
Chapter 2
Preliminaries of Sliding Mode Control

Abstract In this chapter, a brief introduction of the concept of sliding mode control
and the evolution of discrete-time sliding mode from the continuous-time sliding
mode is discussed. The concept of the multirate output feedback-based sliding mode
control technique is also discussed.

Keywords Discrete-time sliding mode control · Output feedback · Reaching law ·
Multirate output feedback

2.1 Variable Structure Control

Variable Structure Control (VSC) with Sliding Mode Control (SMC) was first
presented and elaborated in the 1960s in the then Soviet Union by Emelyanov [9,
13] and other researchers [20, 34]. Since then, VSC has been developed into a gen-
eral design method being examined for a wide spectrum of system types including
nonlinear systems, multi-input–multi-output systems, large scale systems, infinite
dimensional systems, and stochastic systems. Also, the objectives of VSC have been
extended from stabilization to other control functions. The main feature of the VSC
is the invariance to a class of bounded disturbance and parameter variations [10, 34].
In Variable Structure Systems, the system is assumed to consist of continuous sub-
systems known as structures. These structures are changed or switched depending
on the state of the system. The gain of a system may be changed or the transfer
function of the system may be completely changed in these types of systems. The
times (states) at which the structures change contribute to discontinuity surfaces in
the phase planes. These surfaces are called as switching surfaces. If the switching
surface satisfies the condition of having positive attraction, then such a surface would
become a sliding surface [35].

A simple example of such a variable structure system would be a second-order
system having system equations

ẋ1 = x2
ẋ2 = ax1 + bx2 + u (2.1)
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where x1, x2 are system states and a, b are system parameters. The system has feed-
back input given by

u = −Ψ x1

The parameter Ψ is a variable parameter that takes values α and β as the structure
changes. Suppose the system with input as α has complex eigenvalues with positive
real part and the system with input as β has eigenvalues real but one positive and
one negative, then the system trajectories in the two structures are both unstable as
shown in Fig. 2.1. The complex eigenvalues give an unstable focus, whereas the one
positive and one negative real eigenvalue gives a saddle point.

If we observe the phase portrait carefully, we can notice that the two unstable
structures have certain regions of stability, like the describing point moves toward
the saddle point along the eigenvector corresponding to the negative eigenvalue. To
have the desired regions of the two structures in the resultant system, two switching
surfaces are selected.

x1 = 0 (2.2)

s = cx1 + x2 = 0 (2.3)

Selecting the switching law from these two equations, we get

Ψ =
{

α, when x1s > 0
β, when x1s < 0

The phase portrait of the resultant system is as shown in Fig. 2.2. As we can see
the switching surface x1 = 0 has attraction properties only on one side of the surface,
so no sliding occurs. But the switching surface s has attraction property on both sides
of the surface, as a result this surface becomes the sliding surface of the system. If
we look at the resultant motion on the sliding surface, the describing point slides
toward the equilibrium point and hence the closed-loop system is stable. A variable

Fig. 2.1 Phase portrait of two unstable structure
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Fig. 2.2 Phase portrait of
switched structure

structure system consists of a set of continuous subsystems with a proper switching
logic and, as a result, control actions are discontinuous function of system state,
disturbance, and reference input. The sliding mode is the principal mode in variable
structure systems.

Definition 2.1 SlidingMode: It is themotion of the system trajectory along a chosen
line/plane/surface of the state space.

2.2 Continuous-Time Sliding Mode Control

The sliding mode control can be viewed as a control process consisting of two
important phases:

• The reaching phase: The reaching phase is the part where the describing point starts
from its initial condition and moves toward the sliding surface. During this period,
however, the tracking error cannot be controlled directly and the system response is
sensitive to parameter variations and noise. Thus, one would ideally like to shorten
the duration or even eliminate the reaching phase. One easy way to minimize the
reaching phase and hence the reaching time is to employ a larger control input.
This, however, may cause extreme system sensitivity to unmodelled dynamics,
actuator saturation, and undesirably higher chattering as well. The robustness of
the VSC can be improved by shortening the reaching phase or may be guaranteed
during the whole intervals of control action by eliminating the reaching phase.
Several methods have been reported in the literature to eliminate the reaching
phase completely [7, 8, 24, 30, 38]. The algorithms proposed in these papers
employed piecewise constant sliding lines, i.e., the lines which move step by
step and not continuously. This causes existence of many short reaching phases
after each instant when the line is moved and does not allow to ensure system
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insensitivity. This issue was resolved by Bartoszevicz [1] where the piecewise
constant lines were replaced with continuously time-varying lines which indeed
eliminate the reaching phase. The concept is applied further to several systems [3].

• The sliding phase: This is the phase in which the describing point moves only on
the desired sliding surface. In this phase, the describing point does not necessarily
follow any system trajectory that was present in the original fixed input system.
This is because at the sliding surface the input continuously switches, and the
system description is essentially discontinuous.

To find the equation of the system along the sliding surface many methods have
been proposed. This is due to the fact that the differential equation has a nonanalytic
right-hand side, which is the relay-type discontinuity. Consider a nth order system
represented in the phase variable form

ẋi = xi+1, i = 1, 2, . . . , n − 1 (2.4)

ẋn = −an xn + · · · + a1x1 + Bu (2.5)

The sliding surface is defined as

s(t) = Cs x(t). (2.6)

The vector Cs consist of coefficients that describe the sliding surface in terms of the
state vector x(t). The sliding surface defined in such a way is called a hyperplane.
The surface need not be a plane (or line in case of second-order system) always, the
surface can be of any shape. In that case, the vector Cs is the gradient of the sliding
surface, let us say G. If the sliding surface is a plane, then the gradient of the matrix
is the matrix itself. The value of s specifies the distance of the point from the sliding
surface, hence s = 0 implies the point that is on the sliding surface.

Defining the sliding surface as

s = cs1x1 + cs2x2 + · · · + csn−1xn−1 + xn = 0 (2.7)

xn = −cs1xs1 − cs2x2 − · · · − csn−1xn−1 (2.8)

ẋn = −cs1x2 − cs2x3 − · · · − csn−2xn−1 +
n−1∑
i=1

csn−1csi xi . (2.9)

Thus, the entire dynamics of the system is governed by the sliding line/surface
parameters only.

ẋi = xi+1, i = 1, 2, . . . , n − 1 (2.10)

ẋn = −cs1x2 − cs2x3 − · · · − csn−2xn−1 +
n−1∑
i=1

csn−1csi xi . (2.11)

The system dynamics are independent of system parameters and determined by the
surface parameters Cs only.
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At the outset, two important properties are achieved during the sliding motion,
that is, robustness and order reduction. However, to induce the sliding mode the
following properties should exist:

• The system stability confined to sliding surface;
• Sliding mode should start in finite time.

The condition for first requirement is obtained as given below.Consider the system
in regular form as

ẋ1 = A11x1 + A12x2 (2.12)

ẋ2 = A21x1 + A22x2 + Bu (2.13)

If the sliding surface is designed as

s = [
k 1

] [
x1
x2

]
, (2.14)

then the system dynamics confined to the sliding surface s = kx1+x2 = 0 is given by

ẋ1 = A11x1 + A12x2 = (A11 − A12k)x1. (2.15)

If k is so designed that A11−A12k has eigenvalues onLHPonly, then the dynamics
of x1 is stable. Since kx1 + x2 = 0, the dynamics of x2 is also stable. Hence, if the
sliding surface is designed as s = Cs x = kx1 + x2, then the system dynamics
confined to s = 0 is stable.

The second requirement is that the sliding mode should start in finite time. In the
sliding phase, the describing point is supposed tomove along the chosen surface. This
in turn dictates that the sliding surface should be such that it has on both sides state
trajectories corresponding to the two structures coming into it. If s is the distance
of the describing point from the surface, then positive value of s implies that the
point is above the sliding surface, whereas a negative value of s implies the point is
below the sliding surface. ṡ is the rate of change of distance from the sliding surface.
Hence for the sliding motion to exist on the surface, the condition that needs to be
satisfied is

sṡ < 0. (2.16)

This is called the ‘reachability condition’. Next, it is shown here that the reachability
condition is also not sufficient for the sliding. To show that, consider the example

ṡ = −s, (2.17)

sṡ = −s2,∀s �= 0. (2.18)

For which the solution for s(t) is given by

s(t) = e−t s(0), (2.19)
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that gives s(t) = 0 as t → ∞. So, it takes infinite time to reach on the surface as it
approaches the surface. To overcome the situation another condition is defined as

sṡ < −η|s|, η > 0 (2.20)

This condition is known as ‘η-reachability condition’ that defines the minimum rate
of convergence.

2.2.1 Reaching Law Approach

In the reaching law approach, the dynamics of the sliding function is directly
expressed. Let the dynamics of the switching function be specified by the differ-
ential equation

ṡ = −q f (s) − ksgn(s) (2.21)

q, k > 0 (2.22)

s f (s) > 0, ∀s �= 0. (2.23)

The control law may be obtained directly by the condition ṡ = 0 for the system

ẋ(t) = Ax(t) + Bu(t), (2.24)

y(t) = Cx(t), (2.25)

as
u(t) = −(C B)−1(C Ax(t) + q f (s) + ksgn(Cx(t))) (2.26)

Similarly, the other reaching laws proposed in the literature are

• Constant rate reaching law
ṡ = −ksgn(s)

• Constant—proportional rate

ṡ = −qs − ksgn(s)

• Power-rate reaching law

ṡ = −k|s|αsgn(s), 0 < α < 1

2.2.2 Fillipov’s Condition

TheVSS dynamics is characterized by differential equationwith discontinuous right-
hand side. Filippov [15] first gave the solution for this type of system. The resultant
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Fig. 2.3 Fillipov condition

direction of motion of the describing point along the sliding surface is specified by
the Fillipov’s Vector (F0). According to Fillipov if the state motion vector on one
side of the sliding surface is F+ and on the other side of the surface is F−, then the
resultant vector is given by the convex sum of the two vectors

F0 = μF+ + (1 − μ)F−,

where 0 < μ < 1.
The parameterμ depends on themagnitudes and directions of the vectors F+, F−

and the gradient of the sliding surface s. In the case of n vectors, this condition is
generalized to linear combination of all the vectors where the sum of coefficients of
the combination is unity (Fig. 2.3).

2.2.3 Limitations of Continuous-Time Sliding Mode Control

Variable structure control systems are high-speed switching feedback control systems,
which are known to be insensitive to matched uncertainties [9]. However, unmatched
uncertainties in physical systems may be present and may destroy the stability of the
sliding mode. In other words, if the invariance condition (matching condition) is
not satisfied, unmatched uncertainties will enter into the dynamics of the system in
the sliding mode. Thus, the system behavior in the sliding mode is not invariant
to unmatched uncertainties. Another obstacle for sliding mode to become useful
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in practical systems is the high-frequency switching which results in ‘chattering
phenomenon’. One of the causes for the chattering phenomenon is the presence of
finite time delays for control computation and finite delay in switching. In the absence
of switching delays, the switching device switches ideally at an infinite frequency.
The second cause is the limitations of physical actuators and sensors, whose dynam-
ics are often neglected. These parasitic dynamics in series with the plant cause small
amplitude high-frequency nondecaying oscillations to appear in the neighborhood
of the sliding manifold [19]. These oscillations are also referred as chattering. They
excite the unmodeled high-frequency dynamics of the system. The chattering is not
preferable from a practical point of view because it results in low control accuracy,
high heat losses in electrical power circuits, and high wear of moving mechanical
parts. Thus, the controller with a high switching frequency will cause fatigue of
plant and reduce the service life of a machine. Several solutions are proposed for the
reduction of chattering. One of the approaches to reduce chattering is to replace the
relay control by saturating continuous approximation [19, 39].

2.3 Discrete-Time Sliding Mode Control

In case of continuous-time sliding mode, once the closed-loop system is driven into
the sliding mode, a discontinuous control term switches with infinite frequency and
that makes the main difference between a CSMC and a DSMC. The DSMC is auto-
matically constrained to the sampling frequency due to limited sampling frequency.
It means the control signal inevitably changes at the sample instances only. More-
over, in DSMC the control input remains constant for the entire sampling period.
So, the states can never be on the sliding surface and move in zigzag form called
quasi-sliding mode motion [16]. Thus, DSMC does not possess the invariance prop-
erty which is found in CSMC as the invariance property is achieved only when the
system states are exactly on the sliding surface. The robustness issues in DSMC are
also still under investigation.

The concept of discrete-time sliding mode was first introduced by Milosavljevic
[28] and further extended by Utkin and Drakunow [36]. Since then much work has
been done in the field and many new algorithms are proposed.

Similar to CSMC, the design procedure for DSMC includes two steps:

• Computation of sliding surface

s(k) = Cs x(k) (2.27)

which has stable internal dynamics and
• Establishing a control law which steers the closed-loop system toward the sliding
surface and ensures the system trajectories to stay as close as possible to the surface.

The first step of the design procedure is exactly the same as the design procedure
presented for the CSMC. It is assumed that the closed-loop system is kept close
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enough to the sliding surface to approximate the switching function s(k) by zero.
The second step of the design procedure is different forDSMCas compared toCSMC
in case of reaching law approach and is presented in the following section. The main
difference is in the definition of a reaching law that is not as straightforward as for
the continuous-time case.

2.3.1 State-Based Discrete-Time Sliding Mode Control

Consider the continuous-time linear time-invariant system

ẋ(t) = Ax(t) + Bu(t) + E f (t), (2.28)

y(t) = Cx(t), (2.29)

where x ∈ �n is the state variable, A ∈ �n×n , B ∈ �n×m is full rank, u ∈ �m is
the control input, C ∈ �p×n such that C B is nonsingular and y ∈ �p is the output.
We assume that (A, B) is completely controllable and m < n. Let, the system in
Eqs. (2.28) and (2.29) be discretized at τ sampling instant, then the discrete-time
system is given by

x(k + 1) = Φτ x(k) + Γτ u(k) + Eτ f (k), (2.30)

y(k) = Cτ x(k). (2.31)

Representing the system in regular form as
[

x1(k + 1)
x2(k + 1)

]
=

[
Φ11 Φ12
Φ21 Φ22

] [
x1(k)

x2(k)

]
+

[
0
Γ2

]
u(k) +

[
0

Eτ2

]
f (k) (2.32)

with the assumption that the uncertainty changes at the sampling instant only. Various
sliding mode control laws have been proposed for the discrete-time system using
different reaching laws as given below.

• Sarpturk’s Reaching Law: Sarpturk [31] presented a reaching law which is direct
discretized version of continuous-time sliding mode is given by

|s(k + 1)| < |s(k)|.
Here, the sliding function is always directed toward the surface and also the normof
s(k)monotonically decreases. The reaching lawmay be written in another way as

(s(k + 1) − s(k))sgn(s(k)) < 0 (2.33)

(s(k + 1) + s(k))sgn(s(k)) > 0 (2.34)

The first condition implies that the closed-loop system should be moving in
the direction of the sliding surface, whereas the second condition implies that
the closed-loop system is not allowed to go too far in that direction. In other
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words, the condition in Eq. (2.33) results in a lower bound for the control action
and the same in Eq. (2.34) results in an upper bound. In [31], following control
law is proposed

u(k) = −k(x, s)x(k), (2.35)

where the gain k is given by

k(x, s) =
{

k+, when x(k)s(k) > 0
k−, when x(k)s(k) < 0

The computation of the coefficients k+ and k− is not an easy task. They can be
determined by evaluating the conditions (2.33) and (2.34) resulting in an upper
and a lower bound for each k+ and k−. Indeed, there are circumstances where they
do not exist at all.

• Gao’s Reaching Law: In order to design a DSMC, the Gao’s reaching law [16] is
adopted as

s(k + 1) = (1 − qτ)s(k) − ρτ sgn(s(k)) (2.36)

where, τ > 0 is the sampling time, q > 0, ρ > 0, and 1 − qτ > 0.
The DSMC is required to achieve the following performances [16].

1. Starting from any initial state, the trajectory will move monotonically toward
the switching plane and cross it in finite time.

2. Once the trajectory has crossed the switching plane, it will cross the plane
again in every successive sampling period, resulting in a zigzag motion about
the switching plane.

3. The size of each successive zigzag step is nonincreasing and the trajectory stays
within a specified band.

The control law with above reaching law (2.36) is derived for the system (2.30) as

u(k) = −(CsΓτ )
−1[CsΦτ x(k) − (1 − qτ)s(k) + ρτ sgn(s(k))] (2.37)

The magnitude δs of quasi-sliding mode band (QSMB) for s(k) that achieves the
DSMC performance (2) can be computed by solving Eq. (2.36) for s(k) = δs and
s(k + 1) = −s(k). So

−2δs = −qτδ − ρτ

That gives,

δs = ρτ

2 − qτ
(2.38)

The control law (2.37) has two parameters ρ and q for tuning the response. From
(2.38), ρ is directly proportional to theQSMB, and the systemwill overshoot when
ρ is too large. On the other hand, large ρ could speed up transient response. From
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(2.37), qτ is required to be smaller than one, so q has to be smaller than 1/τ , but
large q could speed up transient response.

• Bartoszewicz’s Reaching Law: Bartoszewicz [2] proposed a reaching law as

s(k + 1) = d(k) − d0 + sd(k + 1), (2.39)

where the unknown d(k) is defined as d1 ≤ d(k) = CT
s ΔΦτ x(k)+ CT

s Eτ f (k) ≤
du with dl as lower bound and du as upper bound. Also d0 and δd is given by

d0 = dl + du

2
and δd = du − dl

2
.

sd(k) is an a priori known function such that the following applies:

– If s(0) > 2δd then

sd(0) = s(0) (2.40)

sd(k) · sd(0) ≥ 0 for any k ≥ 0 (2.41)

sd(k) ≥ 0 for any k ≥ k∗ (2.42)

|sd(k + 1)| < |sd(k)| − 2δd for any k ≤ k∗ (2.43)

The above relations state that the time-dependent hyperplane monotonically,
and in a finite time, converges from its initial position to the origin of the state
space. Furthermore, in each control step, the hyperplane moves by the distance
greater than 2δd . This, together with (2.39), implies that the reaching condition
is satisfied, even in the case of the worst combination of disturbance in any two
consecutive time steps.

– Otherwise, i.e., if s(0) < 2δd then sd(k) = 0 for any k ≥ 0.

The constant k∗ in the above relations, is a positive integer chosen by the designer
in order to achieve good trade off between the fast convergence rate of the system
and the magnitude of the control required to achieve this convergence rate. The
control law that satisfies the reaching law in Eq. (2.39) can be computed for system
in Eq. (2.30) as

u(k) = −(CT
s Γτ )

−1(CT
s Φτ x(k) + d0 − sd(k + 1)) (2.44)

The control law so designed guarantee that for any k ≥ k∗, the system states satisfy
the inequality

|s(k)| = |d(k − 1) − d0| ≤ δd . (2.45)

Hence, the states of the system settlewithin a quasi-slidingmode bandwhosewidth
is less than half the width of the band achieved by the control law proposed in [16]

• LinearReachingLaw: Edwards [10] and alsoHui andZak [18] have given reaching
law in another way as

s(k + 1) = Φs(k). (2.46)
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This reaching law is similar to theGao’s reaching law aswell to Sarpturk’s reaching
law. However, the above reaching law gives an exact description of the desired tra-
jectory toward the sliding surface. Despite the fact that this trajectory cannot be
achieved due to the unknown disturbance, the design of the controller is fairly
straightforward. Using the system Eq. (2.32) and neglecting the unknown distur-
bance term, the control law is obtained as

u(k) = (Φ − Φ22)s(k) − Φ21x1(k) (2.47)

The quasi-sliding mode band is given by

1

1 − Φ
( fmax(k)), (2.48)

fmax(k) is the maximum value of the disturbance and Φ has all the eigenvalues
inside the unit circle.

• Linear Reaching Law with Disturbance Estimation: The smallest quasi-sliding
mode band is obtained with the linear reaching law where Φ = 0, but still the
quasi-slidingmode band has the same norm as the upper bound for the disturbance.
For the Gao’s reaching law, the minimum quasi-sliding mode band is even twice
the maximum norm of the disturbance. To overcome this problem, a disturbance
estimator is introduced. Define disturbance estimator d̃(k) by:

d̃(k) = d̃(k − 1) + s(k) − Φs(k − 1) (2.49)

where d̃(k) is the estimation of disturbance vector projected on s(k). The above
control law (2.47) is changed as

u(k) = (Φ − Φ22)s(k) − Φ21x1(k) − d̃(k) (2.50)

In this case, the sliding mode band is given as

1

1 − Φ
δ f (k), (2.51)

where δ f (k) is the maximum rate of change of the disturbance vector.

2.3.2 Output Feedback-Based Discrete-Time Sliding
Mode Control

The VSS approach is quite successful in the design of state feedback controller for
robust control. But if only the output is accessible, then one needs to utilize output
feedback or state estimator (observer). The continuous-time output feedback VSC
systems consists of nonlinear and linear parts for the systems with disturbances
and/or uncertainties. There have been fundamentally two approaches to design the
linear part under the output feedback scheme. The first one is to use state observers
[13, 18] and the second one, direct output-based controllers such as static gains types
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[6, 17, 18, 26, 27] and dynamic compensators types [11, 12]. Emelyanov et al. [14]
proposed an observer to use the very same method as the state feedback VSC. Hui
and Zak [18] also constructed an observer-based output feedback controller and
even a simpler controller with a static output feedback structure. Kwan [26, 27],
Hsu and Lizarralde [17] maintained the linear part as simple as possible, and instead
introduced dynamics into the nonlinear part, which allowed them to handle a larger
class of matched uncertainties. Edwards and Spurgeon [11], and Edwards et al. [12]
considered dynamic variable structure compensators. Especially, they systematically
developed a switching surface design method using a dynamic compensator.

The Output Feedback Discrete-time Sliding Mode control (ODSMC) obtained
attention recently [5, 32, 33]. Misawa [29] proposed the Observer-Based Sliding
Mode Control (OBDSMC) and applied to the position control of single-stage hard
disk drive actuators. The algorithm facilitates assignment of eigenvalues for the
system matrix which defines the tracking error dynamics inside the boundary layer.
Recently, there have been efforts to design the multirate or fast sampled Output
Feedback-Based Sliding Mode Control (MROFSMC) where the available output is
measured at a faster rate than the input actuation rate and by means of that the states
are obtained implicitly [21, 22]. The MROFSMC is applied to various applications
like Nuclear Reactor Control, Power Systems, Stepper Motor, Smart Structure, etc.

2.3.3 Multirate Output Feedback Based Sliding Mode Control

In the design of sliding mode controller based on the state feedabck methods,
observers are often used to estimate the state vector. The advantage of using an
observer is that the observer design can be separated from the controller design
and therefore the complete design is simplified. Nonetheless, the introduction of the
observer increases the additional complexity. Recently, much work is done on mul-
tirate output feedback-based control which guarantee the closed loop stability, while
retaining the structural simplicity of the static output feedback [4, 23, 25]. The term
multirate includes the situation wherein the system output is sampled at a faster rate
compared to the control input.

Consider the continuous-time linear time-invariant system

ẋ(t) = Ax(t) + Bu(t), (2.52)

y(t) = Cx(t), (2.53)

where x ∈ �n is the state variable, A ∈ �n×n , B ∈ �n×m is full rank, u ∈ �m

is the control input, C ∈ �p×n and y ∈ �p is the output. We assume that (A, B)

is completely controllable and m < n. Let, the system in Eqs. (2.52) and (2.53) be
discretized at τ sampling instant, then the discrete-time system is given by

x(k + 1) = Φτ x(k) + Γτ u(k), (2.54)

y(k) = Cτ x(k). (2.55)
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It has been shown byWerner [37] and Janardhanan et al. [21, 22] that the fast sampled
output data can be used for state estimation instead of using state observer. In this
process, the output measurement is done at N -times faster rate than the input updates
and they are related as Δ = τ/N where N ≥ v, the observability index of (Φτ , C).
To realize the fast sampled output system, a fictitious lifted system is constructed for
which Δ is considered to be the sampling time at which the output is measured.

Let the system in Eqs. (2.54) and (2.55) be sampled at Δ s is given as

x(k + 1)Δ = ΦΔx(k) + ΓΔu(k), (2.56)

y(k) = Cx(k). (2.57)

Definition 2.2 Observability Index: The observability index of a system (Φ, Γ, C)

is the smallest positive integer ν such that

Rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

C
CΦ
...

CΦν−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = Rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

C
CΦ
...

CΦν

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (2.58)

The relationship between the system parameters of the so-called ‘τ ’ system and
the ‘Δ’ system is given as

Φτ = ΦN
Δ ; Γτ =

N−1∑
i=1

Φ i
ΔΓΔ. (2.59)

Then, the lifted system with the output sampled at an interval Δ s and the control
input update interval τ s would be

x(k + 1) = Φτ x(k) + Γτ u(k), (2.60)

yk+1 = C0x(k) + D0u(k), (2.61)

where yk , C0 and D0 are defined in [37] as

yk =

⎡
⎢⎢⎢⎢⎢⎣

y((k − 1)τ )

y((k − 1)τ + Δ)

y((k − 1)τ + 2Δ)
...

y(kτ − Δ)

⎤
⎥⎥⎥⎥⎥⎦

; C0 =

⎡
⎢⎢⎢⎢⎢⎣

C
CΦΔ

CΦ2
Δ

...

CΦN−1
Δ

⎤
⎥⎥⎥⎥⎥⎦

; D0 =

⎡
⎢⎢⎢⎢⎢⎣

0
CΓΔ

C(ΦΔΓΔ + ΓΔ)
...

C
∑N−2

i=1 Φ i
ΔΓΔ

⎤
⎥⎥⎥⎥⎥⎦

(2.62)

From Eq. (2.61), we may write

x(k) = (CT
0 C0)

−1CT
0 (yk+1 − D0u(k)).
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Further,

x(k + 1) = Φτ [(CT
0 C0)

−1CT
0 (yk+1 − D0u(k))] + Γτ u(k),

= Φτ (C
T
0 C0)

−1CT
0 yk+1 +

(
Γτ − Φτ (C

T
0 C0)

−1CT
0 D0

)
u(k)

x(k + 1) = L y yk+1 + Luu(k), (2.63)

where

L y = Φτ (C
T
0 C0)

−1CT
0 ,

Lu = Γτ − Φτ (C
T
0 C0)

−1CT
0 D0.

Further from Eq. (2.63),

x(k) = L y yk + Luu(k − 1). (2.64)

Thus, the state x(k) can be expressed using fast sampled output stack and past
input. The state computation by fast sampled output measurement is better than the
conventional discrete-time state observer as it computes the states just in one sampling
instant [21] compared to discrete-time observer that takes at least ν instants (ν is the
observability index of the system). Moreover, it does not increase the order of the
overall system dimension and so reduces the complexity.

Using theGao’s reaching law (2.36), the state feedback control law for the discrete-
time LTI system of form (2.54) can be derived as

u(k) = −(CsΓτ )
−1((CsΦτ − Cs + qτCs)x(k) + ρτ sgn(Cs x(k))) (2.65)

The above state feedback control algorithm (2.65) can be converted into an out-
put feedback algorithm by the multirate output feedback. Substituting x(k) from
(2.64) into (2.65), the multirate output feedback-based sliding mode control law is
derived as

u(k) = Fy yk + Fuu(k − 1) − (CsΓτ )
−1ρτ sgn(Cs L y yk + Cs Luu(k − 1)), (2.66)

where

Fy = −(CsΓτ )
−1(CsΦτ − Cs + qτCs)L y,

Fu = −(CsΓτ )
−1(CsΦτ − Cs + qτCs)Lu,

L y = Γτ − L y D0,

Lu = Φτ (C
T
0 C0)

−1CT
0
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2.4 Conclusion

In this chapter, first we presented the basic concept of the continuous-time sliding
mode and variable structure control. It is evident that a discontinuous control in a
continuous time induces a sliding motion in some manifold of the state space. The
existence condition of the sliding mode and the stability of the system during sliding
mode is also discussed.Moreover, a designmethod for slidingmode control lawbased
on reaching law is presented. Due to thewide use of digital controllers, it is in demand
today to develop discrete-time sliding mode control. In this chapter, we presented
the evolution of discrete-time sliding mode along with various reaching laws for
the state-based discrete-time sliding mode. The output feedback-based discrete-time
sliding mode control strategy is also discussed. Lastly, the multirate output feedback
technique for state estimation and the multirate output feedback-based sliding mode
control design method are discussed.
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