Analysis of an Eco-Epidemiological Model
with Migrating and Refuging Prey

Shashi Kant and Vivek Kumar

Abstract This paper concerns a predator—prey system with migrating and refuging
prey with disease infection. Analysis of the model regarding stability has been per-
formed. The effect of time delay on the above system is also studied. By assuming
the time delay a bifurcation parameter, the stability of the positive equilibrium, and
Hopf-bifurcation is studied. Further, the directions of Hopf-bifurcation and the sta-
bility of bifurcated periodic solutions are calculated using the famous normal form
theory, Riesz representation theorem and central manifold theorem. This is not a case
study, hence real data is not available. However, to verify our theoretical predictions,
some numerical simulations are also included.

Keywords Predator—prey model - Stability - Hopf-bifurcation - Migration -
Refuge - Delay

1 Introduction

The dynamic relation between prey and predator has been studied extensively in the
literature. At first sight, prey—predator dynamics may seem very simple mathemati-
cally, but they are, in fact very difficult and challenging. The classical Lotka-Volterra
model is a first stepping stone in the study of prey—predator dynamics and inter-
actions [1, 23]. In mathematical ecology, this model is extensively used and cited
and proved a milestone in the progress of mathematical ecology. On the other hand,
the famous work of Kermack-Mckendric [25] in epidemiological studies received
much attention among applied mathematicians, scientists, and ecologists. After the
work of [1, 23, 25], many mathematical models have been published for reference
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(see [2, 6, 7, 13-17, 21, 24, 27, 29], etc., and references therein). Combined and/or
overlapping study of ecology and epidemiology is termed as Eco-epidemiology. Eco-
epidemiological models are gaining popularity day-by-day. The present study also
falls under the purview of Eco-epidemiology.

To study the environmental impact on prey—predator models, the ‘time delay’ has
been investigated by the researchers. A good number of papers are available in the
literature for instance (see [4, 8, 18]). In these papers, most of the authors investigate
the ‘time delay’ as a game changing. Time delay may cause changes in stability,
occurrence for limit cycle, bifurcation, etc.

Further, migration of species especially prey is also evolved and few references
are available in the literature, for reference we can refer [11, 19, 20]. Prey-refuge
in prey-predator models also play an important role in dynamical nature. Further if
prey-refuge is more than outbreak of the prey population occurs. To understand a
role of prey-refuge in mathematical ecology few publications are available. At this
juncture we may refer readers to ([9, 22, 24, 26, 29] and references therein).

Pal and Samanta [3] proposed the following mathematical model by incorporating
prey-refuge in the model proposed of Xiao and Chen [28]:

@ =rnsa -5 - s1p,

dt

dI blY
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dar — —dY + a¥+I"

Motivated by the model of Samanta [18] and model in [12], Hu and Li [10] proposed
the following model:

B —rs(1-5L) — S18— piSY,
Al — ¢l +SI3 — plY, &
X — —dY +qp1St =Yt — 1) +qpal (t =Y (t — 7).

In order to study the influence of prey-refuge, migration, and disease on the Prey-
predator system, in this paper, we concentrate on an eco-epidemiological prey-
predator system consisting of three species as in [10]. Motivated by the models in
[10] and [3], we propose a mathematical model in which prey is migrating and refug-
ing with disease in both species. We present stability and Hopf-bifurcation analysis
of the mathematical model. Detailed assumptions for model formulation are listed
in the next section.

The rest of the paper is structured as follows: In the next section, we formulate our
main mathematical model with the help of biological and ecological assumptions.
In Sect. 3, we consider the model without delay. In Sect.4, we discuss the stability
of mathematical model with delay. In Sect.5, we discuss the direction and stability
of Hopf-bifurcation using the normal form theory, Riesz representation theorem and
central manifold theorem as in [10]. Numerical simulations have been done in Sect. 6
followed by discussion in the last Sect. 7.
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2 The Model

In this paper, we propose to study a prey-predator system by means of mathematical
modeling. To formulate the model and in view of simplicity we make the following
assumptions:

e In the absence of disease and predation the healthy (susceptible) prey population
has logistic growth with growth rate r and carrying capacity k, i.e.,

dN N
—er(1——). 3)

e Disease is spreading in both populations. After disease prey population is divided
into two parts susceptible prey(S) and infected prey (I). Thus total biomass of prey
population is S(¢) + I ().

e Due to mathematical complexity, the bifurcation of predator population and the
detailed dynamics of the disease infection in the predator population is omitted.
Further, it is also assumed that disease infection in predator occurs due to eating
of the infected prey and not due to outside infection. In other words, it is easy to
understand that the disease infection starts from prey and then carries forward to
predator. For example HIN1, H5N1, etc., may be pointed out here to understand
the physical phenomenon better. Thus total biomass of predator population is Y.

e Infected prey population does not become immune as well as they have no
reproduction rate. However, infected prey population contributes the carrying
capacity k.

e Predator population consumes both susceptible as well as infected prey population.

e Due to environmental and fear factors, we consider out migration in prey popula-
tion, i.e., once prey migrated they will not return. Let m1 and m» be the migration
rates of susceptible and infected prey respectively. Further, healthy prey population
is more active compared to infected one. Hence, healthy prey can migrate more
easily than infected prey before their predation. Hence, by using this ecological
information, we can impose the mathematical condition m| > mj.

e Let dy and ds be natural death rates for infected prey and predator population
respectively.

e Death (mortality) rate due to disease for infected prey population and predator
population are denoted by ¢ and d4 respectively.

e The coefficient for S-prey and I-prey to predator are denoted by ¢ and g; respec-
tively. The relationship between g1 and g is established later.

e Let a refuge protecting m3 S of healthy prey and m4/ that of infected prey, where
ms3,my € [0, 1). Hence, (1 — m3)S and (1 — my4)I of healthy and infected prey,
respectively, are available to the predator for predation.
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Based on these assumptions, model takes the following form:

48 =rs(1- ) = SI8— pi(1 —m3)SY —m; S,

4L = SI1B — py(1 —ma)IY —dol —mal —cl,

X = qipr (1 —=m3)St — 1Y (t =7+ qap2(1 —mg)[(t = 7)Y (t —7) — d3Y — daY.
4)

The initial conditions are

S(t) = ¢1(t) > 0,
1(t) = 2(t) > 0,

Y(t) = ¢3(1) > 0, (5)
(61(1), 2(1), ¢3(1)) € C = C ([—7,0], RY)

R} ={(x,y,2)|x>0,y>0,z>0},

where,

Jé] . Disease Contact Rate
p1, p2 . Predation Coefficients of Susceptible (S) and Infected (I) Prey
T :  Gestation period (delay).

Ecological and biological assumptions suggests the following relationship
between g1 and ¢>:
@2 #qrand0 < gy <1,

g2 >qrand 0 < go < 1.

3 Analysis of the Model Without Delay

In this section, model (4) is investigated under the condition 7 = 0. Before going to
main analysis, we state two lemmas for our model without proof.

Lemma 1 Each solution of the system (4) without delay with the initial conditions
(5) are strictly positive for all t > 0.

Lemma 2 Solutions of the system (4) without delay with the initial conditions (5)
are eventually bounded, i.e., uniformity bounded in R;’r.

3.1 Equilibrium Points

System of ODEs under consideration has the following equilibrium points:
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(i) E1(0,0,0) = (0,0,0).
(i) E»(S,0,0). where S = (r —mp)k.
(i) E3(S*,0,Y*), where

SF — d3 +dy
q1p1(I—m3)°
y* — kpil—m3)gi (r—’m)—r(ds +di)
kq1 (1 —m3)p}

(iv) E4(S,1,0), where

T _ ctdrt+mp
§= =%

(G —mpkB—r(ct+dp +ma)}
(B(r +k3))

~il

(v) Es(S,1,Y), where

5= r=mD)ga(1 —ma)pak + (c+da +ma)gap1 (1 —m3)(1 —m4) pok — (r +kB)(d3 +d4)
- rqap2(1 —ma) —q1p1(1 —m3)(r +kB3) + q2(1 —ma) p2 Bk

(d3+dy) —q1p1(1 —m3)S

I'= q2p2(1 —my) ’
y— 8-(ctdim)
- p2(l—mg) °

3.1.1 Existence Conditions

‘We have the following existence conditions:

(i) Trivial equilibrium E| always exists.

(i) E, exists provided (r — m1) > 0 or r > my. Physical meaning implies that
existence of E» is independent of other parameters and depends only on growth
rate and migration of S, viz., r and m. E, exists if growth rate of S is greater
than migration of itself.

. . r—mi ’ o .

(iii)) E3 exists provided Trds > Fqpid=my This is the case when no disease
infection occurs in the prey population

. . . r—mi

(iv) E4 e.x1sts provided Thim _/3 This is the case when predator does not

survive.

(v) Es exists provided the following conditions are satisfied:

d3 +ds > q p1(1 —m3)S,

ﬂ§ > (¢ +dy + my),

(r =m)qap2(1 —ma)k + (c + da + ma)qapa(1 —ma) p1(1 —m3)k > (r + kB3)(d3 + da),
(rq2p2(1 —ma) + qap1(1 —m3)Bk) > g1 p1(1 —m3)(r +kp).

This equilibrium point is very important, since it provides the coexistence of all the
three populations.
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3.2 Stability Analysis

Jacobian matrix of the system is given by

—m =% — LB — pi (1 —my)Y) (- -5s) (=p1(1=m3)$)
J = B (BS = p2(1 =ma)Y —c—dr —m3) (=p2(1 —=ma)I) >
(q1(1=m3)p1Y) (q2p2(1 —m4)Y) (q1p1(1 =m3)S+q2p2(1 —ma)l —d3 —ds)

with this matrix stability analysis is carried out. We will focus on the non zero
equilibrium point.

After a little calculation we see that trivial equilibrium point is locally stable if
r < (m). Equilibrium (E») is locally asymptotically stable provided the following
conditions are satisfied:

(5’37—6—612—1%2)=M <0,
(@p1(1 —m3)S —ds —ds) = qip1(1 — m3) =20 — gy — 4y < 0.

Equilibrium (E3) is locally asymptotically stable if

Blds+ds) — pr(d—ma)(r—my1) | pr(1— m3)r(d3+d4)
[q1(l—m3)p1 p1(1—m3) + kg1 (1— m3)17 —(c+dr+ m2):| <0

Quadratic equation (\> — £\ + ¢) have roots with negative real parts, where

€= —(d3+da)[kq1 p1 (1=m3)+r]
kq1(1—m3) py ’

(= (d3+da)lkqi pr(1—m3)(r—m1)— (d3+d4)r
kq1p1(1—m3)

Equilibrium (E}4) is locally asymptotically stable if

—(d3 +ds) + q1171(L+dz+mz) + @2 p2l(r— 'n])(liikl:f(‘+d2+m2)] 0;

(@1p1S+ qapal —d3 —dy) =

Equation (\> — B + C) have roots with negative real parts, where
_ =3r(ct+dr+m)
B = kB ’

C=(c+dr+my) [(r —mi) — 7““%“"2)] .

Remark 1 In this case no infection occurs in the system, hence ecologically mortality
due to infection in predator population may be omitted. Similarly, parameter ¢ may
also be deleted. Jacobian matrix at E3 is now reduced to

(r=m = 25— pit = myr?) £ - 9) (=pi(1 = m3)S*)
= 0 (BS* = p2(1 —ma)Y* —dy —my) 0
(q1p1(1 —m3)Y™) (q2p2(1 —mg)Y™) (q1p1(1 —m3)S* — d3)
(N
* d * kqi1p1(1—m3)(r—m; rd)
where S* = m and Y* = Y12 (kql(l) mg)p]) (3

Characteristic equation is given by (A — A\[)(\2 — EX+ () =0,
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_ _ B(d3) p2(1—=ma)(r—my)
lefre /\)] (d_)(ﬁs* — (- ma)Y* — dy —my) = 41P1(11"13) - = p1(1—-m3) +
pa(l—my)r(ds)
knomypt (@2 m2),
€= —(d3)[kq1p1(1—m3)+r] ¢ = (d3)[kg1 p1(1—=m3)(r—m1)—(d3)r]
- kq1(1—=m3)p; ’S T kq1(1-m3)P1 ’

Thus Ej3 is locally asymptotically stable if the following conditions are satisfied:

B(d3) _ pa(l—ma)(r—my) p2(l—ma)r(ds)
[ql(lm_a)pl aomn T kgiemnpy (@ +m2)} <0,

Equation (A2 — £\ + () have roots with negative real parts.

3.2.1 Positive Equilibrium

In this case, populations of all the three species exists simultaneously. As promised,
we will furnish the detail of the stability of the positive equilibrium point. For the
stability of the positive equilibrium Es, we state the following theorem:

Theorem 1 System (4) with T = 0 is locally asymptotically stable at Es5 if the
following conditions are satisfied:

(i) TS+ AT +0OY + A <O0.

(ii)) A1Ax+ A3 >0,

where T = (qip1(1 —m3) + 8 — 3),

A= (—(f + 8+ q(1 —my)p2),

O = —(p1(1 —m3) + p2(1 —my)),

A= (r:ml —my —~d2—d3 —dy —©),

A =TS+ AT +OY + A,

Ay = S[Bqipi(1 — my) — 2L 28y 4 P2pi(1 — ma)(1 —
my)pal + PP[—(5 + Bgapa(l — mp)] + SIT—(% + B)gipi(1 — m3) + Bg2pa
(1 = mg) — FULE=TD] 4 YT T—gopa(1 — ma)(1 — m3)p1 + pa(l — ma)(f +
A48T [—q1 p2p1 (1 — ma)(1 — m3)+2Z20=9 — by (1 — m3) 31+ 5[—B(d3+ds)
— (c+my+d)gipi(l — m3)+ (r — mDqpi(1 — m3) + 28 4 g —
my) LI L T1—(c + dr + m)(I = ma)gp2 + (0 = mD@(l —
ma)p2+ (3 +B)(d3 + ds) + (7 + B)(c + do + m)]+Y[p1(1 — m3)(d3 +da)

— ppr —m)A —mg)+p1(1 —m3)(c +ma + do)]+[p2(1 — ma)(ds + ds) +
(c +my + do)(ds +ds) — (d3 + dg)(r — my) — (r — my1)(c + ma + da)],

Ay = §3[_ 2r:3q1191k(1*m3)] + AS'Z?[qulPle(l2m4)(1*m3)] + ng[quz(l — my)
B+ B)] + S2TELer20mdy 4 21— ) Bgi(1 — ma)py + ZEBE |
rapdom)etmt &L Po[(F43)go (1 — ma) pa(c+da+mo)|1+STY [~28q2 p1 pa
(1 — mg)(1 — m3)+q1p1p2(l — ma)(1 —m3) (5 + B+ SI[(r — m)Bqapr(l —
mg) + (¢ + B +ma+d)qipi(1 — m3) + Z(c+my+d)gapr(l — mg)l +
SY[Bp1(1 — m3)(d3 + da)] + IY[(c + ma + d2)qapip2(1 — ma)(1 — m3)] +
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S[(r — m){=B(d3 +dy) — (c +ma +d)qipi(1 — my)) — 2L2lomditd) _
letmyt D)) | 4 TT—(r —my) (e +ma +d2)qap2(l — ma) — (5 +B)(c+ma +
) (d3+da)]+[p2(1 — ma)(d3+da)(r — m)+ @ — my)(c + ma+dr)(d3+ds)].

Proof 1 Jacobian matrix at Es is given by

(r— 25 — fracrTk— BT — p1 (1 —m3)7) (~5 -85 (=p1(1—m)3)
J = n) (B8—p2(1 —=mg)¥ —c —dy —m2) (=p2(1—mp)])
(g1p1(1—m3)¥) (g2p2(1 —m4)Y) (q1p1(1=m3)S+q2pa(1 —ma)T —d3 —da)

The characteristic equation is given by A 4+ A1A2 + A\ + A3 = 0, where A4,
A; and A3 are the same as defined in statement of the theorem. By Routh-Hurwitz
criteria the theorem follows.

4 Stability Analysis of the Model with Time Delay

In this section, model (4) with 7 # 0 is considered. It is also important to mention that
we will consider the positive equilibrium (E,) only. At any point, jacobian matrix
of system (4) is given by

(B8I) (BS = pa(1 =my)Y —c —dy —mp) (—pa(l —myg)l)
0 0 (—=d3 —dy)

0 0 0
+ 0 0 0 (e™7Ty,

(q1p1(L —=m3)Y) (g2p2(1 —mg)Y) (q1p1(1 —m3)S +qapa(l —my)l)

|:(r (1 — %) — % — Bl —p1(1 —m3)Y — m|) (—% - 55) (=p11 _’"S)S):|
J j—

here A being a complex number. Now we state two more lemmas from [10, 27];
Lemma3 Let\=(A+iB) A > 0,B > 0 then,

e if A < B, all roots of the equation A + A — Be=" = 0 have positive real parts
forT < \/ﬁcos_l (%).

e if A > B, all roots of the equation \ + A — Be= ™ = 0 have negative real parts
for any T.

Lemma 4 Let the polynomial, h(z) = z° + poz* + goz +ro =0

(i) ifro < O, then this equation has at least one positive root;
(ii) ifro > 0and A = (p2 — 3qo0) < 0 then this equation has no positive roots;
(iii) ifro = 0 and A = (py — 3q0) > 0, then this equation has positive roots if and

only if 7} = M and h(z}) < 0.

Let us study nonzero equilibrium E, = (S, L, Yi). The jacobian matrix at E, =
(Ss, Ly, Yy) is given as
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J(E,) =
(r(l*S"ki)f%fp1(|7m3)y*fﬂl*fml) (7%7{7&) (=p1(1=m3)Ss)
Bl (BSs = p2(1 =mg)Yy —c —dy —m3) p2(l— ma) 1y .
(q1p1(1 = m3)Yye™7) (g2p2(1 —my)Y,e™7) (q1p1(1 —m3)Ss
+@2p2(1 —my)1)e™ T — d3 — dy)
The characteristics equation is given as ()\3 + MoX2+ M+ My) + (nz)\2 +n A+
no)e’/\T = 0, where,
2r  p1td—=m3)B  qp1(1 —m3)B
M, = (— - (1 —m4) S,
k  pa(l —my) q2p2
r(ds +dy) 1(1 —m3)(c+dr +m2)
(—+d3+d4—p —-r],
q2p2(1 —mg)K p2(l —my)

My = ({(d3 +dy)(c+da +m2) — (r —my)(c+da+m2)} + Si{—(d3 +ds) 5+
X (ds +dy) + (r —m)B+ ZL(c+dr+m)y+ LG+ B)(ds +ds+c+dr +
m2)}+ Y {(d3 +ds) pp(1 —my) + (d3 +dy) p1(1 —m3) + (¢ +dr +m2) p1 (1 —m3) +
(r —mp)pa(1 —ma)} + S2(—=22) + Y2 (p1 p2(1 = m3) (1 —ma)) + S, Ve (—Bp1 (1 —
m3) + X pa(1 = ma)) + LYo (f + B)pa(l — my)),

Mo = ({—(r —m)(c +da +m2)(d3 + dy) + S {(d3 + da) B(r —my) + 2 (d3 +
dy)}(c +da+m2)} + L{(ds + ds)(c + do +m2) (1 + B)} + Yal(d3 +da)(c +do +
m2) p1(1—m3) — (r—m1)(d3+da) p2} +S2(— 3 (ds+da) B)+ Y2 (d3+da) pap1 (1 —
m3)(1—m4))+S: Yo{—(d3+ds) Bp1 (1—m3)— 3 (d3+da) p2(1—ma)}+ LY. { (5 +13)
p2(1 —my)(ds +dy)}),

ny = —(d3 + ds),

ni = SHapr(1—m3)B — g pr(1 —ma)} + {5 + Bqapa(l — ma)} +
SeYel=q1pap1(1 — m3)(1 — my)} + Suli{qop2(1 — mg)3 + 2k—rquz(l —myg)} +
Yili{—qap2p1(1 — m3)(1 — mg)} + Se{{—(c + do +m2) — (r —mp)}q1p1(1 —
m3)} + L{—(c +dy + ma)qap2(1 —mg) + (r — m1)qapa(1 — my)}),

no = —(SHq1p1(1 = m3)BGr —my — ) + 2 (c +dy + m)gip1(1 — m3) —
q1{p1(1=m3)PBY+ I2{(} + B) (c +dr + m2)ga pa(1 —ma)}+ S2Y. {2 g1 p1 pa (1 —
m3)(1 — m3) + qi{p1(1 — m3) B} + S2L{—Zqaps(1 — ma) B} + Sl Yol (5 +
Bq1p1p2(1 —m3)(1 —my) —2Bq2p1p2(1 —m3)(1 —mg)} + S Ye{{—(r —my) +
(% + Dlq1pipa(l — ma)(1 — my)} + SuL{B(r — mD)gapa(l — ma) + F(c +
dy +m2)qap2(1 — my) + (c +do + m2)( + Fq1p1(1 —m3)} + Yl {(c +da +
m2)qa p2p1(1 —m3)(1 —mq)} + Si{(c+da+m2)(r —m1)q1 p1(1 —m3)}+ L{—(c+
dy +m2)(r —mp)qap2(1 —myg)}).

Now we put A = iw (w > 0) we get

Real Part: {nzwz—i—no} coswT + {njw sin wr — Myw? + Moy}, Imaginary Part:
niw cos wr —(—naw?+ng) sinwr+Mjw—w? (Real Part)?+ (Imaginary Part)> =
WO+ pow4 + q0w2 + ro. Hence, we have Wb + p0w4 + qo(.u2 + ro = 0, where

po = (M3 —2My —n3) qo = (M} —2M> Mo + 2nang — n3) ro = (M3 — n3). If
we put z = w?, then we have the equation z* + poz? + goz +ro = 0. If M3 > n},
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then we will have r9 > 0, we have two situations for A (i))A = (p(z) —3qp) < 0.
(i)A = (p§ — 390) > 0.

In situation (i) we have to say that E, is absolutely stable if ro > 0 and A =
(pé — 3g0) < 0. Also, if we have and rp > 0 A = (pé — 3q0) > 0 then equation

has negative roots if and only if (z}) > 0 where z} = M thus we have the
following theorem for the stability of E..

Theorem 2 E. (S, Iy, Yy) is absolutely stable if one of the following conditions
holds:

(i) A= (pg—3q0) 0.
(i) A= (p}—3qo) > 0and 7} = =2E/B .
(iii) A = (p} —3q0) >0, 2} = M > 0 and h(z}) > 0 provided ro = 0.

Next, if we consider the case when rg < O or {ro > 0, A = (p(% — 3qp) > 0,
Zf > 0,h(z}) < 0}. Then, according to lemma , equation will have one positive
root say wy that is the characteristic equation has a pair of purely imaginary roots
say Fiwp. Now assume that iwp, wo > 0 is a root of 4(z), then we have real and
imaginary parts as under.

Real Part = {n>w? + ng} cos wr + {njwsin wr — Maw? + My} = 0.

Imaginary Part = njw coswr — (—n2w? 4 ng) sinwt + Mjw — w3 = 0.

Solving the above equation for 7, we have (by eliminating sin w7 between these
equations)

2 2 2
_ 1 —1 [ mwjlwo—M1}—{Mrws—MoHnowy—no} 2km =0.1.2
T = ;5 CoS ( A o + o0 (k=0,1,2,..)

1

We call it as a ’critical value’ and may be denoted as 7, = w—ocos’1

nwi{wo— M1 }—{Maw} — Mo}{nawi —no}

) + 25—0”, (k =0,1,2,...). This is correspond-

n%wé—i—nzw(%—no
ing to the characteristic equation as it has purely imaginary roots £iw, which is

a result similar to that of Hu et al. 2012 [10]. Differentiating the characteristics

P d\\—1 _ (3)\2+2M2)\+M1)e)“r 2no \+ny _ T
equation w.r.t. 7, we get (2)7 = Oyt N Oy bk — X Of

dA\—1 _ GNH2MoA+M1)eN + Quadtni) — 7o +ny) . ..
(7)) = oo inon . As proved in [10], it is easy to

prove the transversality condition at 74 e.g.
direction of Hopf Bifurcation as in the next section.

d(g—f_"\) # 0. ¢ is used as a point for

Remark 2 The equilibrium points E5 of model (4) with 7 = 0 and E, of model (4)
with 7 # 0 are ecologically similar. Both convey the message that all the species
exist simultaneously.
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5 Direction and Stability of the Hopf-Bifurcation

With the symbols used in [10] and procedure explained in [5], we have the following
system of functional differential equation, & (t) = L, (xt;) + F (, us), where u;(0) =
u(t +60) € R? andLH,:Rx(C—>R3andF:Rx(C—> R3 are given as

[—“Z* — (5 +0) 5 (—p1(1 - m3>s*>}
Lup=+w | Bl (BSx — pa(1 —mg)Ys —c —do —m3) —par(1 —mg)ly | x $(0)
0 0 —d3z — dy)
0 0 0
+ (T, + 1) |: 0 0 0 :| X ¢(—1),
q1p1(1 —m3)Ys g2 p2(1 — mg)Ys q1p1(1 — m3)Ss + q2p2(1—my) I«

and

—263(0) — (£ + B) 1(0)92(0) — p1(1 — m3)$1(0)3(0)
F(p, 0) = B¢1(0)$2(0) — p2(1 — m4)h2(0)3(0) ,
qip1(1 —=m3)o1 (=D d3(—=1) + qapa(l —ma)pi (=)o (—1)

$(0) = (41(0), ¢1(0), p1(0)” € Cie.

— g — (£ +5) 5 p1(1=mS)] [ 610)
Lup =+ | Bly (BSsx — po(l —mg)Ys —c—dy —ma) —po(l —mg)ly | x| $2(0)
0 0 —d3 —dy #3(0)

0 0 0 o1(=1)
+ (Tk+1) 0 0 0 x| ¢2(=1) |,
q1p1(1 =m3)Ys qo(1 —ma)p2Ys q1p1(1 —m3)Ss + q2(1 —ma) p2 1« o3(=1)

we have considered, 7 = (7% + ), p = 0 gives the hopf bifurcation value for
the mathematical model with delay as promised in the previous section. Normal-
izing delay 7 by timescaling t — ﬁ the model is written in the Banach Space
C = C([-1,01, ]R3). By the Riesz representation theorem, we found that there
exists a matrix function whose components are bounded variation function 7(6, 1)
in # € [—1, 0] such that

Lud = [odn@, )d(0).6 € C.Q € [~1,0).

We can choose

— ~(F +5) S (=p1(1 = m3)S;)
nO, ) = (1 +p) | BLe (BSx — P2l —=mg)Yy —c—dp —mp) —pr(1 —my)lyx x 6(6)
0 0 —d3z —dy)
0 0 0
—(Tk+u)|: 0 0 0 :|><5(6‘+1).
q1p1(1 —m3)Ys qapa(1 —ma)Ys q1(1 —m3)p1Sx + q2(1 —ma) p2 1

where §(6) denotes the dirac delta function, viz.,
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oo 60
Mm_IL 0=0,
for ¢ € C'([—1, 0], R3), define
4¢(9) 0 e[—1,0)
A(o(6) = H of .
JZ dn@, o) 6=0
M, —-1<60<0
or A()é(0) = ’ o B
J=dn@, e, 6=0
and
0, 01,00 |o, —1<6<0
R(u)p(0 —
et = [F( @), 6=0 {F(u,@, 620

with these symbols, u(t) = L, (ur) + F(p, p1r) may be written as

u(t) = Ap(ue) + R 9)

which is an abstract differential equation. Where u;(6) = u(t +6), —1 < 6 < 0.
Now we come to operator theory, for ¢/ € C! ([O, 1], (R3)*) we define A*, adjoint
operator of A,

A*Y(S) = [

24(5) Se(0,1]
1O (5. iy(—S) S =0

And a bilinear product < ¥(S), ¢(f) >= 1(0)$(0) — fl f£ 0 z/) (& — O)dn(®)
d(&)dE where n(0) = n(0, 0). Then A(0) and A are adjoint operators. Now +iwg7y
are eigen values of A(0). Hence they are eigenvalues of A* also. To determine the
poincare normal form of the operator A, we first need to evaluate the eigenvectors of
A(0) and A* corresponding to iwg7y and —iwgTy respectively. Suppose that g () =
(1, a1, )T exp(iwpTk0) is the eigen vector of A(0) corresponding to iwgTk, then
we have A(0)g(0) = iwpq(0) from the definition of A(0),we have

— —(§ +8) S (=p1(1 —m3)Ss)
ﬁl* BSx — p2(1 =mg)Yx —c—dy —mp) —pr(1 —my)lyx
0 0 —d3z —dy

0 0 0 1
+ 0 0 0 x exp(iwoTk) aq
q1p1(1 —m3)Ys qap2(1 —ma)Ys q1p1(1 —m3)Sx + g2(1 — ma) p2 1y ap

1
=iwy | o |,
@

S — (5 +8) S (=p1(1 = m3)S,) 1
31* (BSx = pp(1 =mg)Yy —c—dy —ma) —p2(1—mg)ly | x| a1 |+
0 0 —d3 —dy (6%
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0 0 0 exp(—iwpTk)
0 0 0 X exp(iwoTk) ay exp(—iwoTk)
qip1(1 =m3)Yy gapa(1 —ma)Ys qip1(1 —m3)Si + qapa(1 — ma) 1y az exp(—iwoTk)

1
= iw(] o .
ap
—p2(l—ma) I (iwo+ 3% ) — py (1—m3) BSy Ly

We obtain, a; = P20 =) 4 B)Suln—p1 (1—m3) Sy (iwo—BSs+ct+dotma+ pa(l—mp)Ys)’

q1p1(1—m3) Yy exp(—iwo Tk +q2 p2 (1 —m4) Yy eXp(—iwo k)
iwotd3+ds—q1 p1 (1—m3) Sx+q2 p2(1—ma) L :

Q) =

Next, suppose that ¢, (s) = B(1, af, o) exp(iwoTys) is the eigen vector of A*
corresponding to —iwgTk similarly, we have,

of = =p1(1=m3) (; +B)Ss—pa(1=ma) (iwo— ")
L ™ po(1—mg)Bli—p1(1—m3) (iwo+Sx—c—dr—mp—pr(1—m4)Yy)

—p1(1=m3)Ss—p2(1—my) Lo}
—iwotd3+da—(q1 p1(1-m3)Sx+q2 p2 (1—ma) L) exp(—iwoTk)

af =
where B has to be calculated. We have the conditions

<q*q@) >=1

<q* q) >=0 ] which may be verified.

<q*.q0) >= 7 0)q(0) — [* [Z)q% (€ — O)dn®)q(©)de

= E(l’ a_l*v a_2*)(1’ af, 042)T - fi)l fg;o() E(l’ a_l*v a_2*) exp(_ionk(€ - 9))
dn(8) x (1, a1, )" expliwomi)d€ = B{1 + anar* + anaz” — [, (1, &r*, az%)
exp(iwoTk)dn(©)(1, a1, a2)T} = B{l +ajar* + cnan® + 7k [qap2 (1 —ma)az* Vi +
q2p2(1 —ma)a1ar* Y+ (g1 p1 (1 —m3) Sy +q2 p2(1 —my) L)ooy ™ exp(—iwo i)}

which gives:

1

B = {l+ajar* + maa* + klqapa(1 — ma)az Yy + 2 p2 (1 — ma)oyan Vs,

+(q1p1(1 — m3)Ss + g2 p2(1 — my) L) o™ ] exp(—iwoTy)}.

5.1 Stability of Bifurcated Periodic Solutions

We first compute the coordinates to describe the Center Manifold Cy at 4 = 0. Let
u; be the solution of #(t) = L, (u;) + F(u, y1;) and define, z(¢) =< ¢*, u; >, g*
being the eigenvalue of A*. And W (¢, 0) = u,(6) — 2Re{z(t)q(0)} on the Center
Manifold Cy, we have, W (¢, ) = W (z(¢), z(¢), §), where,

W(z,z,0) = W20(9)§ + Woz(e)é + Wi (0)zz + W30f—; 4

In fact, z and 7 are local coordinates for the Center Manifold C in the direction
of ¢* and g* respectively. The existence of Cy will provide an opportunity to reduce
the system u(t) = L, (u,;) + F (1, p14) into an Ordinary Differential Equation ODE(
in a single complex variable z) on Cy which is very interesting. u, is the solution of
system under consideration. u; € Cy, we have

Z(t) =< q*? I’it >

=<q", A(u) + R(u) >
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=<q*, A(u;) >+ < q*, R(uy) >

=< A*q*, (u) > + < q*, R(u;) >

= iwoTz +q* - F(0, W(¢,0) + 2Re[z(t)g(0)])

Rewrite it as z(t) = iwo7Tz + g(z,z), where g(z,2) = gzd&)% + go2(9)%2 +
911(9)224-921%2 +---

The above two equations give us ¢(z,7) = (") F(z,2)

_ —rud(6) — (£ + Bur(Duz(t) — pr(1 — m3)uy (u3 (1)
=7nB(1, aj, ab) Buy (Ouz(t) — pa(1 — mg)us (t)uz(t)
p1g1(1 —=m3)ui(t = DH@uz@ — 1) + paga(l —ma)u; (@ — Dua(t — 1)
Further,

u(t+60)=w(,0)+ z(t)qg) +z()q ),

ur(t) =z+7+wha,0),

ur(t) = anz + iz + W, 0),

u3(t) = anz +aaz + W, 0),

ur(t — 1) = zexp(—iwomr) + zexpliwory) + W, —1),

uz(t — 1) = aqzexp(—iwori) + arzexpliwo) + WA (t, —1),

uz(t —1) = anzexp(—iwoti) + sz exp(iwoy) + W (¢, —1). Hence, g(z,7) =
TkBl—fut(t) — (4 + Bur(Ouzt) — pr(1 — m3)uy (Duz(t) + ar*{Buy (Huz(t) —
p2(1 =my)uz()uz ()} +az*{p1(1 —m3)qruy (t — 1) (O)uz(t — 1)+ p2(1 —ma)qouy
(t — Dua(t — D}

Putting the values of w1, ua, us, uy(t — 1), up(t — 1), uz(t — 1) etc. in g(z, 7), we
get

9z.2) =nB(—flz+z2+ W0 — G+ Bz +2+ WD, 0]z +

aiz+ WA, 01— pilz+z+ WD, 0)llarz+ oz + W, O+ ar* (Blz+Z+
W, 0)l[arz+az+ WP, 01— pa(1—mg) [ z4+aiz+ WP (¢, 0) [z +anz+
WO, 00 +az* (p1(1—m3)qi[z exp(—iwori) +Z expliwomi) + W (1, —1)][aaz
exp(—iwomk) + @z expliwoti) + WO(t, =] + pa(1 — ma)qalz exp(—iwoTs) +

Zexp(iwoTk) + WD (t, —D][e1z exp(—iwoTk) +aiz expliwori) + W (t, =] ).

From this equation we can find the values of the coefficients g0 (6), go2(6),911(8),
g21(0), etc., by comparing the same powers of z, we have

920 = 2nB{—; — (f + a1 — pi(l — m3)az + far*a; — ar*ajazps
(1 —ma) + " (p1(1 —m3)qraz + pa(1 — ma)qaay) exp(—2iwoTi)},

g1t = kB(—% + @) + az* po(1 — ma)qz — & + A (@71 + 1) + (@2*pi
(I =m3)q1 — p1(1 —m3)) (@2 + az) — ar*p2(azan + aran)),

go2 = 2nkB{—¢ — (f + B)a1 — pi1(1 — m3)a; + Sar*ar — ar*arazpa(l —
mg) + 2" (p1(1 —m3)q10a + p2ga(l — ma)an) exp(2iwoTi)},

p1 = 2 B(—5QWL0) + Wi ) — (G + DIV ©O) + Wi (©0) +
L@wyg ) + 3w 01 — pid — ma) WP 0) + W33 (0) + a2 W (0) +
Wiy O]+ @ BIwy 0) + LWig ) + a1 W 0) + Sarwyy) (0)]
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These coefficients are used in calculating Cy, etc. Now we need to calculate
Woo(0) and Wy (0). Now it; = A(u)u; + R(p)u, and z(¢) = < q*, uy >,W(t,0) =
u,(@) — 2Re{z(t)q(0)} gives us

W =1, —z2g —2q

AW — 2Req™(0) Foq (), for—1<60<0
AW — 2Req*(0)Foq(0) + Fy, forf =

Rewrite the above equation as, W = AW + H (Z, Z, 0), where,

H(z,%,0) = Hy(0)% + Hi(0)2Z + Hn(0)5 + Hai (0)52 + - -+ Near to the
origin on Cy, W = W,z + WzZ (A — 2iwgTr) Wao(0) = —Hpp(0) and AW (0) =
—Hj1(0) hence for —1 < 6 < 0 we have, H(z,Z,6) = —2Re(qg*(0)Foq(#)) =
—9(z,2)q(0) — g(z,72)q(0), by comparing the coefficients of z, we have Hy(0) =
—9209(0) — Gpoq (0) and Hy1(0) = —g119(0) — g119(0),

Wa0(8) = 2iwo i W20(8) + 9209 (60) + G2 (0),

Wi1(0) = g119(0) + 9119 (0).

Integrating, we have

Wao(8) = 120 4(0) exp(iwoTd) + 9204 exp(—iwgtid) + E1 expRiwgi),

WO Tk 3“-1()77(0
W11 (0) = 725 (0) exp(iwomit) + UL exp(—iwrc) + Eo.

where E| and E; are to be determined. From definitions of A and (A — 2iwgTy)
Wao(0) = —Hao(0)

(A = 2iwg) Wao(0) = —Hpo(0) gives us fBl dn(0)Wyo(0) = 2iwoTi Wap(0) —
Hyo(0) which gives us Hz0(0) = —g209(0) — g (0)

-1 — (B — p1(1 —m3)az
+2Tk( Bai — p2(1 —my)ayon )
(q1p1(1 — m3)az + g2(1 — myg) prary) exp(—2iwoTk)
Now, (iworil — f_l exp(iwpTi®)dn(0))q(0) =0

(—iwml -2 eXP(—ionk9)dTI(9))Q(0) =0
And we have (ZionkI — ffl exp(inTkO)dnw))

1 — Gt Bar — pi(1 —m3)az

E, =27, Bay — pa(1 —mg)ajan , which leads
(q1p1(1 —m3)az + g2 p2(1 — ma)ay) exp(—2iwoTi)
to
2iwg+ 13 ) p1(1=m3)S
—BI 2iwg—Sx+c+dr+moa+pr(1—myg) Yy p2(1—my) 1, E;
—q1(1—=m3)p1Ysexp(=2iwoTk)  —qapa(l—ma)Yiexp(=2iwory)  2iwo+d3+da—(q1p1(1—m3)Ss
+q2 p2(1—myq) L) exp(=2iwoTy)

51— G+ Par = pi(1 —m3)az
=2 Bag — pa(1 —mg)ajon
(g1p1(1 —m3)az + q2p2(1 — ma)ay) exp(—2iwoTr)
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E| can be calculated from this equation. Now, fi)l dn(@)W11(0) = —H11(0)

—% — (F T BORe(ap) = p1(1 —m3)Re(a2)
H11(0) = —g119(0) — G11g(0) + 27 BRe(a1) — pa(1 —mg)Re(ajaz)
(q1p1(1 —m3)Re(a2) + g2 p2(1 —m3)Re(ay)

L S(f +05) P11 —m3)Sx
—f1 —fBSx +c+dy+moy+ pr(1 —my)Ys pa(l —myg)lx
—q1p1(1 —m3)Yx —q2p2(1 —mg)Yx d3 +dg — (q1p1(1 —m3)Sx +qapr(1 — mg)1x)
—% — (g T DRe(ay) = p1(1 —m3)Re(az)
X Ey=2 BRe(ay) — p2(l —mg)Re(aar)
(q1p1(1 —m3)Re(a) + g2 p2(1 —mg)Re(ay)

E> can be obtained from this equation. By putting values of Eq and E> we can
obtain Wy (0) and Wy (6) and hence g20,911, 902, g21 etc. Hence as stated in [5, 10],
we can obtain the following values;

, 2
c1(0) = 5i—(gnga0—2 | gn > 125 + 2,
= —LKeqo)

Re(\ (7)) (10)
B2 = 2R6(61(0))

T =

— = Um(er(0) + I m(N (7)),
which determine the direction and stability of the model with delay at the critical
value 7. Now, we state the following theorem due to [5, 10, 21], which is the main
result of this section:

Theorem 3 (i) The sign of i determined the direction of Hopf bifurcation: if pp >
0(u2 < 0), then the Hopf bifurcation is supercritical (subcritical).

(ii)The stability of bifurcated periodic solutions is determined by 3,: the periodic
solutions are stable if 3, < 0 and unstable if 3, > 0.

(iii)The period of bifurcated periodic solutions is determined by T,: the period
increases if T, > 0 and decreases if T, < 0.

From part (i) of this theorem, it is clear that Hopf bifurcation is supercritical if
either Re(c1(0)) < 0 or Re(A (%)) < 0. Similarly, Hopf bifurcation is subcritical
if Re(\ (1)) > 0 and Re(c;(0)) > 0.

6 Numerical Simulation

In this section, we consider a hypothetical set of parameters P; = {r = 0.8

=1,8=1,p =0.12,p = 6,m; = 0.02,my = 0.06,m3 = 0.5,mg =
02 dy = 0.05,d3 = 0.6,ds = 0.5,c = 0.025,q1 = 0.75, g2 = 0.75}. We will
focus on positive equilibrium. Calculation shows that S = .2339,1 = 2749,Y =
.0487, thus model has the positive equilibrium E5(.2339, .2749, 0.0487). Also, I =
—0.5550, A = 1.8, = —4.860, A = —0.380, A] = .3698, Ay = .1647, A3 =
0217, therefore 'S+ AT +©OY + A = —0.0335 < Oand A; A> + A3 = .0826 > 0,
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Computed solution for the Phase plane plot of susceptible prey (S) Phase plane plot of infected prey (I)
interval [0,1000] and infected prey(l) and predator (Y)
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Fig. 1 Solution of system (4) for initial function S(0) = 0.6,7(0) = 0.2,Y(0) = 0.2 with
parameter set Py, 7 = 15.14 < 79, the positive equilibrium point is stable

hence E5(.2339,.2749, 0.0487) is stable. Indeed, we also have the jacobian matrix
at Es;

—0.1349 —0.4210 —0.0140
0.2749 —0.1349 —1.3195 |,
0.0022 0.0029 —0.1

this has the characteristics equation A3 4-0.3698)\? +0.1647\ +0.0217. It has three
roots, viz.,

—0.1020 + 0.34711,
—0.1020 — 0.3471i,
—0.1658,

hence E5(0.2339, 0.2749, 0.0487) is stable. It is also calculated that ng = —0.1941,
ny = —1.1,n1 = 0.6895, my = 0.2158, m; = —0.5248, mp = 1.4698. Therefore,
po = 3.1633, g0 = —0.4073, r9 = 0.0089, h(z) = z° + 3.1633z> — 0.4073z +
0.0089, p% —3qo = 11.2284 > 0 and z{ = 0.063. From this /(z}) = 11.20998528,
hence E, is stable. Further wg = 0.6382 and 79 = 33.14. Thus, Hopf bifurcation
occurs as the 7 passes through 79 which is depicted by numerical simulation in
Figs. 1 and 2.
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Computed solution for the Phase plane plot of susceptible prey (S) Phase plane plot of infected prey (I)
interval [0,1000] and infected prey(l) and predator (Y)
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timet S 1
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0.15

0.05|

Fig. 2 Solution of system (4) for initial function S(0) = 0.6,7(0) = 0.2,Y(0) = 0.2 with
parameter set Py, 7 = 60.30 > 79, the positive equilibrium point is unstable

7 Discussion

In this paper, we have considered a delayed prey—predator system with infection.
Migration has been allowed among prey population only. It is also considered that
prey population has self-defence in the form of prey refuge. This decreases the
availability of prey population for predation to predators. For instance, only (1 —m3)S
of sound prey are available for predation. Similarly, (1 — m4)I of infected prey are
available for predation. Stability results have been investigated.

Similar to the study of [10], in this paper the time delay 7 is the gestation period of
predator. In our analysis this is found to be the bifurcation parameter. It is proved that
beyond some specific value of 7, Hopf-bifurcation occurs. The direction of Hopf-
bifurcation and stability of bifurcated periodic solutions have been derived using the
central manifold reduction technique and normal form theory.

In this paper, bifurcation of predator into two parts, viz., healthy predator and
infected predator has been ignored. The same may be done in the future. Further, for
simplification, parameters are taken as time independent. In real-life the parameters
are time dependent, this may also considered in the future.

The main issue in applied mathematical modeling is to identify the real parame-
ters. The present study is not a case study, hence real parameters are not available.
Hence, the main scope of this study is to study a real eco-system and to identify the
real/experimental parameters.
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