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Abstract This paper concerns a predator–prey system with migrating and refuging
prey with disease infection. Analysis of the model regarding stability has been per-
formed. The effect of time delay on the above system is also studied. By assuming
the time delay a bifurcation parameter, the stability of the positive equilibrium, and
Hopf-bifurcation is studied. Further, the directions of Hopf-bifurcation and the sta-
bility of bifurcated periodic solutions are calculated using the famous normal form
theory, Riesz representation theorem and central manifold theorem. This is not a case
study, hence real data is not available. However, to verify our theoretical predictions,
some numerical simulations are also included.

Keywords Predator–prey model · Stability · Hopf-bifurcation · Migration ·
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1 Introduction

The dynamic relation between prey and predator has been studied extensively in the
literature. At first sight, prey–predator dynamics may seem very simple mathemati-
cally, but they are, in fact very difficult and challenging. The classical Lotka-Volterra
model is a first stepping stone in the study of prey–predator dynamics and inter-
actions [1, 23]. In mathematical ecology, this model is extensively used and cited
and proved a milestone in the progress of mathematical ecology. On the other hand,
the famous work of Kermack-Mckendric [25] in epidemiological studies received
much attention among applied mathematicians, scientists, and ecologists. After the
work of [1, 23, 25], many mathematical models have been published for reference
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(see [2, 6, 7, 13–17, 21, 24, 27, 29], etc., and references therein). Combined and/or
overlapping study of ecology and epidemiology is termed as Eco-epidemiology. Eco-
epidemiological models are gaining popularity day-by-day. The present study also
falls under the purview of Eco-epidemiology.

To study the environmental impact on prey–predator models, the ‘time delay’ has
been investigated by the researchers. A good number of papers are available in the
literature for instance (see [4, 8, 18]). In these papers, most of the authors investigate
the ‘time delay’ as a game changing. Time delay may cause changes in stability,
occurrence for limit cycle, bifurcation, etc.

Further, migration of species especially prey is also evolved and few references
are available in the literature, for reference we can refer [11, 19, 20]. Prey-refuge
in prey-predator models also play an important role in dynamical nature. Further if
prey-refuge is more than outbreak of the prey population occurs. To understand a
role of prey-refuge in mathematical ecology few publications are available. At this
juncture we may refer readers to ([9, 22, 24, 26, 29] and references therein).

Pal and Samanta [3] proposed the followingmathematical model by incorporating
prey-refuge in the model proposed of Xiao and Chen [28]:

⎧
⎪⎨

⎪⎩

d S
dt = r1S(1 − S+I

k ) − SIβ,
d I
dt = SIβ − cI − bI Y

aY+I ,
dY
dt = −dY + pbI Y

aY+I .

(1)

Motivated by the model of Samanta [18] and model in [12], Hu and Li [10] proposed
the following model:

⎧
⎪⎨

⎪⎩

d S
dt = r S

(
1 − S+I

k

)− SIβ − p1SY,
d I
dt = −cI + SIβ − p2 I Y,
dY
dt = −dY + qp1S(t − τ )Y (t − τ ) + qp2 I (t − τ )Y (t − τ ).

(2)

In order to study the influence of prey-refuge, migration, and disease on the Prey-
predator system, in this paper, we concentrate on an eco-epidemiological prey-
predator system consisting of three species as in [10]. Motivated by the models in
[10] and [3], we propose a mathematical model in which prey is migrating and refug-
ing with disease in both species. We present stability and Hopf-bifurcation analysis
of the mathematical model. Detailed assumptions for model formulation are listed
in the next section.

The rest of the paper is structured as follows: In the next section, we formulate our
main mathematical model with the help of biological and ecological assumptions.
In Sect. 3, we consider the model without delay. In Sect. 4, we discuss the stability
of mathematical model with delay. In Sect. 5, we discuss the direction and stability
of Hopf-bifurcation using the normal form theory, Riesz representation theorem and
central manifold theorem as in [10]. Numerical simulations have been done in Sect. 6
followed by discussion in the last Sect. 7.
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2 The Model

In this paper, we propose to study a prey-predator system by means of mathematical
modeling. To formulate the model and in view of simplicity we make the following
assumptions:

• In the absence of disease and predation the healthy (susceptible) prey population
has logistic growth with growth rate r and carrying capacity k, i.e.,

d N

dt
= r N

(

1 − N

k

)

. (3)

• Disease is spreading in both populations. After disease prey population is divided
into two parts susceptible prey(S) and infected prey (I). Thus total biomass of prey
population is S(t) + I (t).

• Due to mathematical complexity, the bifurcation of predator population and the
detailed dynamics of the disease infection in the predator population is omitted.
Further, it is also assumed that disease infection in predator occurs due to eating
of the infected prey and not due to outside infection. In other words, it is easy to
understand that the disease infection starts from prey and then carries forward to
predator. For example H1N1, H5N1, etc., may be pointed out here to understand
the physical phenomenon better. Thus total biomass of predator population is Y.

• Infected prey population does not become immune as well as they have no
reproduction rate. However, infected prey population contributes the carrying
capacity k.

• Predator population consumes both susceptible aswell as infected prey population.
• Due to environmental and fear factors, we consider out migration in prey popula-
tion, i.e., once prey migrated they will not return. Let m1 and m2 be the migration
rates of susceptible and infected prey respectively. Further, healthy prey population
is more active compared to infected one. Hence, healthy prey can migrate more
easily than infected prey before their predation. Hence, by using this ecological
information, we can impose the mathematical condition m1 > m2.

• Let d2 and d3 be natural death rates for infected prey and predator population
respectively.

• Death (mortality) rate due to disease for infected prey population and predator
population are denoted by c and d4 respectively.

• The coefficient for S-prey and I-prey to predator are denoted by q1 and q2 respec-
tively. The relationship between q1 and q2 is established later.

• Let a refuge protecting m3S of healthy prey and m4 I that of infected prey, where
m3, m4 ∈ [0, 1). Hence, (1 − m3)S and (1 − m4)I of healthy and infected prey,
respectively, are available to the predator for predation.
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Based on these assumptions, model takes the following form:

⎧
⎪⎨

⎪⎩

d S
dt = r S

(
1 − S+I

k

)− SIβ − p1(1 − m3)SY − m1S,
d I
dt = SIβ − p2(1 − m4)I Y − d2 I − m2 I − cI,
dY
dt = q1 p1(1 − m3)S(t − τ )Y (t − τ ) + q2 p2(1 − m4)I (t − τ )Y (t − τ ) − d3Y − d4Y.

(4)
The initial conditions are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(t) = φ1(t) > 0,

I (t) = φ2(t) > 0,

Y (t) = φ3(t) > 0,

(φ1(t),φ2(t),φ3(t)) ∈ C = C
([−τ , 0], R3+

)
,

R3+ = {(x, y, z)|x ≥ 0, y ≥ 0, z ≥ 0},

(5)

where,

β : Disease Contact Rate
p1, p2 : Predation Coefficients of Susceptible (S) and Infected (I) Prey
τ : Gestation period (delay).

Ecological and biological assumptions suggests the following relationship
between q1 and q2:

q2 �= q1 and 0 < q1 ≤ 1,

q2 > q1 and 0 < q2 ≤ 1.

3 Analysis of the Model Without Delay

In this section, model (4) is investigated under the condition τ = 0. Before going to
main analysis, we state two lemmas for our model without proof.

Lemma 1 Each solution of the system (4) without delay with the initial conditions
(5) are strictly positive for all t ≥ 0.

Lemma 2 Solutions of the system (4) without delay with the initial conditions (5)
are eventually bounded, i.e., uniformity bounded in R3+.

3.1 Equilibrium Points

System of ODEs under consideration has the following equilibrium points:
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(i) E1(0, 0, 0) = (0, 0, 0).
(ii) E2(Ŝ, 0, 0). where Ŝ = (r − m1)

k
r .

(iii) E3(S∗, 0, Y ∗), where
⎧
⎨

⎩

S∗ = d3 + d4
q1 p1(1− m3)

,

Y ∗ = kp1(1− m3)q1(r − m1) − r(d3 + d4)
kq1(1− m3)p21

.

(iv) E4(S, I , 0), where

⎧
⎨

⎩

S = c + d2 + m2
β ,

I = {(r − m1)kβ − r(c + d2 + m2)}
(β(r + kβ))

.

(v) E5(S̃, Ĩ , Ỹ ), where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S̃ = (r − m1)q2(1− m4)p2k + (c + d2 + m2)q2 p1(1− m3)(1− m4)p2k − (r + kβ)(d3 + d4)
rq2 p2(1− m4) − q1 p1(1− m3)(r + kβ) + q2(1− m4)p2βk ,

Ĩ = (d3 + d4) − q1 p1(1− m3)S̃
q2 p2(1− m4)

,

Ỹ = β S̃ − (c + d2 + m2)
p2(1− m4)

.

3.1.1 Existence Conditions

We have the following existence conditions:

(i) Trivial equilibrium E1 always exists.
(ii) E2 exists provided (r − m1) > 0 or r > m1. Physical meaning implies that

existence of E2 is independent of other parameters and depends only on growth
rate and migration of S, viz., r and m1. E2 exists if growth rate of S is greater
than migration of itself.

(iii) E3 exists provided r−m1
d3+d4

> r
kq1 p1(1−m3)

. This is the case when no disease

infection occurs in the prey population.
(iv) E4 exists provided r−m1

c+d2+m2
> r

kβ . This is the case when predator does not
survive.

(v) E5 exists provided the following conditions are satisfied:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d3 + d4 > q1 p1(1 − m3)S̃,

β S̃ > (c + d2 + m2),

(r − m1)q2 p2(1 − m4)k + (c + d2 + m2)q2 p2(1 − m4)p1(1 − m3)k > (r + kβ)(d3 + d4),

(rq2 p2(1 − m4) + q2 p1(1 − m3)βk) > q1 p1(1 − m3)(r + kβ).

This equilibrium point is very important, since it provides the coexistence of all the
three populations.
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3.2 Stability Analysis

Jacobian matrix of the system is given by

J =
⎛

⎜
⎝

(r − m1 − 2r S
K − r I

k − β I − p1(1− m3)Y )
(
− r S

k − βS
)

(−p1(1− m3)S)

(β I ) (βS − p2(1− m4)Y − c − d2 − m2) (−p2(1− m4)I )

(q1(1− m3)p1Y ) (q2 p2(1− m4)Y ) (q1 p1(1− m3)S+q2 p2(1− m4)I − d3 − d4)

⎞

⎟
⎠ ,

(6)
with this matrix stability analysis is carried out. We will focus on the non zero
equilibrium point.

After a little calculation we see that trivial equilibrium point is locally stable if
r < (m1). Equilibrium (E2) is locally asymptotically stable provided the following
conditions are satisfied:

{
(β Ŝ − c − d2 − m2) = βk(r−m1)

r < 0,

(q1 p1(1 − m3)Ŝ − d3 − d4) = q1 p1(1 − m3)
k(r−m1)

r − d3 − d4 < 0.

Equilibrium (E3) is locally asymptotically stable if

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
β(d3+d4)

q1(1−m3)p1
− p2(1−m4)(r−m1)

p1(1−m3)
+ p2(1−m3)r(d3+d4)

kq1(1−m3)p21
− (c + d2 + m2)

]

< 0;

Quadratic equation (λ2 − ξλ + ζ) have roots with negative real parts, where

ξ = −(d3+d4)[kq1 p1(1−m3)+r ]
kq1(1−m3)p1

,

ζ = (d3+d4)[kq1 p1(1−m3)(r−m1)−(d3+d4)r ]
kq1 p1(1−m3)

.

Equilibrium (E4) is locally asymptotically stable if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(q1 p1S + q2 p2 I − d3 − d4) = −(d3 + d4) + q1 p1(c+d2+m2)
β + q2 p2[(r−m1)kβ−r(c+d2+m2)]

β(r+kβ)
< 0;

Equation (λ2 − Bλ + C) have roots with negative real parts, where

B = −3r(c+d2+m2)
kβ ,

C = (c + d2 + m2)
[
(r − m1) − r(c+d2+m2)

kβ

]
.

Remark 1 In this case no infection occurs in the system, hence ecologicallymortality
due to infection in predator population may be omitted. Similarly, parameter c may
also be deleted. Jacobian matrix at E3 is now reduced to

J =
⎡

⎢
⎣

(
r − m1 − 2r S∗

k − p1(1 − m3)Y ∗
) (

− r S∗
k − βS

)
(−p1(1 − m3)S∗)

0 (βS∗ − p2(1 − m4)Y ∗ − d2 − m2) 0
(q1 p1(1 − m3)Y ∗) (q2 p2(1 − m4)Y ∗) (q1 p1(1 − m3)S∗ − d3)

⎤

⎥
⎦ ,

(7)

where S∗ = d3
q1 p1(1−m3)

and Y ∗ = kq1 p1(1−m3)(r−m1)−r(d3)
kq1(1−m3)p21

.

Characteristic equation is given by (λ − λ1)(λ
2 − ξλ + ζ) = 0,
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where λ1 = (βS∗ − p2(1 − m4)Y ∗ − d2 − m2) = β(d3)
q1 p1(1−m3)

− p2(1−m4)(r−m1)
p1(1−m3)

+
p2(1−m4)r(d3)
kq1(1−m3)p21

− (d2 + m2),

ξ = −(d3)[kq1 p1(1−m3)+r ]
kq1(1−m3)p1

, ζ = (d3)[kq1 p1(1−m3)(r−m1)−(d3)r ]
kq1(1−m3) p1

.

Thus E3 is locally asymptotically stable if the following conditions are satisfied:

⎧
⎨

⎩

[
β(d3)

q1(1−m3)p1
− p2(1−m4)(r−m1)

p1(1−m3)
+ p2(1−m4)r(d3)

kq1(1−m3)p21
− (d2 + m2)

]

< 0,

Equation (λ2 − ξλ + ζ) have roots with negative real parts.

3.2.1 Positive Equilibrium

In this case, populations of all the three species exists simultaneously. As promised,
we will furnish the detail of the stability of the positive equilibrium point. For the
stability of the positive equilibrium E5, we state the following theorem:

Theorem 1 System (4) with τ = 0 is locally asymptotically stable at E5 if the
following conditions are satisfied:

(i) � S̃ + � Ĩ + �Ỹ + � < 0.
(ii) A1A2 + A3 > 0,

where � = (q1 p1(1 − m3) + β − 2r
k ),

� = (−( r
k + β) + q2(1 − m4)p2),

� = −(p1(1 − m3) + p2(1 − m4)),

� = (r − m1 − m2 − d2 − d3 − d4 − c),
A1 = � S̃ + � Ĩ + �Ỹ + �,

A2 = S̃2[βq1 p1(1 − m3) − 2rq1(1− m3)p1
k − 2rβ

k ] + Ỹ 2[p1(1 − m3)(1 −
m4)p2] + Ĩ 2[−( r

k + β)q2 p2(1 − m4)] + S̃ Ĩ [−( r
k + β)q1 p1(1 − m3) + βq2 p2

(1 − m4) − 2rq1 p1(1− m3)
k ]+ Ỹ Ĩ [−q2 p2(1 − m4)(1 − m3)p1 + p2(1 − m4)(

r
k +

β)]+S̃Ỹ [−q1 p2 p1(1− m4)(1− m3)+ 2r p2(1− m4)
k − p1(1− m3)β]+S̃[−β(d3+d4)

− (c + m2 + d2)q1 p1(1 − m3) + (r − m1)q1 p1(1 − m3) + 2r(d3+d4)
k + β(r −

m1) + 2r(c + d2 + m2)
k ] + Ĩ [−(c + d2 + m2)(1 − m4)q2 p2 + (r − m1)q2(1 −

m4)p2 + ( r
k +β)(d3 + d4) + ( r

k + β)(c + d2 + m2)]+ Ỹ [p1(1 − m3)(d3 + d4)
− p2(r − m1)(1 − m4)+ p1(1 − m3)(c + m2 + d2)]+[p2(1 − m4)(d3 + d4) +
(c + m2 + d2)(d3 + d4) − (d3 + d4)(r − m1) − (r − m1)(c + m2 + d2)],

A3 = S̃3[− 2rβq1 p1(1− m3)
k ] + S̃2Ỹ [ 2rq1 p1 p2(1− m4)(1− m3)

k ] + Ĩ 2 S̃[q2 p2(1 − m4)

β( r
k + β)] + S̃2 Ĩ [ 2rβq2 p2(1− m4)

k ] + S̃2[(r − m1)βq1(1 − m3)p1 + 2rβ(d3 + d4)
k +

2rq1 p1(1− m3)(c + m2 + d2)
k ]+ Ĩ2[( r

k +β)q2(1− m4)p2(c+d2+m2)]+S̃ Ĩ Ỹ [−2βq2 p1 p2
(1 − m4)(1 − m3)+q1 p1 p2(1 − m4)(1−m3)(

r
k +β)]+ S̃ Ĩ [(r − m1)βq2 p2(1 −

m4) + ( r
k + β)(c + m2 + d2)q1 p1(1 − m3) + 2r

k (c + m2 + d2)q2 p2(1 − m4)] +
S̃Ỹ [β p1(1 − m3)(d3 + d4)] + Ĩ Ỹ [(c + m2 + d2)q2 p1 p2(1 − m4)(1 − m3)] +
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S̃[(r − m1){−β(d3 + d4) − (c + m2 + d2)q1 p1(1 − m3)} − 2r p2(1− m4)(d3+d4)
k −

2r(c+m2+d2)(d3+d4)
k ]+ Ĩ [−(r −m1)(c +m2 +d2)q2 p2(1 − m4)− ( r

k +β)(c +m2 +
d2)(d3+d4)]+[p2(1 − m4)(d3+d4)(r − m1)+(r − m1)(c + m2+d2)(d3+d4)].
Proof 1 Jacobian matrix at E5 is given by

J =
⎛

⎝

(r − 2r S̃
k − f racr Ĩ k −β Ĩ − p1(1− m3)Ỹ ) (− r S̃

k −β S̃) (−p1(1− m3)S̃)

(β Ĩ ) (β S̃−p2(1− m4)Ỹ − c − d2 − m2) (−p2(1− m4) Ĩ )

(q1 p1(1− m3)Ỹ ) (q2 p2(1− m4)Ỹ ) (q1 p1(1− m3)S̃ + q2 p2(1− m4) Ĩ − d3 − d4)

⎞

⎠ .

(8)
The characteristic equation is given by λ3 + A1λ

2 + A2λ + A3 = 0, where A1,
A2 and A3 are the same as defined in statement of the theorem. By Routh-Hurwitz
criteria the theorem follows.

4 Stability Analysis of the Model with Time Delay

In this section,model (4) with τ �= 0 is considered. It is also important tomention that
we will consider the positive equilibrium (E∗) only. At any point, jacobian matrix
of system (4) is given by

J =
⎡

⎢
⎣

(
r
(
1 − S+I

k

)
− r S

k − β I − p1(1 − m3)Y − m1

) (
− r S

k − βS
)

(−p1(1 − m3)S)

(β I ) (βS − p2(1 − m4)Y − c − d2 − m2) (−p2(1 − m4)I )
0 0 (−d3 − d4)

⎤

⎥
⎦

+
⎡

⎣
0 0 0
0 0 0

(q1 p1(1 − m3)Y ) (q2 p2(1 − m4)Y ) (q1 p1(1 − m3)S + q2 p2(1 − m4)I )

⎤

⎦ (e−λτ ),

here λ being a complex number. Now we state two more lemmas from [10, 27];

Lemma 3 Let λ = (A + i B) A > 0, B > 0 then,

• if A < B , all roots of the equation λ + A − Be−λτ = 0 have positive real parts
for τ < 1√

B2−A2 cos−1
( A

B

)
.

• if A > B, all roots of the equation λ + A − Be−λτ = 0 have negative real parts
for any τ .

Lemma 4 Let the polynomial, h(z) = z3 + p0z2 + q0z + r0 = 0

(i) if r0 < 0, then this equation has at least one positive root;
(ii) if r0 ≥ 0 and � = (p20 − 3q0) ≤ 0 then this equation has no positive roots;

(iii) if r0 ≥ 0 and � = (p20 − 3q0) > 0, then this equation has positive roots if and

only if z∗
1 = −p0+√�

3 and h(z∗
1) ≤ 0.

Let us study nonzero equilibrium E∗ = (S∗, I∗, Y∗). The jacobian matrix at E∗ =
(S∗, I∗, Y∗) is given as
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J (E∗) =
⎛

⎜
⎝

(
r
(
1− S∗+I∗

k

)
− r S∗

k − p1(1− m3)Y∗ − β I∗ − m1

) (
− r S∗

k − βS∗
)

(−p1(1− m3)S∗)

β I∗ (βS∗ − p2(1− m4)Y∗ − c − d2 − m2) p2(1− ,m4)I∗
(q1 p1(1− m3)Y∗e−λτ ) (q2 p2(1− m4)Y∗e−λτ ) (q1 p1(1− m3)S∗

+ q2 p2(1− m4)I∗)e−λτ − d3 − d4)

⎞

⎟
⎠ .

The characteristics equation is given as (λ3 + M2λ
2 + M1λ+ M0)+ (n2λ

2 + n1λ+
n0)e−λτ = 0, where,

M2 =
(
2r

k
+ p1(1 − m3)β

p2(1 − m4)
− q1 p1(1 − m3)β

q2 p2
(1 − m4)S∗

)

+
(

r(d3 + d4)

q2 p2(1 − m4)K
+ d3 + d4 − p1(1 − m3)(c + d2 + m2)

p2(1 − m4)
− r

)

,

M1 = ({(d3 + d4)(c + d2 + m2) − (r − m1)(c + d2 + m2)} + S∗{−(d3 + d4)β +
2r
K (d3 + d4) + (r − m1)β + 2r

k (c + d2 + m2)} + I∗{( r
k + β)(d3 + d4 + c + d2 +

m2)}+Y∗{(d3+d4)p2(1−m4)+(d3+d4)p1(1−m3)+(c+d2+m2)p1(1−m3)+
(r −m1)p2(1−m4)}+ S2∗(− 2rβ

k )+ Y 2∗ (p1 p2(1−m3)(1−m4))+ S∗Y∗(−β p1(1−
m3) + 2r

k p2(1 − m4)) + I∗Y∗( r
k + β)p2(1 − m4)),

M0 = ({−(r − m1)(c + d2 + m2)(d3 + d4) + S∗{(d3 + d4)β(r − m1) + 2r
k (d3 +

d4)}(c + d2 + m2)} + I∗{(d3 + d4)(c + d2 + m2)(
r
k + β)} + Y∗{(d3 + d4)(c + d2 +

m2)p1(1−m3)−(r −m1)(d3+d4)p2}+S2∗(− 2r
k (d3+d4)β)+Y 2∗ (d3+d4)p2 p1(1−

m3)(1−m4))+S∗Y∗{−(d3+d4)β p1(1−m3)− 2r
k (d3+d4)p2(1−m4)}+I∗Y∗{( r

k +β)

p2(1 − m4)(d3 + d4)}),
n2 = −(d3 + d4),
n1 = (S2∗{q1 p1(1− m3)β − −2r

k q1 p1(1− m3)} + I 2∗ {−( r
k + β)q2 p2(1− m4)} +

S∗Y∗{−q1 p2 p1(1 − m3)(1 − m4)} + S∗ I∗{q2 p2(1 − m4)β + 2r
k q2 p2(1 − m4)} +

Y∗ I∗{−q2 p2 p1(1 − m3)(1 − m4)} + S∗{{−(c + d2 + m2) − (r − m1)}q1 p1(1 −
m3)} + I∗{−(c + d2 + m2)q2 p2(1 − m4) + (r − m1)q2 p2(1 − m4)}),

n0 = −(S2∗{q1 p1(1 − m3)β(r − m1 − 2r
k ) + 2r

K (c + d2 + m1)q1 p1(1 − m3) −
q1{p1(1−m3)}2β}+ I 2∗ {( r

k +β)(c+d2+m2)q2 p2(1−m4)}+ S2∗Y∗{ 2r
k q1 p1 p2(1−

m3)(1 − m3) + q1{p1(1 − m3)}2β} + S2∗ I∗{− 2r
k q2 p2(1 − m4)β} + S∗ I∗Y∗{( r

k +
β)q1 p1 p2(1− m3)(1− m4) − 2βq2 p1 p2(1− m3)(1− m4)} + S∗Y∗{{−(r − m1) +
( r

k + β)}q1 p1 p2(1 − m3)(1 − m4)} + S∗ I∗{β(r − m1)q2 p2(1 − m4) + 2r
k (c +

d2 + m2)q2 p2(1 − m4) + (c + d2 + m2)(
r
k + β)q1 p1(1 − m3)} + Y∗ I∗{(c + d2 +

m2)q2 p2 p1(1−m3)(1−m4)}+S∗{(c+d2+m2)(r −m1)q1 p1(1−m3)}+ I∗{−(c+
d2 + m2)(r − m1)q2 p2(1 − m4)}).

Now we put λ = iω (ω > 0) we get
Real Part: {n2ω

2+n0} cosωτ +{n1ω sinωτ − M2ω
2 + M0}, Imaginary Part:

n1ω cosωτ−(−n2ω
2+n0) sinωτ+M1ω−ω3 (Real Part)2+(Imaginary Part)2 =

ω6 + p0ω4 + q0ω2 + r0. Hence, we have ω6 + p0ω4 + q0ω2 + r0 = 0, where
p0 = (M2

2 − 2M1 − n2
2) q0 = (M2

1 − 2M2M0 + 2n2n0 − n2
1) r0 = (M2

0 − n2
0). If

we put z = ω2, then we have the equation z3 + p0z2 + q0z + r0 = 0. If M2
0 ≥ n2

0,
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then we will have r0 ≥ 0, we have two situations for � (i)� = (p20 − 3q0) ≤ 0.
(ii)� = (p20 − 3q0) > 0.

In situation (i) we have to say that E∗ is absolutely stable if r0 ≥ 0 and � =
(p20 − 3q0) ≤ 0. Also, if we have and r0 ≥ 0 � = (p20 − 3q0) > 0 then equation

has negative roots if and only if h(z∗
1) > 0 where z∗

1 = −p0+√�
3 thus we have the

following theorem for the stability of E∗.

Theorem 2 E∗(S∗, I∗, Y∗) is absolutely stable if one of the following conditions
holds:

(i) � = (p20 − 3q0) ≤ 0.

(ii) � = (p20 − 3q0) > 0 and z∗
1 = −p0+√�

3 < 0.

(iii) � = (p20 − 3q0) > 0, z∗
1 = −p0+√�

3 > 0 and h(z∗
1) > 0 provided r0 ≥ 0.

Next, if we consider the case when r0 < 0 or {r0 ≥ 0,� = (p20 − 3q0) > 0,
z∗
1 > 0, h(z∗

1) < 0}. Then, according to lemma , equation will have one positive
root say ω0 that is the characteristic equation has a pair of purely imaginary roots
say ±iω0. Now assume that iω0, ω0 > 0 is a root of h(z), then we have real and
imaginary parts as under.

Real Part = {n2ω
2 + n0} cosωτ + {n1ω sinωτ − M2ω

2 + M0} = 0.
Imaginary Part = n1ω cosωτ − (−n2ω

2 + n0) sinωτ + M1ω − ω3 = 0.
Solving the above equation for τ , we have (by eliminating sinωτ between these

equations)

τ = 1
ω0

cos−1
(

n1ω2
0{ω0−M1}−{M2ω

2
0−M0}{n2ω2

0−n0}
n21ω

2
0+n2ω2

0−n0

)

+ 2kπ
ω0

, (k = 0, 1, 2, . . .)

We call it as a ’critical value’ and may be denoted as τk = 1
ω0

cos−1
(

n1ω2
0{ω0−M1}−{M2ω

2
0−M0}{n2ω2

0−n0}
n21ω

2
0+n2ω2

0−n0

)

+ 2kπ
ω0

, (k = 0, 1, 2, . . .). This is correspond-

ing to the characteristic equation as it has purely imaginary roots ±iω, which is
a result similar to that of Hu et al. 2012 [10]. Differentiating the characteristics

equation w.r.t. τ , we get ( dλ
dτ )−1 = (3λ2+2M2λ+M1)eλτ

(λ2n2+λn1+n0)λ
+ 2n2λ+n1

(λ2n2+λn1+n0)λ
− τ

λ or

( dλ
dτ )−1 = (3λ2+2M2λ+M1)eλτ + (2n2λ+n1) − τ (2n2λ+n1)

(λ2n2+λn1+n0)λ
. As proved in [10], it is easy to

prove the transversality condition at τk e.g. d(Reλ)
dτ �= 0. τk is used as a point for

direction of Hopf Bifurcation as in the next section.

Remark 2 The equilibrium points E5 of model (4) with τ = 0 and E∗ of model (4)
with τ �= 0 are ecologically similar. Both convey the message that all the species
exist simultaneously.
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5 Direction and Stability of the Hopf-Bifurcation

With the symbols used in [10] and procedure explained in [5], we have the following
system of functional differential equation, u̇(t) = Lμ(μt )+ F(μ, ut ), where ut (θ) =
u(t + θ) ∈ R3 and Lμ : R × C → R

3 and F : R × C → R
3 are given as

Lμφ = (τk + μ)

⎡

⎣
− r S∗

k − ( r
k + β

)
S∗ (−p1(1 − m3)S∗)

β I∗ (βS∗ − p2(1 − m4)Y∗ − c − d2 − m2) −p2(1 − m4)I∗
0 0 −d3 − d4)

⎤

⎦× φ(0)

+ (τk + μ)

⎡

⎣
0 0 0
0 0 0

q1 p1(1 − m3)Y∗ q2 p2(1 − m4)Y∗ q1 p1(1 − m3)S∗ + q2 p2(1−m4) I∗

⎤

⎦× φ(−1),

and

F(μ, θ) =
⎛

⎝
− r

k φ2
1(0) − ( r

k + β
)
φ1(0)φ2(0) − p1(1 − m3)φ1(0)φ3(0)

βφ1(0)φ2(0) − p2(1 − m4)φ2(0)φ3(0)
q1 p1(1 − m3)φ1(−1)φ3(−1) + q2 p2(1 − m4)φ1(−1)φ2(−1)

⎞

⎠ ,

φ(0) ≡ (φ1(0),φ1(0),φ1(0))T ∈ C i.e.

Lμφ = (τk + μ)

⎡

⎣
− r S∗

k − ( r
k + β

)
S∗ (−p1(1 − m3)S∗)

β I∗ (βS∗ − p2(1 − m4)Y∗ − c − d2 − m2) −p2(1 − m4)I∗
0 0 −d3 − d4

⎤

⎦×
⎛

⎝
φ1(0)
φ2(0)
φ3(0)

⎞

⎠

+ (τk+μ)

⎡

⎣
0 0 0
0 0 0

q1 p1(1 − m3)Y∗ q2(1 − m4)p2Y∗ q1 p1(1 − m3)S∗ + q2(1 − m4)p2 I∗

⎤

⎦×
⎛

⎝
φ1(−1)
φ2(−1)
φ3(−1)

⎞

⎠ ,

we have considered, τ = (τk + μ), μ = 0 gives the hopf bifurcation value for
the mathematical model with delay as promised in the previous section. Normal-
izing delay τ by timescaling t → t

τ the model is written in the Banach Space
C ≡ C([−1, 0],R3). By the Riesz representation theorem, we found that there
exists a matrix function whose components are bounded variation function η(θ,μ)

in θ ∈ [−1, 0] such that
Lμφ = ∫

�
dη(θ,μ)φ(θ),φ ∈ C,� ∈ [−1, 0).

We can choose

η(θ,μ) = (τk + μ)

⎡

⎣
− r S∗

k − ( r
k + β

)
S∗ (−p1(1 − m3)S∗)

β I∗ (βS∗ − p2(1 − m4)Y∗ − c − d2 − m2) −p2(1 − m4)I∗
0 0 −d3 − d4)

⎤

⎦× δ(θ)

− (τk +μ)

⎡

⎣
0 0 0
0 0 0

q1 p1(1 − m3)Y∗ q2 p2(1 − m4)Y∗ q1(1 − m3)p1S∗ + q2(1 − m4)p2 I∗

⎤

⎦× δ(θ + 1).

where δ(θ) denotes the dirac delta function, viz.,
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δ(θ) =
{
0, θ �= 0

1, θ
.= 0,

for φ ∈ C
1([−1, 0],R3), define

A(μ)φ(θ) =
{ dφ(θ)

dθ θ ∈ [−1, 0)
∫ 0
−1 dη(θ,μ)φ(θ) θ

.= 0

or A(μ)φ(θ) =
{ dφ(θ)

dθ , −1 ≤ θ < 0
∫ 0
−1 dη(θ,μ)φ(θ), θ = 0

and

R(μ)φ(θ) =
{
0, θ ∈ [−1, 0)

F(μ,φ), θ
.= 0

=
{
0, −1 ≤ θ < 0

F(μ,φ), θ
.= 0

with these symbols, ˙u(t) = Lμ(μt ) + F(μ,μt ) may be written as

˙u(t) = Aμ(μt ) + R(μ)μt (9)

which is an abstract differential equation. Where ut (θ) = u(t + θ),−1 ≤ θ < 0.
Now we come to operator theory, for ψ ∈ C

1
([0, 1], (R3)∗

)
we define A∗, adjoint

operator of A,

A∗ψ(S) =
{

− dψ(S)
d S S ∈ (0, 1]

∫ 0
−1 dηT (S,μ)ψ(−S) S = 0.

And a bilinear product < ψ(S),φ(θ) >= ψ(0)φ(0) − ∫ 0
1

∫ θ
ξ=0 ψ

T
(ξ − θ)dη(θ)

φ(ξ)dξ where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. Now±iω0τk

are eigen values of A(0). Hence they are eigenvalues of A∗ also. To determine the
poincare normal form of the operator A, we first need to evaluate the eigenvectors of
A(0) and A∗ corresponding to iω0τk and −iω0τk respectively. Suppose that q(θ) =
(1,α1,α2)

T exp(iω0τkθ) is the eigen vector of A(0) corresponding to iω0τk , then
we have A(0)q(θ) = iω0q(θ) from the definition of A(0),we have

⎡

⎣

⎡

⎣
− r S∗

k − ( r
k + β

)
S∗ (−p1(1 − m3)S∗)

β I∗ (βS∗ − p2(1 − m4)Y∗ − c − d2 − m2) −p2(1 − m4)I∗
0 0 −d3 − d4

⎤

⎦

+
⎡

⎣
0 0 0
0 0 0

q1 p1(1 − m3)Y∗ q2 p2(1 − m4)Y∗ q1 p1(1 − m3)S∗ + q2(1 − m4)p2 I∗

⎤

⎦× exp(iω0τk )

⎤

⎦

⎛

⎝
1
α1
α2

⎞

⎠

= iω0

⎛

⎝
1
α1
α2

⎞

⎠ ,

⎡

⎣

⎡

⎣
− r S∗

k − ( r
k + β

)
S∗ (−p1(1 − m3)S∗)

β I∗ (βS∗ − p2(1 − m4)Y∗ − c − d2 − m2) −p2(1 − m4)I∗
0 0 −d3 − d4

⎤

⎦×
⎛

⎝
1
α1

α2

⎞

⎠+
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⎡

⎣
0 0 0
0 0 0

q1 p1(1 − m3)Y∗ q2 p2(1 − m4)Y∗ q1 p1(1 − m3)S∗ + q2 p2(1 − m4)I∗

⎤

⎦× exp(iω0τk )

⎤

⎦

⎛

⎝
exp(−iω0τk )

α1 exp(−iω0τk )

α2 exp(−iω0τk )

⎞

⎠

= iω0

⎛

⎝
1
α1

α2

⎞

⎠ .

We obtain, α1 = −p2(1−m4)I∗(iω0+ r S∗
k )−p1(1−m3)βS∗ I∗

p2(1−m4)(
r
k +β)S∗ I∗−p1(1−m3)S∗(iω0−βS∗+c+d2+m2+p2(1−m4)Y∗) ,

α2 = q1 p1(1−m3)Y∗ exp(−iω0τk+q2 p2(1−m4)Y∗ exp(−iω0τk )
iω0+d3+d4−q1 p1(1−m3)S∗+q2 p2(1−m4)I∗ .

Next, suppose that q∗(s) = B(1,α∗
1,α

∗
2) exp(iω0τks) is the eigen vector of A∗

corresponding to −iω0τk similarly, we have,

α∗
1 = −p1(1−m3)(

r
k +β)S∗−p2(1−m4)(iω0− r S∗

k )

p2(1−m4)β I∗−p1(1−m3)(iω0+βS∗−c−d2−m2−p2(1−m4)Y∗) ,

α∗
2 = −p1(1−m3)S∗−p2(1−m4)I∗α∗

1−iω0+d3+d4−(q1 p1(1−m3)S∗+q2 p2(1−m4)I∗) exp(−iω0τk )
,

where B has to be calculated. We have the conditions

< q∗, q(θ) >= 1
< q∗, q(θ) >= 0

}

which may be verified.

< q∗, q(θ) >= q∗(0)q(0) − ∫ 0
−1

∫∞
ξ=0 q∗T

(ξ − θ)dη(θ)q(ξ)dξ

= B(1,α1
∗,α2

∗)(1,α1,α2)
T − ∫ 0

−1

∫∞
ξ=0 B(1,α1

∗,α2
∗) exp(−iω0τk(ξ − θ))

dη(θ) × (1,α1,α2)
T exp(iω0τkξ)dξ = B{1+ α1α1

∗ + α2α2
∗ − ∫ 0

−1(1,α1
∗,α2

∗)
exp(iω0τk)dη(θ)(1,α1,α2)

T } = B{1+α1α1
∗ +α2α2

∗ +τk[q2 p2(1−m4)α2
∗Y∗ +

q2 p2(1−m4)α1α2
∗Y∗ + (q1 p1(1−m3)S∗ +q2 p2(1−m4)I∗)α2α2

∗] exp(−iω0τk)}
which gives:

B =
1

{1 + α1α1
∗ + α2α2

∗ + τk[q2 p2(1 − m4)α2
∗Y∗ + q2 p2(1 − m4)α1α2

∗Y∗
+(q1 p1(1 − m3)S∗ + q2 p2(1 − m4)I∗)α2α2

∗] exp(−iω0τk)}.

5.1 Stability of Bifurcated Periodic Solutions

We first compute the coordinates to describe the Center Manifold C0 at μ = 0. Let
ut be the solution of u̇(t) = Lμ(ut ) + F(μ,μt ) and define, z(t) =< q∗, ut >, q∗
being the eigenvalue of A∗. And W (t, θ) = ut (θ) − 2Re{z(t)q(θ)} on the Center
Manifold C0, we have,W (t, θ) = W (z(t), z(t), θ), where,

W (z, z, θ) = W20(θ)
z2
2 + W02(θ)

z2

2 + W11(θ)zz + W30
z3
�3 + · · ·

In fact, z and z are local coordinates for the Center Manifold C0 in the direction
of q∗ and q∗ respectively. The existence of C0 will provide an opportunity to reduce
the system u̇(t) = Lμ(ut ) + F(μ,μt ) into an Ordinary Differential Equation ODE(
in a single complex variable z) on C0 which is very interesting. ut is the solution of
system under consideration. ut ∈ C0, we have

ż(t) =< q∗, u̇t >

=< q∗, A(ut ) + R(ut ) >
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=< q∗, A(ut ) > + < q∗, R(ut ) >

=< A∗q∗, (ut ) > + < q∗, R(ut ) >

= iω0τ z + q∗ · F(0, W (t, 0) + 2Re[z(t)q(θ)])
Rewrite it as ż(t) = iω0τ z + g(z, z), where g(z, z) = g20(θ)

z2
2 + g02(θ)

z2

2 +
g11(θ)zz + g21

zz2
�3 + · · ·

The above two equations give us g(z, z) = (q∗)T F(z, z)

= τk B(1, α∗
1, α

∗
2)

⎛

⎝
− r

k u21(t) − ( r
k + β)u1(t)u2(t) − p1(1 − m3)u1(t)u3(t)

βu1(t)u2(t) − p2(1 − m4)u2(t)u3(t)
p1q1(1 − m3)u1(t − 1)(t)u3(t − 1) + p2q2(1 − m4)u1(t − 1)u2(t − 1)

⎞

⎠

Further,
u(t + θ) = W (t, θ) + z(t)q(θ) + z(t)q(θ),
u1(t) = z + z + W (1)(t, 0),
u2(t) = α1z + α1z + W (2)(t, 0),
u3(t) = α2z + α2z + W (3)(t, 0),
u1(t − 1) = z exp(−iω0τk) + z exp(iω0τk) + W (1)(t,−1),
u2(t − 1) = α1z exp(−iω0τk) + α1z exp(iω0τk) + W (2)(t,−1),
u3(t −1) = α2z exp(−iω0τk)+α2z exp(iω0τk)+W (3)(t,−1).Hence, g(z, z) =

τk B[− r
k u2

1(t) − ( r
k + β)u1(t)u2(t) − p1(1 − m3)u1(t)u3(t) + α1

∗{βu1(t)u2(t) −
p2(1−m4)u2(t)u3(t)}+α2

∗{p1(1−m3)q1u1(t −1)(t)u3(t −1)+ p2(1−m4)q2u1
(t − 1)u2(t − 1)}].

Putting the values of u1, u2, u3, u1(t − 1), u2(t − 1), u3(t − 1) etc. in g(z, z), we
get

g(z, z) = τk B

(

− r
k [z + z + W (1)(t, 0)]2 − ( r

k + β)[z + z + W (1)(t, 0)][α1z +
α1z +W (2)(t, 0)]− p1[z + z +W (1)(t, 0)][α2z +α2z +W (3)(t, 0)]+α1

∗(β[z + z +
W (1)(t, 0)][α1z+α1z+W (2)(t, 0)]−p2(1−m4)[α1z+α1z+W (2)(t, 0)][α2z+α2z+
W (3)(t, 0)])+α2

∗(p1(1−m3)q1[z exp(−iω0τk)+z exp(iω0τk)+W (1)(t,−1)][α2z
exp(−iω0τk) + α2z exp(iω0τk) + W (3)(t,−1)] + p2(1 − m4)q2[z exp(−iω0τk) +
z exp(iω0τk)+W (1)(t,−1)][α1z exp(−iω0τk)+α1z exp(iω0τk)+W (2)(t,−1)])

)

.

From this equationwe can find the values of the coefficients g20(θ), g02(θ),g11(θ),
g21(θ), etc., by comparing the same powers of z, we have

g20 = 2τk B{− r
k − ( r

k + β)α1 − p1(1 − m3)α2 + βα1
∗α1 − α1

∗α1α2 p2
(1 − m4) + α2

∗(p1(1 − m3)q1α2 + p2(1 − m4)q2α1) exp(−2iω0τk)},
g11 = τk B(− 2r

k + (α1
∗)β + α2

∗ p2(1 − m4)q2 − r
k + β)(α1 + α1) + (α2

∗ p1
(1 − m3)q1 − p1(1 − m3))(α2 + α2) − α1

∗ p2(α2α1 + α1α2)),

g02 = 2τk B{− r
k − ( r

k + β)α1 − p1(1 − m3)α2 + βα1
∗α1 − α1

∗α1α2 p2(1 −
m4) + α2

∗(p1(1 − m3)q1α2 + p2q2(1 − m4)α1) exp(2iω0τk)},
g21 = 2τk B(− r

k (2W (1)
11 (0) + W (1)

20 (0)) − ( r
k + β)[W (2)

11 (0) + α1W (1)
11 (0) +

1
2α1W (1)

20 (0) + 1
2W (1)

20 (0)] − p1(1 − m3)[W (3)
11 (0) + 1

2W (3)
20 (0) + α2W (1)

11 (0) +
1
2W (1)

20 (0)] + α1
∗β[W (2)

11 (0) + 1
2W (2)

20 (0) + α1W (1)
11 (0) + 1

2α1W (1)
20 (0)]
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These coefficients are used in calculating C0, etc. Now we need to calculate
W20(θ) and W11(θ). Now u̇t = A(μ)ut + R(μ)ut and z(t) =< q∗, ut >,W (t, θ) =
ut (θ) − 2Re{z(t)q(θ)} gives us

Ẇ = u̇t − zq − żq

=
{

AW − 2Req∗(0)F0q(θ), for − 1 ≤ θ < 0

AW − 2Req∗(0)F0q(θ) + F0, forθ = 0.

Rewrite the above equation as, Ẇ = AW + H(z, z, θ), where,

H(z, z, θ) = H20(θ)
z2
2 + H11(θ)zz + H02(θ)

z2
2 + H21(θ)

z2z
2 + · · · Near to the

origin on C0, Ẇ = Wzż + Wzz (A − 2iω0τk)W20(θ) = −H20(θ) and AW11(θ) =
−H11(θ) hence for −1 ≤ θ < 0 we have, H(z, z, θ) = −2Re(q∗(0)F0q(θ)) =
−g(z, z)q(θ) − g(z, z)q(θ), by comparing the coefficients of z, we have H20(θ) =
−g20q(θ) − g02q(θ) and H11(θ) = −g11q(θ) − g11q(θ),

Ẇ20(θ) = 2iω0τk W20(θ) + g20q(θ) + g02q(θ),
Ẇ11(θ) = g11q(θ) + g11q(θ).
Integrating, we have
W20(θ) = ig20

ω0τk
q(0) exp(iω0τkθ) + ig20q(0)

3ω0τk
exp(−iω0τkθ) + E1 exp(2iω0τkθ),

W11(θ) = g21
iω0τk

q(0) exp(iω0τkθ) + ig11q(0)
ω0τk

exp(−iω0τkθ) + E2.

where E1 and E2 are to be determined. From definitions of A and (A − 2iω0τk)

W20(θ) = −H20(θ)
(A − 2iω0τk)W20(θ) = −H20(θ) gives us

∫ 0
−1 dη(θ)W20(θ) = 2iω0τk W20(0) −

H20(0) which gives us H20(0) = −g20q(0) − g02q(0)

+2τk

( − r
k − ( r

k + β)α1 − p1(1 − m3)α2
βα1 − p2(1 − m4)α1α2

(q1 p1(1 − m3)α2 + q2(1 − m4)p2α1) exp(−2iω0τk)

)

.

Now, (iω0τk I − ∫ 0
−1 exp(iω0τkθ)dη(θ))q(0) = 0

(

−iω0τk I − ∫ 0
−1 exp(−iω0τkθ)dη(θ)

)

q(0) = 0

And we have

(

2iω0τk I − ∫ 0
−1 exp(iω0τkθ)dη(θ)

)

E1 = 2τk

⎛

⎝
− r

k − ( r
k + β)α1 − p1(1 − m3)α2

βα1 − p2(1 − m4)α1α2
(q1 p1(1 − m3)α2 + q2 p2(1 − m4)α1) exp(−2iω0τk)

⎞

⎠ , which leads

to
⎛

⎝
2iω0+ r S∗

k S∗( r
k +β) p1(1−m3)S∗

−β I∗ 2iω0−βS∗+c+d2+m2+p2(1−m4)Y∗ p2(1−m4)I∗
−q1(1−m3)p1Y∗ exp(−2iω0τk ) −q2 p2(1−m4)Y∗ exp(−2iω0τk ) 2iω0+d3+d4−(q1 p1(1−m3)S∗

+q2 p2(1−m4)I∗) exp(−2iω0τk )

⎞

⎠×E1

= 2

⎛

⎝
− r

k − ( r
k + β)α1 − p1(1 − m3)α2

βα1 − p2(1 − m4)α1α2
(q1 p1(1 − m3)α2 + q2 p2(1 − m4)α1) exp(−2iω0τk)

⎞

⎠ .



32 S. Kant and V. Kumar

E1 can be calculated from this equation. Now,
∫ 0
−1 dη(θ)W11(θ) = −H11(0)

H11(0) = −g11q(0) − g11q(0) + 2τk

⎛

⎜
⎝

− r
k − ( r

k + β)Re(α1) − p1(1 − m3)Re(α2)

βRe(α1) − p2(1 − m4)Re(α1α2)

(q1 p1(1 − m3)Re(α2) + q2 p2(1 − m3)Re(α1)

⎞

⎟
⎠ ,

⎛

⎜
⎝

r S∗
k S∗( r

k + β) p1(1 − m3)S∗
−β I∗ −βS∗ + c + d2 + m2 + p2(1 − m4)Y∗ p2(1 − m4)I∗

−q1 p1(1 − m3)Y∗ −q2 p2(1 − m4)Y∗ d3 + d4 − (q1 p1(1 − m3)S∗ + q2 p2(1 − m4)I∗)

⎞

⎟
⎠

× E2 = 2

⎛

⎜
⎝

− r
k − ( r

k + β)Re(α1) − p1(1 − m3)Re(α2)

βRe(α1) − p2(1 − m4)Re(α1α2)

(q1 p1(1 − m3)Re(α2) + q2 p2(1 − m4)Re(α1)

⎞

⎟
⎠ .

E2 can be obtained from this equation. By putting values of E1 and E2 we can
obtain W20(θ) and W11(θ) and hence g20,g11, g02, g21 etc. Hence as stated in [5, 10],
we can obtain the following values;

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1(0) = i
2ω0τk

(g11g20 − 2 | g11 |2 −|g02|2
3 ) + g21

2 ,

μ2 = − Re(c1(0))
Re(λ′

(τk ))
,

β2 = 2Re(c1(0)),

T2 = − 1
ω0τk

[I m(c1(0)) + μ2 I m(λ
′
(τk))],

(10)

which determine the direction and stability of the model with delay at the critical
value τk . Now, we state the following theorem due to [5, 10, 21], which is the main
result of this section:

Theorem 3 (i) The sign of μ2 determined the direction of Hopf bifurcation: if μ2 >

0(μ2 < 0), then the Hopf bifurcation is supercritical (subcritical).
(ii)The stability of bifurcated periodic solutions is determined by β2: the periodic

solutions are stable if β2 < 0 and unstable if β2 > 0.
(iii)The period of bifurcated periodic solutions is determined by T2: the period

increases if T2 > 0 and decreases if T2 < 0.

From part (i) of this theorem, it is clear that Hopf bifurcation is supercritical if
either Re(c1(0)) < 0 or Re(λ

′
(τk)) < 0. Similarly, Hopf bifurcation is subcritical

if Re(λ
′
(τk)) > 0 and Re(c1(0)) > 0.

6 Numerical Simulation

In this section, we consider a hypothetical set of parameters P1 = {r = 0.8,
k = 1,β = 1, p1 = 0.12, p2 = 6, m1 = 0.02, m2 = 0.06, m3 = 0.5, m4 =
0.2, d2 = 0.05, d3 = 0.6, d4 = 0.5, c = 0.025, q1 = 0.75, q2 = 0.75}. We will
focus on positive equilibrium. Calculation shows that S̃ = .2339, Ĩ = .2749, Ỹ =
.0487, thus model has the positive equilibrium E5(.2339, .2749, 0.0487). Also, � =
−0.5550,� = 1.8,� = −4.860,� = −0.380, A1 = .3698, A2 = .1647, A3 =
.0217, therefore � S̃ +� Ĩ +�Ỹ +� = −0.0335 < 0 and A1A2+ A3 = .0826 > 0,
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Fig. 1 Solution of system (4) for initial function S(0) = 0.6, I (0) = 0.2, Y (0) = 0.2 with
parameter set P1, τ = 15.14 < τ0, the positive equilibrium point is stable

hence E5(.2339, .2749, 0.0487) is stable. Indeed, we also have the jacobian matrix
at E5;

⎛

⎝
−0.1349 −0.4210 −0.0140
0.2749 −0.1349 −1.3195
0.0022 0.0029 −0.1

⎞

⎠ ,

this has the characteristics equation λ3 + 0.3698λ2 + 0.1647λ+ 0.0217. It has three
roots, viz.,

⎧
⎨

⎩

−0.1020 + 0.3471i,
−0.1020 − 0.3471i,

−0.1658,

hence E5(0.2339, 0.2749, 0.0487) is stable. It is also calculated that n0 = −0.1941,
n2 = −1.1, n1 = 0.6895, m0 = 0.2158, m1 = −0.5248, m2 = 1.4698. Therefore,
p0 = 3.1633, q0 = −0.4073, r0 = 0.0089, h(z) = z3 + 3.1633z2 − 0.4073z +
0.0089, p20 − 3q0 = 11.2284 > 0 and z∗

1 = 0.063. From this h(z∗
1) = 11.20998528,

hence E∗ is stable. Further ω0 = 0.6382 and τ0 = 33.14. Thus, Hopf bifurcation
occurs as the τ passes through τ0 which is depicted by numerical simulation in
Figs. 1 and 2.
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Fig. 2 Solution of system (4) for initial function S(0) = 0.6, I (0) = 0.2, Y (0) = 0.2 with
parameter set P1, τ = 60.30 > τ0, the positive equilibrium point is unstable

7 Discussion

In this paper, we have considered a delayed prey–predator system with infection.
Migration has been allowed among prey population only. It is also considered that
prey population has self-defence in the form of prey refuge. This decreases the
availability of prey population for predation to predators. For instance, only (1−m3)S
of sound prey are available for predation. Similarly, (1 − m4)I of infected prey are
available for predation. Stability results have been investigated.

Similar to the study of [10], in this paper the time delay τ is the gestation period of
predator. In our analysis this is found to be the bifurcation parameter. It is proved that
beyond some specific value of τ , Hopf-bifurcation occurs. The direction of Hopf-
bifurcation and stability of bifurcated periodic solutions have been derived using the
central manifold reduction technique and normal form theory.

In this paper, bifurcation of predator into two parts, viz., healthy predator and
infected predator has been ignored. The same may be done in the future. Further, for
simplification, parameters are taken as time independent. In real-life the parameters
are time dependent, this may also considered in the future.

The main issue in applied mathematical modeling is to identify the real parame-
ters. The present study is not a case study, hence real parameters are not available.
Hence, the main scope of this study is to study a real eco-system and to identify the
real/experimental parameters.
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