
Chapter 2
Quantification of Diagnostic Information
from Electrocardiogram Signal: A Review

S. Dandapat, L.N. Sharma and R.K. Tripathy

Abstract Electrocardiogram (ECG) contains the information about the contraction
and relaxation of heart chambers. This diagnostic information will change due to var-
ious cardiovascular diseases. This information is used by a cardiologist for accurate
detection of various life-threatening cardiac disorders. ECG signals are subjected
to number of processing, for computer aided detection and localization of cardio-
vascular diseases. These processing schemes are categorized as filtering, synthesis,
compression and transmission. Quantifying diagnostic information from an ECG
signal in an efficient way, is always a challenging task in the area of signal process-
ing. This paper presents a review on state-of-art diagnostic information extraction
approaches and their applications in various ECG signal processing schemes such as
quality assessment and cardiac disease detection. Then, a new diagnostic measure
for multilead ECG (MECG) is proposed. The proposed diagnostic measure (MSD)
is defined as the difference between multivariate sample entropy values for original
and processed MECG signals. The MSD measure is evaluated over MECG com-
pression framework. Experiments are conducted over both normal and pathological
MECG from PTB database. The results demonstrate that the proposedMSDmeasure
is effective in quantifying diagnostic information in MECG. The MSD measure is
also compare with other measures such as WEDD, PRD and RMSE.
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2.1 Introduction

The cardiovascular system (CVS) consists of heart andbloodvessels [1]. The function
of heart is to provide oxygenated blood to whole body. The electrical activity of the
heart is coordinated by pacemaker cells. Pacemaker cells are specialized cardiac
myocytes [2]. These cells are having its own intrinsic peaks or firing rate. In heart,
each cell can act as pacemaker. Due to firing rate, there are four major kind of
pacemaker cells, that are responsible for electrical conduction in heart [2, 3]. These
are categorized as sino-atrial (SA) node, atrio-ventricular (AV) node, HIS bundle
and purkinje fibers. The firing of SA node, leads to atrial depolarization. After a
delay, the AV node fires and these intrinsic peaks act as intermediate to bring the
electrical activity from the upper chamber to lower chamber of heart. The HIS bundle
and purkinje fibers responsible for depolarization of the septum and the ventricles.
The re-polarization of myocardium is occurred after depolarization in the opposite
direction. Thebio-electrical activity of entire heart ismeasured throughECG[1, 2, 4].
Each heart beats in ECG consist of diagnostic features such as waveform amplitude
and interval. Figure2.1 shows the synthetic ECGmarkedwith the diagnostic features.
These features are examined by a cardiologist for accurate detection and localization
of cardiac disorders. The detail description of each of thesemorphological diagnostic
features are given as [1, 2].

• P Wave: It is a low amplitude clinical component present in ECG. The P-wave
gives the information about both left and right atrial contraction. Due the atrial
flutter and atrial fibrillation kind of cardiac arrhythmia the unordered nature of
P-wave occurs with a very high rate [2].

Fig. 2.1 Shows the synthetic ECG signal marked with morphological diagnostic features as wave-
form amplitude and interval [5]
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• QRS Complex: This clinical component present in ECG is due to ventricular
contraction. It is one of the important clinical feature for the evaluation of heart
rate [2].

• T Wave: This waveform occurred in ECG due to ventricular relaxation. The shape
of this waveform is one of the important characteristics to diagnose various cardiac
arrhythmia. The shape of T-wave will change due to hyperkalemia, hypokalemia,
hypercalcemia and myocardial infarction type of heart diseases [2].

• PR Segment: It is the time between the end of P-wave and the beginning of QRS
complex. This component is a iso-electric line andmainly corresponds to the delay,
after which the second pacemaker of heart (atrio-ventricular node) fires.

• RR Interval: In ECG the R-wave has highest amplitude among other clinical
components. The difference between R-wave locations of consecutive beats is
called as RR-interval. The RR-interval variation is one of the important feature for
diagnosis respiratory disorder, sleep apnea etc. [2].

• ST Segment: This clinical component is due to the end of ventricular contrac-
tion and beginning of ventricular relaxation. The depression and elevation of ST-
segment is the indicator of cardiac arrhythmia [2].

• QT Interval: This clinical component present in ECG is mainly due to the begin-
ning of ventricular contraction and end of ventricular relaxation. The relationship
between QT interval and RR interval is they are directly proportional. Due to
tachycardia the heart rate is more this implies the QT interval shortens. Similarly,
due to bradycardia the heart rate is less, and this results a longer QT interval [2].

• U Wave: This type of waveform seen in lead V2 and V3 and it is due to the delayed
relaxation of purkinje fibers [1, 2]. It is present in ECG, when the heart rate falls
below 60bpm [2].

The 12-lead or Multilead ECG (MECG) provides the spatial as well as temporal
information about cardiac rhythm. It is widely used in hospitals for diagnosis of car-
diac ailments [2]. These signals are recorded by placing 10 number of electrodes on
the surface of body. The MECG consists of uni-polar limb lead, bipolar limb leads
and precordial leads [6]. The unipolar and bipolar limb leads are derived from the
potentials recorded through the electrodes placed at right leg (RL), left arm (LA) and
right arm (RA) [2, 7]. The Anterior View (V1, V2, V3 and V4), Left lateral View (I,
aVL, V5 and V6) and Inferior View (II, III and aVF) of heart is seen from MECG
[2]. The cardiac ailments such as myocardial infarction, valvular disease, hypertro-
phy, myocarditis, bundle branch block, atrial flutter, atrial fibrillation, ventricular
fibrillation, ventricular tachycardia and cardiomyopathy are detected from MECG
[1, 2, 8]. The description of each of these cardiac arrhythmia are given below [2].

• Sinus Bradycardia—In this case all the beats in ECG are normal, RR-interval is
more and heart rate (HR) < 60beats/min.

• Sinus Tachycardia—It is occurred due physiological stress or exercise. Here, all
the beats are normal, RR-interval is less and HR >100beats/min.

• Sinus Arrhythmia—The HR increases due to inspiration and decreases due to
expiration. This type of arrhythmia particularly found in children [1].
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• Wandering Pacemaker—In this type of arrhythmia the impulse is originated
from various points of atria [1]. In ECG due to Wandering Pacemaker there is a
variation in P-wave polarity, PR-interval, PP-interval and RR-interval.

• Atrial Flutter—In this case the end of T-wave and beginning of P-wave disap-
pears, P-wave results in a circus movement inside atria with high rate of activation
between 160 to 200beats/min [1].

• Atrial Fibrillation—Impulse is having chaotic and random pathways in atria,
Baseline and ventricular depolarization are irregular with high rate of activation
between 250 to 300beats/min [1].

• Junctional Rhythm—In this arrhythmia the impulse is originated at AV node,
P-wave often inverted and may be under or after QRS complex [1].

• Premature Ventricular Contraction—In this case the origin of electrical con-
duction is in ventricular Muscle not the AV node, QRS-complex is abnormal and
longer than 0.1 s [1].

• Ventricular Tachycardia—Slower conduction in ischemic ventricular muscle
which leads to circular activation. this may cause a rapid, bizarre and wide QRS-
complexes with a rate of 120beats/min [2].

• Ventricular Fibrillation—Ventricular muscle contraction is irregular and inef-
fective of pumping blood. The ventricular fibrillation (VF) can be stops using
external defibrillator [2].

• Right Atrial Hypertrophy—It is due to the consequence of right atrial overload,
tricuspid valve disease and pulmonary valve disease [2]. Due to this arrhythmia
the amplitude of P-wave is greater than 0.25mv in Lead II, III and aVF.

• Left Atrial Hypertrophy—It is due to the consequence of right atrial overload
and mitral valve disease [2]. A notched P-wave and biphasic p-wave seen in lead
II lead V1 respectively with a negative amplitude >0.1mv.

• Right Ventricular Hypertrophy—It is the consequence of pulmonary valve
stenosis and pulmonary hypertension [2]. In ECG, a tall R-wave seen in Lead
V1 and V2 with amplitude >0.7mv, wide S-wave seen in lead V1 and V2, wide
R-wave seen in V5 and V6.

• Left Ventricular Hypertrophy—It is the consequence of left atrial overload,
mitral valve disease and aortic valve disease [2]. In MECG a tall R-wave in lead
I, V5, V6 and tall S-wave in lead III, V1 and V2 occurs.

• Anterior Myocardial Infarction—This type of MI is due to the occlusion in left
anterior descending artery [2]. Due to anterior infarction, the R-wave progression
occurred in precordial leads.

• Inferior Myocardial Infarction—This type of MI is due to the occlusion in right
coronary artery [2]. Due to inferior infraction, the Q-wave variation occurred in
lead II, III and aVF.

• Posterior Myocardial Infarction—This type of MI can be diagnosed by observ-
ing the reciprocal changes in the ECG at lead V1 [2].

• Lateral Myocardial Infarction—This type of MI is due to the occlusion in left
circumflex artery [2]. The ST-segment elevation occurs in lead I, aVL, V5 and V6.
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The pathological Q-wave formation in lead V6 is due to lateral myocardial Infarc-
tion.

• Hyperkalemia—This type of cardiac arrhythmia occurred due to the increase of
potassium ion concentration in blood [2]. In ECG due to hyperkalemia a peaked
T-wave and small p-wave occurs.

• Hypokalemia—Due to the decrease of potassium ion concentration in blood the
flattened or inverted T waves, ST depression and a wide PR interval occurs [2].
These changes are due to the consequence of hypokalemia.

2.2 ECG Quality Assessment Techniques: A Review

ECG signals are subjected to different processing for storage, transmission and
retrieval. The goal of distortion measures in ECG signal processing is to quantify the
loss of clinical information. There are two kind of distortion measures are used to
evaluate the quality of ECG signals [5]. These are subjective distortion measure and
objective distortion measure. In the following subsections the state-of-art distortion
measures and their limitations are briefly discussed.

2.2.1 Subjective Assessment

The subjective quality of ECG signals for clinical practice is evaluated by visual
inspection of morphological diagnostic features [8, 9]. The researchers and medical
experts judges the diagnostic quality of processed ECG signal by inspecting these
morphological diagnostic features. After inspection they assigns a score to each of
the morphological diagnostic feature. This score is defined as

MOSl =
∑Nc

c=1 Rc

Nc
(2.1)

where Nc corresponds to number of experts involved for investigating the morpho-
logical diagnostic features. Rc is the quality rating or score for lth morphological
diagnostic feature. The values of Rc are defined as 1-bad, 2-not bad, 3-good, 4-very
good and 5-excellent. For a ECG signal the mean opinion score (MOS) is defined as
the average of individual scores for lth morphological diagnostic feature. The MOS
rating is defined by

MOS =
∑N f

l=1 MOSl

N f
(2.2)

The percentage of difference between the MOS scores for original and processed
ECG signal is defined as the subjective distortion measure. The error measures for
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each morphological features are defined as

MOSerr
l = 5 − MOSl

5
× 100 (2.3)

The MOSerr
l corresponds to the subjective error measure for lth morphological diag-

nostic feature. For MOSerr
l evaluation the MOS score for original ECG diagnostic

features are assigned as excellent. The subjective distortion measures for ECG signal
is defined as

MOSerr = 5 − MOS

5
× 100 (2.4)

The subjective tests are time taking and cumbersomeprocesses.Due to this drawback,
the researchers develop objective distortion measures. The objective measures are
evaluated by comparing the diagnostic features in temporal and transformed domain
for original and processedECGsignals. The objectivemeasures are validated through
subjective tests. There are two kinds of objective measures reported from literature.
These are objective non-diagnostic and objective diagnostic measures.

2.2.2 Objective Non-diagnostic Distortion Measures

In this subsection, the non-diagnostic distortion measures, which are used to evalu-
ate quality of processed ECG signals are discussed. The mean square error (MSE)
is evaluated as the difference between the amplitude of original and the processed
ECG signals [10]. The processed signals are obtained due to various ECG process-
ing schemes as compression, transmission, enhancement and super-resolution ECG.
Considering a discrete time signal given by x(n) = {x(1), x(2), x(3), . . . , x(N )},
which consists of N number of samples. The processed signal is given as x̃(n) =
{̃x(1), x̃(2), x̃(3), . . . , x̃(N )}. The MSE between original and processed signal is
expressed as

MSE = 1

N

N∑

n=1

[x(n) − x̃(n)]2 (2.5)

In geometrical meaning, the MSE is defined as the euclidean distance between orig-
inal and processed ECG signals. There are number of morphological diagnostic
features embedded in ECG signal. Each of these features is having diagnostic impor-
tance. TheMSE is only evaluated by considering the amplitudes, so for non-diagnosis
regions (baseline in ECG) it exploits a large error. This large errormake the processed
ECG falls behind the clinical acceptable range. To overcome the drawbacks of MSE,
the normalized mean square error (NMSE) is used [4]. This measure is given as

NMSE =
∑N

n=1[x(n) − x̃(n)]2
∑N

n=1[x(n)]2 (2.6)
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The normalization is used to make the error measure independent of the amplitudes
of original ECG signal. As in ECG signal, the amplitudes are different for different
leads and subjects. As NMSE measure is independent of the amplitude, so it is
normally used as a good objective non-diagnostic distortion measures for various
applications.

The root mean square error (RMSE) has been used to evaluate quality of ECG
signals [11]. This measure is given as

RMSE =
√
√
√
√ 1

N

N∑

n=1

[x(n) − x̃(n)]2 (2.7)

The RMSE fails to quantify the distortion in local diagnostic regions. The normalized
root mean square error (NRMSE), is also used as objective diagnostic error measures
in different applications. It is given as

NRMSE =
√
√
√
√

∑N
n=1[x(n) − x̃(n)]2
∑N

n=1[x(n)]2 (2.8)

The percentage root mean square differences (PRD) is used to evaluate quality of
processed signal in almost all ECG compression and enhancement applications [12].
It is defined by

PRD1 =
√
√
√
√

∑N
n=1[x(n) − x̃(n)]2
∑N

n=1[x(n)]2 × 100 (2.9)

where x(n), x̃(n) are the original and processed ECG signals. PRD2 is also used
in various compression and enhancement techniques for evaluating the quality of
processed signals. This measure is evaluated after subtracting the baseline of 1024
and mean value from the original ECG signal. The PRD2 is given as

PRD2 =
√
√
√
√

∑N
n=1[x(n) − x̃(n)]2

∑N
n=1[x(n) − μ0 − 1024]2 × 100 (2.10)

where μ0 corresponds to the mean value of the original ECG signal. In some appli-
cations, the PRD3 is also used to evaluate the objective quality of processed ECG
signals. This PRD3 measure is given as

PRD3 =
√
√
√
√

∑N
n=1[x(n) − x̃(n)]2

∑N
n=1[x(n) − 1024]2 × 100 (2.11)
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The PRD1value is found to lowest fromPRD2 and PRD3 for evaluating the quality of
processed ECG signal. The ECG signal with low PRD value not necessarily provide
better diagnostic quality. For the ECG signal x(n)with fluctuating baseline, and high
standard deviation, the PRD will be artificially lower [8]. The PRD and other similar
type of error measures have the limitations to evaluate the diagnostic quality of ECG
signals [9].

Signal to noise ratio (SNR) has been used as a objective non-diagnostic distor-
tion measure to evaluate the performance of ECG compression technique [13]. This
measure is given as

SNR = 10 log10

( ∑N
n=1[x(n) − μ0]2

∑N
n=1[x(n) − x̃(n)]2

)

(2.12)

The SNR value is high at the high activity regions of interest as compared to other
regions [9].

The normalized cross-correlation (NCC) measure has been used to evaluate the
objective quality of ECG signals [14]. The NCC measure defines the similarity
between original and processed ECG signals and it is given by

NCC =
1
N

∑N
n=1 [x(n) − μ0] ∑N

n=1 [x̃(n) − μr ]
√

1
N

∑N
n=1 [x(n) − μ0]2

√
1
N

∑N
n=1 [x̃(n) − μr ]2

(2.13)

The μ0 and μr corresponds to the mean values of both original signal and processed
ECG signal. The NCC measure is used to find the similarity in local waves between
original and processed ECG signal.

The percentage area difference (PAD) based objective non-diagnostic distortion
measure has been used to evaluate the quality of ECG signal in [15]. This distortion
measure is computed by considering the difference in the area enclosed between the
original and the processed ECG signals. The PAD measure is given as

PAD =
∣
∣
∣
∫ t f

ti
y(t) − ∫ t f

ti
yr (t)

∣
∣
∣

(ti − t f )(ymax − ymin)
× 100 (2.14)

The ti and t f corresponds to the initial and final time instants of the segment, ymax

and ymin are the maximum and minimum values in the original ECG signal. The
numerator term correspond to the absolute error in terms of area difference between
the original and processed ECG signal. The denominator is used as a normalization
factor for making the distortion measure independent of area.

The maximum amplitude error (MAX) has been used as a distortion measure in
ECG compression technique [16]. This measure can quantify the local distortion in
ECG signal. This measure is given as
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MAXi = Nci
max
n=1

{|x(n) − x̃(n)|} (2.15)

where, Nci corresponds to number of samples in i th cycle.
Similarly, the normalized maximum amplitude error (NMAX) was used for quan-

tifying distortion in [9]. This measure is given as

NMAXi = maxNci
n=1{|x(n) − x̃(n)|}

maxNci
n=1{x(n)} − minNci

n=1{x(n)} (2.16)

The normalization is done tomake error independent of amplitude value. The average
ofNMAXmeasure for entire ECGsignal is evaluated by averaging over all the cycles.

The objective non-diagnostic distortion measures have limitations to quantify the
local distortions in the ECG signals. The Standard error (StdErr) has been used as
objective non-diagnostic measure for evaluating the quality ECG signals [9]. The
StdErr is given by

StdErr =
√
√
√
√ 1

Nc − 1

Nc∑

n=1

[x(n) − x̃(n)]2 (2.17)

StdErr is similar to RMSE, where the denominator term is Nc instead of Nc − 1.

2.2.3 Objective Diagnostic Distortion Measures

Due to the drawbacks of non-diagnostic distortionmeasures for evaluating the quality
of ECG signal, the objective diagnostic distortion measures are used. In this subsec-
tion, the objective diagnostic measures for ECG signals reported from literature are
also briefly discussed.

Chen and Itoh proposed an objective diagnostic distortion measure for evaluating
the quality of ECG signal [14]. The measure is the weighted PRD between clinical
diagnostic features of original and processed ECG signals. It is given as

WPRD =
√

∑M
k=1 wkγk

σ
(2.18)

where wk are the weights, γk is the MSE of clinical diagnostic features as P-wave,
Q-wave, QRS-wave and ST-wave for original and processed ECG signals. The σ cor-
responds to the power of original ECG signal. The weights are assigned according to
the clinical importance of diagnostic features. As per the example, the higher weight
is given to ST-segment and T-wave and QRS amplitudes due to their importance in
the diagnosis of cardiac arrhythmia.
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Zigel and his group [17] proposed a objective diagnostic distortion measure for
evaluating the quality of processed ECG signal. They extracted sixteen clinical mor-
phological features from both original and processed ECG signals and define the
distortion measure as:

WDD(β, β̃) = ΔβT · w

tr [w] · Δβ × 100 (2.19)

where β, β̃ corresponds to the clinical feature vectors corresponding to original
and processed signal. The ‘w’ corresponds to the weight value for the respective
morphological features. Theweights are assigned based on the diagnostic importance
of the morphological features. The limitations of both WPRD and WDD measures
are selection of optimal weights and identification of ‘PQRST ’ points for evaluating
the diagnostic features in ECG signal.

The wavelet based distortion measures overcome the limitations in WPRD and
WDD by assigning the weights through different parameters as energy and entropy.
Al-Fahoum proposed an objective diagnostic distortion measure for evaluating the
quality of compressed ECG signal [18]. In thewavelet domain, the clinical diagnostic
features are captured through approximation and detail coefficients. The distortion
measure is defined as the weighted percentage root mean square difference between
the wavelet coefficients of original and processed ECG Signals.

WWPRD =
L+1∑

j=1

w j WPRD j (2.20)

where, L corresponds to the number of decomposition levels, w j corresponds to
the weight of the j th subband and WPRD j is the PRD value of the j th wavelet
coefficients in the subband. In this measure the weights are computed as the ratio of
sum of the absolute value of wavelet coefficients within that sub-band to the sum of
absolute value of wavelet coefficients in all sub-bands.

Wavelet Energy-based Diagnostic Distortion (WEDD)measure is proposed in [9]
to assess the quality of compressed signal in ECG data compression. WEDD was
evaluated from the wavelet coefficients of the original and processed ECG signal.
The WEDD measure is given as

WEDD =
M+1∑

j=1

w
′
j WPRD j (2.21)

where w
′
j is the weight calculated based on energy due to wavelet coefficients in

sub-bands defined by

w
′
j =

∑N j
k=1 w2

( j,k)
∑M+1

j=1
∑N j

k=1 w2
( j,k)

(2.22)
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The errors in the wavelet coefficients is given as:

WPRD =
√
√
√
√

∑N j
k=1(w j,k − w̃ j,k)2

∑N j
k=1 w2

j,k

× 100 (2.23)

where w j,k and w̃ j,k are the wavelet coefficients for original and processed ECG
signals and N j is the number of sub-band wavelet coefficients at j level of decom-
position.

The multiscale entropy based PRD objective diagnostic distortion measure is
proposed in [19]. The PRD between the approximation and detail subband wavelet
coefficients of original and processed ECG signals is evaluated and the weights are
assigned as the multiscale entropy values of each sub-bands. The MSEPRDmeasure
is given as

MSEWPRD = wAL ×
⎛

⎝

√
√
√
√

∑NAL
k=1(AL(k) − ÃL(k))2

∑NAL
k=1 AL(k)2

× 100

⎞

⎠

+
L∑

j=1

wDj ×
⎛

⎝

√
√
√
√

∑NDl
k=1(D j (k) − D̃ j (k))2

∑NDj
k=1 D j (k)2

× 100

⎞

⎠ (2.24)

where wAL and wDj are the weights as multiscale entropy values for Lth approxima-
tion and Jth detail wavelet sub-bands. The multiscale entropy values are defined by

Hj = −Ῡ j log(Ῡ j ) and Ῡ j = Ē j

Ētot
. The multiscale subband energy at j th resolution

level and total sub-band energy is given as Ē j = 1
K j

∑K j
k=1 |C j (k)|2, C j (k) is the

wavelet coefficients, j ∈ (1, 2, . . . , J + 1) and Ētot = ∑J+1
j=1 Ē j .

The wavelet energy weighted PRD (WEWPRD) measure is proposed in [20] to
evaluate the quality of ECG signal. It is computed as the sum of weighted error
energies due to wavelet coefficients of original and processed ECG signals. The
weights for the approximation and detail sub-bands are given as

w =
[

E A j

Et
,

ED j

Et
, . . . . . . . . . ,

E A1

Et

]

(2.25)

The wavelet energy PRD is given as

WEPRD =
⎡

⎣

√
Eerr

A j

E A j

× 100,

√
Eerr

D j

ED j

× 100, . . . . . . ,

√
Eerr

D1

ED1

× 100

⎤

⎦ (2.26)
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where Eerr
A j

= ∑NA j
k=1 (A j (k) − ˜A j (k))2 and Eerr

D j
= ∑ND j

k=1 (D j (k) − ˜D j (k))2 are
wavelet error energies in approximation and detail sub-bands. The WEWPRD mea-
sure is given as

WEWPRD = wT WEPRD (2.27)

The wavelet based methods are found to be effective measures in different applica-
tions and well correlated with subjective assessment.

2.3 ECG Feature Extraction for Disease Detection: A Review

Extracting diagnostic information from normal and pathological ECG signals for
detection and classification of cardiovascular diseases have been an active area of
research from decades. There are two type of methods used for quantifying diag-
nostic information from ECG signals. These are direct and indirect methods. The
direct method corresponds to the visual inspection of local wave-forms as P-wave,
QRS-complex and T-wave amplitudes and duration from ECG. The cardiologist
investigate these features for detection and localization of cardiac arrhythmia. On
the other hand, the indirect method corresponds to the use of various signal process-
ing and machine learning techniques for detection and localization of cardiovascular
diseases. There are number of signal processing techniques like heart rate variability
analysis [21–25], discrete and continuous wavelet transform based analysis [26, 27],
auto-regressive model coefficients [28], discrete cosine transform coefficients [29],
principal component analysis [30, 31], linear discriminant analysis [32], independent
component analysis [33], polynomial regression coefficients [34] etc. are reported in
literature for extracting clinical diagnostic features from ECG for arrhythmia detec-
tion and classification. The detail description of each of these diagnostic information
extraction methods are given below.

The heart rate variability features are widely used in applications like cardiovas-
cular disease detection [21], diabetes diagnosis from ECG [22], prognosis of cardiac
risk [23], identifying fatigue in elite athletes [24], monitoring sleep apnea from ECG
[25] etc. The trace of RR interval with respect to number of beats is termed as heart
rate signal. This heart rate signal is subjected to statistical, frequency domain and
non-linear analysis for getting the HRV based features. The time domain HRV fea-
tures are mean of RR-intervals (RRm), standard deviation of RR-interval (RRstd),
mean of heart rates (HRm) and standard deviation of heart rates (HRstd), RMSSD,
SDSD, NN50, PNN50 and HRV triangular index. These features are given as

RRm =
∑N

i=1 RR(i)

N
(2.28)

RRstd =
√

∑N
i=1(RR(i) − RRm)2

N
(2.29)
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HRm =
∑N

i=1 HR(i)

N
(2.30)

HRstd =
√

∑N
i=1(HR(i) − HRm)2

N
(2.31)

where HR(i) = 60
RR(i) called as heart rate time series. RMSSD is the square root of

mean of square difference between adjacent RR-intervals and given by

RMSSD =
√

∑N
i=1(RR(i + 1) − RR(i))2

N
(2.32)

Similarly SDSD feature is the standard deviation of difference between adjacent
RR-intervals and given by

SDSD =
∑N

i=1(RRdiff(i) − R̃Rdiff)

N
(2.33)

whereRRdiff(i) = (RR(i +1)−RR(i)) and R̃Rdiff =
∑N

i=1(RR(i+1)−RR(i))
N . The PNN50

feature is evaluated by identifying the RR-interval difference more than 50ms. The
PNN50 is given as

PNN50 =
∑N

i=1((RR(i + 1) − RR(i)) > 50ms)
∑N

i=1 RRdiff(i)
(2.34)

The frequency domain information of heart rate signals are evaluated using auto-
regressive model based spectral analysis, discrete Fourier transform (DFT), short
time fourier transform and wavelet transform based analysis. The high frequency
band (0.15–0.4Hz) of heart rate signal is related to parasympathetic activity and low
frequency band (0.04–0.15Hz) corresponds to sympathetic activity. The total power
in low frequency (LF) band, high frequency (HF) band along with the power spectral
density ratio in LF to HF band (LF/HF) are used as frequency domain HRV features.
The non-linear HRV features are obtained from the Poincare plot. The RR(i + 1) are
plotted as a function of RR(i). The non-linear features SD1 and SD2 are obtained
from this plot as the standard deviation of the distance of RR(i) points to the lines
y = x and y = −x + 2 × RRm . Where y and x are termed as RR(i + 1) and RR(i).
RRm is the mean value of heart rate signal. Although HRV analysis is found to be
a better information extraction technique from ECG signal for detection of cardiac
diseases and other applications, but it has some limitations. HRV analysis doesn’t not
give any information about local waveform variations like chaotic nature of P-wave
in atrial fibrillation, rather it only evaluate the RR-interval variations.
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Banerjee and Mitra proposed a cross wavelet based technique for extracting diag-
nostic information from ECG signals [26]. The wavelet cross spectrum (WCS) and
wavelet coherence (WCOH) metrics between template ECG (Normal beat) and
abnormal ECG beats are evaluated. Further, these metrics are used to investigate
the variations in both QRS-complex and T-wave regions for pathological ECG beats.
The cross wavelet coefficients are computed as

W XY = W X W Y∗ (2.35)

where W XY corresponds to cross wavelet coefficients. The W X and W Y are wavelet
coefficients for x(n) and y(n) respectively. The x(n) and y(n) are normal and abnor-
mal beats segmented from ECG time series. The WCS is evaluated as the square of
cross wavelet coefficients and it is given as

WCS(s, t) =
∣
∣
∣W XY

∣
∣
∣
2

(2.36)

The wavelet coherence (WCOH) of x(n) and y(n) are given as

WCOH(s, t) =
∣
∣W XY

∣
∣2

∣
∣W X

∣
∣2 .

∣
∣W Y

∣
∣2

(2.37)

The sum of WCS and WCOH for different morphological features (QT, QRS, ST)
are given by

sum WCS(s, t) =
s2∑

s=s1

t2∑

t=t1

WCS(s, t) (2.38)

sum WCOH(s, t) =
s2∑

s=s1

t2∑

t=t1

WCOH(s, t) (2.39)

The wavelet based feature extraction method for classification of myocardial infarc-
tion (MI) was proposed in [27]. The discrete wavelet transform grossly segments the
clinical component present in ECG into both approximation and detail coefficients.
The energy and entropy due to these wavelet coefficients are evaluated as

Em =
∑Nm

j=1 W 2
m,n

Nm
(2.40)

Ea
m =

∑NM
j=1 S2

M,n

NM
(2.41)
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The Wm,n , m ∈ (1, 2, . . . , M) and SM,n are detail and approximation wavelet coeffi-
cients at levelM. The probability of detail pm ,m ∈ (1, 2, . . . , M) and approximation
pM wavelet sub-bands are given as

pm = Ed
m

∑M
m=1 Ed

m + Ea
m

(2.42)

pM = Ea
M

∑M
m=1 Ed

m + Ea
m

(2.43)

The entropy is given as

H = −
M∑

i=1

pi log2 pi (2.44)

The entropy and energy based features are extracted from 2282 normal and 718
myocardial infarction pathology based ECG beats. A threshold based classifier has
been used for detection of myocardial Infarction.

The DWT+PCA, DWT+LDA and DWT+ICA based diagnostic feature extrac-
tion and beat classification approaches from ECG signals have been proposed in
[32, 33]. Initially, the QRS-complex is detected using pan-tomkin’s algorithm [35].
After R-point detection, each ECG beats are decomposed into approximation and
detail coefficients by using discrete wavelet transform. The PCA, LDA and ICA
are used for dimension reduction. The first six components of both approximation
and detail coefficients in PCA, ICA and LDA domain are used as diagnostic feature
vectors. Further these features are given to both probabilistic neural network and
least square support vector machine (LS-SVM) classifier for detection of different
cardiac arrhythmia. The combination of discrete cosine transform (DCT) and PCA
have been used to extract the diagnostic features from ECG beats [29]. The DCT is
applied over ECG beats and the first few coefficients are selected. The co-variance
matrix is evaluated for DCT domain signal and then the PCA is used to select first
12 principal components as feature vector. Both probabilistic neural network (PNN)
and support vector machine are used for detection and classification of different car-
diac arrhythmia. Sun et al. proposed a method for detection of myocardial infarction
based on ST-segment analysis [34]. First, the R, S and T points are detected based
on derivative based algorithm. Then, the 200 samples from each ST-segment along
each lead heart beats of MECG are segmented. A fifth order polynomial curve fitting
is used over those 200 samples along each beats and the six polynomial coefficients
are used as feature vectors. A total of 72 dimensional polynomial coefficient along
each lead of MECG, RR-intervals and ST-segment width to height ratio as features
and multi instance learning as classifier is used for MI detection. The principal com-
ponent analysis and kernel principal component analysis based analysis of ECG
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signal for detection of respiratory disorder were proposed in [30, 31]. The principal
components are selected based on statistical test and these values are used as diag-
nostic features for detection of respiratory disorder and other cardiac arrhythmia.
Dingfei et al. used the Auto-regressive (AR) model coefficients as diagnostic fea-
tures to classify normal sinus rhythm (NSR) and various cardiac arrhythmia [28]. AR
model coefficients are evaluated from five abnormal ECG beats such as ventricular
tachycardia (VT) ventricular fibrillation (VF), atrial premature contraction (APC),
premature ventricular contraction (PVC), supraventricular tachycardia (SVT) and
normal ECG beat. The decision tree based classifier has been to classify both normal
and arrhythmia beats from the ARmodel coefficient based diagnostic feature vector.

The sample entropy quantifies the randomness in a signal [36]. If the signal is
regular (not changing) then the sample entropy value is low. Similarly, if the signal
is continuously changing and having irregularity then the sample entropy is more.
Recently, number of approaches based on sample entropy are reported in literature
for cardiac arrhythmia detection [37, 38] and EEG based seizure detection and clas-
sification [39]. The evaluation of sample entropy for a time series data is given below.
Let’s consider a N-point time series ECG data x(n) = [x(1), x(2), . . . x(N )]. The
two parameters used to derive the sample entropy are coefficients of tolerance (r )
and dimension of template vector ‘m’. The kth template vector for ECG time series
is given as xm = [x(k), x(k + 1), . . . . . . . . . x(k + 1− m)]. Each of the kth template
vector is having dimension ‘m’. The distance between ‘i’ and ‘j’th template vector
is given as

d[xm(i), xm( j)] = max[|x(i + k) − x( j + k)|] (2.45)

where k ∈ [0, m −1], i �= j and i, j ∈ 1, 2, . . . . . . , N −m. The number of distances
are counted for which the value of d � R, where R = r ×sd and ‘sd’ is the standard
deviation of ECG time series. The ‘i’th total number of distance is denoted as Bm

i (r).
The Bm(r) is evaluated as

Bm(r) =
∑N−m

i=1 Bm
i (r)

(N − m − 1)(N − m)
(2.46)

The Bm+1(r) is evaluated in similar way by replacing the dimension template vector
tom+1. The sample entropy is evaluated as the negative logarithmic ratio of Bm+1(r)

and Bm(r) and given by

sampEN(m, r, N ) = −ln

[
Bm+1(r)

Bm(r)

]

(2.47)
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2.4 MSD Diagnostic Measure for MECG

The state-of-art objective diagnostic and non-diagnostic measures such as PRD,
MSE, MAE, WDD, WEDD, WWPRD, MSEWPRD, WEWPRD etc. are limited
to to single channel ECG signals. There are numbers of MECG data processing
techniques such as multiscale PCA (MSPCA) [40], multivariate empirical mode
decomposition [41], compressive sensing based MECG compression [42], DCT and
karhunen loeve transform (KLT) based MECG compression [43] etc. are reported
from literature. For these MECG processing schemes, the aforementioned objec-
tive diagnostic and non-diagnostic measures are computed individually along each
channel. Multivariate sample entropy (MSampEn) is the natural extension of sample
entropy for multichannel signals [44]. This measure quantifies the confusionness or
irregularity of signal along each channel. ECG signal with atrial fibrillation pathol-
ogy has higher value of sample entropy than that normal sinus rythem [45]. In this
work the MSampEn(e) is evaluated for original and compressed MECG signal and
the diagnostic measure is defined as

MSD = eo − er (2.48)

where eo and er are the multivariate sample entropy values for original and processed
MECG signals.

2.5 Results and Discussions

For evaluation of the proposed diagnostic measure, the combination of PCA and
discrete cosine transform based MECG compression framework is used. The DCT
basedMECGcompressionwas proposed in [43]. In thiswork, first the PCA is applied
to MECG signal and according to diagnostic importance the first six principal com-
ponents (PCs) are retained [40] and others PCs are discarded. The DCT is applied to
the PCA domain multivariate signal and due to energy compaction property the first
few samples are retained. The transformedmultivariate signal is uniformly quantized
and huffman encoded for compression. Both 8-bit and 10-bit quantizer are used in
this work. The compressed (reconstructed) signal is obtained by huffman decod-
ing, inverse quantization followed by inverse DCT and PCA based reconstruction.
The MECG signals are taken from PTB diagnostic [46] database. In this database,
each of the MECG signals has sampled frequency and number of bits of 1000Hz
and 16 respectively. Figures2.2 and 2.3 shows the compressed signals along-with
the original signals for four channels (lead-I, lead-aVL, lead-V2 and lead-V5) for
healthy control (HC) and myocardial infarction (MI) pathology based MECG. It is
observed that the compressed signals are denoised and the clinical components are
preserved in both the cases (HC and MI). The PRD, WEDD and RMSE distortion
measures are evaluated along each lead and the average of these values are defined as
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Fig. 2.2 Original signals (a), (b), (c) and (d) and Compressed signals (e), (f), (g) and (h) for Lead-I,
aVL, V2 amd V5 for HC based MECG respectively

multichannel PRD (MPRD), multichannel WEDD (MWEDD) and multichannel
RMSE (MRMSE).

The proposed MSD measure is also evaluated and compared with the MPRD,
MWEDD andMRMSEmeasures. As the proposed measure is based on multivariate
sample entropy, the irregularity in clinical components present in processed MECG
signal results a negative value of MSD. The MSD, eo, er , MPRD, MWEDD and
MRMSE values for HC and MI pathology based MECG signals for different com-
pression ratios (CRs) are shown in Table2.1. Results are shown for 10 multichannel
ECG signals with different compression ratios, which include normal and pathologi-
cal cases. In HC1 dataset Compression ratio (CR) value of 13.16:1 produces MPRD,
MWEDD andMRMSE values of 4.36%, 1.98% and 8.51 for processed MECG sig-
nal. It is observed that for high values ofCR, the correspondingMPRDandMWEDD,
MRMSE values are also high. This signifies the higher distortion in clinical infor-
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Fig. 2.3 Original signals (a), (b), (c) and (d) and Compressed signals (e), (f), (g) and (h) for Lead-I,
aVL, V2 amd V5 for MI pathology based MECG respectively

mation for the processed MECG signals with higher CR values. For HC1 dataset
the multivariate sample entropy values for original and processed MECG signals are
found to be 0.69 and 0.68. The MSD value is very small (0.01). This signifies that
the processed MECG signal is regular (not changing) and the clinical components
are also preserved. Similarly, for HC3 dataset with 8 bit quantization level, the CR is
found to be 15.70:1. This CR value produces MPRD, MWEDD andMRMSE values
of 4.08%, 2.85% and 14.64. The multivariate sample entropy values for original and
processed MECG signals are found to be 1.01 and 1.03. The MSD measure shows a
negative value of−0.02, this signifies there may be the slight change in the regularity
of clinical components (‘PQRST’ morphologies) present in processed MECG sig-
nals. ForMI2 dataset with 8-bit quantizer the CR value of 14.44:1 produces aMPRD,
MWEDD andMRMSE values of 6.37%, 3.41% and 15.00. The multivariate sample
entropy for original and processed MECG signals are found to be 1.82 and 1.85.
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Table 2.1 Performance of MSD, MWEDD, MPRD and MRMSE over MECG data compression

Record Q. Bit CR MPRD
(%)

MWEDD
(%)

MRMSE eo er MSD

HC1 8 13.16 4.36 1.98 8.51 0.69 0.68 0.01

HC2 8 15.11 4.75 2.73 9.72 1.70 1.71 −0.01

HC3 8 15.70 4.08 2.85 14.64 1.01 1.03 −0.02

HC4 8 14.80 4.36 2.71 11.51 1.35 1.34 0.01

HC5 8 14.73 5.27 2.85 13.26 1.01 0.94 0.06

HC1 10 10.66 3.62 1.04 6.66 0.69 0.66 0.02

HC2 10 12.03 2.78 0.95 5.42 1.70 1.69 0.01

HC3 10 12.73 1.72 0.78 5.58 1.01 1.02 −0.01

HC4 10 11.78 3.12 0.83 7.65 1.35 1.34 0.01

HC5 10 11.58 4.01 1.09 8.69 1.01 0.96 0.04

MI1 8 13.44 6.78 3.57 11.41 1.51 1.53 −0.02

MI2 8 14.44 6.37 3.41 15.00 1.82 1.85 −0.02

MI3 8 14.70 6.18 2.59 13.80 1.53 1.49 0.04

MI4 8 13.01 9.76 3.99 13.98 1.31 1.34 −0.02

MI5 8 14.71 5.62 3.25 16.62 2.03 2.01 0.02

MI1 10 10.81 5.76 2.06 8.95 1.51 1.48 0.02

MI2 10 11.52 5.26 2.07 11.24 1.82 1.85 −0.03

MI3 10 11.62 5.35 1.50 10.92 1.53 1.49 0.04

MI4 10 10.55 9.11 2.95 12.23 1.31 1.28 0.03

MI5 10 11.58 4.38 1.71 12.15 2.03 2.04 −0.01

From this observation it is clear that the low MPRD, MWEDD and MRMSE does
not guarantee the processedMECG signals to be clinically significant. The deviation
of multivariate sample entropy from original value inMI2 dataset, shows that there is
a small variation in the clinical components present in the processed MECG signal.
This change is correctly quantified with the help of proposed MSD based diagnostic
measure. The results for all other MECG dataset shows that the MSD measure is
effective to quantify the regularity in the clinical component present in original and
processed MECG signals.

2.6 Conclusion

In this paper, a review on state-of-art diagnostic information extraction approaches
and their applications in variousECGsignal processing such as filtering, compression
and disease detection are presented. Then, a new diagnostic measure is proposed for
evaluating the quality of multi lead ECG (MECG) signals. This measure (MSD) is
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defined as the difference betweenmultivariate sample entropy values for original and
processed MECG signals. The effectiveness of proposed MSD measure alongwith
MPRD, MWEDD, MRMSE are tested over MECG data compression framework.
Comparison shows that the proposed measure is effective in quantifying clinical
information in normal and pathological MECG signals.
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