
Chapter 2
Finite Noncommutative Spaces

In this chapter (and the next) we consider only finite discrete topological spaces.
However, we will stretch their usual definition, which is perhaps geometrically not so
interesting, to include the more intriguing finite noncommutative spaces. Intuitively,
this means that each point has some internal structure, described by a particular non-
commutative algebra.With such a notion of finite noncommutative spaces, we search
for the appropriate notion ofmaps between, and (geo)metric structure on such spaces,
and arrive at a diagrammatic classification of such finite noncommutative geometric
spaces. Our exposition of the finite case already gives a good first impression of what
noncommutative geometry has in store, whilst having the advantage that it avoids
technical complications that might obscure such a first tour through noncommutative
geometry. The general case is subsequently treated in Chap.4.

2.1 Finite Spaces and Matrix Algebras

Consider a finite topological space X consisting of N points (equipped with the
discrete topology):

1• 2• · · · · · · N •

The first step towards a noncommutative geometrical description is to trade spaces
for their corresponding function algebras.

Definition 2.1 A (complex, unital) algebra is a vector space A (over C) with a
bilinear associative product A × A → A denoted by (a, b) �→ ab (and a unit 1
satisfying 1a = a1 = a for all a ∈ A).

A ∗-algebra (or, involutive algebra) is an algebra A together with a conjugate-
linear map (the involution) ∗ : A → A such that (ab)∗ = b∗a∗ and (a∗)∗ = a for
all a, b ∈ A.
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10 2 Finite Noncommutative Spaces

In this book, we restrict to unital algebras, and simply refer to them as algebras.
In the present case, we consider the ∗-algebra C(X) of C-valued functions on the

above finite space X . It is equipped with a pointwise linear structure,

( f + g)(x) = f (x) + g(x), (λ f )(x) = λ( f (x)),

for any f, g ∈ C(X),λ ∈ C and for any point x ∈ X , and with pointwise multipli-
cation

f g(x) = f (x)g(x).

There is an involution given by complex conjugation at each point:

f ∗(x) = f (x).

The C in C(X) stands for continuous and, indeed, any C-valued function on a finite
space X with the discrete topology is automatically continuous.

The ∗-algebraC(X) has a rather simple structure: it is isomorphic to the ∗-algebra
C

N with each complex entry labeling the value the function takes at the corresponding
point, with the involution given by complex conjugation of each entry. A convenient
way to encode the algebra C(X) � C

N is in terms of diagonal N × N matrices,
representing a function f : X → C as

f �

⎛
⎜⎜⎜⎜⎜⎝

f (1) 0 · · · 0

0 f (2) · · · 0

...
...

. . .
...

0 0 . . . f (N )

⎞
⎟⎟⎟⎟⎟⎠

.

Hence, pointwise multiplication then simply becomes matrix multiplication, and the
involution is given by hermitian conjugation.

If φ : X1 → X2 is a map of finite discrete spaces, then there is a corresponding
map from C(X2) → C(X1) given by pullback:

φ∗ f = f ◦ φ ∈ C(X1); ( f ∈ C(X2)).

Note that the pullback φ∗ is a ∗-homomorphism (or, ∗-algebra map) under the
pointwise product, in that

φ∗( f g) = φ∗( f )φ∗(g), φ∗( f̄ ) = φ∗( f ), φ∗(λ f + g) = λφ∗( f ) + φ∗(g).

For example, let X1 be the space consisting of three points, and X2 the space con-
sisting of two points. If a map φ : X1 → X2 is defined according to the following
diagram,
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then

φ∗ : C2 � C(X2) → C
3 � C(X1)

is given by

(λ1,λ2) �→ (λ1,λ2,λ2).

Exercise 2.1 Show that φ : X1 → X2 is an injective (surjective) map of finite spaces
if and only if φ∗ : C(X2) → C(X1) is surjective (injective).

Definition 2.2 A (complex) matrix algebra A is a direct sum

A =
N⊕

i=1

Mni (C),

for some positive integers ni and N . The involution on A is given by hermitian
conjugation, and we simply refer to the ∗-algebra A with this involution as a matrix
algebra.

Hence, we have associated a matrix algebra C(X) to the finite space X , which
behaves naturally with respect to maps between topological spaces and ∗-algebras.
A natural question is whether this procedure can be inverted. In other words, given a
matrix algebra A, can we obtain a finite discrete space X such that A � C(X)? Since
C(X) is always commutative but matrix algebras need not be, we quickly arrive at
the conclusion that the answer is negative. This can be resolved in two ways:

(1) Restrict to commutative matrix algebras.
(2) Allow for more morphisms (and consequently, more isomorphisms) between

matrix algebras, e.g. by generalizing ∗-homomorphisms.

Before explaining each of these options, let us introduce some useful defini-
tions concerning representations of finite-dimensional ∗-algebras (which are not
necessarily commutative) which moreover extend in a straightforward manner to the
infinite-dimensional case (cf. Definitions 4.26 and 4.27). We first need the prototyp-
ical example of a ∗-algebra.
Example 2.3 Let H be an (finite-dimensional) inner product space, with inner prod-
uct (·, ·) → C. We denote by L(H) the ∗-algebra of operators on H with product
given by composition and the involution is given by mapping an operator T to its
adjoint T ∗.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Note that L(H) is a normed vector space: for T ∈ L(H) we set

‖T ‖2 = sup
h∈H

{(T h, T h) : (h, h) ≤ 1} .

Equivalently, ‖T ‖ is given by the square root of the largest eigenvalue of T ∗T .

Definition 2.4 A representation of a finite-dimensional ∗-algebra A is a pair (H,π)

where H is a (finite-dimensional, complex) inner product space and π is a ∗-algebra
map

π : A → L(H).

A representation (H,π) is called irreducible if H 
= 0 and the only subspaces in H
that are left invariant under the action of A are {0} or H .

We will also refer to a finite-dimensional inner product space as a finite-
dimensional Hilbert space.

Example 2.5 Consider A = Mn(C). The defining representation is givenby H = C
n

on which A acts by left matrix multiplication; hence it is irreducible. An example of
a reducible representation is H = C

n ⊕ C
n , with a ∈ Mn(C) acting in block-form:

a ∈ Mn(C) �→
(

a 0
0 a

)
∈ L(Cn ⊕ C

n) � M2n(C)

which therefore decomposes as the direct sum of two copies of the defining repre-
sentation. See also Lemma 2.15 below.

Exercise 2.2 Given a representation (H,π) of a ∗-algebra A, the commutant π(A)′
of π(A) is defined as

π(A)′ =
{

T ∈ L(H) : π(a)T = T π(a) for all a ∈ A

}
.

(1) Show that π(A)′ is also a ∗-algebra.
(2) Show that a representation (H,π) of A is irreducible if and only if the commutant

π(A)′ of π(A) consists of multiples of the identity.

Definition 2.6 Two representations (H1,π1) and (H2,π2) of a ∗-algebra A are uni-
tarily equivalent if there exists a unitary map U : H1 → H2 such that

π1(a) = U∗π2(a)U.

Definition 2.7 The structure space Â of A is the set of all unitary equivalence classes
of irreducible representations ofA.

We end this section with an illustrative exercise on passing from representations
of a ∗-algebra to matrices over that ∗-algebra.
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Exercise 2.3 (1) If A is a unital ∗-algebra, show that the n × n-matrices Mn(A)

with entries in A form a unital ∗-algebra.
(2) Let π : A → L(H) be a representation of a ∗-algebra A and set Hn =

H ⊕ · · · ⊕ H (n copies). Show that the following defines a representation
π̃ : Mn(A) → L(Hn) of Mn(A):

π̃
(
(ai j )

) = (
π(ai j )

) ; ((ai j ) ∈ Mn(A)).

(3) Let π̃ : Mn(A) → L(Hn) be a representation of the ∗-algebra Mn(A). Show
that the following defines a representation π : A → L(Hn) of the ∗-algebra A:

π(a) = π̃ (aIn)

where In is the identity in Mn(A).

2.1.1 Commutative Matrix Algebras

We now explain how option (1) on page 11 above resolves the question raised by
constructing a space from a commutative matrix algebra A. A natural candidate for
such a space is, of course, the structure space Â, which we now determine. Note
that any commutative matrix algebra is of the form A � C

N , for which by Exercise
2.2(2) any irreducible representation is given by a map of the form

πi : (λ1, . . . ,λN ) ∈ C
N �→ λi ∈ C

for some i = 1, . . . , N . We conclude that Â � {1, . . . , N }.
We conclude that there is a duality between finite spaces and commutative matrix

algebras. This is nothing but a finite-dimensional version of Gelfand duality (see
Theorem 4.28 below) between compact Hausdorff topological spaces and unital
commutative C∗-algebras. In fact, we will see later (Proposition 4.25) that any finite-
dimensional C∗-algebra is a matrix algebra, which reduces Gelfand duality to the
present finite-dimensional duality.

2.1.2 Noncommutative Matrix Algebras

The above trade of finite discrete spaces for finite-dimensional commutative
∗-algebras does not really make them any more interesting, for the ∗-algebra is al-
ways of the form C

N . Amore interesting perspective is given by the noncommutative
alternative, viz. option (2) on page 11.We thus aim for a duality between finite spaces
and equivalence classes of matrix algebras. These equivalence classes are described

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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by a generalized notion of isomorphisms between matrix algebras, also known as
Morita equivalence.

Let us first recall the notion of an algebra (bi)module.

Definition 2.8 Let A, B be algebras (not necessarily matrix algebras). A left A-
module is a vector space E that carries a left representation of A, i.e. there is a
bilinear map A × E 
 (a, e) �→ a · e ∈ E such that

(a1a2) · e = a1 · (a2 · e); (a1, a2 ∈ A, e ∈ E).

Similarly, a right B-module is a vector space F that carries a right representation of
B, i.e. there is a bilinear map F × B 
 ( f, b) �→ f · b ∈ F such that

f · (b1b2) = ( f · b1) · b2; (b1, b2 ∈ B, f ∈ F).

Finally, an A − B-bimodule E is both a left A-module and a right B-module, with
mutually commuting actions:

a · (e · b) = (a · e) · b; (a ∈ A, b ∈ B, e ∈ E).

When no confusion can arise, we will also write ae instead of a · e to denote the
left module action.

There is a natural notion of (left) A-module homomorphism as a linear map
φ : E → F that respect the representation of A:

φ(a · e) = a · φ(e); (a ∈ A, e ∈ E).

Similarly for right modules and bimodules.
We introduce the following notation:

• A E for a left A-module E ;
• FB for a right B-module F ;
• A EB for an A − B-bimodule E .

Exercise 2.4 Check that a representation π : A → L(H) of a ∗-algebra A (cf.
Definition 2.4) turns H into a left A-module A H.

Exercise 2.5 Show that A is itself an A − A-bimodule A AA, with left and right
actions given by the product in A.

If E is a right A-module, and F is a left A-module, we can form the balanced
tensor product:

E ⊗A F := E ⊗ F/

{∑
i

ei ai ⊗ fi − ei ⊗ ai fi : ai ∈ A, ei ∈ E, fi ∈ F

}
.
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In other words, the quotient imposes A-linearity of the tensor product, i.e. in E ⊗A F
we have

ea ⊗A f = e ⊗A a f ; (a ∈ A, e ∈ E, f ∈ F).

Definition 2.9 Let A, B be matrix algebras. A Hilbert bimodule for the pair (A, B)

is given by an A − B-bimodule E together with a B-valued inner product 〈·, ·〉E :
E × E → B satisfying

〈e1, a · e2〉E = 〈a∗ · e1, e2〉E ; (e1, e2 ∈ E, a ∈ A),

〈e1, e2 · b〉E = 〈e1, e2〉E b; 〈e1, e2〉∗E = 〈e2, e1〉E ; (e1, e2 ∈ E, b ∈ B),

〈e, e〉E ≥ 0 with equality if and only if e = 0; (e ∈ E).

The set of Hilbert bimodules for (A, B) will be denoted by KK f (A, B).

In the following, we will also write 〈·, ·〉 instead of 〈·, ·〉E , unless confusion might
arise.

Exercise 2.6 Check that a representation π : A → L(H) (cf. Definiton 2.4 and
Exercise 2.4) of a matrix algebra A turns H into a Hilbert bimodule for (A,C).

Exercise 2.7 Show that the A − A-bimodule given by A itself (cf. Exercise 2.5)
is an element in KK f (A, A) by establishing that the following formula defines an
A-valued inner product 〈·, ·〉A : A × A → A:

〈a, a′〉A = a∗a′; (a, a′ ∈ A).

Example 2.10 More generally, let φ : A → B be a ∗-algebra homomorphism be-
tween matrix algebras A and B. From it, we can construct a Hilbert bimodule Eφ in
KK f (A, B) as follows. Let Eφ be B as a vector spacewith the natural right B-module
structure and inner product (cf. Exercise 2.7), but with A acting on the left via the
homomorphism φ:

a · b = φ(a)b; (a ∈ A, b ∈ Eφ).

Definition 2.11 The Kasparov product F ◦ E between Hilbert bimodules E ∈
KK f (A, B) and F ∈ KK f (B, C) is given by the balanced tensor product

F ◦ E := E ⊗B F; (E ∈ KK f (A, B), F ∈ KK f (B, C)),

so that F ◦ E ∈ KK f (A, C), with C-valued inner product given on elementary
tensors by

〈e1 ⊗ f1, e2 ⊗ f2〉E⊗B F = 〈 f1, 〈e1, e2〉E f2〉F , (2.1.1)

and extended linearly to all of E ⊗ F .
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Note that this product is associative up to isomorphism.

Exercise 2.8 Show that the association φ � Eφ from Example 2.10 is natural in
the sense that

(1) EidA � A ∈ KK f (A, A),
(2) for ∗-algebra homomorphisms φ : A → B and ψ : B → C we have an

isomorphism

Eψ ◦ Eφ ≡ Eφ ⊗B Eψ � Eψ◦φ ∈ KK f (A, C),

that is, as A − C-bimodules.

Exercise 2.9 In the above definition:

(1) Check that E ⊗B F is an A − C-bimodule.
(2) Check that 〈·, ·〉E⊗B F defines a C-valued inner product.
(3) Check that 〈a∗(e1 ⊗ f1), e2 ⊗ f2〉E⊗B F = 〈e1 ⊗ f1, a(e2 ⊗ f2)〉E⊗B F .

Conclude that F ◦ E is indeed an element of KK f (A, C).

Let us consider the Kasparov product with the Hilbert bimodule for (A, A) given
by A itself (cf. Exercise 2.7). Then, since for E ∈ KK f (A, B) we have E ◦ A =
A⊗A E � E , the bimodule A AA is the identity element with respect to the Kasparov
product (up to isomorphism). This motivates the following definition.

Definition 2.12 Two matrix algebras A and B are called Morita equivalent if there
exist elements E ∈ KK f (A, B) and F ∈ KK f (B, A) such that

E ⊗B F � A, F ⊗A E � B,

where � denotes isomorphism as Hilbert bimodules.

If A and B are Morita equivalent, then the representation theories of both matrix
algebras are equivalent. More precisely, if A and B areMorita equivalent, then a right
A-module is sent to a right B-module by tensoring with − ⊗A E for an invertible
element E in KK f (A, B).

Example 2.13 As seen in Exercises 2.4 and 2.6, the vector space E = C
n is an

Mn(C)−C-bimodule; with the standardC-valued inner product it becomes a Hilbert
module for (Mn(C),C). Similarly, the vector space F = C

n is a C − Mn(C)-
bimodule by right matrix multiplication. An Mn(C)-valued inner product is given by

〈v1, v2〉 = v̄1v
t
2 ∈ Mn(C).

We determine the Kasparov products of these Hilbert bimodules as

E ⊗C F � Mn(C); F ⊗Mn(C) E � C.
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In other words, E ∈ KK f (Mn(C),C) and F ∈ KK f (C, Mn(C)) are each other’s
inverse with respect to the Kasparov product. We conclude that Mn(C) and C are
Morita equivalent.

This observation leads us to our first little result.

Theorem 2.14 Two matrix algebras are Morita equivalent if and only if their struc-
ture spaces are isomorphic as finite discrete spaces, i.e. have the same cardinality.

Proof Let A and B be Morita equivalent. Thus there exists Hilbert bimodules A EB

and B FA such that
E ⊗B F � A, F ⊗A E � B.

If [(πB, H)] ∈ B̂ then we can define a representation πA by setting

πA : A → L(E ⊗B H); πA(a)(e ⊗ v) = ae ⊗ v. (2.1.2)

Vice versa, we construct πB : B → L(F ⊗A W ) from [(πA, W )] ∈ Â by setting

πB(b)( f ⊗w) = b f ⊗w and these twomaps are one another’s inverse. Thus, Â � B̂
(see Exercise 2.10 below).

For the converse, we start with a basic result on irreducible representations of
Mn(C).

Lemma 2.15 The matrix algebra Mn(C) has a unique irreducible representation
(up to isomorphism) given by the defining representation on C

n.

Proof It is clear from Exercise 2.2 that Cn is an irreducible representation of A =
Mn(C). Suppose H is irreducible and of dimension K , and define a linear map

φ : A ⊕ · · · ⊕ A︸ ︷︷ ︸
K copies

→ H∗; φ(a1, . . . , aK ) → e1 ◦ at
1 + · · · + eK ◦ at

K

in terms of a basis {e1, . . . eK } of the dual vector space H∗. Here v ◦ a denotes
pre-composition of v ∈ H∗ with a ∈ A, acting on H . This is a morphism of Mn(C)-
modules, provided amatrix a acts on the dual vector space H∗ by sending v �→ v◦at .
It is also surjective, so that the dual map φ∗ : H → (AK )∗ is injective. Upon
identifying (AK )∗ with AK as A-modules, and noting that A = Mn(C) � ⊕n

C
n

as A-modules, it follows that H is a submodule of AK � ⊕nK
C

n . By irreducibility
H � C

n . �

Now, if A, B are matrix algebras of the following form.

A =
N⊕

i=1

Mni (C), B =
M⊕

j=1

Mm j (C),

then Â � B̂ implies that N = M . Then, define
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E :=
N⊕

i=1

C
ni ⊗ C

mi ,

with A acting by block-diagonal matrices on the first tensor and B acting in a similar
way by right matrix multiplication on the second leg of the tensor product. Also, set

F :=
N⊕

i=1

C
mi ⊗ C

ni ,

with B now acting on the left and A on the right. Then, as above,

E ⊗B F �
N⊕

i=1

(Cni ⊗ C
mi ) ⊗Mmi (C) (Cmi ⊗ C

ni )

�
N⊕

i=1

C
ni ⊗

(
C

mi ⊗Mmi (C) C
mi

)
⊗ C

ni

�
N⊕

i=1

C
ni ⊗ C

ni � A,

and similarly we obtain F ⊗A E � B, as required.

Exercise 2.10 Fill in the gaps in the above proof:

(a) Show that the representation πA defined by (2.1.2) is irreducible if and only if
πB is.

(b) Show that the association of the class [πA] to [πB] through (2.1.2) is independent
of the choice of representatives πA and πB.

We conclude that there is a duality between finite spaces and Morita equivalence
classes of matrix algebras. By replacing ∗-homomorphisms A → B by Hilbert bi-
modules for (A, B), we introduce a much richer structure at the level of morphisms
between matrix algebras. For example, any finite-dimensional inner product space
defines an element in KK f (C,C), whereas there is only one map from the cor-
responding structure space consisting of one point to itself. When combined with
Exercise 2.10 we conclude that Hilbert bimodules form a proper extension of the
∗-morphisms between matrix algebras.

2.2 Noncommutative Geometric Finite Spaces

Consider again a finite space X , described as the structure space of a matrix algebra
A. We would like to introduce some geometry on X and, in particular, a notion of a
metric on X .
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Thus, the question we want to address is how we can (algebraically) describe
distances between the points in X , say, as embedded in a metric space. Recall that
a metric on a finite discrete space X is given by an array {di j }i, j∈X of real non-
negative entries, indexed by a pair of elements in X and requiring that di j = d ji ,
di j ≤ dik + dkj , and di j = 0 if and only if i = j :

1
d13

d12

3

d23

2

Example 2.16 If X is embedded in a metric space (e.g. Euclidean space), it can be
equipped with the induced metric.

Example 2.17 The discrete metric on the discrete space X is given by:

di j =
{
1 if i 
= j
0 if i = j.

In the commutative case, we have the following remarkable result, which com-
pletely characterizes the metric on X in terms of linear algebraic data. It is the key
result towards a spectral description of finite geometric spaces.

Theorem 2.18 Let di j be a metric on the space X of N points, and set A = C
N

with elements a = (a(i))N
i=1, so that Â � X. Then there exists a representation π of

A on a finite-dimensional inner product space H and a symmetric operator D on H
such that

di j = sup
a∈A

{|a(i) − a( j)| : ‖[D,π(a)]‖ ≤ 1} . (2.2.1)

Proof We claim that this would follow from the equality

‖[D,π(a)]‖ = max
k 
=l

{
1

dkl
|a(k) − a(l)|

}
. (∗)

Indeed, if this holds, then

sup
a

{|a(i) − a( j)| : ‖[D, a]‖ ≤ 1} ≤ di j .

The reverse inequality follows by taking a ∈ A for fixed i, j to be a(k) = dik . Then,
we find |a(i) − a( j)| = di j , while ‖[D,π(a)]‖ ≤ 1 for this a follows from the
reverse triangle inequality for di j :

1

dkl
|a(k) − a(l)| = 1

dkl
|dik − dil | ≤ 1.
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Weprove (∗) by induction on N . If N = 2, then on H = C
2 wedefine a representation

π : A → L(H) and a hermitian matrix D by

π(a) =
(

a(1) 0
0 a(2)

)
, D =

(
0 (d12)−1

(d12)−1 0

)
.

It follows that ‖[D, a]‖ = (d12)−1|a(1) − a(2)|.
Suppose then that (∗) holds for N , with representation πN of CN on an inner

product space HN and symmetric operator DN ; we will show that it also holds for
N + 1. We define

HN+1 = HN ⊕
N⊕

i=1

Hi
N

with Hi
N := C

2. Imitating the above construction in the case N = 2, we define the
representation πN+1 by

πN+1(a(1), . . . , a(N + 1)) = πN (a(1), . . . , a(N ))

⊕
(

a(1) 0
0 a(N + 1)

)
⊕ · · · ⊕

(
a(N ) 0
0 a(N + 1)

)
,

and define the operator DN+1 by

DN+1 = DN ⊕
(

0 (d1(N+1))
−1

(d1(N+1))
−1 0

)

⊕ · · · ⊕
(

0 (dN (N+1))
−1

(dN (N+1))
−1 0

)
.

It follows by the induction hypothesis that (∗) holds for N + 1. �

Exercise 2.11 Make the above proof explicit for the case N = 3. In other words,
compute the metric of (2.2.1) on the space of three points from the set of data A = C

3,
H = (C2)⊕3 with representation π : A → L(H) given by

π(a(1), a(2), a(3)) =
(

a(1) 0
0 a(2)

)
⊕

(
a(1)

a(3)

)
⊕

(
a(2)

a(3)

)
,

and hermitian matrix

D =
(
0 x1
x1 0

)
⊕

(
0 x2
x2 0

)
⊕

(
0 x3
x3 0

)
,

with x1, x2, x3 ∈ R.
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Exercise 2.12 Compute the metric on the space of three points given by formula
(2.2.1) for the set of data A = C

3 acting in the defining representation on H = C
3,

and

D =
⎛
⎝

0 d−1 0
d−1 0 0
0 0 0

⎞
⎠ ,

for some non-zero d ∈ R.

Even though the above translation of the metric on X into algebraic data assumes
commutativity of A, the distance formula itself can be extended to the case of a
noncommutative matrix algebra A.

In fact, suppose we are given a ∗-algebra representation of A on an inner product
space, together with a symmetric operator D on H . Then we can define a metric on
the structure space Â by

di j = sup
a∈A

{
|Tra(i) − Tra( j)| : ‖[D, a]‖ ≤ 1

}
, (2.2.2)

where i labels the matrix algebra Mni (C) in the decomposition of A. This distance
formula is a special case of Connes’ distance formula (see Note 12 on page 72) on
the structure space of A.

Exercise 2.13 Show that the di j in (2.2.2) is a metric (actually, an extended metric,
taking values in [0,∞]) on Â by establishing that

di j = 0 ⇐⇒ i = j, di j = d ji , di j ≤ dik + dkj .

This suggests that the above structure consisting of a matrix algebra A, a
finite-dimensional representation space H , and a hermitian matrix D provides the
data needed to capture ametric structure on the finite space X = Â. In fact, in the case
that A is commutative, the above argument combined with our finite-dimensional
Gelfand duality of Sect. 2.1.1 is a reconstruction theorem. Indeed, we reconstruct a
given metric space (X, d) from the data (A, H, D) associated to it.

We arrive at the following definition, adapted to our finite-dimensional setting.

Definition 2.19 A finite spectral triple is a triple (A, H, D) consisting of a unital
∗-algebra A represented faithfully on a finite-dimensional Hilbert space H , together
with a symmetric operator D : H → H .

We do not demand that A is a matrix algebra, since this turns out to be automatic:

Lemma 2.20 If A is a unital ∗-algebra that acts faithfully on a finite-dimensional
Hilbert space, then A is a matrix algebra of the form

A �
N⊕

i=1

Mni (C).

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Proof Since A acts faithfully on aHilbert space it is a∗-subalgebra of amatrix algebra
L(H) = Mdim(H)(C); the only such subalgebras are themselves matrix algebras. �

Unless we want to distinguish different representations of A on H , the above
representation will usually be implicitly assumed, thus considering elements a ∈ A
as operators on H .

Example 2.21 Let A = Mn(C) act on H = C
n by matrix multiplication, with the

standard inner product. A symmetric operator on H is represented by a hermitian
n × n matrix.

We will loosely refer to D as a finite Dirac operator, as its infinite-dimensional
analogue on Riemannian spin manifolds is the usual Dirac operator (see Chap.4).
In the present case, we can use it to introduce a ‘differential geometric structure’ on
the finite space X that is related to the notion of divided difference. The latter is
given, for each pair of points i, j ∈ X , by

a(i) − a( j)

di j
.

Indeed, these divided differences appear precisely as the entries of the commutator
[D, a] for the operator D as in Theorem 2.18.

Exercise 2.14 Use the explicit form of D in Theorem 2.18 to confirm that the com-
mutator of D with a ∈ C(X) is expressed in terms of the above divided differences.

We will see later that in the continuum case, the commutator [D, ·] corresponds
to taking derivatives of functions on a manifold.

Definition 2.22 Let (A, H, D)be afinite spectral triple. The A-bimodule ofConnes’
differential one-forms is given by

�1
D(A) :=

{∑
k

ak[D, bk] : ak, bk ∈ A

}
.

Consequently, there is a map d : A → �1(A), given by d(·) = [D, ·].
Exercise 2.15 Verify that d is a derivation of a ∗-algebra, in that:

d(ab) = d(a)b + ad(b); d(a∗) = −d(a)∗.

Exercise 2.16 Verify that �1
D(A) is an A-bimodule by rewriting the operator

a(ak[D, bk])b (a, b, ak, bk ∈ A) as
∑

k a′
k[D, b′

k] for some a′
k, b′

k ∈ A.

As a first little result—though with an actual application to matrix models in
physics—we compute Connes’ differential one-forms for the above Example 2.21.

http://dx.doi.org/10.1007/978-94-017-9162-5_4
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Lemma 2.23 Let (A, H, D) = (Mn(C),Cn, D) be the finite spectral triple of
Example 2.21 with D a hermitian n × n matrix. If D is not a multiple of the identity,
then �1

D(A) � Mn(C).

Proof We may assume that D is a diagonal matrix: D = ∑
i λi eii in terms of real

numbersλi (not all equal) and the standard basis {ei j } of Mn(C). For fixed i, j choose
k such that λk 
= λ j . Then

(
1

λk − λ j
eik

)
[D, ek j ] = ei j .

Hence, since eik, ek j ∈ Mn(C), any basis vector ei j ∈ �1
D(A). Since also �1

D(A) ⊂
L(Cn) � Mn(C), the result follows. �

Exercise 2.17 Consider the following finite spectral triple:

(
A = C

2, H = C
2, D =

(
0 λ

λ̄ 0

))
,

with λ 
= 0. Show that the corresponding space of differential one-forms �1
D(A) is

isomorphic to the vector space of all off-diagonal 2 × 2 matrices.

2.2.1 Morphisms Between Finite Spectral Triples

In a spectral triple (A, H, D) both the ∗-algebra A and a finite Dirac operator D act
on the inner product space H . Hence, the most natural notion of equivalence between
spectral triples is that of unitary equivalence.

Definition 2.24 Twofinite spectral triples (A1, H1, D1) and (A2, H2, D2) are called
unitarily equivalent if A1 = A2 and if there exists a unitary operator U : H1 → H2
such that

Uπ1(a)U∗ = π2(a); (a ∈ A1),

U D1U∗ = D2.

Exercise 2.18 Show that unitary equivalence of spectral triples is an equivalence
relation.

Remark 2.25 A special type of unitary equivalence is given by the unitaries in the
matrix algebra A itself. Indeed, for any such unitary element u the spectral triples
(A, H, D) and (A, H, u Du∗) are unitarily equivalent. Another way of writing u Du∗
is D+u[D, u∗], so that this type of unitary equivalence effectively adds a differential
one-form to D.
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Following the spirit of our extended notion of morphisms between algebras, we
might also deduce a notion of “equivalence” coming fromMorita equivalence of the
corresponding matrix algebras. Namely, given a Hilbert bimodule E in KK f (B, A),
we can try to construct a finite spectral triple on B starting from a finite spectral triple
on A. This transfer of metric structure is accomplished as follows. Let (A, H, D) be
a spectral triple; we construct a new spectral triple (B, H ′, D′). First, we define a
vector space

H ′ = E ⊗A H,

which inherits a left action of B from the B-module structure of E . Also, it is an
inner product space, with C-valued inner product given as in (2.1.1).

The naive choice of a symmetric operator D′ given by D′(e ⊗ ξ) = e ⊗ Dξ will
not do, because it does not respect the ideal defining the balanced tensor product
over A, being generated by elements of the form

ea ⊗ ξ − e ⊗ aξ; (e ∈ E, a ∈ A, ξ ∈ H).

A better definition is
D′(e ⊗ ξ) = e ⊗ Dξ + ∇(e)ξ, (2.2.3)

where ∇ : E → E ⊗A �1
D(A) is some map that satisfies the Leibniz rule

∇(ea) = ∇(e)a + e ⊗ [D, a]; (e ∈ E, a ∈ A). (2.2.4)

Indeed, this is precisely the property that is needed tomake D′ awell-defined operator
on the balanced tensor product E ⊗A H :

D′(ea ⊗ ξ − e ⊗ aξ) = ea ⊗ Dξ + ∇(ea)ξ − e ⊗ D(aξ) − ∇(e)aξ = 0.

A map ∇ : E → E ⊗A �1
D(A) that satisfies Eq. (2.2.4) is called a connection on

the right A-module E associated to the derivation d : a �→ [D, a] (a ∈ A).

Theorem 2.26 If (A, H, D) is a finite spectral triple and E ∈ KK f (B, A), then
(in the above notation) (B, E ⊗A H, D′) is a finite spectral triple, provided that ∇
satisfies the compatibility condition

〈e1,∇e2〉E − 〈∇e1, e2〉E = d〈e1, e2〉E ; (e1, e2 ∈ E). (2.2.5)

Proof We only need to show that D′ is a symmetric operator. Indeed, for e1, e2 ∈ E
and ξ1, ξ2 ∈ H we compute
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〈e1 ⊗ ξ1, D′(e2 ⊗ ξ2)〉E⊗A H = 〈ξ1, 〈e1,∇e2〉Eξ2〉H + 〈ξ1, 〈e1, e2〉E Dξ2〉H

= 〈ξ1, 〈∇e1, e2〉Eξ2〉H + 〈ξ1, d〈e1, e2〉Eξ2〉H

+ 〈Dξ1, 〈e1, e2〉Eξ2〉H − 〈ξ1, [D, 〈e1, e2〉E ]ξ2〉H

= 〈D′(e1 ⊗ ξ1), e2 ⊗ ξ2〉E⊗A H ,

using the stated compatibility condition and the fact that D is symmetric. �

Theorem 2.26 is our finite-dimensional analogue of Theorem 6.15, to be obtained
below.

Exercise 2.19 Let ∇ and ∇′ be two connections on a right A-module E. Show that
their difference ∇ − ∇′ is a right A-linear map E → E ⊗A �1

D(A).

Exercise 2.20 In this exercise, we consider the case that B = A and also E = A.
Let (A, H, D) be a spectral triple, we determine (A, H ′, D′).

(1) Show that the derivation d(·) = [D, ·] : A → A ⊗A �1
D(A) = �1

D(A) is a
connection on A considered a right A-module.

(2) Upon identifying A ⊗A H � H, what is the operator D′ of Eq. (2.2.3) when the
connection ∇ on A is given by d as in (1)?

(3) Use (1) and (2) of this exercise to show that any connection ∇ : A → A ⊗A

�1
D(A) is given by

∇ = d + ω,

with ω ∈ �1
D(A).

(4) Upon identifying A ⊗A H � H, what is the operator D′ of Eq. (2.2.3) with the
connection on A given as ∇ = d + ω.

If we combine the above Exercise 2.20 with Lemma 2.23, we see that ∇ = d− D
is an example of a connection on MN (C) (as a module over itself and withω = −D),
since �1

D(A) � MN (C). Hence, for this choice of connection the new finite spectral
triple as constructed in Theorem 2.26 is given by (MN (C),CN , D′ = 0). So, Morita
equivalence of algebras does not carry over to an equivalence relation on spectral
triples. Indeed, we now have �1

D′(MN (C)) = 0, so that no non-zero D can be
generated from this spectral triple and the symmetry of this relation fails.

2.3 Classification of Finite Spectral Triples

Here we classify finite spectral triples on A modulo unitary equivalence, in terms of
so-called decorated graphs.

Definition 2.27 A graph is an ordered pair (�(0), �(1)) consisting of a set �(0) of
vertices and a set �(1) of pairs of vertices (called edges).

http://dx.doi.org/10.1007/978-94-017-9162-5_6
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n1 ni nj nN

Fig. 2.1 A node at ni indicates the presence of the summand C
ni ; the double node at n j indicates

the presence of the summand C
n j ⊕ C

n j in H

We allow edges of the form e = (v, v) for any vertex v, that is, we allow loops at
any vertex.

Consider then a finite spectral triple (A, H, D); let us determine the structure of
all three ingredients and construct a graph from it.
The algebra: We have already seen in Lemma 2.20 that

A �
N⊕

i=1

Mni (C),

for some n1, . . . , nN . The structure space of A is given by Â � {1, . . . , N } with
each integer i ∈ Â corresponding to the equivalence classes of the representation
of A on C

ni . If we label the latter equivalence class by ni we can also identify
Â � {n1, . . . , nN }.
The Hilbert space:Anyfinite-dimensional faithful representation H of such amatrix
algebra A is completely reducible (i.e. a direct sum of irreducible representations).

Exercise 2.21 Prove this result for any ∗-algebra by establishing that the comple-
ment W ⊥ of an A-submodule W ⊂ H is also an A-submodule of H.

Combining this with the proof of Lemma 2.15, we conclude that the finite-
dimensionalHilbert space representation H of A has a decomposition into irreducible
representations, which we write as

H �
N⊕

i=1

C
ni ⊗ Vi ,

with each Vi a vector space; we will refer to the dimension of Vi as the multiplicity
of the representation labeled by ni and to Vi itself as the multiplicity space. The
above isomorphism is given by a unitary map.

To begin the construction of our decorated graph, we indicate the presence of a
summand ni in H by drawing a node at position ni ∈ Â in a diagram based on the
structure space Â of the matrix algebra A (see Fig. 2.1 for an example). Multiple
nodes at the same position represent multiplicities of the representations in H .
The finite Dirac operator: Corresponding to the above decomposition of H we can
write D as a sum of matrices

Di j : Cni ⊗ Vi → C
n j ⊗ Vj ,
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n1 ni nj nN

Fig. 2.2 The edges between the nodes ni and n j , and ni and nN represent non-zero operators
Di j : Cni → C

n j ⊗ C
2 (multiplicity 2) and Di N : Cni → C

nN , respectively. Their adjoints give
the operators D ji and DNi

restricted to these subspaces. The condition that D is symmetric implies that Di j =
D∗

j i . In terms of the above diagrammatic representation of H , we express a non-zero
Di j and D ji as a (multiple) edge between the nodes ni and n j (see Fig. 2.2 for an
example).

Another way of putting this is as follows, in terms of decorated graphs.

Definition 2.28 A �-decorated graph is given by an ordered pair (�,�) of a finite
graph � and a finite set � of positive integers, with a labeling:

• of the vertices v ∈ �(0) by elements n(v) ∈ �;
• of the edges e = (v1, v2) ∈ �(1) by operators De : C

n(v1) → C
n(v2) and its

conjugate-transpose D∗
e : Cn(v2) → C

n(v1) ,

so that n(�(0)) = �.

The operators De between vertices that are labeled by ni and n j , respectively, add
up to the above Di j . Explicitly,

Di j =
∑

e = (v1, v2)

n(v1) = ni

n(v2) = n j

De,

so that also D∗
i j = D ji . Thus we have proved the following result.

Theorem 2.29 There is a one-to-one correspondence between finite spectral triples
modulo unitary equivalence and �-decorated graphs, given by associating a finite
spectral triple (A, H, D) to a �-decorated graph (�,�) in the following way:

A =
⊕
n∈�

Mn(C), H =
⊕

v∈�(0)

C
n(v), D =

∑

e∈�(1)

De + D∗
e .

Example 2.30 The following �-decorated graph

De

n

corresponds to the spectral triple (Mn(C),Cn, D = De + D∗
e ) of Example 2.21.
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Exercise 2.22 Draw the �-decorated graph corresponding to the spectral triple

⎛
⎝A = C

3, H = C
3, D =

⎛
⎝
0 λ 0
λ̄ 0 0
0 0 0

⎞
⎠

⎞
⎠ ; (λ 
= 0).

Exercise 2.23 Use �-decorated graphs to classify all finite spectral triples (modulo
unitary equivalence) on the matrix algebra A = C ⊕ M2(C).

Exercise 2.24 Suppose that (A1, H1, D1) and (A2, H2, D2) are two finite spectral
triples. We consider their direct sum and tensor product and give the corresponding
�-decorated graphs.

(1) Show that (A1 ⊕ A2, H1 ⊕ H2, (D1, D2)) is a finite spectral triple.
(2) Describe the �-decorated graph of this direct sum spectral triple in terms of the

�-decorated graphs of the original spectral triples.
(3) Show that (A1 ⊗ A2, H1 ⊗ H2, D1 ⊗ 1 + 1 ⊗ D2) is a finite spectral triple.
(4) Describe the �-decorated graph of this tensor product spectral triple in terms

of the �-decorated graphs of the original spectral triples.

Notes

Section 2.1 Finite Spaces and Matrix Algebras

1. The notation KK f in Definition 2.9 is chosen to suggest a close connection
to Kasparov’s bivariant KK-theory [1], here restricted to the finite-dimensional
case. In fact, in the case of matrix algebras the notion of a Kasparov module for
a pair of C∗-algebras (A, B) (cf. [2, Sect. 17.1] for a definition) coincides (up to
homotopy) with that of a Hilbert bimodule for (A, B) (cf. [3, Sect. IV.2.1] for a
definition).

2. Definition 2.12 agrees with the notion of equivalence between arbitrary rings
introduced by Morita [4]. Moreover, it is a special case of strong Morita equiv-
alence between C∗-algebras as introduced by Rieffel [5].

3. Theorem 2.14 is a special case of a more general result on the structure spaces
of Morita equivalent C∗-algebras (see e.g. [6, Sect. 3.3]).

Section 2.2 Noncommutative Geometric Finite Spaces

4. Theorem 2.18 can be found in [7].
5. The reconstruction theorem mentioned in the text before Definition 2.19 is a

special case, to wit the finite-dimensional case, of a result by Connes [8] on a
reconstruction of Riemannian (spin) manifolds from so-called spectral triples
(cf. Definition 4.30 and Note 13 on page 72 below).

6. A complete proof of Lemma 2.20 can be found in [9, Theorem 3.5.4].

http://dx.doi.org/10.1007/978-94-017-9162-5_4
http://dx.doi.org/10.1007/978-94-017-9162-5_4
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7. For a complete exposition on differential algebras, connections on modules,
et cetera, we refer to [10, Chap. 8] and [11] and references therein.

8. The failure of Morita equivalence to induce an equivalence between spectral
triples was noted in [12, Remark 1.143] (see also [13, Remark 5.1.2]). This sug-
gests that it is better to consider Hilbert bimodules as correspondences rather
than equivalences, as was already suggested by Connes and Skandalis in [14]
and also appeared in the applications of noncommutative geometry to number
theory (cf. [12, Chap. 4.3]) and quantization [15]. This forms the starting point
for a categorical description of (finite) spectral triples themselves. As objects
the category has finite spectral triples (A, H, D), and as morphisms it has pairs
(E,∇) as above. This category is the topic of [16, 17], working in the more
general setting of spectral triples, hence requiring much more analysis as com-
pared to our finite-dimensional case. The category of finite spectral triples plays
a crucial role in the noncommutative generalization of spin networks in [18].
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