
Chapter 2
Laser Diode Beam Basics

Abstract The basic properties of single transverse mode and multi-transverse
mode laser diode beams are reviewed. The characteristics of a laser diode beam
propagating through optical elements is analyzed using three commonly used math
tools: analytical tool thin lens equation and ABCD matrix, numerical calculation,
and software tool Zemax. The emphasis is on using thin lens equation and
numerical calculation to study the collimation and focusing characteristics of single
transverse mode laser diode beams.
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Single transverse mode laser diodes are most widely used. Their beams are ellip-
tical, astigmatic, and have large divergence. These characteristics make laser diode
beams difficult to handle. In this chapter we discuss in detail the basics of laser
diode beams mainly using a simple paraxial Gaussian model. This model is
accurate enough for most applications.

Multi-transverse laser diode beams are not typical laser beams and are also
discussed in this chapter.

2.1 Single Transverse Mode Laser Diode Beams

2.1.1 Elliptical Beams

When a laser diode is operated, a portion of the laser field will transmit through one
facet of the active layer and becomes the emitted laser beam. Because the active
layer of a laser diode has a rectangular shaped cross section and a portion of the
laser field will leak out from the active layer due to the limited confinement, the
beam at the emission facet is a little larger than the cross section of the active layer
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and has an elliptical shape, as shown in Fig. 2.1. The beam size at the emission facet
is about one micron in the direction vertical to the active layer and a few microns in
the direction horizontal to the active layer. The beam elliptical ratio is typically
from 1:2 to 1:4. The beam far field divergence is also different in the vertical and
horizontal directions with a typical ratio of 2:1–4:1. Because the beam divergence is
larger in the vertical direction, this direction is often called the “fast axis” direction.
Then, the horizontal direction is called “slow axis” direction, as shown in Fig. 2.1.

As the beam propagates, the beam size in the fast axis direction will surpass the
beam size in the slow axis direction, because the beam divergence is larger in the
fast axis direction. The beam shape will become vertically elliptical, as shown in
Fig. 2.1. This phenomenon is unique to laser diode beams. An elliptical shape beam
is one of the undesired characteristics of laser diodes.

2.1.2 Large Divergences

The divergence of single transverse (TE) mode laser diode beams can vary sig-
nificantly from different types of laser diodes and can even vary from diode to diode
of the same type. The typical full width half magnitude (FWHM) divergent angle is
about 15°–40° and 6°–12° in the fast and slow axis directions, respectively. In
terms of 1/e2 intensity divergence, this is about 26°–68° and 10°–20° in the fast and
slow axis directions, respectively. The laser diode industry traditionally uses the
FWHM divergent angle to specify the beam divergence, because the FWHM
number is more consistent; while in the optical community, the 1/e2 intensity
divergence is often used. The latter is about 1.7 times larger than the former.

        Elliptical far field beam 
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Fig. 2.1 A laser diode has a thin active layer. The emitted laser beam shown is elliptical, highly
divergent, and astigmatic. The astigmatism magnitude is much exaggerated for clarity
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Because of the very large divergence in the fast axis direction, the lens used to
collimate or focus a laser diode beam must have at least one aspheric surface
to correct the spherical aberration and a numerical aperture (NA) of at least 0.3 to
avoid severe beam truncation, although a lens with an NA of 0.6 will still truncate
some beams. Most aspheric lenses specially designed and fabricated for collimating
laser diode beams available in the market have an NA ranging from 0.3 to 0.6.
Truncation of a beam will create side lobes, cause focal shift to the beam, and
increase the divergence of the beam. The large divergent beam is another undesired
characteristic of laser diodes.

2.1.3 Quasi-Gaussian Intensity Profiles

The spatial shape o of a laser diode beam is determined by the structure of the active
layer. As described in Chap. 1, the active layer is one rectangular shaped waveguide
or several rectangular shaped waveguides in parallel. TE modes of such active
layers are not exactly Gaussian modes. The gain inside the active layer and the loss
outside the active layer will also affect the mode shapes. There are many different
active layer structures. The TE modes from these active layers are slightly different.
There is no single mathematical model that can accurately describe all these modes
and no commonly accepted relationship linking laser diode types to the shapes of
their TE modes. Only individual case studies have been reported [1–3]. Based on
this author’s experience, in most practical applications the differences among most
single TE modes of various types of laser diodes are insignificant and all these
modes can be described with negligible error by a Gaussian model, since the
Gaussian model is the simplest and most widely used model.

If we need be more specific, most single TE mode laser diode beams have
slightly narrower central lobe and slightly longer tails compared with Gaussian
mode.

2.1.4 Astigmatism

Laser diode beams are astigmatic; this is a consequence of the rectangular shaped
active layer and the varying gain profile across the active layer in the slow axis
direction. As shown in Fig. 2.1, the waist of a laser beam in the fast axis direction is
located near the facet of the active layer, while the beam waist in the slow axis
direction is located somewhere behind, that is, the astigmatism. The astigmatism
depicted in Fig. 2.1 is much exaggerated for clarity. Similar to other laser diode
parameters, astigmatism magnitude varies from different types of laser diodes and
from diode to diode of the same type. For single TE mode laser diodes, the
astigmatism is usually from 3 to 10 μm. For multi-TE mode laser diodes, the
astigmatism is usually from 10 to 50 μm. From the application point of view, there
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is no need to study the origin of the astigmatism. We are more interested in
measuring and correcting the astigmatism.

An astigmatic beam is another undesired characteristic of single TE mode laser
diodes.

2.1.5 Polarization

Laser diode beams are linear polarized. The polarization ratio is high from about
50:1 to about 100:1 for single TE mode laser diode, and around 30:1 for wide stripe
multi-TE modes laser diodes. The polarization is in the slow axis direction. The
high polarization ratio of laser diode beams can be either an advantage or a dis-
advantage, depending on the type of applications. As a comparison, most He–Ne
laser beams are randomly polarized.

2.2 Multi-transverse Mode Laser Diode Beams

2.2.1 Wide Stripe Laser Diode Beams

More carriers and photons are needed to increase the laser power. This can be
achieved by increasing the volume of the active layer. However, as discussed in
Chap. 1, high lasing efficiency requires high carrier density inside the active layer.
This means the active layer thickness cannot be increased. Then, the straightforward
way to increase the laser power is to increase the active layer width. For laser diodes
with power higher than 100 mW or so (depending on the laser diode type and
wavelength), the active layer widths are tens of microns or even up to a few
hundred microns. Such laser diodes are often called wide stripe laser diodes or
broad area laser diodes. The beam emitted from a wide stripe active layer contains
multiple TE modes as depicted in Fig. 2.2. Every TE mode is a quasi-Gaussian
mode. All these modes combine to form a multi-TE mode beam. As the beam
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active layer

Multi TE mode beam
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Fig. 2.2 The beam of a wide stripe laser diode contains multiple TE modes
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propagates, every mode increases its size and gradually merges with other modes to
form a light line in the slow axis direction, as shown in Fig. 2.2. As the beam further
propagates, the beam shape becomes rectangular, because all the modes have larger
divergence in the fast axis direction.

Figure 2.3 shows the spatial intensity distribution of five TE modes at three
different propagation distances. Figure 2.3a shows the intensity distribution of the
five modes at or near the laser diode facet. As the beam propagates, the sizes of the
five modes increase, the modes gradually merge together as shown in Fig. 2.3b, c
by the thin curves. The intensity distributions of the five modes combined are
shown in Fig. 2.3b, c by the dashed curves. When we scan such a multi-TE mode
beam, the scan head is usually at least several millimeters away from the laser
diode, the scan result will be something similar to that shown by the dashed curve
in Fig. 2.3c. However, such a beam is not a true flat top beam. When the beam is
focused, the intensity profile of the focused spot will be as shown in Fig. 2.3a if the
focusing lens is of high quality, or like that shown by the dashed curve in Fig. 2.3b,
where if the focusing lens has large aberration it will increase the size of the focused
modes.

The beams of wide stripe laser diodes are not like the laser beams we have often
seen, but are somehow like the lights from a light bulb. These beams cannot be well
collimated or focused to small spots. We will discuss this in detail in Sect. 3.8.

2.2.2 Laser Diode Stack Beams

Several wide stripe active layers can be stacked up to further increase the laser
power. Such a laser is called laser diode stack. There are many different combi-
nations of active layer widths and stack layers. Figure 2.4 shows the schematic of a
four-layer laser diode stack. There are many TE modes in the beam. The power of a
laser diode stack can be up to thousands of watts. A laser diode stack can be treated

Fig. 2.3 The solid curves are for the spatial intensity distributions of five TE modes at three
propagations distances. a At or near the diode facet. b At ten microns or so from the laser diode
facet. c At tens of microns or beyond. The dashed curves are the spatial intensity distribution of
five modes combined. The horizontal axis is spatial distance in the slow axis direction with a scale
of tens of microns. The vertical axis is intensity with arbitrary unit
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as a rectangular shaped light source of size a × b as shown in Fig. 2.4. The beams of
laser diode stacks are not like the laser beams we often see, but are rather like the
lights from a flashlight. These beams cannot be well collimated or focused to small
spots. We will discuss this in detail in Sect. 3.8.

2.3 Laser Diode Beam Propagation

2.3.1 Basic Mode Paraxial Gaussian Beams

Most laser beams have a circular shaped cross section with a Gaussian intensity
profile. Such beams are basic TE mode Gaussian beams. The characteristics of a
Gaussian beam can be described by a set of three equations [4]

wðzÞ ¼ w0 1þ M2kz
pw0

2

� �2
" #1=2

ð2:1Þ

RðzÞ ¼ z 1þ pw0
2

M2kz

� �2
" #

ð2:2Þ

Iðr; zÞ ¼ I0ðzÞe�2r2=wðzÞ2 ð2:3Þ

where w(z) is the 1/e2 intensity radius of the beam at z, z is the axial distance from
the waist of the laser beam, w0 is the 1/e

2 intensity radius of the beam waist, M2 is
the M square factor, λ is the wavelength, R(z) is the beam wavefront curvature
radius at z, I(r, z) is the beam intensity radial distribution in a cross section plane at
z, r is the radial coordinate in a cross section plane at z, and I0(z) is the beam peak

a

Multi TE mode output beam

b

    Laser diode stack
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Fast axisFig. 2.4 Schematic of a laser
diode stack
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intensity in a cross section plane at z. The M square factor M2 ≥ 1 describes the
deviation of the beam from a perfect Gaussian beam. For a perfect laser beam
M2 = 1. We will discuss the M2 factor in detail in Sect. 2.3.2.

For a laser beam the Rayleigh range zR is defined as that at z = zR the beam radius
is w(zR) =

ffiffiffi
2

p
w0. From Eq. (2.1) we can see that

zR ¼ pw0
2

M2k
ð2:4Þ

zR is proportional to w0
2. From Eq. (2.1) we can also see that at far field, z is large,

term M2λz/πw0
2 = z/zR � 1, the 1/e2 intensity far field half divergent angle θ of the

beam can be obtained by

h ¼ wðzÞ
z

¼ M2k
pw0

¼ w0

zR
ð2:5Þ

θ is inversely proportional to the beam waist w0. Figure 2.5 plots Eq. (2.1) for two
Gaussian laser beams with w0 = 1 mm and w0 = 0.5 mm, respectively. The far field
divergence θ1 and θ2 define the asymptote lines for the two beams, respectively. zR1
and zR2 of the two laser beams are marked in Fig. 2.5.

Figure 2.6 plots Eq. (2.2) for two laser beams same as the two beams in Fig. 2.5.
It can be seen from Eq. (2.2) and Fig. 2.6 that at the beam waist, both beams have a
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Fig. 2.5 The solid curves are w(z) versus z for two laser beams with w0 = 1.0 and 0.5 mm,
respectively, both beams have λ = 0.635 µm and M2 = 1
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plane wavefront with radius R(0) approaching infinity. As the beam propagates, R
(z) gradually decreases. The minimum R(z) appears at z = zR. As the beam continues
propagating, the beam wavefront gradually becomes spherical, then R(z) becomes
proportional to z. zR is often used as a criterion, z� zR is “near field”, z� zR is “far
field”, and z * zR is the intermediate field.

Figure 2.7 plots Eq. (2.3) for a laser beam with Gaussian intensity distribution in
an arbitrary cross section perpendicular to the propagation direction of the beam,
where I0(z) is normalized to 1. Beam radius is usually defined at either 1/e2 intensity
level or at FWHM level. We can find from Eq. (2.3) that the 1/e2 intensity radius
equals w(z), and the half magnitude radius equals 0.59w(z). The ratio between these
two radii is about 1.7.

The percentage of laser energy encircled inside the 1/e2 intensity radius can be
calculated by

R wðzÞ
0 e�2r2=wðzÞ2rdrR1
0 e�2r2=wðzÞ2rdr

¼ 86:4% ð2:6Þ
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where r is the radial variable. Similarly, the percentage laser energy encircled inside
the half magnitude radius can be calculated by

R 0:59wðzÞ
0 e�2r2=wðzÞ2rdrR1

0 e�2r2=wðzÞ2rdr
¼ 69:2%: ð2:7Þ

The characteristics of basic TE mode Gaussian beams have been studied
extensively. Many works studying this subject have been published. The most cited
one is probably the book Lasers written by Siegmann [5].

2.3.2 M2 Factor Approximation

The beams of some solid state lasers and laser diodes are not exact basic mode
Gaussian beams, they may contain higher order Gaussian modes. It is difficult to
find the mode structure details in these beams, since the unavoidable measurement
errors often lead to inconclusive results. A practical way of handling such laser
beams is to neglect the mode structure details, assume the beams still have Gaussian
intensity distributions, and introduce a M2 factor to the beams [6, 7]. By definition,
M2 = 1 means the beam is a perfect basic mode Gaussian beam. M2 ≥ 1 means the
beam deviates from a basic mode Gaussian beam.

Figures 2.8 and 2.9 plot Eqs. (2.1) and (2.2) for two beams with the same waist
size and wavelength, but different M2 = 1 and 1.2, respectively. We can see that the
beam far field divergence is proportional to the value of the M2 factor. Most colli-
mated single TE mode laser diode beams have aM2 of 1.1 and 1.2. The introduction
of the M2 factor enables the equation set for basic mode Gaussian beam to describe
non-basic mode Gaussian with reasonable accuracy and thereby significantly sim-
plify the mathematics involved. M2 factor has been widely used now to describe
various quasi-Gaussian laser beams. Some laser developers even use M2 factor to
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describe multi-TE mode laser beams. ISO has established a detail procedure for
measuring M2 factor [8].

2.3.3 Thin Lens Equation for a Real Laser Beam

Thin lens equation was originally derived as a simple analytical model to describe
how a lens manipulates geometric rays. Thin lens equation is an approximated
model, but accurate enough in most applications, and is therefore widely used. Thin
lens equation has the form [9]

i
f
¼ o

o� f
ð2:8Þ

where o is the object distance measured from the object point to the lens principal
plane. The lens focuses the rays from the object point and produces an image of the
object point, i is the image distance measured from the image point to the lens
principal plane, and f is the focal length of the lens. The lens magnification ratio
m is defined as

m ¼ i
o

ð2:9Þ

Equation (2.8) shows that for o = f+, i → ∞ and m → ∞, the rays are colli-
mated, where f+ means a value slightly larger than f. For o = f−, i → −∞ and
m→ −∞, the rays are also collimated, where f− means a value slightly smaller than
f. For o → ∞, i → f and m → 0, the rays are focused. It is noted that the geometric
optics is not accurate to calculate the size of a focused spot, the actual smallest
possible focused spot radius is the diffraction limited radius 1.22λf/d, where d is the
ray bundle diameter.
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Equation (2.8) was first modified to be applicable to a basic mode Gaussian
beam without considering the M2 factor [10] and was later expanded to include the
M2 factor [4]. The latest form of thin lens equation looks like

i
f
¼

o
f

o
f � 1

� �
þ zR

f

� �2

o
f � 1

� �2
þ zR

f

� �2 ð2:10Þ

where o is the object distance measured from the waist of the laser beam incident on
the lens to the principal plane of the lens, i is the image distance measured from the
waist of the laser beam output from the lens to the principal plane of the lens, and zR
is the incoming Rayleigh range of the incident beam defined in Eq. (2.4). The M2

factor is included in zR. zR/f is an important parameter in Eq. (2.10). For zR/f → 0,
Eq. (2.10) reduces to Eq. (2.8), which means such a laser beam can be treated as
geometric rays emitted by a point source. For zR/f → ∞, Eq. (2.10) leads to i = f,
the laser beam is focused at the focal point of the lens.

Equation (2.10) has some interesting characteristics that are different from those
of Eq. (2.8). One characteristics is the maximum and minimum focusing distance
that can be found by differentiating Eq. (2.10) and assuming Di/Do = 0, we obtain

o ¼ f � zR ð2:11Þ

Plugging o = f + zR into Eq. (2.10), we can find the maximum focusing distance
to be

imax ¼ f
2zR
f þ 1
2zR
f

ð2:12Þ

Plugging o = f − zR into Eq. (2.10) we can find the minimum focusing distance to
be

imin ¼ f
2zR
f � 1
2zR
f

ð2:13Þ

zR/f again plays an important role here. For zR/f � 1, Eqs. (2.12) and (2.13) reduce
to imax = imin = f, which is a focusing situation. For zR/f � 1, Eqs. (2.12) and (2.13)
reduce to imax → ∞ and imin → −∞, the beam is collimated similar to collimated
geometric rays emitted by a point source.

For a typical laser diode beam, zR is several microns; assuming this laser diode
beam is collimated by a lens with a focal length of several millimeters, we have
zR/f * 0.001, Eq. (2.12) reduces to imax ≈ f2/2zR ≈ 500f * 1 m, and Eq. (2.13)
reduces to imin ≈ −f2/2zR ≈ −500f* −1 m. The negative value of imin indicates that
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the laser beam outgoing from the lens has an imaginary waist on the left-hand side
of the collimation lens.

The waist of a collimated laser diode beam is a few millimeters, the zR of such a
collimated beam is several meters. When this collimated laser diode beam is
focused by a lens with a focal length of several millimeters, we have zR/f * 1000,
Eqs. (2.12) and (2.13) give imax ≈ 1.001f and imin ≈ 0.999f, respectively. This
means the position of the focused spot of the beam can shift around the lens focal
point in the range of *1 μm.

Equations (2.10) and (2.8) are plotted in Fig. 2.10 by solid and dashed curves,
respectively, with zR/f = 0.1, 0.2, 0.4 and 1, respectively. The maximum and
minimum focusing distances imax and imin are marked by the open circles and open
squares on each curve. Figure 2.10 shows that for o/f = 1, i/f = 1 for any zR/f values.
For smaller zR/f, i changes faster as o changes and the values of imax and |imin| are
larger. When zR/f→ 0, the Gaussian beam reduces to a point source, the solid curve
approaches the dashed curve.

The magnification of a lens on a laser beam propagating through the lens is
defined by the ratio of w0′/w0, where w0′ is the waist radius of the beam output from
the lens. w0′/w0 can be found by modifying Eq. (2.9) as [4].

m ¼ w0
0

w0

¼ 1

o
f � 1

� �2
þ zR

f

� �2
� �0:5 ð2:14Þ

The M2 factor is included in zR as defined in Eq. (2.4). w0′/w0 � 1 indicates the
beam is collimated. w0′/w0 � 1 indicates the beam is focused. w0′/w0 * 1 means
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zR/f = 0.2
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zR/f = 1.0
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Fig. 2.10 The solid curves are i/f versus o/f curves with zR/f = 0.1, 0.2, 0.4 and 1, respectively.
The dashed curves plotted here for comparison are for geometric rays emitted by a point source.
imax and imin are marked by the open circles and open squares on each curve
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the beam is relayed. From Eq. (2.14) we can see that w0′/w0 = 1 can appear for
various combinations of o/f and zR/f. It can be seen that for zR/f → 0, the Gaussian
beam reduces to a point source and Eq. (2.14) reduces to Eq. (2.9).

Equation (2.14) is plotted in Fig. 2.11 with zR/f being a parameter. We can see
from Fig. 2.11 that for any zR/f values, m peaks at o/f = 1. For o/f = 1, m is larger for
smaller zR/f, since this is a collimation situation, a smaller waist size incident beam
means larger divergence and larger waist size of collimated beam. For zR/f > 1, the
value of m does not change much as the value of o/f changes, since this is a focusing
situation; the waist size of the focused spot does not change much when the incident
beam waist location changes.

2.3.4 Non-paraxial Gaussian Beams

Laser beams with larger divergent angles can be non-paraxial Gaussian beams and
cannot be treated accurately by the basic mode paraxial Gaussian model.

Nemoto [11] shows that when ks0 < 4 the paraxial Gaussian model deviates
appreciably from the exact solution and that when ks0 < 2 the paraxial Gaussian
model differs considerably from the exact solution, where s0 is the 1/e intensity
radius of the beam waist and k = 2π/λ is the wave vector. s0 can be converted to the
more commonly used 1/e2 intensity radius w0 of the beam waist by s0 = 0.368w0,
then Nemoto’s two conditions can be written, respectively, as

w0\1:73k ð2:15Þ

w0\0:87k ð2:16Þ

It would be difficult to directly measure the waist radius w0 of an un-manipulated
beam of laser diode, since the waist is at the emission facet and is likely only about
1 μm, but it would be much easier to measure the far field divergence of the
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Fig. 2.11 Lens magnification
m versus o/f curve with
zR/f being a parameter

2.3 Laser Diode Beam Propagation 39



un-manipulated beam. Also, every datasheet of laser diode provides the far field
FWHM divergence 2θFWHM, not w0. It will be more convenient to replace w0 in
Eqs. (2.15) and (2.16) by the far field divergence. The paraxial Gaussian model
relates the 1/e2 intensity far field half divergence θ to w0 by Eq. (2.5). We know that
Eq. (2.5) itself is a paraxial approximation and we are now talking about the
inaccuracy of paraxial Gaussian model. But it is still adequate to use Eq. (2.5) to
provide a criterion for assessment. Combining Eqs. (2.5), (2.15), and (2.16) to
eliminate w0 and converting θ from radian to degree, we obtain two conditions in
terms of degree

2h[ 21� or 2hFWHM [ 12:4� ð2:17Þ

for paraxial Gaussian model deviates appreciably from the exact solution and

2h[ 42� or 2hFWHM [ 24:7� ð2:18Þ

for paraxial Gaussian model considerably differs from the exact solution. Checking
the datasheets of various laser diodes, we can find that the slow axis divergence of
almost all laser diodes does not meet these two conditions, paraxial Gaussian model
is accurate enough to treat laser diode beams in the slow axis direction, and that the
fast axis divergence of many laser diodes meets Eq. (2.17) or even Eq. (2.18),
which means many laser diode beam are non-paraxial in the fast axis direction. As
we will show later in Sect. 3.2, if we can accept an error of 10 % or so, then the
paraxial Gaussian model discussed in this chapter can still be used to treat laser
diode beams in the fast axis direction. Otherwise, we have to use Kirchhoff dif-
fraction integral to perform accurate numerical analysis.

Figure 2.12 shows the far field angular intensity distribution of a non-paraxial
laser diode beam at 5 mm. The solid curve is accurate obtained using Kirchhoff
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Fig. 2.12 Normalized intensity profiles at 5 mm for a non-paraxial Gaussian beam with a 1/e2

intensity radius of 0.25 μm and a wavelength of 0.635 μm. Solid curve is obtained using Kirchhoff
diffraction integration. Dashed curve is obtained using paraxial Gaussian model
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diffraction integration. The dashed curve is approximation obtained using paraxial
Gaussian model. We will discuss the characteristics of non-paraxial Gaussian beam
in detail in Sect. 3.2.

2.3.5 Raytracing Technique

2.3.5.1 ABCD Matrix Method

A geometric ray propagating through optical elements can be conveniently ana-
lyzed by ABCD matrix method [12]. Below we consider a simple example. As
shown in Fig. 2.13a, a ray propagates from a medium with index n1 to another
medium with index n2. The interface of these two media is planar. The input ray can
be described by its height x1 when it hits the optics surface and its angle θ1 to the
optical axis. Similarly, the output ray can be described by its height x2 when it
leaves the optics surface and its angle θ2 to the optical axis. We have

x2 ¼ x1 ð2:19Þ

h2 ¼ n1
n2

h1 ð2:20Þ

Equation (2.20) is the paraxial form of Snell’s law [13]. We can write Eqs. (2.19)
and (2.20) in the matrix form

x2

h2

" #
¼ A B

C D

� � x1

h

" #

¼ 1 0

0 n1
n2

" #
x1

h1

" # ð2:21Þ

θ1

θ2

   Optical element

Optical axis

x1
x2

θ1

θ2

  Optical surface

Optical axis

x1 x2

 n1 n2

(a) (b)

Fig. 2.13 a A geometric ray propagates through an optical surface. b A geometric ray propagates
through a lens
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Equation (2.21) shows that an optical surface can be described by a 2 × 2 matrix.
Figure 2.13b shows a more general case, a ray propagates through a lens, then x2 is
not necessary equal to x1. If a geometric ray propagates through n optical elements,
the height and angle of the output ray can be calculated by

xn
hn

" #
¼ A1 B1

C1 D1

� �
. . .

An Bn

Cn Dn

� �
x1
h1

" #
ð2:22Þ

Each matrix in Eq. (2.22) describes one optical surface. The process of solving
Eq. (2.22) is much simpler than the process of exhaustively tracing the ray through
every optical surface.

Reference [12] and many other optics text books provide a list of matrices for
various commonly used optical elements. For readers’ convenience, we re-produce
with minor modifications a list here in Table 2.1. It is not difficult to prove these
matrices. In the table, d is the axial distance, R is the radius of curvature, R > 0 for
convex surface and R < 0 for concave surface, f is the focal length, f > 0 for positive
lens and f < 0 for negative lens, and n1 and n2 are the initial and final refractive
indexes, respectively. For the thick lens, t is the lens center thickness, n1 and n2 are
the refractive indexes outside and inside the lens, respectively, and R1 and R2 are
the radii of curvature of the first and second surfaces, respectively.

Table 2.1 Commonly used ABCD matrix

Optical element Matrix

Propagation in a uniform medium 1 d
0 1

� �

Refraction at a planar surface 1 0
0

n1
n2

" #

Refraction at a curved optical surface 1 0n1 � n2
R � n2

n1
n2

" #

Reflection from a planar mirror 1 0
0 1

� �

Reflection from a curved mirror 1 0
2
R

1

" #

Thin lens 1 0

� 1
f

1

" #

Thick lens 1 0n2 � n1
R2 � n1

n1
n2

" #
1 t
0 1

� � 1 0n1 � n2
R1 � n2

n1
n2

" #
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2.3.5.2 Apply ABCD Matrix to a Gaussian Beam

The ABCD matrix method was originally developed to analyze geometric rays
propagating through optical elements. These rays in a uniform medium are straight
lines. By definition, a ray propagates in the direction of wavefront normal. For a
Gaussian beam, the wavefront radius and wavefront center positions change as the
beam propagates, therefore the propagation direction of a “ray” in a Gaussian beam
also changes.

To apply ABCD matrix method to analyze the propagation of a Gaussian beam,
we need to conceive a ray in the beam and follow this ray through the optical
element. Considering an example of a thin lens shown in Fig. 2.14, we can conceive
an input ray and an output ray for the beam, the rays are the tangents of any
intensity contours of the input and output beams at the lens, respectively. It is more
convenient to conceive the rays at the 1/e2 intensity level. Because we already know
the input beam data, we can find the 1/e2 intensity height w(z) and the 1/e2 intensity
divergent angle θ for the input ray, as shown in Fig. 2.14. Note that the lens is not
necessary at the far field of the beam, θ here is not necessary for the far field
divergent angle given by Eq. (2.5). Applying the ABCD matrix to the input ray, we
have

w0ðzÞ
h0

" #
¼ 1 0

� 1
f 1

� �
wðzÞ

h

" #
ð2:23Þ

where w′(z) and θ′ are the 1/e2 intensity height and divergent angle for the output
ray.

Beam sizes w(z) and 
w’(z) at the lens

Conceived 
input ray 

Conceived 
output ray

Output beam 
wavefront 
with radius R'

Optical axis

Incident laser beam Refracted laser beam

 w0’

w0

Input beam 
wavefront 
with radius R

Thin lens

θ θ’

z’

Fig. 2.14 A laser beam propagates through a thin lens
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Solving Eq. (2.23), we obtain

w0ðzÞ ¼ wðzÞ ð2:24Þ

h0 ¼ �wðzÞ
f

þ h ð2:25Þ

Equation (2.24) is obvious, as can be seen in Fig. 2.14. We also have paraxial
relations θ = w(z)/R and θ′ = w′(z)/R′, where R and R′ are the wavefront radii of the
input and output rays at the lens, respectively, as shown in Fig. 2.14, and R is
known. Inserting the two relations into Eq. (2.25), we obtain R′

1
R0 ¼

1
R
� 1

f
ð2:26Þ

Equation (2.26) is the same as the geometric thin lens equation.
Having obtained w′(z) and R′, we can back calculate the 1/e2 intensity waist

radius w0′ and waist location z′ of the output beam by modifying Eqs. (2.1) and
(2.2) to

w0
0 ¼ w0ðxÞ

1þ w0ðzÞ4p2
R0ðzÞ2ðM2kÞ2

h i0:5 ð2:27Þ

z0 ¼ R0ðxÞ
1þ R0ðzÞ2ðM2kÞ2

w0ðzÞ4p2
ð2:28Þ

The derivation of Eqs. (2.27) and (2.28) is a little complex, we write the main
steps here. Equations (2.1) and (2.2) are rewritten here for readers’ convenience.

w0ðzÞ ¼ w0
0 1þ M2kz0

pw0
02

� �� �1=2
ð2:1Þ

R0ðzÞ ¼ z0 1þ pw0
02

M2kz0

� �� �
ð2:2Þ

Taking the square of both sides of Eq. (2.1) and dividing the result by Eq. (2.2),
we obtain

w0ðzÞ2
R0ðzÞ ¼

w0
02 1þ M2kz0

pw0
02

� �2
� �

z0 1þ pw0
02

M2kz0

� �2
� � ð2:29Þ
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Taking the (M2λz′)2/(π w0
02)2 term out of the parenthesis in the numerator of

Eq. (2.29) and canceling the same terms in the numerator and denominator,
Eq. (2.29) becomes

w0ðzÞ2
R0ðzÞ ¼

w0
02 M2kz0

pw0
02

� �2
1þ pw0

02
M2kz0

� �2
� �

z0 1þ pw0
02

M2kz0

� �2
� �

¼ z0

w0
02

M2k
p

� �2

or

z0

w0
02 ¼

w0ðzÞ2
R0ðzÞ

p
M2k

� �2

ð2:30Þ

Inserting Eq. (2.30) into the parentheses of Eqs. (2.1) and (2.2), and solving for
w0′ and z′, respectively, we obtain Eqs. (2.27) and (2.28).

Reference [14] provides a detailed study on ray equivalent modeling of Gaussian
beams.

2.4 Zemax Modeling of a Gaussian Beam Propagating
Through a Lens

Zemax is probably the most widely used optical design software. Zemax can per-
form sequential raytracing for designing imaging optics and non-sequential ray-
tracing for designing illumination optics. Zemax offers three editions with different
capabilities and prices. The two higher editions, Professional and Premium editions,
have the feature of modeling Gaussian beams propagating through optics, a useful
tool that can save a lot time and effort when designing laser optics. Although in its
2014 manual, Zemax describes this feature in the Physical Optics section in
Chapter 7, Analysis Menu and in Chapter 26, Physical Optics Propagation, this
feature is still not well known to many users. In this section, we use two examples
to demonstrate, step-by-step, how to use Zemax to model a Gaussian beam prop-
agating through a lens. We assume the readers are already familiar with the geo-
metric raytracing feature of Zemax and will emphasize the procedure difference
between Zemax sequential raytracing and Gaussian beam modeling.

We use mm as the length unit throughout Sect. 2.4.

2.4.1 Collimating a Gaussian Beam

To start designing optics using Zemax sequential raytracing, the first three
parameters to be selected are the Field, General/Aperture, and Wavelength in the
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System drop-down list. The first two parameters are irrelevant for modeling
Gaussian beam, we randomly pick up 0° field and 5 mm aperture. We still need
select wavelength since it is a parameter of Gaussian beam. Here we pick up
0.65 μm for the wavelength, just for demonstration purpose. Then we open the Lens
Data Editor box. The thickness of the OBJ surface is important for sequential
raytracing, but irrelevant again for modeling Gaussian beam, we type in 0 for
simplicity. We select Surface 2 as the STP surface and place an ideal Paraxial lens
with 10 mm focal length at the STO surface. We type in 10 in the Surface 1
Thickness box, Surface 1 is then 10 mm away from the STO surface and is at the
focal plane of the lens. Type in 10 in the surface STO Thickness box, which means
surface IMA is 10 mm away from surface STO and is at another focal plane of the
lens. After typing in these data, the Lens Data Editor box will look like as shown in
Fig. 2.15.

Then we need to set the parameters for the Gaussian beam to be modeled. Click
Analysis button, in the drop-down list, click Physical optics button, there are four
choices in the drop-down list: Paraxial Gaussian beam, Skew Gaussian beam,
Physical Optics Propagation, and Beam File Viewer. Laser diode beams are skew
(elliptical) Gaussian beams. But here we only model a paraxial (circular) Gaussian
beam for simplicity. After we have mastered the modeling process, we can model
the skew Gaussian beam feature without difficulties.

Click the Paraxial Gaussian beam button, a text box Paraxial Gaussian Beam
Data appears, we will look at it later. Click the Settings button at the top of the text
box, a table box Paraxial Gaussian Beam Settings appears. Then we can type in the
parameters of the laser diode beam. In the table box, we have only one choice for
the wavelength, that is, 0.65 μm selected by us earlier. Type 0.002 in Waist size
box, which means the 1/e2 intensity waist (radius) of the embedded fundamental
mode beam of the input beam is 0.002 mm. This small waist size is common for
laser diodes and such a small beam has large divergence. An ideal Gaussian beam
has M2 = 1, here we type 1.2 in the M2 factor box for a mixed mode beam. When
modeling Gaussian beam, the object is the beam waist, the distance between the
beam waist and surface 1 is defined by the value in the Surf 1 to waist box. When
we type in 0, the beam waist is set at surface 1 and is at the focal plane of the
paraxial lens, a negative value here means the beam waist is at the left side of the
surface. Since the Rayleigh range of this beam is much smaller than the focal length
of the lens, this is a collimating situation, as explained in Sect. 3.1.4. For a skew
Gaussian beam, the beam behaves differently in the x-z and y-z planes. For a

Fig. 2.15 Zemax Lens Data Editor for modeling a Gaussian beam propagating through a paraxial
lens
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circular Gaussian beam modeled here, the orientation does not matter, we randomly
choose Y-Z in the Orient box. The number filled in the Surface box selects the
surface at which the beam parameters will be shown in the table box; we select
number 3 which is the last surface. We will see soon that the beam parameters at
every surface will be shown later in the text box Paraxial Gaussian Beam Data.
After typing in all these numbers, click the Update button in the table box, the table
box will look like as shown in Fig. 2.16. The beam data shown in the lower half of
the box is for surface 3. We do not explain these data now, since they will be shown
in the text box again.

Click the Update button in the text box Paraxial Gaussian Beam Data, the
relevant part of the text box will look like as shown in Fig. 2.17. In Zemax
sequential raytracing, any one surface can be selected as Global coordinate
reference, the positions of all other surfaces are relative to this surface. In Zemax
Gaussian beam modeling, the beam waist position is relative to any surface that is
under consideration. We need to keep this difference in mind when interpreting the
modeling results shown in Fig. 2.17. We also note that all the beam data shown for
a surface is AFTER the beam propagating through the surface.

Let us first check the beam data at every surface for the Fundamental mode
results shown in Fig. 2.17. This results are for an ideal Gaussian beam with M2 = 1
embedded in the beam we set with M2 = 1.2.

OBJ surface. Since we let the distance between OBJ surface and surface 1 be 0,
all the beam data in these two surfaces are the same.
Surface 1:

(Beam) Size at this surface is 2.00000E−3. Because the beam waist we typed in
is 0.002 mm and the waist is at this surface.
Waist (size) is 2.00000E−3, as we typed in earlier.

Fig. 2.16 Content of table box Paraxial Beam Settings after typing in all the data and clicking
Update
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(Beam waist) Position is 0.00000E+000, which means the distance between the
beam waist and surface 1 is 0. This is what we typed in earlier.
Radius is infinity. Since the beam waist is at surface 1, the wavefront at surface
1 must be flat.
Divergence is 1.03084E−001. Note that the divergence is the far field diver-
gence, not the divergence at this specific surface. For a given waist size,
wavelength, and M2 factor, there is only one far field divergence as given by
Eq. (2.5), no matter what surface we are considering. Zemax calculated the
divergence based on the beam parameters we type in.
Rayleigh (range) is 1.93329E–002. Again, for a given waist size, wavelength,
and M2 factor, there is only one Rayleigh range given by Eq. (2.4), no matter
what surface we are considering. Zemax calculated the Rayleigh range based on
the beam parameters we type in.

Surface STO

Since we put a paraxial lens at surface STO and the waist of the input beam is at the
focal plane of the lens, the beam is collimated after it passes through surface STO.

Input Beam Parameters:

Waist size              : 2.00000E-003

Surf 1 to waist distance : 0.00000E+000

M Squared               : 1.20000E+000

Y-Direction: 

Fundamental mode results:

Sur          Size Waist        Position               Radius       Divergence   Rayleigh 

OBJ   2.00000E-000   2.00000E-003    0.00000E+000 Infinity   1.03084E-001  1.93329E-002

1 2.00000E-003 2.00000E-003  0.00000E+000 Infinity  1.03084E-001 1.93329E-002

STO  1.03451E+000  1.03451E+000 -1.00000E+001 -2.67552E+006  2.00000E-004  5.17254E+003

IMA  1.03451E+000  1.03451E+000  2.16840E-015 Infinity  2.00000E-004  5.17254E+003

Mixed Mode results for M2 = 1.2000:

Sur                     Size                 Waist             Position               Radius       Divergence            Rayleigh 

OBJ  2.19089E-003 2.19089E-003  0.00000E+000  1.00000E+010  1.12923E-001 1.93329E-002

1 2.19089E-003 2.19089E-003  0.00000E+000  1.00000E+010  1.12923E-001 1.93329E-002

STO  1.13325E+000  1.13325E+000  -1.00000E+001  -2.67552E+006  2.19089E-004  5.17254E+003

IMA  1.13325E+000  1.13325E+000  2.16840E-015 1.23386E+022  2.19089E-004  5.17254E+003

Fig. 2.17 Zemax modeling of a paraxial lens collimating a Gaussian beam. Shown here is the
content of the text box Paraxial Gaussian beam Parameters. Only the Y-direction content is
pasted here, since the beam is circular; the X-direction content is the same and is neglected
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(Beam) Size is 1.03451E+000 calculated by Zemax.
Waist (size) is 1.03451E+000 calculated by Zemax. Note that the waist of the
collimated beam is at surface IMA as will be shown in the Position below, but
the waist size and beam size at surface STO are virtually the same, because the
beam is collimated and the two surfaces are only 10 mm apart.
(Beam waist) Position is −1.00000E+001, which means the waist of the colli-
mated beam is 10 mm away from surface STO. The negative sign here indicates
that the waist of the collimated beam is on the right side of surface STO.
Radius is −2.67552E+006, surface STO is only 10 mm away from surface IMA
where the waist of the collimated beam is located. The wavefront radius at
surface STO must be large.
Divergence is 2.00000E−4, very small, since the beam is collimated with a
waist size of about 1 mm.
Rayleigh is 5.17254E+003 and should match the waist size of the collimated
beam.

Surface IMA

The Size and Waist are the same as those at surface STO, since the beam is
collimated and these two surfaces are only 10 mm apart. The beam waist Position is
relative to surface IMA and is virtually 0. The positive sign means the beam waist
position is slightly on the left-hand side of surface IMA. The Radius is infinity
because the beam waist is at this surface.

Now, let us check the Mixed Mode results for M2 = 1.2000 in Fig. 2.17. The
Position, Radius, and Rayleigh are virtually the same as those for the Fundamental
mode. The Waist of the input beam is about 1.2 times larger than the Waist of the
embedded beam because we select M2 = 1.2. The Waist and Size of the collimated
beam are about 1.1 times larger than those of the embedded beam. The Divergence
is about 1.1 times larger for every surface. The situation is illustrated in Fig. 2.18.

We note here that Eq. (2.5) shows that the far field divergence is proportional to
the value of the M2 factor and inversely proportional to the beam waist size. In
Fig. 2.17, the mixed mode has a waist radius 10 % larger and an M2 factor value

Sur IMASur STO

~1.1 times size difference~1.1 times far field 
divergence difference

Sur 1

Collimated beam waist  Paraxial lens

f

1.2 times wait 
size difference

f

Fig. 2.18 The solid curves are for a Gaussian beam with M2 = 1.2, the dashed curves are for the
embedded Gaussian beam with M2 = 1. The drawing is not to exact proportion for clarity
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20 % larger than those of the fundamental mode. Therefore, the mixed mode has
10 % larger far field divergence than that of the fundamental mode.

2.4.2 Focusing a Gaussian Beam

Now we consider using the same Paraxial lens to focus a Gaussian beam.
In the table box Paraxial Gaussian Beam Settings, keep everything the same,

only change the Waist value from 0.002 to 1. The Rayleigh range of a 1 mm waist
size beam is much larger than the 10 mm focal length. The waist of such a beam at
the focal plane of the lens means focusing. Then click the Update button at the text
box Paraxial Gaussian Beam Data, the text box will look like as shown in
Fig. 2.19. These numbers can be explained in the same way as in Sect. 2.4.1, we do
not repeat it here. We can see that the Waist at surface IMA is only about 2 μm
because it is focusing.

If we want to see the beam data at any other location, we can simply insert new
surfaces into the Lens Data Editor at these locations. We can also type in other lens

Input Beam Parameters:

Waist size                      : 1.00000E+000

Surf 1 to waist distance: 0.00000E+000

M Squared                     : 1.20000E+000

Y-Direction: 

Fundamental mode results:

Sur                     Size                 Waist             Position            Radius       Divergence           Rayleigh 

OBJ  1.00000E+000  1.00000E+000  0.00000E+000      Infinity  2.06901E-004  4.83322E+003

1 1.00000E+000  1.00000E+000  0.00000E+000     Infinity  2.06901E-004  4.83322E+003

STO  1.00000E+000  2.06901E-003  -1.00000E+001 -1.00000E+001 9.96687E-002  2.06901E-002

IMA  2.06901E-003  2.06901E-003 0.00000E+000      Infinity 9.96687E-002  2.06901E-002

Mixed Mode results for M2 = 1.2000:

Sur         Size                Waist             Position              Radius      Divergence           Rayleigh 

OBJ  1.09545E+000  1.09545E+000  0.00000E+000  1.00000E+010  2.26649E-004 4.83322E+003

1 1.09545E+000  1.09545E+000  0.00000E+000  1.00000E+010  2.26649E-004 4.83322E+003

STO  1.09545E+000  2.26649E-003  -1.00000E+001 -1.00000E+001  1.09182E-001 2.06901E-002

IMA  2.26649E-003 2.26649E-003  0.00000E+000  1.00000E+010  1.09182E-001 2.06901E-002

Fig. 2.19 Zemax modeling of a Paraxial lens focusing a Gaussian beam. Content of the text box
Paraxial Gaussian beam data
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data and beam data to model other propagations. If a real lens is used, the lens
aberration must be well corrected. Strong aberrations will deviate a Gaussian beam
from basic mode and the result of modeling such a beam is not accurate. We also
note that the meaning of signs “+” and “−” can be confusing and require full
attention.
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