Chapter 2
Objective Functions

Abstract The optimal design of a canal consists of minimization of an objective
function which is subjected to certain constraints. The known parameters are
flow discharge, longitudinal bed slope of canal, and the canal surface roughness.
There are various objective functions such as flow area, earthwork cost, lining
cost, seepage loss, evaporation loss, and their combinations. This chapter describes
geometric properties and seepage loss functions of commonly used channel sections
as well as computation of lining cost, earthwork cost, cost of water lost as seepage
and evaporation loss, and capitalized cost. A unification of all these costs results in
cost function of rigid boundary canals. A natural channel is a stream in equilibrium,
which is neither silting nor scouring over a period of time. Such a stable channel
develops a cross-sectional area of flow through natural processes of deposition and
scour. Using Lacey’s equations for stable channel geometry and using geometric
programming, an objective function for stable alluvial channels can be synthesized.
Thus, this chapter formulates objective functions for rigid boundary canals and
mobile boundary (natural) canals.

Keywords Natural channel e Stable channel ¢ Cost function ¢ Objective
function ¢ Annuity e Capitalization ¢ Seepage loss ¢ Evaporation loss e
Geometric properties * Lining cost * Earthwork cost ¢ Cost of water lost

A design problem, like a canal design, is an optimization problem where an
objective function is minimized subject to various constraints. In water resource
projects, this function is cost-benefit ratio. Here, as benefits are constant, it is
sufficient to minimize cost. The cost consists of capital costs and recurring costs.
Costs of land, excavation, and lining are capital costs, whereas cost maintenance
and water loss on account of seepage and evaporation are recurring costs. In this
book, the cost of land is not considered as it involves alignment problem involving
topography. Thus, the design of canal section is considered with known entities
being flow discharge, longitudinal canal bed slope, and the canal surface roughness.
As the general problem is an involved one, sometimes it is simplified by considering
the flow area being the objective function. Such a canal is a minimum area or
maximum velocity canal or best hydraulic section. The best hydraulic section has
the minimum flow area and flow perimeter for a given discharge but not necessarily
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10 2 Objective Functions

the most economical section. A network of canals represents a major cost item in
an irrigation project, and the economy of the canal network is vital. The maximum
economy is achieved by minimizing the cost of the canals. The design of minimum
cost irrigation canals involves minimization of the sum of earthwork cost which
varies with canal depth, cost of lining, and cost of water lost as seepage and
evaporation subject to uniform flow condition in the canal. Such minimum cost
canal design problem results in nonlinear objective function and nonlinear equality
constraint, making the problem hard to solve analytically. In the book, the earthwork
and the lining costs have been considered for the flow section only.

2.1 Flow Area

Figure 2.1 depicts commonly used canal sections. Triangular sections are generally
constructed for carrying small discharges. For a triangular section (Fig. 2.1a), the
flow area A is given by

A =my? (2.1.1)

where m = side slope and y, = normal depth (m). Rectangular sections are generally
constructed for moderate discharges. For a rectangular section of bed width b (m)
(see Fig. 2.1b), the flow area is

A = by, (2.1.2)

For carrying large discharges, rectangular sections are not preferred. This is on
account of stability of side slopes. Vertical side walls require large thickness to resist
the earth pressure. On the other hand, sloping side walls require less thickness. For

a trapezoidal section of bed width b and side slope m (see Fig. 2.1c), the flow area
is

For small discharges, semicircular sections are often adopted for irrigation
canals. For a circular section of diameter D (m) (see Fig. 2.1d), the flow area is

A =025D> [cos—l (1 =20,) =2 (1 = 25,) V/ia (1 = nn)] (2.1.4)
where 1, = y,/D. A power law section is described by

Y = |k, X|” (2.1.5)
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Fig. 2.1 Canal sections: (a) triangular, (b) rectangular, (c¢) trapezoidal, (d) circular, and (e)
parabolic

where X and Y = horizontal and vertical coordinates, respectively, as shown in
Fig. 2.1e, k, = coefficient, and p = exponent. For p = 1, the exponential section is a
triangle of side slope m = 1/k,; for p =2, it is a parabola of latus rectum l/kf,. For
p =00, Y =0 when |k,,X < 1| and Y = co when |k,X]| just exceeds unity. Thus, a
rectangle of bed width 2/k, is obtained. The width of water surface for the power
law section is given by

T =—yl/r (2.1.6)
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The area of the section for depth y, is given by
2 py,(,pH)/p

= 2.1.7
ky(p+1) ( )

For p=2 in Eq. (2.1.5), the power law section becomes a parabola having the
equation

Y =k X* (2.1.8)

This parabola has latus rectuma = 1/ k]%. The area of this section is given by

4977 4
A= = v Jav. 2.1.9
3kp 3yn ayn ( )

For p =0.5in Eq. (2.1.5), the power law section becomes an inverse parabola having
the equation

Y =/k,X (2.1.10)
This parabola has latus rectum a = k. The area of this section is given by

2 3 2 3
— 3]?1 — 3y; (2.1.11)
P

On the other hand, for p = 0o, the section gets converted into a rectangle of bed
width 2/k,. The area of this section is 2y,/k,.

2.2 Lining Cost

The lining cost depends on the extent of canal surface area to be lined and the type of
lining material to be used. Considering unit cost of lining (cost per unit surface area
covered) to be independent of depth of placement, the cost of lining C; (monetary
unit per unit length of canal, e.g., I/m) is expressed as

CL = CLP (221)

where ¢; = unit cost of lining (monetary unit per unit area, e.g., ¥/m?) and
P = channel perimeter (m). Table 2.1 lists the perimeter of various shapes of a canal
section. Once the perimeter is known, the following are the lining costs for various
sections:
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Table 2.1 Geometrical properties of canal sections

Section shape | Geometric elements

Flow perimeter Area of flow Depth of centroid of area
P A y
)] ) 3 “
Triangular 2ypa/1+ m? my? %
Rectangular | b + 2y, by, Z
2 3b+2
m
Trapezoidal | b+ 2y,+/1 + m? b+ my,) yn Jn —y”)
6 b 4+ my,
D? D [6sin2—3cosl—2sinl
Circular 0.5D% Y (% —sin®) < 2 = sinzﬁ 2
v | ,
Parabolic +1n(2/M 3n N aYn 5
+ V¥, |

where ¢ = 2 cos™! (1 — 27,,), wherein 1, = y,/D for circle and 5, = y,/a for parabola

CL =2cpyn m triangular section (2.2.2)

Cr =cr (b+2y,) rectangular section (2.2.3)
CL=cp (b + 2y, m) trapezoidal section (2.2.4)
C. =cyDcos ' (1 —2pn,) circular section (2.2.5)

C, = % [2,/;7,1 (14+4n,) +1n (2,/nn + 1+ 477,,)] parabolic section
(2.2.6)

where 71, = y,/D for circular section and y,/a for parabolic section.

2.3 Earthwork Cost

Earthwork in the form of cutting and/or filling along the canal alignment is required
for providing canal flow area. Earthwork cost is the major cost item for a canal
passing through hard/firm strata, where lining may not be required. Sometimes
canals are lined with low-cost lining materials, in which case the cost of the
earthwork is more significant than the cost of lining. The cost of earthwork depends
on the volume and depth of cut and fill. It also depends on the strata to be excavated
and the distance of haulage if required in transporting the soil materials. The cost
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function consists of earthwork cost of unit length of the canal. For a canal section
with the normal water surface at the average ground level as shown in Fig. 2.2, the
earthwork cost C, (monetary unit per unit length of canal, e.g., ¥/m) is given by

yi’l
C.=c.A+c / (yn—n)da = c. A+ C,/ (yn —1n) 28 dn (2.3.1)

Area 0

where c, = cost per unit volume of earthwork at ground level X/m?), c, = the
additional cost per unit volume of excavation per unit depth (¥/m*), n = vertical
ordinate, £ = half the width of excavation at the ordinate 1, dn = incremental ver-
tical ordinate, a = excavation area up to height 7, and da = incremental excavation
area. It was assumed in Eq. (2.3.1) that the cost per unit volume of excavation is
linear function of the depth of excavation. Integrating Eq. (2.3.1) by parts resulted
in

Yn
Ce=ceA+cila(yn—n)y" + c,/adn =c,A+c Ay (2.3.2)
0
where ¥y =depth (m) of the centroid of the area of excavation from the ground

surface. Table 2.1 lists A and y for triangular, rectangular, trapezoidal, circular, and
parabolic canal sections.

2.4 Annual Water Loss Cost

Annual cost of water loss per unit length of canal consists of costs of annual seepage
loss and annual evaporation loss from one meter length of the canal. In Sects. 2.4.1
and 2.4.2 given below, the water loss per second is described.
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2.4.1 Seepage Loss

The seepage loss from irrigation canals constitutes a substantial part of usable water.
According to the Indian Bureau of Standards (1980), the loss of water by seepage
from unlined canals in India generally varies from 0.3 to 7.0 m3/s per 10° m? of
wetted surface. Providing perfect lining can prevent seepage loss from canals, but
cracks in lining develop due to several reasons and performance of canal lining
deteriorates with time. An examination of canals by Wachyan and Rushton (1987)
indicated that even with the greatest care, the lining does not remain perfect. A well-
maintained canal with 99 % perfect lining reduces seepage about 30-40 % only
(Wachyan and Rushton 1987). Thus, significant seepage losses occur from a canal
even if it is lined. The seepage loss from canals is primarily governed by hydraulic
conductivity of the subsoil, canal geometry, and potential difference between the
canal and the aquifer underneath which in turn depends on the initial and boundary
conditions. Seepage losses are also influenced by clogging of the canal surfaces
depending on the suspended sediment content of the water and on the grain-size
distribution of the suspended sediment particles. The clogging process can decrease
the seepage discharge both through bottom and slopes. Thus, the seepage loss can
change within time, and under certain conditions, it can diminish. Therefore, the
seepage loss can be higher at the beginning of the canal operation and can be lower
after a few years of operation.

The steady seepage loss from an unlined or a cracked lined canal complies with
Darcy’s law. Swamee et al. (2000) expressed the analytic solutions of seepage loss
in the following simple form:

qs = kyn Fs (2.4.1)

where g, = seepage loss per unit length of canal (m?/s), k = hydraulic conductivity
of porous medium (m/s), and F; = seepage function, which is a function of channel
geometry and boundary condition. Depending upon the geometry of the flow
domain, one of the following boundary conditions may exist: (i) porous medium
underlain by an impermeable layer at a finite depth; (ii) porous medium underlain
by a drainage layer at a finite depth, and water table is above the top of the drainage
layer; (iii) porous medium underlain by a drainage layer at finite depth, and water
table is below the top of the drainage layer; (iv) water table at a finite depth in a
porous medium of infinite depth; and (v) porous medium of infinite depth in which
water table is at infinite depth or a drainage layer and water table are both at infinite
depth. Case (iii) and case (v) are important in canal design considering seepage.
Porous medium having infinite depth: Analytic solutions for the seepage function
for case (v) are available for known canal dimensions (Harr 1962; Morel-Seytoux
1964; Polubarinova-Kochina 1962). The analytical form of these solutions, which
contain improper integrals and unknown implicit state variables, is not convenient
in estimating seepage from the existing canals and in designing canals considering
seepage loss. These methods have been simplified using numerical methods for easy
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Fig. 2.3 Error diagram — Eq. (2.4.4)

computation of seepage function by Swamee et al. (2000). The simplified equations
are as follows:

13 13077 i
Fy = {[ﬂ A4-m]”+ @2m) } triangular section (2.4.2)

13
b \OT7
F={r@-m"" + (—) rectangular section (2.4.3)
Yn
o6 \ PRpsm
0.7740.462m O .6m
“T3F06m b\ 13+F06m
F, = ({[rr 4-m]" + (2m)1'3} ey (y_) )

trapezoidal section (2.4.4)

Figure 2.3 depicts the errors involved in Eq. (2.4.4) for computation of seepage from
a trapezoidal canal. A perusal of Fig. 2.3 shows the maximum error as 1.8 % for the
triangular section (b = 0). For the rectangular section (m = 0), the maximum error
is within 1 %. The error in the practical range is less than 0.9 % for the triangular
section (0.5<m<2.5), 0.5 % for the rectangular section (0.5 <b/y, <10), and
1.4 % for the trapezoidal section (0.5 <m <5 and 0.5 < b/y, < 10).

A very narrow and deep channel is called a slit. Solution for seepage loss from
a slit forms a particular case of the solutions given for triangular, rectangular, and
trapezoidal canals. For a slit, the width T at water surface approaches zero, i.e., the
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ratio 7/y, — 0, which means m — 0 for triangular section, b/y, — 0 for rectangular
channel, and both m — 0 and b/y, — 0 for a trapezoidal canal. With these conditions
Egs. (2.4.2), (2.4.3), and (2.4.4) give seepage function for a slit as

F=n(4—-m) (2.4.5)

which is near exact as the error is within 0.12 %, since the exact seepage function
for a slit (Chahar 2000; Swamee et al. 2001b) is

F, = 7n°/(4G) (2.4.6)

where G = Catalan’s constant. A strip is a reverse case of a slit, i.e., for a strip
b/y, — oo. This happens for a very wide and shallow channel. The seepage function
for a strip channel is given by (Swamee et al. 2001b)

b 16G
F,=—+ — 2.4.7)
Yn T

Since b/y, is very large in comparison to 16G/m2, Eq. (2.4.7) reduces to
Fs=b/y, (2.4.8)

Solution with limit m — oo in Eq. (2.4.2) or b/y— oo in Eq. (2.4.3) gives the
seepage function for a strip as given by Eq. (2.4.8).

The analytic solutions for seepage discharge from canals pertain to triangular,
rectangular, and trapezoidal sections which are polygonal sections. Apart from the
usual assumptions of homogeneity and isotropy of the conducting porous medium,
these solutions are mostly based on the assumption of an infinite depth drainage
layer. At infinite depth, the streamlines become vertical; hence, the seepage width
attains its potential (maximum) value, and seepage occurs under unit hydraulic
gradient.

For a circular section, Swamee and Kashyap (2001) gave the following equation
for seepage function:

—0.5
F, = n;‘§ [2 (' = 1) + 6.24n, " (n," — 1)_1'65}
(2.4.9)

_0.5) 2
+0.584[;7,;1 +3.550, (ot - 1)0'8] 05}

where 1, =y,/D. For power law section with p> 1, the following equation is
obtained (Swamee and Kashyap 2001):
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0.91p—0.14

0.7p+0.3 0.7pF0.3
0.91p—0.14

351 +g'?4 2

.91p—0.

Fy = [JT (4 — JT)] + (W (2410)
kp)’n

Similarly, for the exponent range 0.25 < p < 0.75, the following equation for F was

obtained:
20 -
1+08p

- —0.4p
+[1+(0.1+1.6p)¢>—°~251’ ] ”} 2.4.11)

2 -
F, = Ey’g p)/p

where ¢ = yn/kg/(l_p). It can be seen that for p = 1, Eq. (2.4.10) is converted to

> 13 0.77
F=[r(4-m] + (—) } (2.4.12)

kp

which is the same as Eq. (2.4.2). On the other hand, for p =00, Eq. (2.4.10) is
changed to

1.3

0.77 2 0.7
[r(4—-m)] + (k 5 ) } (2.4.13)
prn

F, =

which is the same as Eq. (2.4.3). Setting p =2 in Eq. (2.4.10), the parabolic section
yielded the following equation:

F,=n(4—m) +2\/z (2.4.14)
Y

Letting p =0.5 in Eq. (2.4.11), the inverse parabolic section yielded the following
equation:

) s _s 0.5 5 —0.2
Fo=2 (1+179(i)) +[1+0.9(i) } (2.4.15)
a Yn Yn

Drainage layer at a finite depth: Eqs. (2.4.2),(2.4.3),(2.4.4),(2.4.5),(2.4.6), (2.4.7),
(2.4.8), (2.4.9), (2.4.10), (2.4.11), (2.4.12), (2.4.13), (2.4.14), and (2.4.15) are
applicable for canals passing through a homogeneous and isotropic porous medium
of infinite extent. However, in most alluvial plains, the soil is stratified. In many
cases, highly permeable layers of sand and gravel underlie the top low permeable
layer of finite depth. In that case, the lower layer of sand and gravel acts as a free
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drainage layer for the top seepage layer. The seepage from a canal running through
such stratified strata is much more than that in homogeneous medium of very large
depth. The difference in quantity of seepage becomes appreciable when the drainage
layer lies at a depth less than twice the depth of water in the canal. Swamee et al.
(2001a) gave the following simple algebraic equations for the seepage function for
polygon canal sections underlain by a drainage layer at depth d (see Fig. 2.4):

0.107
1.81m" 18 4 2.1
P ( m-° 4+

9.35 3 72
anmw) ) et

triangular section (2.4.16)

0.42
.094

P (2.5(19/y,1)°-84 +0.45

2.38
3
(d/y _ 1)0.69 ) + |:(4JT - 7[2)0.77 + (b/yn)0-77]

rectangular section
(2.4.17)

F, =

2.22b+47.62my, +1.57bm>

0.93709 n
1.81[m1~3 + 1,432(%) ] + b+100my, )

1
PLY o

d —pip2 13 1.37%77ps » P3| 73
(y_n — 1) + {[(47r — %)+ (2m) ] + (y_n)
trapezoidal section

(2.4.18)
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where
2.38b + 7.48my, 0.318b 4+ 0.26my;, 14+ 0.6m
pp=——" pr= ; and pr=——
b+ 0.8my, 0.461b + my, 1.3 4 0.6m
(2.4.19)

On the other end, for shallow depth of drainage layer, Swamee and Kashyap (2004)
obtained the following equation for a circular channel:

(2.4.20)

O.87n-—0.08+1 6.25\ 0.16
[(d/yn) — 1] }

Fy = 77}1_1 ((nn Fsoo)é'zs + {

where F o, = seepage function for circular section with infinite depth of drainage
layer given by Eq. (2.4.9). Swamee and Kashyap (2004) gave the following equation
for seepage function for a parabolic section:

yﬁBO + (d - yn)4Boo

F, = ; (2.4.21)
y [+ d =)'
where
1.27 1.17 2.7 1.17
p = 2 21y (2.4.22)
(d - yn) ’
Boo =1 (4—1)y, +2/ay, (2.4.23)

Asd— o0, Eqgs. (2.4.16),(2.4.17),(2.4.18), (2.4.20), and (2.4.21) become functions
of canal geometry only and reduce to the seepage functions for canals passing
through a homogeneous porous medium of infinite depth. The drainage layer can
be assumed at an infinite depth when d > T + 3y,,.

2.4.2 Evaporation Loss

Evaporation loss depends on (1) the supply of energy to provide the latent heat of
vaporization and (2) the ability to transport the vapor away from the evaporating
surface, which in turn depends on the wind velocity over the surface and the
specific humidity gradient in the air above the water surface. A large number of
equations for estimating evaporative rate are available in the literature. A review
indicated that these equations fall into the following categories: (a) energy balance
equations, (b) mass transfer equations, and (c) combination of the two. The energy
balance equations require a variety of climatological data. The need of sophisticated
equipment for direct measurement of radiation, frequent temperature surveys for
heat storage, etc., make the method unattractive. On the other hand, the mass transfer
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equations are most convenient and useful for determining evaporation from flowing
canals. The mass transport-type equations are expressed as

E =(e;—eq) fov (2.4.24)

where E = evaporation discharge per unit free surface area, e; = saturation vapor
pressure of the air at the temperature of the water surface, e; = saturation vapor
pressure of the air at the dew point, and f,, = wind function. The difference between
the saturation vapor pressure of the air at the temperature of water surface and at the
dew point (e; —es) was given by Cuenca (1989) as

61078 17276, . 17.276, 0425
e;—eq =610.78 |exp| ————— | — Rj, exp | ——— 4.
s P\ 2373+ 0, P\ 33731 6,

where 0,, = water surface temperature in °C, 6, = mean air temperature in °C,
and R, =relative humidity expressed as fraction. The wind function for a flowing
channel in m/s per Pa was given by Fulford and Sturm (1984) as

fio =3.704 x 10711 (1 4 0.25u,) (2.4.26)

where u; = wind velocity in m/s at 2 m above the water surface. Combining Eqgs.
(2.4.24),(2.4.25), and (2.4.26), E in m/s is obtained as

17.276,, 17.276
E=2262x10"%(1 +0.25 — = * J_R — = 4
107 (1 4 0.25u2) [eXp (237.3 ¥ ew) hexp (237.3 + ea)}

(2.4.27)
Equation (2.4.27) shows that in the simplest form of mass transfer approach, E
is a function of the wind velocity over the evaporating surface, the water surface
temperature, the air temperature, and relative humidity of the air above the water
surface, though it may be affected by many other factors. Once E is known, the
evaporation loss from a canal can be expressed as

ge=ET (2.4.28)

where g, = evaporation discharge per unit length of canal (m?/s).

2.4.3 Annual Cost of Total Water Loss

Adding Eqgs. (2.4.1) and (2.4.28), the water loss per unit length of canal g, (m?/s)
becomes

¢w =ky,Fs + ET (2.4.29)
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The water loss m3/m/year is 60 x 60 x 24 x 365¢,, = 3.1536 x 10’¢g,,. Considering
¢, as the cost of 1 m? of water and using Eq. (2.4.29), the annual cost of water loss
(A,)is 3.1536 x 107¢,,q,,, thus

A, =3.1536 x 10¢,, (ky,F; + ET) (2.4.30)

It can be seen that whereas C; and C, are capital costs, A,, is an annual cost.

2.5 Unification of Costs

The costs of earthwork and lining are incurred at the time of construction of a canal
project, whereas the costs of the repair and maintenance of the canal have to be
incurred every year. A canal lining may last about 50-60 years. After the life of a
component, for example, canal lining, is over, it has to be replaced. The replacement
cost has also to be considered as an additional recurring cost. Thus, there are two
types of costs: (1) capital cost or the initial investment which has to be incurred for
commissioning of the project and (2) the recurring cost which has to be incurred
continuously for keeping the project in the operating condition.

These two types of costs cannot be simply added to find the overall cost. These
costs have to be brought to same units before they can be added. For combining
these costs, the methods generally used are the capitalization method and the annuity
method. These methods are described below.

2.5.1 Capitalization Method

In this method, the recurring costs are converted to capital costs. This method finds
out the amount of money to be kept in a bank yielding an annual interest equal to
the annual recurring cost. If an amount Cy is kept in a bank with an annual interest
rate of landing r per unit of money, the annual interest on the amount will be 7Cj.
Equating the annual interest to the annual recurring cost A,, the capitalized cost Cy
is obtained as
Cy= Ar (2.5.1)
B
A component of a canal network has a finite life 7;. The replacement cost Cg
has to be kept in a bank for 7}, year so that its interest is sufficient to get the new
component. If the original cost of a component is Cy, by selling the component after
Ty, year as a scrap, an amount «Cy is recovered, where a = salvage factor. Thus, the
net liability after 7 year is
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CN = (1 - Ol) C() (252)

On the other hand, the amount Cg with interest rate r yields the compound interest
I given by

I = {(1 4+ 1} Cr (2.5.3)

Equating I and Cy, the replacement cost is obtained as

l—a)C
R = ﬁ (2.5.4)

Denoting the annual maintenance factor as 8, the annual maintenance cost is given
by BCy. Using Eq. (2.5.1), the capitalized cost of maintenance C,,, works out to be

C
Cra = A (2.5.5)
r

Adding Cy, Cg, and C,,, the overall capitalized cost C, is obtained as

1-—
C= 14—+ 2]

2.5.6
+nt—1 r (220

Using Eqgs. (2.5.1) and (2.5.6), all types of costs can be capitalized to get the overall
cost of the project.

Example 2.1 Find the overall cost of canal lining considering scrap factor @ = 0.05,
maintenance factor § = 0.01, interest rate r = 0.05 IR/year, and life of the lining
T1, = 60 years.

Solution Using Eq. (2.5.6), the overall cost of lining is

1-005 00l
(1+0.05%—-1  0.05

CL=Cp |:1 + :| = Cro (140.053740.2) = 1.254Cyy

That is, the overall cost of lining is 1.254 times the initial cost.

2.5.2 Annuity Method

This method converts the capital costs into recurring costs. The capital investment
is assumed to be incurred by borrowing the money that has to be repaid in equal
annual installments throughout the life of the component. These installments are
paid along with the other recurring costs. The annual installments (called annuity)
can be combined with the recurring costs to find the overall annual investment.
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If annual installments A, for the system replacement are deposited in a bank up
to Ty, year, the first installment grows to 4,(1 + r)TL_l, the second installment to
A,(1 +r)™72_and so on. Thus, all the installments after 7}, year add to Cy given
by

Cy =4, [1 FA+r)+U+r) 4+ 1+ r)TL_l] (2.5.7)

Summing up the geometric series, one gets

1+ -1
:ArL

Cy (2.5.8)
r
Using Eqgs. (2.5.2) and (2.5.8), A, is obtained as
l—a)r
o _T) | (2.5.9)
14+r)yt—1
The annuity Ay for the initial investment is given by
A() = I‘C() (2510)
Adding up Ay, A,, and the annual maintenance cost $Cp, the annuity A is
1—
A :rc0[1+—f‘+ﬁ} 2.5.11)
1+r)yt—-1 r

Comparing Eqs. (2.5.6) and (2.5.10), it can be seen that the annuity is » times the
capitalized cost. Thus, one can use either annuity or the capitalization method.

2.5.3 Cost Function

Using Eq. (2.5.1), the annual cost of water loss is converted to the capitalized cost
of water loss C,, (3/m) as

3.1536 x 107¢,,
Cp = 2225 2 ky, Fy + ET) (25.12)
r

Adding Eqgs. (2.2.1), (2.3.1), and (2.5.12), the cost of canal per unit length C (Z/m)
is obtained as

C=C,+CL+C,=cA+c, AV +c P +3.1536 x 10’¢,, (ky, F;, + ET) /r
(2.5.13)



2.5 Unification of Costs

The following terms are further defined:

Therefore, Eq. (2.5.13) becomes

Cws = 3.1536 x 10kc,,/ r

cwe = 3.1536 x 10 Ec,, /1

C=cA+ CI'ILIy +cL P +cps Fs Yy +cyeT

and Eq. (2.2.12) converts to

C, =

wsVn F + CwET

25

(2.5.14)

(2.5.15)

(2.5.16)

(2.5.17)

As cplec,, c.lc,, and c,/c, have length dimension, they remain unaffected by the
monetary unit chosen. These ratios can be obtained for various types of linings,
soil strata, and climatic condition by using appropriate unit rates. Using “Schedule”
(1997) and “UP” (1992), the c;/c, and c./c, ratios were obtained for various types
of linings and soil strata. The ratios are listed in Table 2.2.

Table 2.2 Lining and earthwork cost coefficient

Types of
strata

€]
Ordinary
soil

Hard soil
Impure
lime
nodules
Dry shoal
with
shingle
Slush and
lahel

cr/c. (m)

Type of lining

Concrete tile

With LDPE Without

film film

100 200

(2) 3 |

12.75 13.02| 12.24

10.00 10.22| 9.60
8.90 9.10| 8.55
6.56 6.71| 6.30
6.40 6.54| 6.14

LDPE low density polyethylene

Brick tile

With LDPE | Without

film

100 1] 200

(&)
6.39

5.01
4.47

3.29

3.21

0)
6.67

5.23

4.66

3.43

3.35

film

O]
5.88

4.62
4.11

3.03

2.95

Brunt clay tile

With LDPE | Without

film

100 ] 200

®
6.08

4.77

4.25

3.13

3.05

®
6.35

4.99
4.44

3.27

3.19

film

10)
5.57

3.37
3.89

2.86

2.79

c./c, (m)

an
6.96

8.86
9.96

13.50

13.86
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2.6 Stable Channel Objective Function

A stable channel is a stream in equilibrium that is neither silting nor scouring over
a period of time. Obviously, such a stream has developed a cross-sectional area of
flow through natural processes of deposition and scour. Lacey (1930) gave a set of
empirical equations for flow area, flow perimeter, and bed slope. There has to be
an objective function whose minimization yields Lacey’s equations. Using Lacey’s
equations with geometric programming, Swamee (2000) synthesized the following
objective function Fg for stable alluvial channels, which is energy spent per unit
length of canal:

W=

_ __pgv'%d 0% —4 {[(s—l)g]z}»
Fe 3[(s—1>g1“/9A5/3R4/3+5'64X10 PEY Ad (2.6.1)

1
+5.27x 10—4pg{[<s—vll+d“}3d1.1Ao.6R

where Q =discharge in channel, p =mass density of water, g = gravitational
acceleration, s = specific gravity of bed material, R = A/P = hydraulic radius, and
d = bed material size expressed in m and v =kinematic viscosity of fluid. The
kinematic viscosity depends on the temperature of the fluid, which can be obtained
using the equation given by Swamee (2004):

—1
T 1.165
v =1.792 x 10—6[1 + (2—5) (2.6.2)

where T = the water temperature in degrees Celsius. The minimum energy per unit
length F 2 corresponding to Eq. (2.6.1) is (Swamee 2000)

1

. [(s—=Dgl'| " 56,56
Fr = 0.009023pg — d>’°Q (2.6.3)

For non-alluvial streams, the first term of Eq. (2.6.1), responsible for the flow
maintenance, will depend upon the corresponding resistance law. Thus, the general
form of the stable channel objective function is expressed as (Swamee 2000)

1
3

Ad

—Del?
Fg =pgQS, + 5.64 x 10_4pg§ M

1
“De?3)
+5.27><10‘%g{%} A" AR (2.6.4)
o
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where S, = stream bed slope. For river Brahmaputra, F Z is found to be (Swamee
et al. 2008)

1
_1 4) 18

F} =0.01011pg M d5/6Q5/6 (2.6.5)
v
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