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Abstract The constantly increasing demand for efficient and precise computational
solvers becomes the crucial factor deciding about usability of a given domain
specific simulation software. The main idea of this article is the use of eigenvalues
of amplification matrices to determine the size of time step in modeling of solidi-
fication. As far as numerical simulations are concerned it is very important to obtain
solutions which are stable and physically correct. It is acquired by fulfilling many
assumptions and conditions during the construction a numerical model and carrying
out computer simulations. One of the conditions is a proper selection of time
step. The size of time step has a great impact on the stability of used time inte-
gration schemes (e.g. explicit scheme), or on a proper image of physical phenomena
occurring during the simulation (e.g. implicit scheme). The eigenvalues of ampli-
fication matrix in governing equations influence on the appropriate selection of size
of time step in computer simulations. Hence, it allows to better fit the size of time
step and time integration scheme for modeled structure.

Keywords Amplification matrix - Computer simulation - Computer modeling -
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1 Introduction

Modeling and computer simulation is one of the most effective methods of studying
of difficult problems in foundry and metallurgical manufacture. Numerical simu-
lations are use for optimization of casting production. In many cases they are a
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unique possible technique for carrying out of the experiments which real statement
is complicated. Computer modeling allows defining the major factors for a quality
estimation of alloy castings. Simulations help to investigate interaction between
solidifying casting and changes of its parameters or initial conditions.

A numerical modeling of solidification is known to be a very time consuming
task. The constantly increasing demand for efficient and precise computational
solvers becomes the factor that decides about usability of a given solidification
simulation software. In many cases practitioners require multiple scenarios to be
tested, e.g. for different input parameters, before they make a final decision about the
setup of a given technological process. At the same time increasing size of computer
memory makes it possible to consider problems with increasing size, which in turn
results in increased precision of simulations. There are several possible ways to
tackle this kind of problems. For instance, one can use parallel computers or
accelerated architectures such as GPUs or FPGAs [1]. However, these solutions
require another level of expertise in both, parallel hardware and software, which very
often is not easily available. In papers [2—4] we proposed new method, which relies
on the application of the technique called mixed time partitioning. Our approach
exploits the fact that physical processes inside a mould are of different nature than
those in a solidifying casting. As a result different time steps can be used to run
computations within both sub-domains. Because processes that are modeled in the
casting sub-domain are more dynamic they require very fine-grained time step. On
the other hand a heat transfer within the mould sub-domain is less intense, and thus
coarse-grained step is sufficient to guarantee desired precision of computations.
Obviously, increasing length of a single time step results in decreased computational
load, which in turn greatly improves performance of our approach. In this paper we
put emphasis on determination of stability criteria for the selected integration
method. Mathematical apparatus of the chosen stability analysis method is applied
for the homogeneous form of the semi-discretized (after spatial discretization)
equation of solidification, as the stability is independent of the inhomogeneous
part. The analysis of numerical stability of mixed time partitioning methods for the
structural dynamics [5] and for heat conduction problem was adapted to the solid-
ification problem with temperature-dependent material properties.

2 Solidification in Terms of the Finite Element Method

The finite element method facilitates the modeling of many complex problems. Its
wide application for founding comes from the fact that it permits an easy adaptation
of many existing solutions and technique of solidification modeling.

Computer calculations need to use discrete models, which means problems must
be formulated by introducing time-space mesh. These methods convert given
physical equations into matrix equations (algebraic equations). This system of
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algebraic equations usually contain many thousands of unknowns, that is why the
efficiency of method applied to solve them is crucial.

After essential transformations we obtain an ordinary differential equation
containing only the time derivative [6] as following:

M(T)T + K(T)T = b(T), (1)

where M is the capacity matrix, K is the conductivity matrix, T is temperature
vector and b is right-hand side vector values of which are calculated using boundary
conditions. The global form of these matrices is obtained by summing of coeffi-
cients for all the finite elements. The matrix components are defined for a single
finite element as follows:

M=>" / NN dQ, (2)
0
K = Z/NTN.VNdQ, (3)
‘0

b=>" / Nlg"ndr, (4)
“r

where N is a shape vector in the area €2, N is a shape vector on the boundary I,
n is an ordinary vector towards the boundary I', and q is vector of nodal fluxes.

The system of ordinary differential equations (1) containing time derivative was
obtained as a result of spatial integration and it may only be solved in approxi-
mation. In order to receive an approximate solution it is needed to use the division
of time interval (0,#,,) into sub-intervals (f,f#1) with the length of Af =
tr+1 — & and time integration is performed by the use of one step or multisteps
methods [7]. We used the one step schemes, so-called © schemes, in the following
form:

Tn+1 =T" + (7(M’1+@)71K"+@Tn
+ (M"9)" 'y (1 — @) At
+ (_(MH+@)71KH+@TI’I+1
+ (M) 'prtheur.
Due to a possible dependence of materials properties from the temperature,

namely M, K and b for ® # 0 it is a system of nonlinear equations. To solve this
system iterative methods must be used.
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The forward Euler scheme:
M'T" = M'T" — AK"T" + Arb", (6)
is obtained for one extreme value ® = 0 and the backward Euler scheme:
(Mn+l + AlKn+l)Tn+l — MlH—lTn + Atbn+l, (7)

is obtained for the other extreme value & = 0. And if the values of matrices
coefficients M i K in the Eq. (7) are evaluated on the level of previous time step
then a modified backward Euler scheme is obtained as follows:

(Mn —l—Al‘K")T”+l :MnTn—l-Al‘b’H—l. (8)

3 Basic Equations

In the computer simulations apparent heat formulation (AHC) of solidification is
used [8]:

V- (AVT) = ¢ (T) aa—f 9)

The Eq. (9) is solved by mixed time partitioning method considering:

1. semi-discretization,

2. initial-value problem which consists of given functions T = T(¢) satisfying the
Eq. (9) and being the part of initial conditions T(t =0) =T, for ¢ € (0, T),
T>0,

3. one step @ time integration scheme.

The finite elements mesh consists of two groups elements (e): connected with a
mould (A), where e € A and connected with a casting (B), where e € B. Each of
these can be integrated with the use of different schemes of time integration.

This fact simplifies finding of the critical time step and the stability analysis. If
this division is assumed then it may be written as:

My=> M,Ki=) K.by=) b,
Mp=> M,Kz=)Y Kbs= Zb

All vectors are also divided into parts according to finite elements mesh division

(10)

T= (TATB)T, T= (TATB)T, the upper index T represents transportation. As
above, vector T may be written as:
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T =Vy +VB,
va=M"(by — KuT), (11)
vg =M '(bg — KpT).

In domain connected with a mould the integration is carried out with a bigger
time step (mAt, where m is positive integer) whereas in domain connected with a
casting with a smaller time step (A¢). This allows to build a system of equations on
the basis of Eq. (1) separately for the sub-domain B elements and to carry out
calculations more often for it than for the whole mesh with maintaining condition of
stability.

4 General Outline of Numerical Stability

Numerical method is stable when a little error in any solution stage moves further
with a decreasing amplitude. An error appearing on time level n may be defined as
&, on time level n + 1 as ¢"*!, whereas values of this error may be determined with
equation:

e = ge", (12)

where g is amplification factor connected with integral operator 7 (At, A). The
amplification factor refers to a method error and is connected with time integration
scheme. That is why it is necessary fulfilling one of conditions for stability of the
method: the value of an error on time level n 4+ 1 must not be bigger than value of
an error on time level n. That may be written in this formula:

< 1), (13)
and using the definition of amplification factor (12):
|ge"| <[e"]. (14)
It follows that numerical stability may be achieved if condition:
lsl<1 (15)

is fulfilled. This condition is limited to issues leading to finite solutions.

For the system N of ordinary differential first-order equations an error vector is
defined as ¢". Each coordinate of this vector is an error connected with an appro-
priate dependent variable of the system. For each time step an error is multiplied by
amplification matrix G in order to obtain an error vector in a new time step:
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& = Ge". (16)

Amplification matrix is connected to an integral operator which couples solu-
tions in consecutive time steps. It means that if an error ¢" appeared in a solution T"
on time level n then after some necessary transformations is obtained:

Tn+1 +8n+1 — f(Tn +8”). (17)

Assuming that an error vector has a small amplitude, the Eq. (17) may be
expanded into the Taylor series, taking into account only its two first terms. After
some transformations an expression joining together two time levels is obtained:

g = {%(fT)}ns”. (18)

This expression also defines the amplification matrix in the Eq. (16). The
operator .7 on the right-hand side of this equation is a linear matrix operator. Using
the given integration scheme it is possible to determine an amplification matrix for
it. An error vector on a new time level connects with an error vector in a previous
step. If in a amplification Eq. (16) a matrix G is diagonal then the amplitudes of
each of the error eigenvectors ¢; connected to each other by appropriate eigenvalues
g; of amplification matrix may be written as:

gl = gl (19)

Stability condition must be used separately for amplitudes of each error

eigenvectors:

e < e}, (20)
for all i, that is:
lgil < 1. (21)

Stability criterion defined in a given way is limited to a demand that each
eigenvalue g; of an amplification matrix G was smaller or equal to a unit. In the
paper this condition is used for the stability analysis of the mixed time partitioning
method of solidification issues.
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5 Association Between the Eigenvalues of Amplification
Matrix and Size of Time Step

It is essential to find the criterion to determine the size of time step for the explicit
scheme [2]. If we assume that 6 = 0 the Eq. (33) is reduced to the form:

T = (1 - AM'K)T". (22)

The Eq. (22) is called the evolution equation, because it gives the possibility to
obtain the value of searched size T at the time level n 4 1 from appropriate values
of nodal quantities at the time level n.

In the evolution equation the capacity matrix M can be full or diagonal.
Depending on the type of matrix in the equation of evolution, numerical stability
analysis is combined with carrying out various algebraic operations.

In case of the capacity matrix is diagonal matrix, the calculation of the inverse
matrix, namely M, is very simple and then finding its eigenvalues, necessary to
determine the critical value of time step, is not difficult. However, in case of full
capacity matrix which is symmetric and positively definite, in order to determine
the inverse matrix we need to use the distribution M = LL” or other transforma-
tions which keep the eigenvalues of full matrix. In case of diagonal matrix the
inversion process and searching eigenvalue, which decides about the maximum,
acceptable value of time step, is less complicated. The evolution Eq. (22) after
converting can be written as follows:

Tn+l — GTn, (23)
where amplification matrix G is given as:
G=1-AM"'K (24)

The scheme is explicit if the size T"*! can be received from the Eq. (23), without
solving the system of algebraic equations and if updates of searched quantities can
be repeated m—times according to the formula [9]:

Tn+m — Gm Tn . (25)

Finding the maximum eigenvalues of the amplification matrix is a sufficient
condition for the numerical stability:

Gx = /x, (26)

where G is the matrix of N degree, and N is the number of nodes of sub-domain
connected with casting or mould domain. The analysis of numerical stability is
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conducted separately for each sub-domain on the basis of finite elements inside the
sub-domain.

Using the theory of eigenvalues, eigenvectors and algebraic operations on
matrices it is known that the size G"T" — 0, if m — oo for any T" € RV, if |A;| <1
for i =1...N, moreover, the size G™T" is limited, if m — oo, if |4 <1 for
i = 1...N, if there are linearly independent eigenvectors x; for each |4;| = 1, which
is satisfied because of symmetry of matrices G.

After substituting G from the Eq. (24) to the Eq. (26), multiplying this equation
by M and doing transformations the formula for generalized problem of eigen-
values is received:

1-4
= Mx

K
X At ’

(27)

where (1 — 1)/4t is an eigenvalue of couple of matrices K and M. From the
Eq. (27) it is known that if 1 is equal to the unity then Kx = 0 only if x = 0:

Ji=1— Ay, (28)

As |4;| <1, the size of time step, which can be used to solve the system of
Eq. (33), to be numerical stable and is limited by the inequality:

Hi

A< =, (29)

The most restrictive limitation of the size of time step, which assures the stability
is the case in which g; is the maximum eigenvalue y,,, of the matrix of Eq. (37).
Taking into account the way of assembly of capacity and conductivity matrices, the
Eq. (37) may be written for a definite element e of the given domain:

K©x© — ,u(e)M(e)X("), (30)

whereas the limitation of a size of time step may be written as follows:

At < % (31)
M
In order to find a maximum acceptable size of time step for the casting and
mould domains it is necessary to determine, for all the elements, their biggest
eigenvalues and create from them double inequality. This inequality is limited from
the smallest value to the biggest one:

i << ) (32)

max?

where e = 1.. .ne, and ne is the number of elements in the considered domain.



Numerically Stable Computer Simulation ... 25

6 The Criterion of Determination of the Critical Time Step

In order to determine the criterion of numerical stability of chosen method, oper-
ations converting this equation into general problem of the eigenvalues are con-
ducted. The analysis of stability is carried out to determine the maximum size of
time step, which exceeding may be cause of unsteady solutions.

The one step time integration scheme of the equation obtained after spatial
discretization is presented by the formula:

M+ OAK)T"™ = (M — (1 — ©)AK)T". (33)

The right-hand side vector is not taken into consideration because the homo-
geneous equation is only essential for the numerical stability. If the homogeneous
expression is stable so the inhomogeneous one is also stable [7].

The generalised problem of the eigenvalues is connected with casting domain
B in sub-cycle and with mould domain A in total cycle [3, 4] and can be written in
the universal form:

Ax; = ABx;, i=1,.. N, (34)

where N is a grade of the matrix A i B expressed by the formulas:
A=M—(1-0Y)4K, (35)
B =M+ 04K, (36)

for
0 = @, for e € A,
©') = @, for e € B.

After substituting the Egs. (35) and (36) into the formula (34) and doing the
transformations the expression is received:

KX,‘ = .uiMXi; (37)
where f; is the eigenvalue of couple matrices of M i K form:

P
b

1-0+ 04t (38)

After transformation the homogeneous Eq. (9) can be written as follows:

T+BT =0, (39)
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where B =M~'K. Naturally, such inversion of the matrix M would cause its
asymmetry, therefore Cholesky decomposition is used in this purpose instead of
explicit inversions.

The one step ®@ method is used in a scalar equation, which comes from the
modal decomposition of system of Eq. (39), gives:

" = 1", (40)
where the eigenvalue 1 is expressed by the formula:

1—(1—0)udt

;L, =
1 4+ OuAat

(41)

As far as the Eq. (41) and the inequality || < 1 are concerned, the stability of the
method is obtained if the following condition is satisfied:

24 (20 — 1)udt > 0. (42)

It arises from (42) that for @ > 1/2 the condition of the inequality is always
satisfied, so the method is stable. Moreover, for @ < 1/2 the stability of the method
depends on the size of quotient Az, because of that for the explicit scheme (@ =
0) the size of maximum and accessible time step is strictly connected with the
maximum eigenvalue in a given domain (the casting, the mould).

7 Restrictions Imposed on the Eigenvalues

The solution of N system of Eq. (9) consists of particular integral and comple-
mentary function of the solution of the homogeneous equation [9—11]:

MT + KT = 0. (43)

Substituting T = ¢ #v to the Eq. (43) is obtained an equivalent system of
equations:

/Mv = Kv. (44)

Because of the semi-discretization the Eq. (44) is satisfied for A = /; and v = v;.
The mass matrix M is diagonal and it helps to reduce the analysis of stability. If
this matrix is the full symmetric matrix, the analysis of stability of the equation is
conducted in a different way, however, the effect of both operations is the same as
the criterion limiting the size of time step in the explicit scheme of the integration.
If the matrix M is positively definite, Cholesky decomposition can be executed,
namely M = LL7, where L is lower triangular and non singular matrix. Using such
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distribution in the Eq. (44) and multiplying both sides of the equation by L', it is
obtained:

)\,iLTvi = LilK(Lil)TLTVi, (45)

where Lv; is the eigenvector, and /; is the eigenvalue of the symmetric matrix

P=L'K(L™! )T. The matrix P has the set of linearly independent eigenvalues v;.
If the matrix V is composed of v;, which are the columns of such a matrix and
L7V is orthogonal, it can be written:

VILL'V=V'MV =L (46)

Moreover, on the basis of the Eq. (44) and the Cholesky decomposition process
it can be written:

/11- = /ALiVlTMVi = VITKVI‘. (47)

Substituting T = Vx into the Eq. (43) and left-multiplying both sides by V7 it is
obtained:

V'MVx + VIKVx = 0, (48)
and then:
Ix + Ax = 0, (49)

where A = diag(4;). Such distribution is known as modal decomposition and
allows to write the system of equations in the scalar form:

X,’ + )»ix,' =0. (50)

The problem of the stability is connected with some restrictions of the eigen-
values. For the problems described by the prime row equations, from the Eq. (44)
the eigenvalues and the eigenvectors can be designated. However, the restrictions
imposed on the eigenvalues in the Eq. (47) can be derived from Rayleigh quotient:

vIKv
A== 51
vIMyv (51)
Taking into consideration the way of matrix assembling K i M:
(vTKy,
i — Zl(vl 1 V) , (52)
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where e is an element, and v; is appropriate component of the eigenvector, Rayleigh
quotient for an element can be written as follows:

5 VIKYy,
PG L (53)
vIM“y,

Inserting (53) into (52) and doing certain transformations it is obtained:

= Lo

P >

()

where o; = v/ M;”v; > 0, because the capacity matrix is positively definite. It is

resulted from the Eq. (54) that 4 is determined as the weighted average from ige)

with positively weight, so the restrictions resulting from Rayleigh quotient can be
written as follows:

2 <j<a@ (55)
Estimation of the extreme values is received from the formulas:

min{v/K\v;}

Fon < T (56)
max{v'M;"v;}
T
20 < max{v; KE )v,} ' (57)
min{v/M;"v;}

8 Remarks and Conclusion

There are many types of methods used for the integration with respect to time, but
two of them are basic: explicit and implicit. Explicit methods usually need few
computations per time step, but numerical stability requires small the size of time
step. In practice, a time step which is too small results in any unnecessarily long
entire simulation time. Implicit methods, on the other hand, need many computa-
tions per time step, but allows to use larger the size of time step.

With respect to this problems we proposed to use both explicit and implicit
schemes in this study. By using mixed time partitioning methods, computations in
different parts of modelled domain were carried out by different integration schemes
(E—explicit, I—implicit) and different the size of time step.
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(a) |

Fig. 1 Erroneous results. Errors appearing in computational results for a temperature and b solid
phase fraction are caused by too large time step (e.g. in explicit scheme or when multiplication
factor m > 15)

If a conditionally stable time integration scheme is used, numerical stability
requires less the size of time step than its critical value (Af.;.) calculated on the
basis of stability analysis.

Numerical simulation of solidification was carried out for Al-2%Cu alloy
casting, solidifying in the metal form [6, 12]. Computations were carried out by
using mixed time partitioning methods on the basis of eigenvalues, where m = 15
was the largest acceptable value with respect to the numerical stability criterion.
The time step equal to 0.0035 s was used in the simulations.

We focused on computational framework to simulate solidification of binary
system with casting and mould considered. In our approach, we used a fixed time
step in a casting domain and much larger time steps in other parts of mould, while
maintaining high accuracy (comparable with case when small time step is used for
all domains). We performed series of numerical experiments and noticed the
eigenvalues of amplification matrix strongly affect the size of time step. The proper
selection of the size of the time step is important for the stability of the method and
the accuracy of the results. The simulation results are erroneous and inconsistent
with the physics of the phenomenon after crossing the critical time step (see Fig. 1).

The eigenvalues remain with close relation to the stability of numerical method
and hence with the size of the time step. For explicit schemes of time integration
such a step cannot exceed a certain critical value. For implicit schemes of time
integration the size of the time step cannot be unlimited because exceeding certain
limit can result in omission of important physical phenomena. The use of the
analysis of the relation between the eigenvalues and the size of time step allows to
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designate the maximum permissible size of the time step and to conduct the
computer simulations correctly. The problem of the eigenvalues of the matrices is a
very extensive issue and the works have very deep scientific and practical
justification.
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