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Fractional Programming Problems

Ram U. Verma

Abstract Based on the higher order hybrid (@, p, 1, {, 0)—invexities, first some
parametrically generalized sufficient efficiency conditions for multiobjective frac-
tional programming are developed and then efficient solutions to the multiobjective
fractional programming problems are established. Furthermore, the obtained results
on sufficient efficiency conditions are generalized to the case of the ¢ —efficient solu-
tions. The results thus obtained generalize and unify a wide spectrum of investigations
on the theory and applications to the multiobjective fractional programming based
on the hybrid (@, p, n, ¢, )—invexity frameworks.
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1 Introduction

Mangasarian [8] investigated second order duality for a conventional nonlinear
programming problem, where the approach is based on constructing a second
order dual problem by taking linear and quadratic approximations of the objec-
tive and constraint functions for an arbitrary but fixed point leading to the Wolfe
dual model for the approximated problem, while letting the fixed point to vary.
Recently, Verma [22] investigated a general framework for a class of (p, 1, 8)—invex
functions to examine some parametric sufficient efficiency constraints for multiob-
jective fractional programming problems leading to weakly ¢—efficient solutions.
Motivated by these research developments, we first introduce the higher order hybrid
(@, p, n, ¢, 0)—invexities, second, introduce some parametrically sufficient effi-
ciency conditions for multiobjective fractional programming, and finally, explore the
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efficient solutions to multiobjective fractional programming problems. The results
established in this paper, not only generalize and unify the results on general sufficient
efficiency conditions for multiobjective fractional programming problems based on
the hybrid invexity of functions, but also generalize second order invexity results in
more general settings.

We consider, based on the higher order hybrid (@, p, 1, ¢, 8)—invexities of func-
tions, the following multiobjective fractional programming problem:

P)
S0 £ o)
g1(x) &) T gpx)

Minimize (

subjecttox € O ={x € X : Hj(x) <0, j € {1,2,---,m}}, where X is an open
convex subset of )" (n-dimensional Euclidean space), f; and g; fori € {1, - - -, p}
and Hj for j € {1, ---, m} are real-valued functions defined on X such that f; (x) > 0,
gi(x) >0fori € {1,---, p} and for all x € Q. Here Q denotes the feasible set of
P).

Next, we observe that problem (P) is equivalent to the nonfractional programming
problem:
(P2)

Minimize (f] (x) = 2181(x), - -+, fp(x) — )»pgp(x))
subject to x € Q with

fi(x®) fa(x™) Tp(x™)
A=A, A2, -, Ap) = s y ,
( 72 p) (gl(x*) g2(x*) g,,(x*))

where x* is an efficient solution to (P).

General mathematical programming problems offer a wide range of applications to
other fields, such as applications to game theory, statistical analysis, engineering
design (including design of control systems, design of earthquake-resistant struc-
tures, digital filters, and electronic circuits), random graphs, boundary value prob-
lems, wavelet analysis, environmental protection planning, decision and management
sciences, optimal control problems, continuum mechanics, and others. Recently,
Pitea and Postolache [18] introduced and studied a new class of multitime multi-
objective variational problems for minimizing a vector of functionals of curvilinear
integral type relating to Mond-Weir-Zalmai type duality based on the notion of (o, b)-
quasiivexity. They also established some weak duality theorems showing the value
of the objective function of the primal cannot exceed the value of the dual. On the
other hand, there are accelerated advances on duality models for a class of multi-
objective control problems with generalized invexity, especially the work of Zhian
and Qingkai [41], where they have discussed the duality models for multiobjective
control problems using the generalized invexity. For more details on generalized
efficiency and efficiency results and applications, we recommend the reader [1-41].
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This submission is organized as follows: the introductory section deals with a brief
historical development for the multiobjective fractional mathematical programming,
while emphasizing the roles of the generalized invex functions. In Sect. 2, the hybrid
(@, p,n, ¢, 0)—invex functions of higher orders are introduced, and Sect.3 deals
with sufficient efficiency conditions leading to the solvability of the problem (P)
using the hybrid (@, p, n, ¢, 0)—invexities.

2 Hybrid Invexities

In this section, we introduce the notion of higher order (@, p, n, ¢, 8)—invexities,
which encompass most of the existing generalized invexities in the current literature.
Let X be an open convex subset of 9" (n-dimensional Euclidean space). Let (-, -)
denote the inner product, and let z € N". Suppose that f : X — N is a real-valued
twice continuously differentiable function defined on X, and that v f () and V2 f (y)
denote, respectively, the gradient and Hessian of f aty.

Definition 2.1 A twice differentiable function f : X — 9 is said to be hybrid
(@, p,n, £,0)—invex at x* of second order if there exists a function @ : R — N
such that foreachx € X, p : X x X > N, 1,0, : X x X —> N, and z € N",

1
<P(f(x) — f(x*)) > (V) + V2 F ("), n(x, X)) — §<V2f<x*>z, ¢(x, x%)
+ p(x, xH)16(x, x*) |12

Definition 2.2 A twice differentiable function f : X — 9 is said to be hybrid
(@, p, n, ¢, 0)—pseudo-invex at x* of second order if there exists a function @ :
N — Nsuchthatforeachx € X, p: X x X — N, n,£,0 : X x X - N", and
z e N,

1
(VS0 4 V2 F ()2, 6) = SV )2, £ )+l a0 2 P 2 0
= o(f0 - re) = 0.
Definition 2.3 A twice differentiable function f : X — N is said to be strictly
hybrid (@, p, n, ¢, 6)— pseudo-invex at x* of second order if there exists a function

DN — Nsuchthatforeachx € X, p: X x X - N, n,0 : X x X - RN"*, and
zeN",

1

(VF(™) + V2 £ ()2, n(x, x5) Z(sz(X*)z, 0, X))+ p (e, x)[00e, x)2 = 0

. qb(f(x) - f(x*)) -~ 0.

Definition 2.4 A twice differentiable function f : X — N is said to be prestrictly
hybrid (@, p, n, ¢, 6)—pseudo-invex at x* of second order if there exists a function
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DN — Nsuchthatforeachx € X, p: X x X —> N, n,¢,0 : X x X — R", and
zeN",

1
(VIG5 + V2200 0%) = (V2 F )2, 6 2]+ oG x )0 297 > 0

= o(f) - (M) 2 0.

Definition 2.5 A twice differentiable function f : X — 9 is said to be hybrid
(@, p, n, ¢, 0)—quasi-invex at x* of second order if there exists a function @ : RN —
M) suchthat foreachx € X, p: X x X —> N, n,¢,0 : X x X — RN, and z € N",

(f(x)—f(x9)) <0
1
= (V) + V202,00, x9) = S(V2F )z, €0, 1) + o, )1, 2917 < 0.
Definition 2.6 A twice differentiable function f : X — N is said to be strictly
hybrid (@, p, 1, ¢, 6)—quasi-invex at x* of second order if there exists a function
DN — Nsuchthatforeachx € X, p: X x X —> N, n,¢,0 : X x X — R", and
z € R",
P(f() = f() =0
1
= (V) + V2200 x9) = S(V2F )z, €0, x) + p (e )0 G, 2917 < 0.
Definition 2.7 A twice differentiable function f : X — N is said to be prestrictly
hybrid (@, p, n, ¢, ) —quasi-invex at x* of second order if there exists a function
@ N — Nsuchthatforeachx € X, p: X x X > N, n,¢,0 : X x X —> RN", and
z e N,
Q(f(x)— f(x¥)) <0

1
= (VL) + V22,10, x9) — (V)2 E0, 1)) + plx, x)10(x, x| < 0,

2

equivalently,

LV (e, £ )+ ple 6 )2 > 0

(VFOF) + V252, n(x, 1)) — 5!

= (f(x) — f(x)) = 0.

Definition 2.8 A point x* € Q is an efficient solution to (P) if there existsnox € Q

such that .
f 6 o
g&i(x) — gi(x*)




Higher Order Hybrid Invexity Frameworks ... 23

fix) fiGx™)

for some j € {1, - -, p}.
gix)  g;j(x®)

Next to this context, we have the following auxiliary problem:
(P%) )
minimizexe(fi(x) —Ag1(x), - -+, fr(x) — Apgp(x)),

subjecttox € Q,

where A; fori € {1, - - -, p} are parameters, and Ai = fiteD)

T gi()”

Example 2.1 Consider a twice differentiable function f : X — N such that there
exist functions @ : N — N, p: X x X > N, 1,0, : X x X — RN". Then f is
hybrid (@, p, 1, ¢, 0)—invex at x* of second order since for each x € X, and z € R",

1
@(f00) = F(&) 2 (V) + 3 VA2 0, x) + p e x)[00x, x|
Example 2.2 Consider a differentiable function f : X — N such that there exist

functions @ : N — N, p: X x X - N, n,0,¢ : X x X — R". Then f is hybrid
(@, p, n,0)—invex at x* of first order since for each x € X, and z € N",

(0 = FG) 2 (T 0 6) + plr 200, 32,

Next, we introduce the efficiency solvability conditions for (PA) problem.

Definition 2.9 A point x* € Q is an efficient solution to (PA) if there does not exist
an x € Q such that

Silx) — lgl(-x) <fl(x ) — lgl(x )Vi=1, P,

f](x) ]g](x) < fj(x ) — ]g](x ) for somej € {1, - - -, p},

where %; = f’(x ) fori =1, - - D

Next, we recall the followmg result (Verma [24]) that provides a set of necessary
efficiency conditions for problem (P) for developing some sufficient efficiency con-
ditions for the next section based on second order (@, p, 1, ¢, f)—invexities.

Theorem 2.1 [24] Let x* € F and \* = maxi<j<p f;i (x*)/gi(x™¥) for each i € p,
and let f; and g; be twice continuously differentiable at x* for each i € p. For each
J € q, let the function z — G (z,t) be twice continuously differentiable at x* for
allt € Tj, and for each k € r, let the function z — Hy(z, s) be twice continuously
differentiable at x* for all s € Si. If x* is an efficient solution of (P), if the second
order generalized Abadie constraint qualification holds at x*, and if for any critical
direction y, the set cone



24 R.U. Verma

{(VGj(x*, 0. (v, V3G (x*, t)y)) e T, j € g)

+ span{(VH(,5), (v, VG, 903)) 5 € Sk €1,

where f"j(x*) ={teT;:Gj(x* 1) =0}, is closed, then there exist u* € U =
{ueRP :u>0, Zle u; = 1} and integers vy and v* with 0 < v; < v* <n+1
such that there exist vy indices j,, with 1 < j, < q together with v points t™ €
Tj, (x*), m € vg, v* —vg indices ky, with 1 < k;, < r together with v* — v points
s™ € S, for m € v*\vg, and v* real numbers vy, with vy, > 0 for m € v§ with the
property that

P Vo
DUV i) = A (Ve )]+ D VaIVG, (%, ™)
i=1 m=1
.
+ D> Vi VH(x*, 5" =0, (2.1)
m=vj+1
%

s [ DUV AT = VR )] D v VAG, ()

i=1 m=1

+ D> v VEH(GR, s’")]y) >0, (2.2)
m=u(";+]
uf[fi(x*) = 2*gi(x")1 =0, iep, (2.3)

where v \ v is the complement of the set vy relative to the set v.

3 Sufficient Efficiency Conditions for Problem (P)

This section deals with some parametrically sufficient efficiency conditions for prob-
lem (P) under the hybrid frameworks for (@, p, 1, ¢, 6)—invexities. We begin with
real-valued functions E; (., x*, u*) and B; (., v) defined by

fi(x™)
8i(x*)

Ei(e ) = uil fi) = (255 )ai@l i € (1 p)

and
Bj(., V) = VjHj(x), ] = 1, s, M.
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Theorem 3.1 Let x* € Q, fi. g fori € {1+, p} with L3 > 0, gi(x*) > 0 and

Hj for j € {1, - - -, m} be twice continuously differentiable at x* € Q, and let there
existu* e U ={uei’:u>0, Elp:lui = 1} and v* € WY} such that

L A6 - (D g G4 B v e =0, )
. S
([ utvzsice) - via M D)z 2 0
i=1 1
= (3.2)
1 p
— ([ 2wt e - fE ; GO+ D )]z £ ) 2 0,
i=1 1
. (3.3)
and
v’;Hj(x*)=0, jell, -, m} (3.4)

Suppose, in addition, that any one of the following assumptions holds (for
p(x,x*) > 0):

(i) Ei(.;x*u*) Vi € {1,---, p} are hybrid (®, p,n, £, 0)—pseudo-invex at
x* with ®@) > 0 = a > 0, and Bi(.,v*) Vj e {l,- . m} are
hybrid (D, p, n, ¢, 0)—quasi-invex at x* for ® increasing and ®(0) = 0.

(ii) Ei(.;x*,u*) Vi € {1, .-, p} are prestrictly hybrid (D, p, n, ¢, 0)—pseudo-
invex at x* for ®(a) > 0= a > 0, and B;j(.,v*) Y j € {1, -- -, m} arestrictly
hybrid ((15, 0,1, ¢, 0)—quasi-invex at x* for ) increasing and 5(0) =0.

(iii) E;(.;x*,u*)Vi € {l, -, p} are prestrictly hybrid (®, p, n, ¢, 0)—quasi-invex
atx* for®(a) > 0= a > 0,and B;j(.,v*) ¥ j € {1, .-, m} are strictly hybrid
(QS, 0,1, ¢, 0)—quasi-invex at x* for d increasing and (15(0) =0.

(iv) Foreachi € {1,---, p}, fi is hybrid (D, p1, n,0)—invex and —g; is hybrid
(D, ¥, po, 1, 0)—invex at x* for ®(a) > 0 = a > 0, H;j(.,v*) Vj €
{1,-- -, m} is hybrid (D, p3, 1, 0)—quasi-invex at x* for @ increasing and
@(0) =0, andEm i *03(x, x*)+p*(x, x*) > 0for p* = lzluf(pl(x,x*)—i—

¢ (x*)pa(x, X)) andfor¢(x*) = i),
Then x* is an efficient solution to (P).

Proof 1If (i) holds, and if x € Q, then it follows from (3.1)—(3.3) that

(22wt fien) - (%) v & (]
i A )

gi(x*)

i=1
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1 ¢ 2 fl( ) 2
- §<Z”;k[v fi(x®z — (——)V7gi(x™z], ¢ (x, x )>
o1 gi(x™)
+ <Z;!1=1Vjf VH]'(X*) + Em IV*VZH (x )z, n(x, x )>

I
_ §<E;f1:1v7V2Hj(x*)z, ;(x,x*)> > 0. (3.5)

Since v* > 0, x € Q and (3.4) holds, we have
T ViHj(x) <0=X7_viH;(x"),
and in light of assumptions on CIS, we find
QS(Esnzlijj(x) - E;":lv;’ij(x*)) <0,

which applying the hybrid (®, 4, 1, ¢, §) —quasi-invexity of B (., vF)atx™, resultsin

<2’" VY H () 4 ST VR H ()2, n(x, x )>

1

— (B VR H ()2, e x) ) + e 0 X 0. (3.6)

It follows from (3.5) and (3.6) that

(22wt s ff ; ()]
L3 v - E ; &)z n(x, x)
i=1
1 2 *rv72 * f( ) *
- 5<§u,- (V2092 = (5 Vi ()2) £ )
> 50, X0, xH) 2 = —p(x, x)[0(x, x| (3.7)

Since p(x, x*) > 0, applying the hybrid (@, p, n, ¢, 6)—pseudo-invexity at x*
to (3.7) and assumptions on @, we have

ﬁ ﬁ *)])

p
(=il fitx ()<>] DITHEAC ()
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which implies

=i L) = (fl:gx*i)gi ()]
filx
=P A
> Ziqui Lfi(x” 7 (x ) D
=0.
Thus, we have
fi(x®)
S i) = (G—=2)gi ()] = 0. (3.8)
&i(x*)

Since u;" > Oforeachi € {1, ---, p}, we conclude that there does not existan x € Q

such that .
HCORY 10 NPV
gi(x) gi(x*)

i) fj(x*)) < 0 forsomej € {1,---, p}.
gix)  gi(x*)

Hence, x* is an efficient solution to (P).
Next, If (ii) holds, and if x € Q, then it follows from (3.1)—(3.3) that

<Efwﬂvﬁu>—<ﬁ§$>vguﬂ]

z RACS)
+ D uf V2 filx™)z = ( l( ))Vzgz(X*)z] n(x, x )>

i=1

1< ;
- "<Z“?W2fi(X*)z (fE ;)Vzg,(x )zl ¢ (x, x )>
i=1

2
+<2’" VY H (%) + B VR H ()2, (x, x)>

1
_ §<Z'}’:1v’;V2Hj(x*)z, ;(x,x*)> > 0. (3.9)

Since v* > 0, x € Q and (3.3) holds, we have

DL ViHj(x) < 0=X7_VviH;(x"),

which results (using assumptions on @) in

B (ZI Vi () = SILviH, () <0
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Now, in light of the strictly hybrid (@, p, 1, ¢, ) —quasi-invexity of B (v atx*®,
we find

<Zm lv v Hj(x )—|—< 1V7V2Hj(x*)z, n(x,x*)>

1

2<zm WVIVEH; (x)z, ¢ (x, x )>+,0(x )0, xZ < 0. (3.10)
It follows from (3.9) and (3.10) that

fi(x™)

e R

(B uitv i) = (

4 S
+ DIV fi = (LI V(e e, 1)

i=1 gi(x*)
1)< l
_§<Z”T[V2fi(x*)z fE ;)Vzgz(x*)z] (x,x*)>
i=l1
> A0 00, a7 > —p e )60, x|, (3.11)

As a result, since p(x, x*) > 0, applying the prestrictly hybrid (&, p, n, ¢, 0)—
pseudo-invexity at x* to (3.11) and assumptions on @, we have

ﬁ( ) filx
@ (B0 = (sl = B LA = (1 ) (@)]1) 20
which implies
=Ll — (’Cfﬁx*;)gi )]
> 2P uflfi(x*) - flE ;) i(x)]
=0.
Thus, we have
Pl fi(x )—(fl( *))8i(x)] >0. (3.12)
Since uf > Oforeachi € {1, ---, p}, we conclude that there does not existan x € Q
such that N
f@) SOy,

gi(x) gi(x®)

fi(x) (f,( )

) < Ofor somej € {1, -- -, p}.
gitx) gj(x*)
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Hence, x* is an efficient solution to (P).
The important aspect of the proof applying (iii) is that we use the equivalent form

for Definition 2.7 instead. Since B; (-, v;«) is strictly hybrid (43, 0, n, ¢, 0)—quasi-
invex at x* for @ increasing and <5(0) = 0, we have

<2'" VY H () + B vV H ()2, (x, x)>

1
— §<z;?;lvjv2H,(x*)z, {(x,x*)>+,5(x,x*)||9(x,x*)||2 <0. (3.13)

Next, applying (3.13)—(3.15), we arrive at

(=20 [vfz(x)—(f’ﬁ ) VsG]
E3 VR ) - fE; &)zl n, x)

i=1

_%<Zuf[vzfi(x*)z fix™)
i=1

oy Va0 c )

> p(x, xHN0x, x> —p(x, x*) 10 (x, x*) |2 (3.14)

At this stage, since E;(.; x*,u™) Vi € {1, - -, p} are prestrictly hybrid (&, p, n,
¢, 0)—quasi-invex at x* for @(a) > 0 = a > 0, we have

fan, £
e W= B UGN - G

@ (2w i) — ( )i (:)1) 2 0

which implies

52wt — L) 0o
&i(x*)
> 22 i) — g = o,
gi(x*)
Thus, we have i}
S uiLfi(x) = (f’(x*))g,- (x)]=0. (3.15)
gi(x*)
Since uf > Oforeachi € {1, ---, p}, we conclude that there does not existan x € Q
such that .
fi(x) (ﬁ(x)) ovi—1, ’.

gi(x) gi(x®)
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i) fiG)

) < Ofor somej € {1, - - -, p}.
gj(x)  gj(x*)

Hence, x* is an efficient solution to (P).
Finally, we prove using (iv) as follows: since x € Q, it follows that H;(x) <

H;(x*), which implies (5(Hj (x) — Hj(x*)) < 0. Then applying the hybrid
(@, p3, 1, ¢, 0)—quasi-invexity of H; at x* and v* € R, we have

<2;?;1v’; v Hj(x*) + 0 ViVRH ()2, (x, x*)>

;<2m WIVEH;(x)z, ¢ (x, x )>+,0(x X6, x> <0.  (3.16)

Since u* > 0 and gf’g:; > 0, it follows from the hybrid (@, p3, 1, ¢, 6)—invexity

assumptions that

P * : fl(X*) .

@ (S Ui — CDai)

= <1>(E” AL (0 — fi(xH)] = (ff(x*) )i (x) — gi(x*m)
gl(x )
> 2w {<vfl<x*>—(f’( 57 8()
14 * 2 * fl( ) 2 * *

+ 2P iV i ()7 — )V &Nz 0 X))

1 i
— (B WiV fi (M) — fix™) g (x")z, £(x, x))]

2 gi(x*)

+ 32w o1 (x, x) + ¢ () p2 (x, X0 (x, x|
(vt v Hy () 4 S0 VEVRH ()2 n(x, x )>
Lom w2 * .
— (PR H, ()2, ()
+ 32w o1 (x, x¥) + ¢ () p2 (x, x)O(x, x|
> (S vV5p3 (e, x%) + B i [ (x, x*) + ¢ (x*) pa(x, x D16 (x, x))?

= (27 Vi3 + p*(x, X0 (x, x|
Z 07

where ¢ (x*) = ZH5 and p* = B uf (o1 (x. x%) + ¢ (x*)pa(x, x)).
This implies that

& (SLuflfi) - f’() ()]) 20
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Next we consider the case when the functions are first-order differentiable,
Theorem 3.1 reduces to the result which is similar to the results of Zalmai ([35],
Theorems 3.1, 3.2), and Zalmai and Zhang [38].

Theorem 3.2 Forx™ € Q, let f;, g; fori € {1, ---, p} with ;’Ex*; >0,g&">0
and Hj for j € {1, - - -, m} be differentiable at x* € Q, and let there existu™ € U =

{ueNR? u>0, Zipzlui = 1} and v* € W} such that

fi(x®)
gi(x*)

(22019 £ = () v )14+ S v 7 Hy (), e, 49)) 2 0 (Bu17)
and
v’;Hj(x*)=0, jefl, -, m}. (3.18)

Suppose, in addition, that any one of the following assumptions holds (for
p(x, x*) > 0):

(i) Ei(.;x*,u*)Vie{l,- -, p}arefirst-order hybrid (®, p, n, 0)—pseudo-invex
at x* for P(a) =20=a=0, and Bj(.,v ) Vjefll,- - m} are first-order
hybrid (45 0, 1, 0)—quasi-invex at x*for & increasing and @(0) =0.

(ii) E;i(.;x*,u*) Vi € {1,---, p} are first-order hybridprestrictly (@, p, n,9)—
pseudo- mvexatx*for@(a)>0$a>0 and Bj(.,v*) V j e{l -, m}
are first-order strictly hybrid (D, p, 1, 0)—quasi-invex at x* for ® increasing
and @(0) = 0.

(iii) Ei(.;x*,u*) Vi € {1,---, p} are first-order prestrictly hybrid (d> 0,1,0)—
quasi-invex at x* @(a)>0:>a>0andB( v)VJG{l -,m} are
first-order strictly hybrid (@, p, n, 0)—quasi-invex at x* for @ increasing and
@(0) = 0.

(iv) Foreachi € {1,---, p}, fi is first-order hybrid (D, p1, 1, 0)—invex and —g;
is first-order hybrid (@, pa2, n, 0)—invex at x* for ®(a) > 0 = a > 0.

Hi(.,v) Yj e {1,-- -, m} is hybrid (@, p3, 0, 0)—quasi-invex at x*
and Em LV ,03(x x*) 4+ p*(x,x*) > 0 for @ increasing and ®(0) = O
o1 = B (01 (x, %) + ¢ () pa (x, x¥)) and for ¢ (x*) = LT

Then x* is an efficient solution to (P).

We observe that Theorem 3.1 can be further generalized to the case of the
e—efficient conditions based on the hybrid (@, p, n, {, 0)—invexity frameworks. As
a matter of fact, we generalize the € —efficient solvability conditions for problem (P)
based on the work of Verma [22], and Kim, Kim and Lee [6], where they have investi-
gated the e —efficiency as well as the weak e —efficiency conditions for multiobjective
fractional programming problems under constraint qualifications. We recall some
auxiliary concepts (for the hybrid (®, p, n, ¢, 0)—invexity) crucial to the problem
on hand.

Definition 3.1 A point x* € Q is an e¢—efficient solution to (P) if there does not
exist an x € Q such that
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fi@) _ fiteh o
—&Vi=1,---,p,
gi(x) ~ gl(x*)
. o
£i ) < FGx —gjforsomej € {1, -- -, p},
gi(x)  gj(x*)
where ¢;=(¢1, - - -, £p) iswithg; > Ofori =1,---, p.

For ¢ = 0, Definition 3.1 reduces to the case that x* € Q is an efficient solution
to (P).
Next, we start with real-valued functions E; (., x*, u*) and B; (., v) defined by

fi(x®)
gi(x*)

Ei(X,x*’u*) =u;lfi(x) — ( _Si)gi(x)], ief{l, - p}
and
Bj(‘vv*):ijHj(_x), ]: ]’...7m

Theorem 3.3 Letx™* € Q, fi, gifori € {1, -, p}with f; (x*) > g;g; (x™), gi (x*) >
Oand H; for j € {1, - - -, m} be twice continuously differentiable at x* € Q, and let
there existu® €¢ U = {u € RP : u > 0, Eipzlui = 1}, v e W} and z € " such
that

P WV fi(x*) — (fix:; e,-) Vg (] + S0ty Hix) =0, (3.19)

([ﬁ 925 - D v+ 3 H e Jentex0) 2 0,

- | - (3.20)

- {[Zl:u V2 i (%) — fﬁ ; —s,-)vzg,-(x*)]+iv}fv2H,-(x*)]z,;(x,x*)> >0,
; p

(321)

" VIH;(x*) =0, j e {1, m). (3.22)

Suppose, in addition, that any one of the following assumptions holds (for
p(x, x*) > 0):

(i) Ei(.;x*u*) Vi € {1,---, p} are hybrid (®, p, n,0)—pseudo-invex at x*
for ®(a) > 0 = a > 0, and B;(., v Vj e {1,-- -, m} arehybrid
(CIS, 0, n, 0)—quasi-invex at x* for é increasing and QS(O) =0.

(ii) Ei(.;x*,u®)Vie{l,---, p} areprestrictly hybrid (®, p, n, 0)—pseudo-invex
atx*forcb(a) >0=a>0andB;(.,v*)Vj€{l, -, m} arestrictly hybrid
(@, p, n, 0)—quasi-invex at x* for 45 increasing and 45(0) =0.



Higher Order Hybrid Invexity Frameworks ... 33

(iii) E;(.;x*,u*) Vi e{l,---, p} are prestrictly hybrid (D, p, n, 0)—quasi-invex
at x* Jfor ®(a) = 0 = a > 0, and Bj(., v*) Vjel{l,--., m} are strictly
hybrid (@, p, 1, 0)—quasi-invex at x*for & increasing and @ (0) = 0.

(iv) Foreachie {1, -, p}, fiishybrid (®, p1, n, 0)—invexand —g; is (P, p2, n, 0)—

invex at x* for¢(a)>0$a>0andH(v)V]e{l -, m}
is hybrid (@, p3, 1, 0)—quasi-invex at x* for ® mcreasmg and (D(O)

0 and E’" LV *03(x, x*) + p*(x,x*) > 0 for p* = izluf(,ol(x,x*) +
Bx™ )2 500, where §(x%) = Lod — .

Then x* is an e—efficient solution to (P).

Proof The proofs are similar to that of Theorem 3.1.

4 Concluding Remarks

We observe that the higher order hybrid (@, p, n, ¢, 8)— invexities can effectively
be applied generalizing/unifying the first-order sufficient efficiency condition results
[35], first-order parametric duality model results [36] as well as second order duality
model results (Zalmai [37]) on Hanson-Antczak-type generalized V-invex functions
in semi-infinite multiobjective fractional programming. Based on new duality mod-
els and suitable constraint structures, the weak, strong, and strict converse duality
theorems can be established using appropriate hybrid (@, p, n, {, 6)— invexities.

References

1. Ben-Israel, A., Mond, B.: What is the invexity? J. Aust. Math. Soc. Ser. B 28, 1-9 (1986)
2. Caiping L., Xinmin Y.: Generalized (p, 6, n)—invariant monotonicity and generalized
(p, 6, n)—invexity of non-differentiable functions. J. Inequal. Appl., Article ID # 393940,
p 16 (2009)
3. Hanson, M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550
(1981)
4. Jeyakumar, V.: Strong and weak invexity in mathematical programming. Methods Oper. Res.
55, 109-125 (1985)
5. Kawasaki, H.: Second-order necessary conditions of the Kuhn-Tucker type under new con-
straint qualifications. J. Optim. Theory Appl. 57(2), 253-264 (1988)
6. Kim, M.H., Kim, G.S., Lee, G.M.: On ¢—optimality conditions for multiobjective fractional
optimization problems, Fixed Point Theory Appl. 6 (2011). doi:10.1186/1687-1812-2011-6
7. Liu, J.C.: Second order duality for minimax programming. Utilitas Math. 56, 53—63 (1999)
8. Mangasarian, O.L.: Second- and higher-order duality theorems in nonlinear programming. J.
Math. Anal. Appl. 51, 607-620 (1975)
9. Mishra, S.K.: Second order generalized invexity and duality in mathematical programming.
Optimization 42, 51-69 (1997)
10. Mishra, S.K.: Second order symmetric duality in mathematical programming with F-convexity.
European J. Oper. Res. 127, 507-518 (2000)


http://dx.doi.org/10.1186/1687-1812-2011-6

34

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

R.U. Verma

Mishra, S.K., Rueda, N.G.: Higher-order generalized invexity and duality in mathematical
programming. J. Math. Anal. Appl. 247, 173-182 (2000)

Mishra, S.K., Rueda, N.G.: Second-order duality for nondifferentiable minimax programming
involving generalized type I functions. J. Optim. Theory Appl. 130, 477-486 (2006)

Mishra, S.K., Laha, V., Verma, R.U.: Generalized vector variational-like inequalities and
nonsmooth vector optimization of radially continuous functions. Adv. Nonlinear Variational
Inequal. 14(2), 1-18 (2011)

Mond, B., Weir, T.: Generalized convexity and higher-order duality, J. Math. Sci. 16-18 (1981—
1983), 74-94

Mond, B., Zhang, J.: Duality for multiobjective programming involving second-order V-invex
functions. In: Glover, M., Jeyakumar, V. (eds.) Proceedings of the Optimization Miniconference
II (B, pp. 89—100. University of New South Wales, Sydney, Australia (1995)

. Mond B., Zhang, J.: Higher order invexity and duality in mathematical programming. In:

Crouzeix, J. P, et al. (eds.) Generalized convexity, generalized monotonicity : recent results,
Kluwer Academic Publishers, Netherlands, 1998, pp. 357-372

Patel, R.B.: Second order duality in multiobjective fractional programming. Indian J. Math.
38,3946 (1997)

Pitea, A., Postolache, M.: Duality theorems for a new class of multitime multiobjective varia-
tional problems. J. Global Optim. 54, 47-58 (2012)

Srivastava, K.K., Govil, M.G.: Second order duality for multiobjective programming involving
(F, p, o)-type I functions. Opsearch 37, 316-326 (2000)

Verma, R.U.: Parametric duality models for multiobjective fractional programming based on
new generation hybrid invexities. J. Appl. Funct. Anal. 10(3—4), 234-253 (2015)

Verma, R.U.: Multiobjective fractional programming problems and second order generalized
hybrid invexity frameworks statistics. Optim. Inform. Comput. 2(4), 280-304 (2014)

Verma, R.U.: Weak ¢— efficiency conditions for multiobjective fractional programming. Appl.
Math. Comput. 219, 6819-6827 (2013)

Verma, R.U.: New ¢—optimality conditions for multiobjective fractional subset programming
problems. Trans. Math. Program. Appl. 1(1), 69-89 (2013)

Verma, R.U.: Second-order (@, 1, p, §)—invexities and parameter-free ¢—efficiency condi-
tions for multiobjective discrete minmax fractional programming problems. Adv. Nonlinear
Variational Inequal. 17(1), 27-46 (2014)

Yang, X.M.: Second order symmetric duality for nonlinear programs. Opsearch 32, 205-209
(1995)

Yang, X.M.: On second order symmetric duality in nondifferentiable multiobjective program-
ming. J. Ind. Manag. Optim. 5, 697-703 (2009)

Yang, X.M., Hou, S.H.: Second-order symmetric duality in multiobjective programming. Appl.
Math. Lett. 14, 587-592 (2001)

Yang, X.M., Teo, K.L., Yang, X.Q.: Higher-order generalized convexity and duality in nondif-
ferentiable multiobjective mathematical programming. J. Math. Anal. Appl. 29, 48-55 (2004)
Yang, X.M., Yang, X.Q., Teo, K.L.: Nondifferentiable second order symmetric duality in math-
ematical programming with F-convexity. European J. Oper. Res. 144, 554-559 (2003)

Yang, X.M., Yang, X.Q., Teo, K.L.: Huard type second-order converse duality for nonlinear
programming. Appl. Math. Lett. 18, 205-208 (2005)

Yang, X.M., Yang, X.Q., Teo, K.L.: Higher-order symmetric duality in multiobjective pro-
gramming with invexity. J. Ind. Manag. Optim. 4, 385-391 (2008)

Yang, X.M., Yang, X.Q., Teo, K.L., Hou, S.H.: Second order duality for nonlinear programming.
Indian J. Pure Appl. Math. 35, 699-708 (2004)

Yokoyama, K.: Epsilon approximate solutions for multiobjective programming problems. J.
Math. Anal. Appl. 203(1), 142-149 (1996)

Zalmai, G.J.: Global parametric sufficient optimality conditions for discrete minmax frac-
tional programming problems containing generalized (6, 1, p)-V-invex functions and arbitrary
norms. J. Appl. Math. Comput. 23(1-2), 1-23 (2007)



Higher Order Hybrid Invexity Frameworks ... 35

35.

36.

37.

38.

39.

40.

41.

Zalmai, G.J.: Hanson-Antczak-type generalized (o, B, y, &, 11, p, 6)-V-invex functions in semi-
infinite multiobjective fractional programming I : sufficient efficiency conditions. Adv. Non-
linear Variational Inequal. 16(1), 91-114 (2013)

Zalmai, G.J.: Hanson-Antczak-type generalized («, B, y, &, n, p, 6)-V-invex functions in semi-
infinite multiobjective fractional programming II : first-order parametric duality models. Adv.
Nonlinear Variational Inequal. 16(2), 61-90 (2013)

Zalmai, G.J.: Hanson-Antczak-type generalized (o, B, y, &, 11, p, 6)-V-invex functions in semi-
infinite multiobjective fractional programming, III: second-order parametric duality models.
Adv. Nonlinear Variational Inequal. 16(2), 91-126 (2013)

Zalmai, G.J., Zhang, Q.: Global nonparametric sufficient optimality conditions for semi-infinite
discrete minmax fractional programming problems involving generalized (p, 6)—invex func-
tions. Numer. Funct. Anal. Optim. 28(1-2), 173-209 (2007)

Zhang, J., Mond, B.: Second order b-invexity and duality in mathematical programming. Util-
itas Math. 50, 19-31 (1996)

Zhang, J., Mond, B.: Second order duality for multiobjective nonlinear programming involving
generalized convexity. In: Glover, B.M., Craven, B.D., Ralph, D. (eds.) Proceedings of the
Optimization Miniconference III , University of Ballarat, pp. 79-95, (1997)

Zhian, L., Qingkai, Y.: Duality for a class of multiobjective control problems with generalized
invexity. J. Math. Anal. Appl. 256, 446-461 (2001)



2 Springer
http://www.springer.com/978-81-322-2451-8

Mathematics and Computing

ICMC, Haldia, India, January 2015

Mohapatra, R.N.; Roy Chowdhury, D.; Giri, D. (Eds.)
2015, XX, 493 p. 95 illus., 44 illus. in color., Hardcover
ISBN: 978-B1-322-2451-8



	Higher Order Hybrid Invexity  Frameworks and Discrete Multiobjective  Fractional Programming Problems
	1 Introduction
	2 Hybrid Invexities
	3 Sufficient Efficiency Conditions for Problem (P)
	4 Concluding Remarks
	References


