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Abstract Characterizing the appearance of real-world surfaces is a fundamental
problem in multidimensional , computer vision and computer graphics. In this
paper, we outline a unified perception-based approach to modeling of the appear-
ance of materials for computer graphics and reflectometry. We discuss the differ-
ences and the common points of data analysis and modeling for BRDFs in both
physical and in virtual application domains. We outline a mathematical framework
that captures important problems in both types of application domains, and allows
for application and performance comparisons of statistical and machine learning
methods. For comparisons between methods, we use criteria that are relevant to
both statistics and machine learning, as well as to both virtual and physical
application domains. Additionally, we propose a class of multiple testing proce-
dures to test a hypothesis that a material has diffuse reflection in a generalized
sense. We treat a general case where the number of hypotheses can potentially grow
with the number of measurements. Our approach leads to tests that are more
powerful than the generic multiple testing procedures.

Keywords BRDF � Computer graphics � Data analysis � Light reflection �
Machine learning � Metrology � Perception � Realistic image representation �
Reflectometry � Statistics of manifolds

1 Introduction

Characterizing the appearance of real-world surfaces is a fundamental problem in
multidimensional reflectometry, computer vision and computer graphics. For many
applications, appearance is sufficiently well characterized by the bidirectional
reflectance distribution function (BRDF).
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In the case of a fixed wavelength, BRDF describes reflected light as a
four-dimensional function of incoming and outgoing light directions. In a special
case of rotational symmetry, isotropic BRDFs are are used. Isotropic BRDFs are
functions of only three angles. On the other hand, for modelling or describing
complicated visual effects such as goniochromism or irradiance, an extra dimension
accounting for the wave length has to be added.

In computer graphics and computer vision, usually either physically inspired
analytic reflectance models [1–3], or parametric reflectance models chosen via
qualitative criteria [4–7] are used to model BRDFs. These BRDF models are only
crude approximations of the reflectance of real materials. Moreover, analytic
reflectance models are limited to describing only special subclasses of materials.

In multidimensional reflectometry, an alternative approach is usually taken. One
directly measures values of the BRDF for different combinations of the incoming
and outgoing angles and then fits the measured data to a selected analytic model
using optimization techniques. There are several shortcomings to this approach as
well.

An alternative approach to fitting parametric models is in constructing more
realistic BRDFs on the basis of actual BRDF measurements. This approach bridges
the gap between computer graphics and industrial reflectometry. For example, [8]
and [9] modelled reflectance of materials in nature as a linear combination of a
small set of basis functions derived from analyzing a large number of densely
sampled BRDFs of different materials.

There were numerous efforts to use modern machine learning techniques to
construct data-driven BRDF models. Brady et al. [10] proposed a method to gen-
erate new analytical BRDFs using a heuristic distance-based search procedure
called Genetic Programming. In [11], an active learning algorithm using discrete
perceptional data was developed and applied to learning parameters of BRDF
models such as the Ashikhmin—Shirley model [12].

In computer graphics, it is important that BRDF models should be processed in
real-time. Computer-modelled materials have to remind real materials qualitatively,
but the quantitative accuracy was not considered as important. The picture in
reflectometry and metrology was almost the opposite: there was typically no need in
real-time processing of BRDFs, but quantitative accuracy was always the para-
mount. In view of this, some of the breakthrough results from computer vision and
animation would not fit applications in reflectometry and in many industries.

Another difference with virtual reality models is that in computer graphics
measurement uncertainties are essentially never present. This is not the case in
metrology, reflectometry and in any real-world based industry [13]. Since mea-
surement errors can greatly influence shape and properties of BRDF manifolds,
there is a clear need to develop new methods for handling BRDFs with measure-
ment uncertainties.

In this paper, we treat BRDF measurements as samples of points from a
high-dimensional and highly non-linear non-convex manifold. We argue that any
realistic statistical analysis of BRDF measurements, or any parameter or manifold
learning procedure applied to BRDF measurements has to account both for
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nonlinear structure of the data as well as for an ill-behaved noise. Standard sta-
tistical and machine learning methods can not be safely directly applied to BRDF
data. Our study of parameters for generalized Lambertian models in Sects. 5 and 6
clarifies certain pitfalls in analysis of BRDF data, and helps to understand and
develop more refined estimates for generalized Lambertian models in Sect. 7.

We introduce and apply in Sect. 6 the notion of Pitman closeness to compare
different estimators and parameter learning methods that could be applied to BRDF
models. To the best of our knowledge, [14] and [15] were the first works where the
Pitman closeness criterion was introduced to either fields of computer graphics as
well as metrology. This criterion for comparison of estimators appeals to the
actually observable precision of estimators and is assumption-free and loss
function-independent, and thus seems to be especially appropriate for applications
in metrology, as well as for comparative studies of parameter learning procedures
derived for different types of loss functions.

We use the generalized Lambertian model parameter estimators from Sect. 7 to
build statistical tests to test a hypothesis whether any particular material is diffuse,
even if in a weak sense, or not. Testing validity of BRDF models is important for
computer graphics, even though rarely done in a rigorous way, with [16] being a
notable exception dealing with several types of tests for parametric models.
Surprisingly, hypothesis testing for BRDF data is rarely studied in metrology and
reflectometry as well. Recent works [17] and [18] deals with hypothesis testing for
diffuse reflection standards. In this paper, we treat a more general case of gen-
eralized Lambertian BRDFs, which demands simultaneous testing for a set of
stochastically ordered hypotheses, where the number of those hypothesis is the
number of measured BRDF layers and so can potentially grow with the number of
measurements available. We build a class of tests for this complicated set of
hypotheses, and show that our approach leads to tests that are more powerful than
the generic multiple testing procedures often recommended by default in the
literature.

2 Unified Approach

In our research, we advocate the use of a universal approach to data analysis and
material appearance modeling, based on those goals that are common both for
computer graphics as well as for industrial applications. Accurate simulations are
important for virtual applications as well, because that would allow to use computer
graphics algorithms for testing and development of complicated real-life technol-
ogies, avoiding the difficulties of running expensive physical experiments. Our
approach can be seen as complementing the methodology proposed in [19].

An important first step of our approach is to formulate the problems within a
rigorous mathematical framework, necessarily including criteria for comparisons
between simulations, predictions and actual measurements. An important advantage
here is that for a mathematically formalized problem, there is a large toolbox of
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methods from applied mathematics, statistics and machine learning that can be
applied to this problem. For example, when a criterion for comparisons of results is
not specified, the whole decision-theoretic framework is not even applicable.

Methods from different areas often rely on different types of model assumptions.
In those situations where it is desirable to compare a range of methods, we advocate
the use of assumption-free and loss function-independent criteria. A possible
example is the closeness of estimators.

Following [19], we also split our framework into 3 specialized parts:

1. Light reflection models (via BRDFs) and their validation.
2. Light transport simulation.
3. Perception-based studies tailored for specific applications.

Notice that a proper treatment of Stage 3 can greatly reduce computational
expense of the global illumination algorithms. Algorithms are substantially accel-
erated if one develops a perception-based metric evaluating perceptual importance
of scene features, because in this case all the numerous unimportant features can be
singled out and the amount of operations to process the unimportant features can be
greatly reduced.

In the framework developed in [19], only physically based error metrics are used
at Stage 1 and Stage 2 (see also [16, 20]). In our framework, we start applying
perception-based metrics already at the Stage 1. In [21], we started developing
perception-based metrics for the space of BRDFs. We believe that this approach
makes a difference when studying sampling of BRDF manifolds and efficient ways
to measure the light reflection.

The main goal of Stage 3 in the approach of [19] is to create photorealistic
synthetic images which are perceptionally indistinguishable from real scenes. Our
goal at Stage 3 is formulated in a more flexible way. Suppose that our study
involves materials (or physical scenes) M1;M2; . . .;Mm, and we are interested to
evaluate the function F on m arguments, FðM1;M2; . . .;MmÞ. A typical example
here is the customer preference function, that returns the number i of the material
Mi that appears the most attractive. Then our goal at Stage 3 is in simulating the

scenes dM1 ; . . .; dMm such that

FðM1;M2; . . .;MmÞ ¼ FðdM1 ; . . .; dMmÞ :

For the customer preference example, our simulated images are of satisfactory
quality if the customer’s choice can be guessed correctly by looking at the simu-
lated images alone.

These specialized tasks are much less strict than building fully photorealistic
images. Mathematically, we substantially reduce dimensionality of the problem,
and relax our demands on precision of light transport studies. It can be expected that
the algorithms would run faster due to the smaller and less demanding problem.
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3 Main Definition

The bidirectional reflectance distribution function (BRDF), frðxi; xrÞ is a
four-dimensional function that defines how light is reflected at an opaque surface.
The function takes a negative incoming light direction, xi, and outgoing direction,
xr, both defined with respect to the surface normal n, and returns the ratio of
reflected radiance exiting along xr to the irradiance incident on the surface from
direction xi. Each direction x is itself parameterized by azimuth angle / and zenith
angle h, therefore the BRDF as a whole is 4-dimensional. The BRDF has units sr�1,
with steradians (sr) being a unit of solid angle.

The BRDF was first defined by Nicodemus in [22]. The defining equation is:

frðxi; xrÞ ¼ dLrðxrÞ
dEiðxiÞ ¼ dLrðxrÞ

LiðxiÞ cos hi dxi
: ð1Þ

where L is radiance, or power per unit solid-angle-in-the-direction-of-a-ray per unit
projected-area-perpendicular-to-the-ray, E is irradiance, or power per unit surface
area, and hi is the angle between xi and the surface normal, n. The index i indicates
incident light, whereas the index r indicates reflected light.

In the basic definition it is assumed that the wavelength k is fixed and is the same
for both the incoming and the reflected light. In order to model complicated visual
effects such as iridescence, luminescence and structural coloration, or to model
materials such as pearls, crystals or minerals, as well as to analyze the related data,
it is necessary to have an extended, wavelength-dependent definition of BRDFs.
Fortunately, formally this new definition is relatively straightforward and is
obtained by rewriting Eq. (1) for frðki; xi; kr; xrÞ, where ki and kr are the wave-
lengths of the incoming and the reflected light respectively.

4 Important Models of Diffuse Reflection

Lambertian model [4] represents reflection of perfectly diffuse surfaces by a con-
stant BRDF. Because of its simplicity, Lambertian model is extensively used as one
of the building blocks for models in computer graphics. Most of the recent studies
of light reflection by means of advanced machine learning methods still rely on the
Lambertian model. Examples include color studies [23, 24], analytic inference [25],
perception studies [26], and face detection [27].

It was believed for a long time that the so-called standard diffuse reflection
materials exhibit Lambertian reflectance, but recent studies with actual BRDF
measurements convincingly reject this hypothesis [17, 18, 28].

We refer to [14, 15] for a brief discussion of the Oren”-Nayar “directed–diffuse”
microfacet model [1], a sophisticated model by [29], and the Lommel”-Seeliger
model [30] of the lunar and Martian reflection.
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5 Statistical Analysis of BRDF Models

In this section, we treat parameter estimation for BRDF models of standard diffuse
reference materials. These materials are supposed to have ideal diffuse reflection
with constant BRDFs. Graphically, for each incoming angle hi;ui, the resulting
BRDF frðxi; xrÞ is a (subset of) two-dimensional upper hemisphere. The radius q
of this hemisphere is the parameter that we aim to estimate in this paper.

As we mentioned before, the Lambertian model has been shown to be inaccurate
even for those materials that were designed to be as close to perfectly diffuse as
possible. Therefore, parameter estimates determined for the Lambertian model can
hardly be used in practice. However, there are two methodological reasons that
make these estimators worth a separate study.

First, BRDF measurements represent a sample of points from a high-dimensional
and highly non-linear non-convex manifold. Moreover, these measurements are
collected via a nontrivial process, possibly involving random or systematic mea-
surement errors of digital or geometric nature. These two observations suggest that
any realistic statistical analysis of BRDF measurements has to account both for
nonlinear structure of the data as well as for a very ill-behaved noise and heavy-tailed
noise. Any type of statistical inference is more complicated in these conditions, see,
e.g., [31]. Standard statistical methods typically assume nice situations like i.i.d.
normal errors, and can not be safely directly applied to BRDF data. The same applies
to statistical analysis of image data in general [32]. Our study of parameters for
Lambertian models clarifies certain pitfalls in analysis of BRDF data, and helps to
understand and develop more refined estimates for more realistic BRDF models that
will be studied in subsequent papers.

Second, we would use the Lambertian model parameter estimators to build
statistical tests to test a hypothesis whether any particular material is perfect diffuse
or not. This will be studied in a separate paper.

Suppose we have measurements of a BRDF available for the set of incoming
angles

Xinc ¼ fxðpÞ
i gPinc

p¼1 ¼ fðhðpÞi ;uðpÞ
i ÞgPinc

p¼1 : ð2Þ

Here Pinc � 1 is the total number of incoming angles where the measurements were

taken. Say that for an incoming angle fxðpÞ
i g we have measurements available for

angles from the set of reflection angles

Xrefl ¼
[Pinc

p¼1

XreflðpÞ ; ð3Þ
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where

XreflðpÞ ¼ fxðqÞ
r gPreflðpÞ

q¼1 ¼ fðhðqÞr ;uðqÞ
r ÞgPreflðpÞ

q¼1 ;

where fPreflðpÞgPinc
p¼1 are (possibly different) numbers of measurements taken for

corresponding incoming angles.
Overall, we have the set of random observations

ff ðhðpÞi ;uðpÞ
i ; hðqÞr ;uðqÞ

r Þ j ðhðpÞi ;uðpÞ
i Þ 2 Xinc ; ðhðqÞr ;uðqÞ

r Þ 2 XreflðpÞ g : ð4Þ

Our aim is to infer properties of the BRDF function (1) from the set of obser-
vations (4). In general, the connection between the true BRDF and its measure-
ments is described via a stochastic transformation T , i.e.

f ðxi; xrÞ ¼ Tðfrðxi; xrÞÞ ; ð5Þ

where

T : M�P�F4 ! F4 ; ð6Þ

with M ¼ ðM;A; lÞ is an (unknown) measurable space, P ¼ ðP;P;PÞ is an
unknown probability space, F4 is the space of all Helmholtz-invariant energy
preserving 4-dimensional BRDFs, and F4 is the set of all functions of 4 arguments
on the 3-dimensional unit sphere S3 in R

4.
Equations (5) and (6) mean that there could be errors of both stochastic or

non-stochastic origin. In this setting, the problem of inferring the BRDF can be seen
as a statistical inverse problem. However, contrary to much literature on this sub-
ject, we do not assume linearity of the transformation T , we do not assume that T is
purely stochastic, and we do not assume an additive model with zero-mean para-
metric errors, as these assumptions do not seem realistic for BRDF measurements.

Of course, this setup is intractable in full generality, but for special cases such as
inference for Lambertian model, we would be able to obtain quite general solutions
(see also [21]).

It is also easily observable (see, e.g., [28]) that for all materials their sub-BRDFs,
consisting of measurements for different incoming angles, look substantially dif-
ferent (no matter if we believe in the underlying Lambertian model or not). This
suggests that different sub-BRDFs of the same material still have different
parameter values, and this in turn calls for applying statistical procedures separately
for different sub-BRDFs and for combining the results via model selection, mul-
titesting and related techniques.
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6 Means, Medians and Robust Estimators

6.1 Basic Properties of Distributions in BRDF Data

In our choice of estimators for parameters in BRDF models, we have to take into
account specific properties of BRDF data. It is important to notice that, due to the
complicated structure of measurement devices, outliers are possible in the data.
Additionally, due to technical difficulties in measuring peak values of BRDFs (see
[33, 34]), we have to count on the fact that certain (even though small) parts of the
data contain observations with big errors. This also leads us to conclusion that, even
for simplest additive error models, we cannot blindly assume that random errors are
identically distributed throughout the whole manifold. Additionally, missing data
are possible and even inevitable for certain angles. Measurement angles are often
non-uniformly distributed. In view of the above arguments, a useful estimator for
any BRDF model has to exhibit certain robustness against outliers and dependent or
mixed errors.

An estimator has to be universal enough in the sense that it has to be applicable
to BRDF samples without requiring extra regularity in the data set, such as uni-
formly distributed design points, pre-specified large number of measurements, or
absence of missing values. This observation suggests that simpler estimators are
more practical for BRDF data than complicated (even if possibly asymptotically
optimal) estimators, as the later class of estimators has to rely on rather strict
regularity assumptions about the underlying model.

6.2 Pitman Closeness of Estimators

Let X be a probability space and let bh1 : X ! R and bh2 : X ! R be estimators of
a parameter h 2 R. Then the Pitman relative closeness of these two estimators at
the point h is defined as

Pðbh1; bh2; hÞ ¼ Pðjbh1 � hj\ jbh2 � hjÞ : ð7Þ

The estimator bh1 is Pitman closer to h than bh2, if
Pðbh1; bh2; hÞ [ 1=2 :

While this criterion for comparison of estimators is much less known as, say,
unbiasedness or asymptotic variance, it appeals to the actually observable precision
of estimators, and thus seems of much interest for applications in metrology.

The closeness criterion appeals to the actually observed precision of estimators
and is assumption-free and loss function-independent, and thus seems to be espe-
cially appropriate for comparative studies of parameter learning procedures derived
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for different types of loss functions. As a drawback, the Pitman closeness has some
nontrivial properties such as non-transitivity [35], which leads to counterintuitive
results in several examples [36]. On the other hand, these nontrivial properties help
to clarify some classic statistical paradoxes such as the Stein paradox [37, 38].

We refer to [39] for an extensive discussion of the relative closeness of esti-
mators and other related notions and their properties. Besides unbiasedness,
asymptotic variance and relative closeness, there are many other criteria for com-
paring quality of statistical estimators. At least 7 of them can be found in [40].

We apply the notion of Pitman closeness to compare different estimators that
could be used in BRDF models. Based on this and other criteria, we show that, in
the context of the BRDF model parameter estimation and parameter learning,
procedures based on either median or trimmed mean are safer to use and are often
more accurate than procedures based on sample means.

6.3 Mean and Median

We refer to [14, 15] for definitions of the sample mean, the sample median and the
trimmed (truncated) mean. Sample mean is known to be an asymptotically efficient
estimator, as well as a uniformly minimum-variance unbiased estimator, for the
expected value of the random variable. However, it is important to note that these
nice properties are guaranteed only for sufficiently “nice” distributions (see [41] or
[42]), while sometimes even marginal deviations from these smooth models seri-
ously spoil performance of the sample mean estimator. In view of the above dis-
cussion of properties of BRDF data, we conclude that it is not advisable to apply the
sample mean directly as an estimator of the Lambertian radius.

In this and in the next subsection, we present some results of an extensive Monte
Carlo experiment comparing relative closeness of different types of basic non-
parametric estimators. Each of the graphs contains values of relative closeness
obtained for samples of all sizes ranging from 1 to 1000 observations. We per-
formed 1,000,000 comparisons for each sample size. We refer to [14] and [15] for
more examples and details.

However, if we are dealing with a heavy-tailed distribution, the picture changes.
Suppose we are presented with a Cauchy distribution, and our goal is to estimate the
mode (the mean does not exist in this case). Then Fig. 1 shows that the relative
closeness of the mean tends to 0 when compared with the median.

Mean surprisingly loses its efficiency even in rather smooth toy situations.
Suppose that a sample from i.i.d. standard normal distribution is contaminated with
5 % of i.i.d. normals with mean 0 and variance 10. The result is shown on Fig. 2.
Mean’s closeness compared to median drops to 0.3. Even more surprisingly, if we
start with a sample of i.i.d. normals with mean 0 and variance 100 and contaminate
this sample with just 5 % of i.i.d. normals with mean 0 and small variance 1, the
drop in mean’s closeness compared to median is even worse. Figure 3 shows that
the relative closeness of mean drops to 0.1.
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6.4 Truncated Mean and Mean

If our data are generated by sufficiently nice distribution such as, say, a normal
distribution, then the sample mean is an efficient estimator. In those cases, it can be
rigorously proven that Mean is better than Trimmed Mean in the sense of both
Pitman closeness, as well as asymptotic relative efficiency.

The picture can be reversed when our data are allowed to contain outliers or
when the data can be, at least partially, generated by a heavy-tailed distribution
(which is the case when large values of measurement errors are possible, as is the
case for BRDF measurements of specular peaks). We give here a toy example with
a Cauchy distribution. Figure 4 illustrates the relative efficiency of mean compared
to the trimmed mean with 10 % of the extremes in data being discarded. The
unusual shape of the relative closeness curve has no explanation at the moment.

Here the mean is an inconsistent estimator of the median of the distribution,
while the truncated mean is not only a consistent estimator of the median, but, with
a proper choice of the truncation point, is capable of outperforming the sample
median in estimating the median [43]! One needs to drop out about 76 % of the
data, though. In fact, even more efficient estimators exist [44], but they require to
drop out almost all of the data, and we would not advise to use them for estimation
in BRDF models or for any work with moderate sample sizes.

7 Parameter Estimation for Generalized Lambertian
Models

For each xðpÞ
i from the set of incoming angles Xinc, let qðpÞ denote the Lambertian

radius of the BRDF’s layer

ff ðhðpÞi ;uðpÞ
i ; hðqÞr ;uðqÞ

r Þ jðhðqÞr ;uðqÞ
r Þ 2 XreflðpÞg ; ð8Þ

where XreflðpÞ is defined by (3). Thus, we are estimating the Pinc-dimensional
parameter vector

fqðpÞgPinc
p¼1 : ð9Þ

For 1� p�Pinc, let

ff ðpÞðiÞ g
PreflðpÞ
i¼1 ð10Þ

be the non-decreasing sequence of order statistics of the subsample (8). Then the
sample median estimator of the parameter vector (9) is defined as
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f dsmedðpÞgPinc
p¼1 ; ð11Þ

where

dsmedðpÞ ðf Þ ¼
f ðpÞððPreflðpÞþ1Þ=2Þ; PreflðpÞ is odd;
1
2 ðf

ðpÞ
ðPreflðpÞ=2Þ þ f ðpÞðPreflðpÞ=2þ1ÞÞ; PreflðpÞ is even:

8><
>:

Let 0� a\1=2 be a number, and let ½�� denote the integer part of a real number.
Then the sample trimmed mean estimator of the parameter vector (9) is defined as

f d
tmðpÞ

a gPinc
p¼1 ; ð12Þ

where

d
tmðpÞ

a ðf Þ ¼ 1
PreflðpÞð1� 2aÞ
� fð½PreflðpÞa� þ 1� PreflðpÞaÞðf ðpÞð½PreflðpÞa�þ1Þ

þ f ðpÞðPreflðpÞ�½PreflðpÞa�ÞÞ þ
XPreflðpÞ�½PreflðpÞa��1

i¼½PreflðpÞa�þ2

f ðpÞðiÞ g :

8 Hypothesis Testing for Generalized Diffuse Reflection
Models

It is rather straightforward to build a test for checking whether any particular
material is perfectly diffuse. Indeed, the corresponding null hypothesis can be tested
via a t-statistic on the basis of the observed set of BRDF values. However, as we
noted above, testing this hypothesis is not very informative as this null hypothesis
will be rejected even for those materials that serve as diffuse reflectance standards.

Therefore, it makes more sense to test a hypothesis that a material has diffuse
reflection in general, even though not perfectly diffuse with the same level of
reflection for each incoming angle. This amounts to building a multiple testing
procedure for testing the joint hypothesis H0 ¼ T

1� p�Pinc
Hp, where Hp is the p-th

null hypothesis stating that the p-th layer (8) is laying on a sphere.
As an application of the above estimators, we propose now a class of tests for the

compound hypothesis H0. Consider any sequence of test statistics fMTpg1� p�Pinc
,

where MTp is used for testing the corresponding hypothesis Hp. For a given sample
of points from the BRDF, let us apply the test based on MTp for testing the
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hypothesis Hp for all p. Denote the corresponding resulting p-values by
PV1; . . .;PVPinc , and let PVð1Þ � . . .�PVðPincÞ be the ordered set of these p-values.
Then one could suggest to reject H0 if PVðpÞ � pa=Pinc for at least one p.

Under certain conditions, this multiple testing procedure is asymptotically
consistent and more powerful than the procedure based on the Bonferroni principle
applied to the same sequence of test statistics fMTpg1� p�Pinc

, which is often
assumed to be the default way of testing several hypothesis simultaneously. Our
procedure capitalizes on the physical fact that, as the incoming light angle grows,
deviations from diffuse reflection can only grow as well. Therefore, in mathematical
terms, the test statistics fMTpg1� p�Pinc

would be highly positively correlated for
any reasonable choice of these statistics. See [45] for details related to rigorous
analysis of this type of multiple testing methods. A specific example of test statistics
fMTpg1� p�Pinc

was considered in [14] and [15].
Note that it is crucial to take into account the multiplicity of tests. Otherwise,

irrespectively of what kind of test statistics we use, if the decisions about each of the
basic hypothesis H0; . . .;HPinc are made on the basis of the unadjusted marginal p�
values, then the probability to reject some true null hypothesis will be too large and
the test will not be reliable. Unfortunately, this mistake is commonly made in
applications of multiple testing.
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