Chapter 2
Connexins: Bridging the Gap Between Cancer
Cell Communication in Glioblastoma
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Abstract Despite concerted clinical and research efforts, glioblastoma (GBM), the
most prevalent primary malignant brain tumor, remains uniformly lethal. Like other
advanced cancers, GBM is characterized by extensive cellular heterogeneity and is orga-
nized in a hierarchy with self-renewing, therapeutically resistant cancer stem cells
(CSCs) at the apex. While communication between GBM tumor cells and their sur-
rounding stroma supports tumor survival and expansion, the mechanisms behind direct
cell-cell communication and its contribution to tumor growth have yet to be fully eluci-
dated. In particular, the biological importance of intercellular communication between
GBM tumor cells, including CSCs and non-stem tumor cells (NSTCs) has yet to be
determined. Gap junctions (GJs) are specialized structures, composed of connexin pro-
teins, allowing for the diffusion of small molecules and ions directly between the cyto-
plasm of adjacent cells, enabling them to respond to each other and external stimuli
rapidly and coordinately. Connexins have been found to help promote tumor cell growth,
invasiveness, and tumorigenicity, making them attractive anti-tumor targets. However a
complete understanding of the function of connexins and GJs in GBM remains an area
of active investigation. Here we discuss recent advances in connexin function as they
relate to our understanding of cellular communication and malignancy in GBM.
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Over the past century, major medical innovations have improved the standard of
living for much of the developed world. Likewise, the average life expectancy has
increased in many countries as a direct result of our continued efforts to understand
the biology of disease and apply this knowledge toward the development of more
efficacious therapeutic interventions. However, while mortality rates have decreased
for many illnesses such as heart and cerebrovascular disease, little progress has been
made in the fight against cancer, as death rates due to malignant neoplasms have
remained steady over the past 50 years [1]. Primary central nervous system (CNS)
tumors, in particular, are among the most dangerous malignancies, comprising only
2 % of all cancer diagnoses but accounting for a disproportionate rate of morbidity
and mortality.

The most common aggressive of all primary CNS tumors is glioblastoma (GBM),
accounting for 20 % of all intracranial tumors in the United States [2]. GBM is clas-
sified by the World Health Organization (WHO) as a grade IV glioma and is thought
to arise from glial cells: non-neuronal cells responsible for maintaining homeosta-
sis, forming myelin, and providing protection for neurons in the brain and periph-
eral nervous system [3]. Most GBM tumors (~90 %) appear to rapidly expand de
novo mainly in elderly patients, without evidence of a precursor lesion, and are
classified as primary GBM. However, a smaller fraction (~10 %) of secondary GBM
tumors are thought to progress from low-grade astrocytomas, mainly in younger
patients. Primary and secondary GBM tumors are largely indistinguishable histo-
logically but differ in their genetic and epigenetic profiles. Additionally, secondary
GBMs carry a vastly favorable prognosis compared to primary GBM diagnoses [4].
The histological criteria for GBM diagnosis include cellular pleomorphism, nuclear
atypia, vascular thrombosis, microvascular proliferation, and necrosis with lesions
displaying both intra- and inter-tumoral heterogeneity [4]. Currently, GBM is uni-
formly fatal, and treatment is only palliative, consisting mainly of maximal safe
surgical resection, chemotherapy, and radiation. Independent prognostic factors
include patient age, performance status, number of lesions, and extent of resection
[5]. Despite aggressive therapy, median survival time after diagnosis is 12—18
months, while the 5-year survival rate remains at 5 % [6].

The high degree of invasiveness characterizing GBM is a major impediment for
treatment, as surgical resection is often unable to remove the entirety of the tumor,
leaving behind a population of infiltrating cancerous cells that egress away from the
primary site [7]. Further surgical intervention is made difficult or impossible as the
remaining tumor cells continue to migrate along myelinated axons, vascular base-
ment membranes, or the subependyma to infiltrate anatomically critical structures
in the brain and escape the reach of current therapeutics [8]. Likewise, due to the
heterogeneous nature of GBM, the administration of chemotherapy and radiation
may have deleterious consequences for patient survival. According to the stochastic
model of tumor formation, all tumor cells are thought to possess the ability to propa-
gate a tumor, with genetic cues dictating which cells drive tumor progression.
Accordingly, a small number of tumor cells, through clonal selection, are thought to
be capable of randomly developing resistance to current therapeutics. As such,
treatment may inadvertently select for more aggressive tumor clones, helping
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explain why recurrence is almost always inevitable following initial tumor de-
bulking [9]. Recent clinical trials interrogating the efficacy of several antiangio-
genic agents in conjunction with radiation and chemotherapy appear to reinforce the
concept of clonal selection in GBM. Antiangiogenic therapy resulted in short-term
tumor burden control and improved progression-free survival. However, overall sur-
vival was not impacted [10, 11], indicating the rise of a more aggressive, recurrent
population of tumor cells following initial therapy.

The stochastic model is an attractive intellectual concept regarding the formation
and maintenance of GBM. It proposes that tumors arise from a single clone, allow-
ing for the sequential selection of progressively more malignant cancer cells. As
tumor cells acquire additional mutations, some variants are destroyed while others
are imparted with growth advantages, permitting clonal expansion. These clones
become the predominant subpopulation until a more favored variant appears.
Eventually, the acquired genetic instability and associated selection process results
in a heterogeneous population of cancer cells making up a tumor [12]. However, this
model does not take into account environmental factors and epigenetic variables
that influence cell behavior independently of genomic control. As such, it is an
incomplete and simplistic view of tumor biology, necessitating additional models to
better represent the complex nature of GBM.

A surrogate hypothesis is the hierarchical model of cancer, which posits the exis-
tence of a cellular hierarchy within a tumor. A small sub-population of cells, referred
to as cancer stem cells (CSCs), exist at the top of the hierarchy and are capable of
propagating tumor heterogeneity. The hierarchical model accommodates the possi-
bility that CSCs are capable of retaining responsiveness to external environmental
cues, eliciting their genomically determined potential for self-renewal and recapitu-
lation of the cellular diversity composing the bulk of the tumor [13]. However, the
two models should not be considered to be mutually exclusive. The CSC hypothesis
does not exclude stochastic selection or the acquisition of resistance by tumor cells,
and instead, both models should be viewed complimentarily to address the com-
plexity of tumorigenesis [14].

Indeed, recent evidence has demonstrated the existence of CSCs crucial for
GBM initiation and maintenance [15]. Unlike their rapidly proliferative non-stem
tumor cell (NSTC) counterparts, CSCs are resistant to chemotherapy and radiation
as a result of an increased DNA repair capacity [16, 17]. The exclusive ability of
CSCs to self-renew and differentiate into multiple lineages is a major factor in GBM
tumorigenesis and recurrence [14]. In light of their unique phenotype, CSCs have
since been recognized as attractive targets for the development of novel, combinato-
rial GBM therapeutics aimed at eradicating both the bulk of the tumor as well as the
resistant CSC population. However, prior to successful clinical translation, several
challenges remain in the integration of CSC-specific interventions alongside current
standard-of-care modalities. Among them are complications in the categorization of
cellular differentiation states in GBM lesions, given that stemness is a dynamic
property within a tumor. As such, CSCs have the capacity to differentiate into
NSTCs while still retaining the ability to revert back to a CSC state in response to
microenvironmental cues such as hypoxia [18], pH [19], and metabolism [20].
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Additionally, CSCs share common gene-expression signatures as well as cell sig-
naling pathways with neural progenitor cells (NPCs) [21], hampering the develop-
ment of agents capable of destroying the former while preserving the latter.

While multiple cell types likely contribute to GBM growth, cancer cells display
a remarkable ability to tailor and influence their microenvironment for the promo-
tion of tumor growth, maintenance, and migration [22]. Physically, tumor cells are
capable of remodeling their surrounding extracellular matrix (ECM), both through
the production of matrix metalloproteinases (MMPs) and the degradation or synthe-
sis of collagen ligands to facilitate invasion into the brain parenchyma. In addition,
glioma cells apply physical stresses on the surrounding collagen matrix, as a result
of traction forces exerted by individual cells and compressive forces generated by
the expansion of the tumor bulk, to influence tumor cell proliferation and malignant
outcome [23]. In addition, it is becoming more appreciated that GBM is not simply
composed of small numbers of CSCs and their NSTC progeny but rather contains a
proportion of host cells and tissue. The capability of normal tissue to directly influ-
ence tumor biology and vice versa should not be taken lightly as mutual interactions
between neoplastic and non-neoplastic cells produces a local milieu, favoring tumor
cell growth and immune escape. Tumor-associated cells in the GBM microenviron-
ment, such as microglia, vascular cells, peripheral immune cells, and NPCs, also
play important roles in the pathology of GBM, often exerting pro-tumorigenic
effects [22].

Likewise, the host immune system is capable of interacting with GBM tumor
cells. GBM CSCs are capable of driving tumor growth by actively attenuating
immunosurveillance through the secretion or expression of immunosuppressive fac-
tors or by the recruitment of accessory cells, which locally suppress the immune
response until tumors reach a size at which they surpass immune pressure, resulting
in progression and malignancy. In addition, GBM CSCs are capable of recruiting
multiple cell types with tumor-supportive phenotypes. In vitro, CSC-conditioned
medium was found to increase monocyte migration compared to cell suspensions
generated from GBM NSTCs [24]. Likewise, CSCs have been shown to secrete
soluble colony stimulating factor-1 (sCSF-1), C-C motif ligand 2 (CCL2), and mac-
rophage inhibitory cytokine 1 (MIC-1) to enhance monocyte infiltration into the
tumor [24]. However, upon recruitment of peripheral monocytes into the tumor, the
secreted SCSF-1 and CCL2 polarize them toward the immunosuppressive M2 mac-
rophage phenotype, while MIC-1 simultaneously inhibits their phagocytic ability
[24]. Moreover, recent work has revealed that CSCs are similarly capable of recruit-
ing tumor-associated macrophages (TAMs) into the tumor microenvironment by
secreting periostin, a protein normally thought to support the adhesion and migra-
tion of epithelial cells, through its receptor, integrin ayfp; [25].

Based on these observations, GBM should not be thought of as one distinct entity
residing in normal brain tissue but rather as an aberrant organ. Like normal organs,
GBM tumors are composed of multiple cellular and stromal aspects working in
concert for proper function, under physiological conditions, or malignancy, under
neoplastic conditions. Additionally, both normal and cancerous cells must be able
to interact and communicate with various, surrounding cell types to execute



2 Connexins: Bridging the Gap Between Cancer Cell Communication in Glioblastoma 33

biological functions at the tissue level that could not otherwise be accomplished
[26]. The information exchanged between cells may involve direct cell-to-cell con-
tact or the release of soluble mediators capable of acting in an autocrine or paracrine
manner, depending on the nature of the signaling pathway. However GBM tumors
do not frequently metastasize to other organs of the body and remain confined to the
brain parenchyma, which is itself enclosed by the blood-brain-barrier, limiting cel-
lular cross-talk across peripheral circulation. As a result, GBM tumors often histo-
logically manifest as dense hypercellular masses with little room between individual
cells. The close confines of the GBM microenvironment necessitates rapid tumor
cell communication both between other tumor cells as well as with the surrounding
stroma in order to coordinately respond to chemical and physical stimuli. Both the
spatial limitations of the brain and the temporal need to quickly adapt to an ever-
changing environmental milieu make it likely that GBM tumor cells rely on auto-
crine and paracrine signaling pathways through direct cell-cell contact as a means
of communication. Gap junctions (GJs) represent a well-documented means of
intercellular communication in various tissues. GJ-mediated communication has
been demonstrated to be essential in normal embryonic development [27], electric
coupling in cardiac muscle [28] and neurons [29], as well as in normal hematopoi-
esis [30]. Additionally, connexin expression in non-excitable tissues has key roles in
organ development [31], skeletal development [32], and growth control [33].

GJs are aggregates of intercellular channels composed of a family of 24 proteins,
termed connexins, that allow the direct transport of cytoplasmic contents from cell
to cell. Six co-oligomerized connexin subunits form a connexon, also known as a
hemichannel. The connexin subunits making up a connexon can either be identical
(homomeric) or disimilar (heteromeric), although not all connexin subunits are
capable of forming a functional hemichannel [34]. Two hemichannels on different
cells are then able to dock and form a homotypic or heterotypic GJ channel, depend-
ing on the connexin isotype. A functional GJ channel allows for the diffusion of
small molecules up to 1 kDa in size between the cytoplasm of adjoining cells. GJs
favor the intercellular exchange of metabolites such as adenosine diphosphate
(ADP), glucose, glutamate and glutathione [35], as well as second messengers such
as calcium ions (Ca?"), cyclic adenosine monophosphate (cAMP), and inositol tri-
phosphate (IP5) [36].

The expression of connexin proteins is both tissue specific and developmentally
regulated, making the number of combinations of possible intercellular channels
broad. The variability of connexin signaling also plays an important role in the
physiological properties of the various gap junctionhemichannels, including con-
ductance and permeability [37]. Traditionally, connexin function has been linked to
the formation of gap junction channels although it is becoming more appreciated
that connexin hemichannels are capable of serving as aqueous pores permeable to
ions and small molecules [38, 39], that link the intra- and extracellular compart-
ments. In addition, dysregulated connexin expression has also been linked to at least
ten distinct diseases, such as X-linked Charcot-Marie-Tooth disease [40], keratitis-
ichthyosis-deafness syndrome [41], and oculodentodigital dysplasia [42]. The
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importance of regulating connexin function in normal development may also under-
score the role that aberrant expression plays in tumor formation and growth.

Historically, connexins have been thought to function as tumor suppressors in
several animal models of cancer, including hepatoma [43] and thyroid tumors [44],
as well as human carcinoma of the stomach [45], which was evidenced by a lack of
electrical coupling between tumor cells. However, recent evidence has suggested
that connexins may also promote tumorigenesis. Forcing connexin expression in
both non-metastatic and metastatic tumor cells with no prior functional connexin
activity was shown to decrease proliferation and cell migration [46], and promote a
mesenchymal to epithelial transition [47]. Likewise, in several advanced cancers,
GJ function was associated with invasion [48], intravasation [49], extravasation
[50], and metastasis of tumor cells [51], facilitating late-stage disease progression.
Gap junctions also participate in the “bystander effect” following radiation therapy
in which cells that are not directly exposed to radiation but are in the vicinity like-
wise respond to the exposure and display significant levels of genetic change and
lethality.

In the CNS, abundant connexin expression has been demonstrated in multiple
cell lineages, including neurons, astrocytes, and microglia. Under physiological
conditions, connexins are thought to be important in normal neurogenesis as well as
neuronal electrical signaling [35]. Connexin subunit expression was detected at the
very early stages of neural development, with connexin 43 (Cx43) and connexin 45
(Cx45) robustly expressed and essential for rat NPC proliferation and survival [52].
Follow-up studies demonstrated that embryonic NPCs possessed active gap junc-
tions as, confirmed by dye-coupling studies, and that in the absence of essential
growth factors, Cx43 overexpression was sufficient to preserve NPC self-renewal,
which was otherwise compromised in differentiation-inducing conditions [53].
Along with preserving self-renewal, connexins also impact lineage commitment,
with connexin 36 (Cx36) being important in the modulation of NPC differentiation
into neurons and glia [54]. Reduced Cx36 expression decreased neuronal commit-
ment, and overexpression restored neuronal differentiation along with oligodendro-
cyte commitment [54]. It has recently been appreciated that connexins may also
function to impact invasion as well as cellular signaling programs through interac-
tion with scaffolding proteins via their cytoplasmic tails [55]. There is evidence for
each of these aforementioned functions in the developing brain. NPCs utilize Cx43
and connexin 26 (Cx26) for tangential migration of newly-born neurons [56, 57].
While Cx43 reduction has a profound impact on rat and mouse NPCs, it was dis-
pensable for human NPC function, and Wnt/B-catenin signaling was activated in
Cx43-reduced conditions [58], suggesting that the Cx43 may serve to suppress
Whnt/p-catenin signaling. These results also demonstrate the species difference that
may exist for connexins and highlight the need for additional studies in multiple
systems. The existence of connexin signaling in NPC maintenance is also important
in the adult mouse brain, with connexin 30 (Cx30) and Cx43 found to mediate inter-
cellular coupling between radial glial cells in the dentate gyrus. It was found that
mice lacking Cx43 and Cx30 in radial glial cells showed complete inhibition of cell
proliferation in the subgranular zone of the adult dentate gyrus [59]. In addition,
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GJ-mediated communication was found to be crucial for several brain processes,
including neuronal energy supply, electrical and chemical synapses, calcium waves,
spatial buffering of K* and glutamate, maintenance of myelin and blood-brain bar-
rier integrity [35].

While there is an established literature for the function of connexins during neu-
ral development, the role that connexins play in GBM and CSCs is only beginning
to be investigated. Some studies have found that Cx43 is decreased in high-grade
brain tumors [60], while others demonstrate that Cx43 is capable of conferring che-
motherapeutic resistance to human glioma cells [61] through the upregulation of
key pathways including the epidermal growth factor receptor [62]. Overall, this is
reflected in the lack of a consensus for the pro- or anti-tumorigenic role for connex-
ins in GBM, which has thus far mainly focused on data surrounding Cx43 [63].
Efforts have begun to interrogate the expression and function of connexins in CSCs.
Similar to the early work in GBM, pro- and anti-tumorigenic roles have emerged
and these may be model- and connexin subunit-specific. Overexpression of Cx43
was found to inhibit CSC self-renewal, invasiveness, and tumorigenicity via
E-cadherin, which in turn influenced Wnt/p-catenin signaling, increasing the latency
of GBM tumors [64]. However, others have demonstrated that CSCs predominantly
express Cx46, while their NSTCs express Cx43. As CSCs were differentiated, Cx46
was reduced while Cx43 increased, and targeting Cx46 rather than Cx43 was found
to compromise CSC maintenance [65]. Along with serving as a functional regulator
of CSC maintenance and possible driver of tumor progression, modulating connex-
ins may be an adjuvant therapeutic approach. The rationale for this is the “bystander
effect,” whereby damage generated from irradiating one cell may be passed to
another via gap junctions. Recent work in a mouse medulloblastoma model used
genetic approaches to downregulate Cx43 and demonstrated that gap junction-
mediated communication is crucial for the transmission of radiation. Upregulation
of Cx43 was found to cause tumor regression in the distal CNS, the area not exposed
to direct radiation therapy, further supporting its anti-tumor role. Surprisingly, Cx43
was also found to be upregulated in non-targeted tissue following irradiation, which
may allow for the transduction of potentially oncogenic signals to remote tissue
through this “bystander effect” [66]. As evidenced, additional work is necessary to
completely unravel the function of connexins in GBM, especially in the context of
the “bystander effect” and therapeutic resistance. However, evidence strongly sug-
gests that connexins are key regulators of GBM phenotypes and are emerging as
attractive targets for potential therapeutic modalities aimed at reducing GBM inva-
siveness, proliferation, and lethality.

To better understand connexin biology and its role in disease, two non-specific
pan-GJ inhibitors are currently being investigated in pre-clinical trials,
Carbenoxolone (CBX) and 1-Octanol. CBX is currently approved in the clinical
treatment of esophageal and mouth ulcers in the United Kingdom [67], while
1-Octanol is currently being interrogated for the treatment of essential tremors [68].
CBX, in particular, has been investigated in several advanced cancers, including
thyroid [69], leukemia [70], and GBM [65] due to its minimal cytotoxic nature.
Combinatorial treatment of primary human glioma isolates with CBX and
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mesenchymal stem cells (MSCs) engineered to express tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) has been shown to enhance glioma cell
death through the upregulation of death receptor 5. Importantly, dual therapy utiliz-
ing TRAIL and CBX prolonged mouse survival by ~27 % compared with control
animals, suggesting a favorable clinical translation [71]. Likewise, both 1-Octanol
and CBX were shown to prolong animal survival in intracranial and subcutaneous
xenograft models of GBM. Interestingly, when GIJ inhibition strategies were com-
bined with temozolomide (TMZ), an additive effect on survival was seen, suggest-
ing that the use of GJ inhibition strategies alongside current therapeutic modalities
could positively impact patient outcome [65].

Targeting GJ-mediated communication in GBM and other cancers is emerging as
an exciting prospective strategy with potentially translatable results. Specifically,
the additive survival advantage that GJ inhibition, alongside chemotherapy, confers
in animal models of GBM is particularly promising. However, several caveats
remain to be addressed regarding both CBX and 1-Octanol before clinical trials are
implemented. Both agents demonstrate remarkable efficacy for inhibiting GJs and
tumor cell growth in vitro and in vivo. However, their mechanism of action is poorly
understood. In particular it should be noted that they do not specifically block indi-
vidual connexin subunits or GJs. Rather, they are pan-inhibitors, ostensibly block-
ing all connexin function and making it difficult to study which particular connexin
subunits are involved in tumor biology. It is also important to note that blocking all
GJs may have unintended off-target effects that need to be addressed before consid-
ering clinical trials. Additionally, the exact methods by which the agents inhibit
connexin function is an ongoing area of investigation. It has been hypothesized that
both CBX and 1-Octanol act on cell membranes to alter fluidity and disrupt the
transmembrane domains of connexin proteins, rendering them inert. However, this
explanation has yet to be fully investigated and remains speculative. The last, and
possibly most important, point to consider regarding GJ inhibition is the exact
mechanism behind tumor cell death after treatment with CBX or 1-Octanol. Several
likely explanations for this phenomenon have therefore been proposed. As previ-
ously mentioned, GBM tumor cells exist in a closely packed microenvironment and
communicate predominantly through cell-cell contact mediated by GJs. As such,
tumor cells are better able to respond to external stimuli and escape damage from
sources such as chemotherapeutics and radiation by exchanging information and
rendering themselves less susceptible to perturbation. In addition, GJs may allow
for the release of potentially lethal intercellular components, such as reactive oxy-
gen species (ROS), generated in response to cell damage. Conversely, GJ hemichan-
nels may also facilitate the uptake of molecules necessary to protect tumor cells
from ROS-induced DNA damage. Recent work in normal hematopoietic stem cells
(HSCs) has supported this concept, as Cx43 deficient HSCs displayed decreased
survival and increased senescence as a direct result of their inability to transfer ROS
to the hematopoietic microenvironment following myeloablation, demonstrating
that Cx43 is able to play a protective role during stressful conditions such as hema-
topoietic recovery [72].
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Even though the exact molecular mechanisms behind connexin signaling are
only now beginning to be elucidated, the potential to disrupt GJs, and consequently
tumor cells, by pharmacologically targeting connexins remains an attractive strat-
egy in a field that has had limited clinical success over the past decades. However it
is prudent to consider that connexins may have additional functions which have yet
to be fully described. To this end, cytoplasmic partners have been thought to be
capable of interacting with the intracellular domains of connexin proteins, provid-
ing a potential means of specifically targeting individual subunits. The ablation of
one universal connexin may have unintended secondary effects or no effects at all,
as compensatory mechanisms likely exist among various connexin proteins. Rather,
GJ inhibition strategies should be contextualized in light of the overall tumor or,
even more effectively, in light of the cell-of-origin of the tumor to target the root of
the malignancy rather than the branches. Of paramount importance is the develop-
ment of novel mimetic peptides or agents capable of disrupting individual connexin
subunits to minimize the harm done to normal tissue in the course of treatment.
Cancer therapy as a whole is moving away from a “one-size-fits-all” paradigm and
towards a more individualized model. Targeting specific connexin subunits, depend-
ing on tumor subtype, is therefore complementary to the emerging trends regarding
cancer care and should be considered for further attention. Additional work is also
necessary to tease out the direct molecular mechanisms responsible for connexin
signaling, but efforts are slowly beginning to concentrate on this line of inquiry.
With careful methodology and proper animal models, elucidating connexin signal-
ing has the potential to make a transformative impact for the development of thera-
pies capable of improving the outcome of patients diagnosed with not only GBM
but also other neoplasias for which little hope currently exists.
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