
Chapter 2
Models and Methods

Abstract This chapter is devoted to introduce themodels andmethodswe employed
in this thesis. We consider Ising-spin Kondo lattice models on frustrated lattices,
such as triangular, kagome, and pyrochlore lattices. A strong coupling limit of the
Kondo lattice model, double-exchange model, is also introduced. The magnetic and
transport properties of these models are numerically studied by using Monte Carlo
simulations and variational calculation. Details of these methods are also explained
in this chapter. In addition to the numerical calculations on Kondo lattice models, a
perturbation approach for deducing the effective spin-spin interactions in the double-
exchange models are also explained.

2.1 Ising-Spin Kondo Lattice Model

2.1.1 Kondo Lattice Model on Frustrated Lattices

To explore the novel magnetic and transport phenomena that emerge from the com-
petition and/or cooperation of spin-charge coupling and geometrical frustration, we
here consider a simple model with these aspects, the Ising-spin Kondo lattice model
on geometrically frustrated lattices. The Hamiltonian is given by

H = −t
∑

〈i, j〉,σ
(c†iσ c jσ + H.c.) − J

∑

i

Si · σ̂i −
∑

i

Si · h. (2.1)

The first term represents hopping of itinerant electrons, where ciσ (c†iσ ) is the
annihilation (creation) operator of an itinerant electron with spin σ =↑,↓ at i th site,
and t is the transfer integral. The sum 〈i, j〉 is taken over NN sites. The second term
is the onsite interaction between localized spins and itinerant electrons, where J is
the coupling constant (the sign of J does not matter in the present model),

σ̂ i =
∑

α,β

c†i,ασαβciβ (2.2)
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28 2 Models and Methods

represents the localized Ising spin at i th site (|Si | = 1); and σαβ is the vector of
Pauli matrices. As we will see in the following sections, along with the models
with collinear Ising spins, we also consider the models with different anisotropy
axes depending on the sublattices. Hence, the localized spins are denoted by vectors
Si = (Sx

i , Sy
i , Sz

i ), where Sγ

i (γ = x, y, z) is the γ component of the i th spin. In
some sections, we also consider the effect of external magnetic field h. The third term
in Eq. (2.1) describes the external magnetic field acting on the localized moments.
For simplicity, we ignore the effect of magnetic field on the itinerant electrons. This
corresponds to the limit in which the localized spins have infinitely large magnetic
moments; such a limit is reasonably justified in some realistic situation, such as the
rare-earth and transition-metal compounds discussed in the introduction, as they are
expected to have large magnetic moments.

2.1.2 Strong Coupling Limit

In Chaps. 6 and 8, we consider the strong-J limit of Eq. (2.1). In this limit, the spin
of each itinerant electron is perfectly polarized along the direction of the localized
moment at each site. As a consequence, the spin indices for itinerant electrons are
projected out. Instead, the spin-charge coupling modifies the hoppings of itinerant
electrons [1, 5]; this limit is known as the double-exchange limit (see Sect. 1.2.2).
The Hamiltonian in this limit is given by

H = −
∑

〈i, j〉
(ti j c̃

†
i c̃ j + H.c.) −

∑

i

h · Si , (2.3)

where

ti j = t

(
cos

θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
e−i(ϕi −ϕ j )

)
(2.4)

is the hopping matrix element between i th and j th site modulated by the relative
angle between the Si and S j ; (θi , ϕi ) are the polar coordinates for the localized
moment at i th site;

Si = (Sx
i , Sy

i , Sz
i ) = S(sin θi cosϕi , sin θi sin ϕi , cos θi ). (2.5)

2.2 Monte Carlo Simulation

To numerically analyze the models in Eqs. (2.1) and (2.3), we performed an unbiased
Monte Carlo (MC) simulation which has been widely used to study similar models
[2–4]. The method is generally applicable to the fermion models coupled to classi-
cal fields whose Hamiltonian is given in a quadratic form in terms of the fermion
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2.2 Monte Carlo Simulation 29

operators. To be specific, however, we particularly consider the case of itinerant
electrons coupled to localized spins.

In general, the partition function for such amodel is obtained by taking two traces;
one is over the classical fields and the other over the fermion degree of freedom. For
the present model in Eq. (2.1), the partition function is written as

Z = Tr{Si }Tr{ciσ ,c†iσ } exp
[
−β

(
H({Si }) − μN̂c

)]
, (2.6)

where Tr{Si } and Tr{ciσ ,c†iσ } are the traces over the Ising spins and the electron oper-

ators, respectively, and H({Si }) is a one-particle Hamiltonian matrix in Eq. (2.1)
defined for a given Ising spin configuration {Si } = (S1, S2, . . . , SN ) where N is the
number of the sites; β = 1/T is inverse temperature, μ is the chemical potential,
and N̂c = ∑

iσ c†iσ ciσ . The former trace can be calculated by classical MC sampling
of the spin configurations {Si } with the Boltzmann weight

P({Si }) = 1

Z
exp [−Seff({Si })] , (2.7)

where the effective action is given by the latter trace in the form

Seff({Si }) = − log
(
Tr{ciσ ,c†iσ } exp

[
−β

(
H({Si }) − μN̂c

)])
. (2.8)

A straightforward method to calculate the effective action is the numerical diag-
onalization of H({Si }) [4]. By using the one-particle eigenvalues for H({Si }),
{εν({Si })}, the effective action is calculated by

Seff({Si }) =
Ndim∑

ν=1

F[εν({Si })], (2.9)

where F[x] = − log
[
1 + exp {−β(x − μ)}] and Ndim is the dimension of the

Hamiltonian (Ndim = 2N in the present case).

2.3 Polynomial Expansion Method

In the polynomial-expansion Monte Carlo (PEMC) method, the sum over the eigen-
states is replaced by the integration over the density of states (DOS), and the integral
is evaluated by using the polynomial expansion technique [3];

Seff({Si }) =
∫

dε D{Si }(ε)F(ε) =
∑

m

μm fm, (2.10)

where D{Si } is DOS for itinerant electrons for a spin configuration {Si }.
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In Eq. (2.10), DOS and F are expanded by Chebyshev polynomials as

μm =
∫ 1

−1
dxTm(x)D̃{Si }(x) = Tr Tm[H({Si })], (2.11)

fm = −1

αm

∫ 1

−1

dx

π
√
1 − x2

Tm(x)F(x), (2.12)

where αm = 1 for m = 0 and otherwise 1/2. Here, DOS is renormalized so that the
entire spectrum fits into the range of x = [−1, 1];

D̃{Si }(x) = aD{Si }(ax + b). (2.13)

where a = (εtop−εbtm)/2 and b = (εtop+εbtm)/2. In the case of a pyrochlore lattice
with finite J/t , we take εtop = 2t + J + 1 and εbtm = −6t − J − 1 (we afford a
margin of 1 for both εtop and εbtm). On the other hand, in the case of J/t → ∞ limit,
we take εtop = 2t + 1 and εbtm = −6t − 1. In Eqs. (2.11) and (2.12), the Chebyshev
polynomials Tm are calculated by using the recursion relation in the form

Tm(x) = 2xTm−1(x) − Tm−2(x), (2.14)

with

T0(x) = 1, T1(x) = x . (2.15)

In the MC update, we choose a single spin (or several spins) randomly and flip it
(or them) by probability p, which is given by the standardMetropolis algorithm, i.e.,

p = exp[−βSeff({Si } f )]
exp[−βSeff({Si }i )] . (2.16)

Here, {Si }i is the initial spin configuration and {Si } f is the fliped configuration.
When evaluating Seff({Si }i ) and Seff({Si } f ) in PEMC, the Chebyshev moments

μm are evaluated by calculating the Chebyshev polynomials of the Hamiltonian
matrix recursively. For the sparse Hamiltonian matrix, the calculation amount of μm

is O(N 2 log N ), as the necessary order of polynomials scales as log N . In one MC
step, we go through the above process N times recursively. Hence, the total cost for
one MC step in PEMC is O(N 3 log N ) [3], which is reduced from O(N 4) in the
Monte Carlo method using the numerical diagonalization.

2.3.1 Truncation Algorithm

An efficient way to further reduce the calculation amount is to employ a truncation
algorithm [2]. In the truncation procedure, a real-space basis e j (k) = δ j,k is chosen
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for the trace in Eq. (2.11), where k is a site index. A new vector v(m)
j is generated by

multiplying the unit vector by the mth Chebyshev polynomial of the Hamiltonian, as

v(m)
j = Tm[H({Si })]e j ≡

∑

k

v
(m)
j,k ek . (2.17)

If the hopping term in the Hamiltonian is limited to nearest-neighbor sites as in
Eq. (2.1), the coefficient v(m)

j,k takes a nonzero value only if || j − k|| ≤ m is satisfied,
where || j − k|| is the Manhattan distance between two sites j and k. Furthermore,
the coefficient usually becomes small quickly as the Mahnattan distance increases.
Hence, the vector elements of v(m)

j with such small amplitudes can be neglected in the
calculation of the moment μm . In particular, the truncation was done by introducing
a threshold for the amplitude of vector elements, ε, and ignoring the small elements
which satisfy |v(m)

j,k | < ε in the calculation of Eq. (2.17) [2]. A similar truncation was
also introduced in the trace operation to calculate the effective action Seff({Si }). This
algorithm further reduces the total cost of one MC update to O(N ) [2].

In this study, we considered a similar but slightly different truncation algorithm.
We carry out the truncation by a real-space distance, not by a magnitude of the
vector element in the original scheme; namely, we set a truncation distance d and
ignore all contributions out of the range of the Manhattan distance d from a flipped
spin. An example of sites within Manhattan distance d ≤ 2 is shown in Fig. 2.1 for
checkerboard lattice. In the present method, the list of sites to be considered in the
calculation is known in advance and unchanged throughout the MC simulation. On
the other hand, in the previous method, the list needs to be updated by looking at the

Fig. 2.1 Schematic picture
of the real-space truncation.
The figure shows a projection
of the pyrochlore lattice onto
a 〈001〉 plane, and circles
represent the lattice sites.
The black circle in the center
represents the site with
flipped spin. Gray circles
indicate the sites within the
range of the truncation
distance d. The picture
shows an example of d = 2
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elements of v(m)
j in each MC step. Therefore, the present algorithm is much simpler

than the previous one.
In previous studies, this method was shown to be efficient in reducing the com-

putational costs [2]. The benchmark on the efficiency of this method for the model
in Eq. (2.1) is presented in Sect. 9. We, however, found that the truncation method
is less efficient for the system sizes that we calculated. Hence, we did not use the
truncation method, and instead, used the original PEMC method in Chaps. 7 and 8.

2.3.2 Physical Quantities

In this algorithm, the calculation of physical quantities related to the localized spin
degrees of freedom (e.g., magnetization and its susceptibility) can be done in the
same manner as the classical Monte Carlo method. Formally, it is done by replacing
the internal energy with Seff({Si }),

〈Os〉 = 1

Z
Tr{Si }Os exp [−Seff({Si })] . (2.18)

Here, Os = Os({Si }) is a function for a physical quantity related to spins. The
susceptibility for Os , χOs , is calculated from the fluctuation of Os ,

χOs = 1

T
(〈O2

s 〉 − 〈Os〉2). (2.19)

When calculating a physical quantity related to electronic degree of freedom,
such as internal energy, the calculation should be done by appropriately taking into
account of the Fermi distribution function

〈Ôe〉 = 1

Z
Tr{Si }Oe({Si }) exp [−Seff({Si })] , (2.20)

with

Oe({Si }) = Tr{ciσ ,c†iσ } Ôe({Si }) exp(−βH). (2.21)

Here, Oe({Si }) is a physical quantity for itinerant electrons which is given in the
quadratic form in terms of ciσ , and Tr{ciσ ,c†iσ } is the trace over the electronic degree
of freedom.

As numbers of different parameters are used in each chapter, the details of the
actual quantities calculated were described in each chapter separately. We also note
that we used different notations as defined in each chapter.

http://dx.doi.org/10.1007/978-4-431-55663-3_7
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2.3.3 Conductivity

To investigate the transport properties, we calculated the conductivity by the stan-
dard Kubo formula in a similar manner as in Eq. (2.21). For instance, the optical
conductivity along the direction ν induced by an electronic field along the direction
η was calculated by

σην(ω, T ) = −iTr{Si }

[
∑

m,n

f (εn) − f (εm)

εm − εn

〈m| ĵη|n〉〈n| ĵν |m〉
ω − εm + εn + iτ−1

]
, (2.22)

where, f (ε) is the Fermi distribution function, εm is the eigenenergy for mth state
of itinerant electrons, and τ is the scattering rate. Here,

ĵη = −it
∑

〈 j,k〉,σ
(nη · δ j,k)(c

†
kσ c jσ − c†jσ ckσ ) (2.23)

is a current operator in the η direction (η is assigned for each case below), which
is constructed in a standard way from a polarization operator in order to satisfy
the continuity equation. Here, nη is the unit vector in the η direction and δ j,k is
the geometrical vector from j th to kth site. The sum is taken for all the nearest-
neighbor pairs. The details on the parameters we used in the calculations are given
in each chapter.

2.4 Variational Method

In addition to theMCmethod introduced in Sects. 2.2 and 2.3, the ground state phase
diagrams were studied using a variational method comparing the ground state energy
of different magnetically ordered states obtained in the MC simulation.

In the variational calculation, we first calculated the electron density and internal
energy for each magnetic orders with varying the chemical potential μ. The ground
state at different μ are obtained by comparing the ground state energy for different
magnetic states. The phase diagram with respect to μ is then mapped onto the phase
diagram with varying n; the phase separation between different magnetic states is
determined from the jump of n at the phase boundary. As an example, the variational
calculation for the triangular lattice model is presented in Sect. 3.3.4.

2.5 Perturbation Method in the Strong Coupling Limit

In the pyrochlore lattice cases in Chaps. 7 and 8, we also derived an effective spin
model to analyze the phase diagram. In the weak coupling limit, the perturbation
theory in terms of J/t which leads to the RKKY interaction, is expected to be a

http://dx.doi.org/10.1007/978-4-431-55663-3_3
http://dx.doi.org/10.1007/978-4-431-55663-3_7
http://dx.doi.org/10.1007/978-4-431-55663-3_8
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useful approach; the details of this approach is explained in Sect. 1.2.1 and is used in
Chap.7. On the other hand, in the strong coupling limit, we introduced a perturbation
theory in terms of the relative angle of the localized moments. In the strong coupling
limit, the hopping integrals for itinerant electrons are modulated by the relative
angle of localized moments (Eq. (2.4)). For simplicity, we approximate the hopping
Eq. (2.4) by its absolute value

t̃i j = |ti j | = t

√
1 + cos θi cos θ j + 1

2
sin θi sin θ j cos(ϕi − ϕ j ) (2.24)

= t cos(θi j/2), (2.25)

where, θi j is the angle between the i th and j th spins.1 In the current models, as the
spins are of Ising type, Eq. (2.25) can be transformed into

t̃i j = t0 + t1 S̃i S̃ j (2.26)

with

t0 = 1

2

(
cos

θ0i j

2
+ sin

θ0i j

2

)
(2.27)

t1 = 1

2

(
cos

θ0i j

2
− sin

θ0i j

2

)
, (2.28)

where θ0i j is the relative angle between the easy axes of neighboring sites and S̃i = ±1

is the Ising spin on i th site projected onto its anisotropy axis. When θ0i j = π/2, then
t1 = 0; hence, the orientation of localized Ising moments does not affect itinerant
electrons. When θ0i j∼π/2, t1 remains much smaller than t0. As the angle between the
two nearest-neighbor spins is ∼109◦ for the spin-ice model considered in Chap. 8,
and close to π/2, we performed perturbation theory in terms of t1/t0. Essentially,
this perturbation expansion corresponds to the perturbation for �θ0i j = π/2 − θ0i j .
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