if pro′

j > pro j and ai is also willing to sign
17 a contract then
18 ai and a j sign a contract
19 conij(τk , prcon, ts , tcon, pro′

i − proi , pro′
j − pro j );

20 end if

In Algorithm 2, when t < ts , and the task does not start to be executed by any
other provider (lines 1–6), if the provider a j receives the offer price, opi (t, ts), from
ai (line 3), it calculates theminimum price op j (t, ts) that it can accept at that moment
(line 4). If it will accept the offer price of ai (line 5), the negotiation succeeds (line
6), then both ai and a j calculate their new profits if they will sign a contract, i.e.,
pro′

i and pro′
j , respectively (line 15). If pro′

i − proi > 0 and pro′
j − pro j > 0, ai and

a j will sign a contract (lines 16–19). Otherwise, a j will calculate the new minimum
counter offer price op j (t, ts) after receiving the offer price from ai in the next round
of the negotiation, and will send the new counter offer price to ai (lines 8–11).

4 Experiment

In this section, we evaluate the performance of our method.
An et al. proposed aNegotiation-based TaskAllocationmethod (NTA for short) in

[2] for task allocation. TheNTA assumes that each consumer knows all the providers’
information, i.e., each consumer has a global view. Besides, only consumers are
allowed to enter into or leave off the environments freely, but providers are not. A
provider and a consumer negotiate with each other under the pressure of the deadline
of a task.

In addition to the NTA, we also compare our method with the Distributed Greedy
Task Allocation (DGA) method [7]. In DGA, the tasks are distributed, nodes are



28 Y. Kong et al.

connected as a social network (i.e., each node has only a local view and can only com-
municate with its limited neighbors), and only consumers can enter into or leave off
the environments freely. This method assumes that each resource provider can accept
the coming tasks of its neighbors as long as it can meet the resource requirements of
the tasks, but can select only one task one time according to the ratio values of the
tasks (the ratio value is the value of the task’s reward divided by the resource quantity
requested by the task). A task is considered to be successfully allocated only when
it is selected by the provider. The purpose of comparing our method with DGA is to
evaluate the advantage of negotiation when allocating tasks.

One of the main purpose of the task allocation methods in grid systems is to
successfully allocate as many tasks as possible [10]. Thus, we experimentally study
the success rate of task allocation. Besides the success rate, the total profit, i.e.,
the sum of all agents’ profits, is also one of the main performance measures [2].
Hence, we also report the total profit of all consumers and providers involved in the
grid environment of our method against two other methods developed in [2, 7]. The
evaluation metrics include:

(i) The success rate which is calculated by:

rsuc = Nsuc

Nτ

(5)

where Nsuc is the number of tasks that are successfully allocated and Nτ is the number
of all tasks involved in the environment.

(ii) The total profit, which is the sum of the profits of all the agents involved in
the grid environment. The total profit is calculated by:

Ptol =
n∑

i=1

proi (6)

where n is the total number of agents involved in the grid environment, and proi is the
profit gained by agent ai . Because the total profit of a method could be significantly
different in different settings, we will experimentally study the ratios of total profit
between NTAL and DGA, and the ratios of total profit between NTAL and NTA.

4.1 Experimental Settings

In order to do a comparison experiment with NTA [2], the parameters used in the
experiment are inspired by [2] and listed in Table1. The parameters setting in the
experiments is similar to those in [2] (see Table1). However, we do not set a crisp
value to each parameter, rather we set a range and thus each parameter actually takes
different values randomly in the range from time to time during the course of the
experiment to reflect the nature of dynamics of grid systems.



A Negotiation Method for Task Allocation with Time Constraints … 29

Table 1 Parameters setting

Variables Meanings Values

Nra Number of resource types per agent [0, 10]

c(R) Cost to complete a task [100, 150]

r Maximum reward of a task [250, 500]

r/c(R) The ratio between r and cost of a task [1.7, 5]

Each task needs 1–3 types of resources and each agent owns 0 to 10 types of
resources. The cost to complete a task is in the range of [100, 150], and each task’s
maximum reward is in the range of [250, 500], so the ratio between r and cost of a
task, i.e., r/c(R), is from 1.7 to 5, which is reasonable in practical markets. Besides,
there are another two important variables used in the experiment, i.e., ψ(r) and
flex(τ ).

(i) ψ(r) reflects the resource competition and is defined as follows:

ψ(r) = Nτ /Np (7)

where Nt and Np are the numbers of tasks and resource providers, respectively.
Because both the numbers of tasks and providers are dynamically changing (i.e., both
Nτ and Np vary from time to time during the course of the experiment), actually,
ψ(r) varies during the course of the experiment as well. Moreover, we have to state
that the values of resource competition ψ(r) in the following experiments are the
ratios between the maximum numbers of the resource providers and the maximum
numbers of consumers. Hence, in the following experiments, if the value of ψ(r) is
given, it does not represent that ψ(r) is fixed, contrary, it varies from time to time.

(ii) flex(τ ) reflects the allocation flexibility of a task and is defined as follows:

flex(τk) = tls − tg (8)

where tls and tg are the deadline and the generation time of τk , respectively.
At the beginning of the experiments, we generate 100 agents and 600 tasks. The

600 tasks are distributed to the 100 agents randomly. Each agent has at least one
type of resource, and so, each agent can be a provider. Moreover, each agent is also
a consumer if at least one task is distributed to it. These agents and tasks are not
in the grid environment at the beginning but enter into or leave off the environment
randomly after the beginning of the experiment. Each agent selects 5 other agents
randomly as its neighbors when it newly arrives in the environment. The experiment
is conducted according to the following two different scenarios.

Scenario 1: examination of the impact of the deadlines of tasks.
The purpose of this Scenario is to test the impact of the deadlines of tasks on our

task allocation method. The parameters used in Scenario 1 are listed in Table2.



30 Y. Kong et al.

Table 2 Parameters setting for Scenario 1

Variables Meanings Values

Nτ Number of tasks [0, 100]

Np Number of resource providers [0, 100]

ψ(r) Resource competition 1

Nave The average required resource types 5

To control the maximum numbers of providers and tasks that enter into the grid
environment, we set both the maximum providers and tasks as 100, that is, both the
numbers of providers and consumers are in the range of [0, 100] during the course
of the experiment. This does not mean that the numbers of providers and tasks of
the experiment are randomly chosen from the range of [0, 100] at the start of the
experiment, but rather it means that the numbers of providers and tasks change from
time to time between 0 and 100 during the course of the experiment because providers
and tasks can leave or enter at any time. Similarly, the number of tasks changes from
time to time in the range of [0, 100]. We set the parameters like this because the
grid environment is dynamic and open. Based on this, we change the deadlines (i.e.,
latest start times) of tasks and get different success rates and total profits accordingly,
which are shown in Figs. 1 and 2, respectively.

In fact, even though the purpose of Scenario 1 is to test the impact of different
deadlines of tasks on success rate and total profit, the resource competition is not
fixed, it varies during the course the the experiment according to the parameter
settings above. However, the resource competition varies in a small range and this

Fig. 1 Deadline of task and the success rate



A Negotiation Method for Task Allocation with Time Constraints … 31

Fig. 2 Deadline of task and the total profit ratio

cannot be avoided due to the dynamics and openness of the environment. We also
conduct an experiment to test the impact of resource competition when it varies in
bigger ranges in Scenario 2.

Scenario 2: examination of the impact of resource competition.
The aim of this Scenario is to test the impact of different resource competitions on

our task allocation method. The parameters used in Scenario 2 are listed in Table3.
The allocation flexibilities of tasks (i.e., flex(τ )) are in the range of [400, 500].

We make the number of providers in-between [0, 100], and we change the maximum
number of tasks involved in the environment from 20 to 600. Hence, we get different
resource competitions from 0.2 to 6, according to Eq. (7). Based on different resource
competitions,we obtained the corresponding success rates,which are shown in Fig. 3.
Furthermore, we also obtained the ratios of total profits between NTAL and NTA,
and the ratios of total profits between NTAL and DGA, which are shown in Fig. 4.

Table 3 Parameters setting for Scenario 2

Variables Meanings Values

tls Deadlines of tasks [400, 500]

tg Generation times of tasks 0

flex(τ ) Allocation flexibility [400, 500]

Nave Average required resource types 5



32 Y. Kong et al.

Fig. 3 Resource competition and success rate

Fig. 4 Resource competition and total profit ratio

4.2 Results of Experiments

Results of Scenario 1
In Scenario 1, in the case that the allocation flexibilities of tasks change during
the course of the experiment, the corresponding success rates are shown in Fig. 1.
Figure2 illustrates the ratios of total profit between NTAL and NTA, and the ratios
of total profit between NTAL and DGA, based on different allocation flexibilities.

FromFig. 1,we can see that the success rate ofNTAL reaches the peakvalue earlier
than that of NTA. This result can be explained from the view point of negotiation
strategies of the providers of both NTAL and NTA. In fact, in NTAL, the offer
price of provider is closely related to time t . The provider gives more concessions
as time progresses, which can be seen from Eq. (4) in Sect. 3.1. However, in NTA,



A Negotiation Method for Task Allocation with Time Constraints … 33

only the consumer gives concessions while the provider gives its counter offer price
just based on the resource competition. Hence, NTAL reaches the peak success
rate quicker than NTA. For the same reason, when the allocation flexibilities are
lower than 200ms (milliseconds), the success rates of NTAL are higher than that
of NTA. This demonstrates that NTAL works better in the circumstances that tasks
are urgent, i.e., tasks need to be started in short times (low allocation flexibilities).
Even though the peak value of success rate of NTAL is lower than that of NTA, it
is reasonable because in NTA, any consumer knows all the providers’ information,
while the consumer only has a local view in NTAL. The peak value of success rate
is limited by the local view in NTAL comparing with the global view in NTA.

As we can see from Fig. 1, the success rates of DGA are stable in the different
ranges of allocation flexibility. Because there is no negotiation process in DGA and
only greedy algorithm is used. Hence, the success rate is less related to the allocation
flexibility compared with NTAL and NTA. However, when allocation flexibilities are
higher than 140ms, the success rates of DGA are lower than the peak values of both
NTAL and NTA, and this result demonstrates the advantage of our negotiation-based
method in task allocation.

In Fig. 2, when the allocation flexibilities are lower than 100ms, the ratios of
total profit between NTAL and NTA are higher than 1. This is reasonable because
the corresponding success rates of NTAL are higher than the results of NTA when
allocation flexibilities are lower than 100ms. The ratios of total profit between NTAL
and DGA become higher than 1 when the allocation flexibilities are higher than
100ms, which is reasonable because NTAL needs time to negotiate.

Results of Scenario 2
In Scenario 2, Fig. 3 displays the success rates based on different resource com-

petitions. The ratios of total profit between NTAL and NTA, and the ratios of total
profit between NTAL and DGA are shown in Fig. 4.

Figure3 presents that when the resource competition is either lower than 0.6 or
higher than 2, the success rates of NTAL are higher than those of NTA. This is
because when the resource competition is lower than 0.6, the limitation of the local
view of the consumer in NTAL is not apparent due to the low resource competition.
Contrarily, when the resource competition is higher than 2, the advantage of the
global view in NTA is not apparent compared with the local view due to the high
resource competition. Hence, when the resource competition is either lower than 0.6
or higher than 2, the p2p neighborhood used in NTAL can work as well as the global
information in NTA, or even better.

As it can be seen from Fig. 3, when the values of resource competition are higher
than 0.6, the success rates of DGA are lower than those of NTAL and NTA. This also
demonstrates the advantage of our negotiation-based method for task allocation.

In Fig. 4, it can be seen that the ratios of total profit between NTAL and NTA, and
the ratios of total profit between NTAL and DGA vary with the different values of
resource competition. When resource competitions are higher than 1, the total profit
ratios between NTAL and NTA are higher than 1, which means the total profit of
NTAL is higher than that of NTA even though NTA has global views while NTAL
uses only the local views. This can be explained from two view points. First, whether



34 Y. Kong et al.

an agent has global view or not does not affect the total profit much because of the
high resource competitions. Second, the corresponding success rates of NTAL are
higher than those of NTA. Hence, in the situations of high resource competitions,
NTAL still works better than NTA.

5 Related Work

In recent years, some task allocation methods have been developed by the considera-
tion of various uncertain factors during task allocation. In 2008, Gatti et al. proposed
a task allocation method by considering the different deadlines of tasks during the
negotiation in market-based grid environments [12]. In 2009, An et al. developed a
negotiation-based method for task allocation by taking two uncertain factors (i.e.,
deadline and reserve price) into consideration during negotiation [1]. However, in
practice, negotiation for task allocation in most open environments needs to consider
more than two uncertain factors. In 2010, An et al. further extended their previous
workby consideringmore uncertainty factors [2], such as resource competition, dead-
line, reserve price and cost under the assumption of a global view of each resource
consumer (i.e., each consumer has complete information of all providers).

This paper is mostly related to the method proposed by An et al. [2]. However,
their method assumes that resource providers are not allowed to enter into or leave
off the grid environment freely, and it also assumes that each consumer knows all the
providers’ information (i.e., each consumer has a global view). The two assumptions
do not always hold, especially applying them to an open grid environment, due to no
central controllers in open, dynamic grid environments. Besides, if each consumer
knows all the providers’ information, it means that there is a central controller,
which can easily introduce the single point of failure problem. Moreover, the central
controller will limit the scalability of grid systems. Our NTAL does not assume the
global view of any agent. Additionally, in NTAL, both consumers and providers can
enter into or leave off grid environments freely at any time. Hence, the environment
in this paper is completely dynamic, open for consumers and providers.

In 2009, Klos et al. proposed an Agent-based Computational Economics model
(ACE for short) [15], which is also for market-based task allocation in dynamic
environments. ACE focuses on the adaptation of agents, due to the dynamics of the
environments and the competitions among agents. Agents adapt themselves based
on the trusts on their partners. However, our method introduces the concepts of
negotiation and penalty. The negotiation can make the transactions between agents
more flexible, and meanwhile the penalty prevents the distrust between agents.

Weerdt et al. proposed aDistributedGreedyMethod (DGA) to allocate distributed
tasks to resources in [7]. There are some aspects at which DGA is similar to our
NTAL. For example, there is no central controller in DGA, which means each agent
only has a local view; agents are connected as a social network which is similar to
the p2p neighborhood used in our method; and consumers are dynamic. However, in
DGA there is no negotiation and only greedy method is introduced. Each provider



A Negotiation Method for Task Allocation with Time Constraints … 35

selects one task one time only according to the ratio of the reward and the quantity of
the requested resources of the task. In fact, many more factors need to be considered
when allocating tasks in modern applications, not just the reward of the task and
the quantity of requested resources. Our negotiation-based method NTAL is flexible
by taking into more factors into consideration when allocating tasks, such as the
deadline, reserve price, cost, the resource competition, and so on.

The task allocation method proposed in [20] is also decentralized in dynamic
environments. However, that method focuses on the cooperation among provider
agents that have to finish interdependent tasks cooperatively, because the tasksmaybe
interdependent due to the time constraints, resource constraints or order constraints.
Thus it requires high coordinations among agents in order to obtain high total profits.
While our method focuses on the competitions among both provider agents and
consumer agents, trying tomaximize their own profits obtained from the successfully
allocated tasks.

6 Conclusion

This paper proposed a negotiation-based task allocation method to achieve high
success rates, high total profits in task allocation in decentralized, dynamic, and
open grid environments. The main contributions of the proposed method are: (i) the
method is based only on local views, which can make our method more applicable
in open, dynamic environments. Besides, local views do not limit the scalability of
the application systems; and (ii) the proposed method allows both providers and
consumers to freely enter into and leave off grid environments, so it can be applied
to many real open, dynamic situations.

In the future, we intend to evaluate the success rates and total profits when both the
allocation flexibilities and resource competitions change in NTAL. Besides, we also
intend to work on solving continuous task allocation in decentralized, dynamic, and
open grid environments and to test our task allocation method in real life situations.
In addition, it is also interesting to do game theoretic analysis on our method.

References

1. An, B., Gatti, N., Lesser, V.: Bilateral bargaining with one-sided two-type uncertainty. In:
Proceedings of the International Joint Conference on Web Intelligence and Intelligent Agent
Technology, vol. 2, pp. 403–410 (2009)

2. An, B., Lesser, V., Irwin, D., Zink,M.: Automated negotiationwith decommitment for dynamic
resource allocation in cloud computing. In: Proceedings of AAMAS, pp. 981–988 (2010)

3. AuYoung, A., Chun, B., Snoeren, A., Vahdat, A.: Resource allocation in federated distributed
computing infrastructures. In: Proceedings of the 1st Workshop on Operating System and
Architectural Support for the On-demand IT InfraStructure, vol. 9 (2004)

4. Buyya, R., Abramson, D., Venugopal, S.: The grid economy. Proc. IEEE 93(3), 698–714 (2005)



36 Y. Kong et al.

5. Cramton, P., Shoham,Y., Steinberg, R.: Combinatorial Auctions.MIT Press, Cambridge (2006)
6. Dash, R.K.,Vytelingum, P., Rogers,A.,David, E., Jennings,N.R.:Market-based task allocation

mechanisms for limited-capacity suppliers. IEEETrans. Syst.,ManCybern., PartA: Syst. Hum.
37(3), 391–405 (2007)

7. de Weerdt, M., Zhang, Y., Klos, T.: Distributed task allocation in social networks. In: Proceed-
ings of AAMAS, p. 76 (2007)

8. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and
analysis. Proc. IEEE 94(7), 1257–1270 (2006)

9. Dooley, K.: Designing Large-Scale LANs. O’Reilly Media Inc., Sebastopol (2001)
10. Fatima, S.S.,Wooldridge,M.: Adaptive task and resource allocation inmulti-agent systems. In:

Proceedings of the 5th International Conference on Autonomous Agents, pp. 537–544 (2001)
11. Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: Sharp: an architecture for secure resource

peering. In: ACM SIGOPS Operating Systems Review, vol. 37, pp. 133–148. ACM (2003)
12. Gatti, N., Giunta, D., Marino, S.: Alternating-offers bargaining with one-sided uncertain dead-

lines: an efficient algorithm. Artif. Intell. 172(8), 1119–1157 (2008)
13. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked

resources with brokered leases. In: Proceedings of the USENIX Technical Conference, pp.
199–212 (2006)

14. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Auto-
mated negotiation: prospects, methods and challenges. Group Decis. Negot. 10(2), 199–215
(2001)

15. Klos, T., Nooteboom, B.: Adaptive learning in evolving task allocation networks. In: Proceed-
ings of AAMAS, pp. 465–472 (2009)

16. Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.A.: Tycoon: an implementation of
a distributed, market-based resource allocation system. Multiagent Grid Syst. 1(3), 169–182
(2005)

17. Macarthur, K.S., Stranders, R., Ramchurn, S.D., Jennings, N.R.: A distributed anytime algo-
rithm for dynamic task allocation inmulti-agent systems. In: Proceedings ofAAAI, pp. 356–362
(2011)

18. Regev, O., Nisan, N.: The popcorn market. Online markets for computational resources. Decis.
Support Syst. 28(1), 177–189 (2000)

19. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econom.: J. Econom. Soc. 50(1),
97–109 (1982)

20. Theocharopoulou, C., Partsakoulakis, I., Vouros, G.A., Stergiou, K.: Overlay networks for
task allocation and coordination in dynamic large-scale networks of cooperative agents. In:
Proceedings of AAMAS, p. 55 (2007)

21. Zheng, X., Koenig, S.: Reaction functions for task allocation to cooperative agents. In: Pro-
ceedings of AAMAS, pp. 559–566 (2008)



http://www.springer.com/978-4-431-55524-7


	A Negotiation Method for Task Allocation with Time Constraints in Open Grid Environments
	1 Introduction
	2 Problem Description and the Procedure of the Task Allocation
	3 Negotiation Method
	3.1 Offer Generation and Sign Contract

	4 Experiment
	4.1 Experimental Settings
	4.2 Results of Experiments

	5 Related Work
	6 Conclusion
	References


