
Chapter 2
Situational Action Systems

Abstract Situational aspects of action are discussed. The presented approach
emphasizes the role of situational contexts in which actions are performed. These
contexts influence the course of an action; they are determined not only by the current
state of the system but also shaped by other factors as time, the previously undertaken
actions and their succession, the agents of actions and so on. The distinction between
states and situations is explored from the perspective of action systems. The notion
of a situational action system is introduced and its theory is expounded. Numerous
examples illustrate the reach of the theory.

In this chapter, structures more complex than elementary action systems are investi-
gated. These are situational action systems. Before presenting, in a systematic way,
the theory of these structures, we shall illustrate the basic ideas by means of two
examples.

2.1 Examples—Two Games

2.1.1 Noughts and Crosses

Noughts and crosses, also called tic-tac-toe, is a game for two players, X and O,
who take turns marking the spaces in a 3 × 3 grid. Abstracting from the purely
combinatorial aspects of the game, we may identify the set of possible states of
the game with the set of 3 × 3 matrices, in which each of the entries is a number
from the set {0, 1, 2}. 0 marks blank, 1 and 2 mark placing Xs and Os on the board,
respectively. (It should be noted that many of the 39 positions are unreachable in the
game.)1 The rules are well known and so there is no need here to repeat them in
detail. The initial state is formed by the matrix with noughts only. The final states
are formed by matrices, in which all the squares are filled with 1s or 2s; yet there
is neither a column nor a row nor a diagonal filled solely with 1s or solely with 2s
(the state of a draw). Neither are there matrices in which the state of ‘three-in-a-row’

1One may also encode each position by a sequence of length 9 of the digits 0, 1, 2.

© Springer Science+Business Media Dordrecht 2015
J. Czelakowski, Freedom and Enforcement in Action, Trends in Logic 42,
DOI 10.1007/978-94-017-9855-6_2

63

64 2 Situational Action Systems

is obtained; i.e., exactly one column or one row, or one diagonal filled with 1s or
2s (the victory of either of the players). The direct transition R from one state u to
w is determined by writing either a 1 or a 2 in the place of any one appearance of
a nought in matrix u. There is no transition from the final states u into any state.
(Relation R is therefore not total.) There are only two elementary actions: AX and
AO. The action AX consists in writing a 1 in a free square, whereas the action AO
consists in writing a 2 (as long as there are such possibilities). AX and AO are then
binary relations on the set of states. The above remarks define the elementary action
system M = (W, R, {AX, AO}) associated with noughts and crosses.

Not all the principles of the game are encoded in the elementary system M. The
fact that the actions are performed alternately is of the key importance, with the
provision that the action AX is performed by the player (agent) X and AO by O. We
assume that the first move is made by X. We shall return to discuss this question after
the next example is presented.

The game is operated by two agents X and O. The statement that somebody or
something is an agent, i.e., the doer/performer of a given action, says something
which is difficult (generally) to explicate. What matters here is that we show the
intimate relations occurring between the agent and the action. If we know that the
computer is the agent of, for example, the action AX (or AO), then this sentence
entails something more: in the wake of it there follows a structure of orders, i.e., a
certain program that the computer carries out. It is not until such a programme is
established that we can speak, in a legitimate way, of the agency as the special bond
between the computer as an agent and the action being performed.When, on the other
hand, it is a person that is a player (i.e., he is the agent of one of the above-mentioned
actions), then in order to establish this bond it is sufficient, obviously, to know that
this person understands what he is doing, knows the rules of the game (which he can
communicate to us himself), and is actually taking part in the game.

The game of noughts and crosses can also be viewed from the perspective of
the theory of automata because the game has well-determined components such as:
a finite set of states, a two-element alphabet composed of atomic actions AX, AO,
the initial state, the set of terminal states, and the indeterministic transition function
between states. In consequence, we obtain a finite automaton accepting (certain)
words of the form (AX AO)n or (AX AO)n AO, where n � 1. However, as is easily
noticed, the above perspective is useless in view of the goals of the game. We are not
interested here in what words are accepted by the above-described automaton (since
it is well-known that these are actions AX, AO which are performed alternatingly),
but how the successive actions should be carried out so that the victory (or at least a
draw) is secured.

Thedetails above concerning thegamenoughts and crosses are fully understoodby
human beings. One can say even more: such detailed knowledge of the mathematical
representation of the game is not necessary. It suffices just to have a pencil and a sheet
of paper to start the game. Still, if one of the players is to be a computer (a defective
creature) seeing that it is not equipped with senses, the above rules are not sufficient

2.1 Examples—Two Games 65

and must be further expanded on in programming language of the computer. It is
not hard, though, as a competent programmer can easily write a suitable program on
his own.

2.1.2 Chess Playing

We shall use the standard algebraic notation (AN) (but in a rather rudimentary
way) for recording and describing the moves in the game of chess. Each square of
the chessboard is identified by a unique coordinate pair consisting of a letter and a
number. The vertical rows of squares (called files) fromWhite’s left (the queenside)
to his right (the kingside) are labeled a through h. The horizontal rows of squares
(called ranks) are numbered 1 to 8 starting from White’s side of the board. Thus,
each square has a unique identification of the file letter followed by the rank number.

The Cartesian product of the two sets X := {a, b, c, d, e, f , g, h} and Y :=
{1, 2, 3, 4, 5, 6, 7, 8}, i.e., the set X × Y , is called the chessboard. The elements
of X × Y are called squares. The black squares are the elements of the set

{a, c, e, g} × {1, 3, 5, 7} ∪ {b, d, f , h} × {2, 4, 6, 8},

and the white squares are the elements of the set

{a, c, e, g} × {2, 4, 6, 8} ∪ {b, d, f , h} × {1, 3, 5, 7}.

The game is played by two players (agents): White and Black. Each of them has
16 pieces (chessmen) at his disposal. White plays with the white pieces while Black
with the black ones. Any arrangement of pieces (not necessarily all of them) on the
chessboard is a possible position. We consider only the positions where there are at
least two kings (white or black) on the chessboard. Thus, a position on the chessboard
is any non-empty injective partial function from the set White pieces ∪ Black pieces
into X × Y such that the two kings belong to its domain. (Not all possible positions
appear during the game; some never occur in any game.)

Let W be the set of all possible positions. Instead of the word ‘position’ we will
also be using the term ‘chessboard state’ or ‘configuration’. (The drawings showing
the chessboard states are customarily called diagrams.)

The relation R of the direct transition between the chessboard states is determined
by the rules of the chessmen’s movements. Thus, the two states u and w are in the
relation R, i.e., u R w, if and only if in the position u one of the players moves a
chessman of a proper colour, and w is the position just after the move. The move is
made in accordance with the rules. The position w may have as many chessmen as u,
or fewer in the case when some chessmen have been taken. So, a chessman’s move
that is followed by the taking of an opposite colour chessman is recognized as one
move.

66 2 Situational Action Systems

The first simplification we will is to reject the possibility of both big and small
castling. Accommodating castling is something hampered by certain conditions
which will not be analyzed here. The second simplification is to omit the replace-
ment of pawns with chessmen on the change line. (A pawn, having moved across the
whole board to the change line must be exchanged for the following chessmen: the
queen, a castle, a bishop or a knight from the set of spare chessmen.)

The transition u R w can be made by the White or Black player. In a fixed position
u, {w ∈ W : u R w} is then the set of all possible configurations on the chessboard
which one arrives at by any side’s move undertaken in the state u. The relation R
is the join of two relations: BBlack and RWhite, where RWhite(u, w) takes place if
and only if in the position u the White player moves, according to the regulations, a
white piece which is in the configuration u, and w is the position just following the
move. The relation RBlack is defined analogously. Thus, R = RWhite ∪ RBlack. For a
given configuration u, the set of all pairs (u, w) such that RWhite(u, w) takes place
(RBlack(u, w) takes place, respectively) can be called the set of all moves in the state
u admissible for the White player (admissible for the Black player, respectively).

We adopt here a restrictive definition of the direct transition relation between
configurations: in checking situations only the transitions resulting in releasing the
opponent’s king (if such exist) are admissible. Checking puts the king under the threat
of death. When the king is threatened, the danger must be averted by the king’s being
moved to a square not in any line of attack of any of the opponent’s pieces. In other
words, in any configuration u, in which the king of a given colour is checked only
the transitions from u to the states w, in which the king is released from check are
admissible. So, if u is a configuration where, for example, the white king is checked,
then RWhite(u, w) takes place if and only if there exists a white piece’s move from
u to the position w and the white king is not checked in the position w, i.e., it is not
in a position where it could be taken by a black piece. The transition RBlack(u, w) is
similarly defined in the position u, where the black king is checked. Thus, if one of
the kings is checked in the state u, then u R w must be a move that releases the king
from check.

There are various ways of selecting atomic actions in the game of chess. One
option is to assign to each piece a certain atomic action. Thus, there are as many
atomic actions as there are pieces. Each player can thus perform 16 actions with
particular pieces. The above division of atomic actions is based on the tacit assump-
tion that pieces retain their individuality in the course of the game. We will be more
parsimonious and distinguish only six atomic actions to be performed by each player.
Consequently, the atomic actions we shall distinguish refer to the types of pieces,
and not to individual pieces. According to AN, each type of piece (other than pawns)
is identified by an uppercase letter. English-speaking players use K for king, Q for
queen, R for rook, B for bishop, and N for knight (since K is already used). Pawns
are not indicated by a letter, but rather by the absence of any letter. This is due to
the fact that it is not necessary to distinguish between pawns for moves, since only
one pawn can move to a given square. (Pawn captures are an exception and indicated
differently.)

2.1 Examples—Two Games 67

Here is the list of atomic actions performed by the White player:

KWhite, QWhite, RWhite, BWhite, NWhite, PWhite.

KWhite is the action any performance of which is a single move of the white knight,
QWhite are the white queen’s moves, RWhite are the white rooks’ moves, BWhite the
bishops’ moves, NWhite the knights’ moves, and PWhite the action any performance
of which is a move of an arbitrary white pawn on the chessboard.

A similar division of pieces and atomic actions is also adopted for the Black
player:

KBlack, QBlack, RBlack, BBlack, NBlack, PBlack.

A move with a piece includes taking the opponent’s piece when performing this
move.

Actions are conceived of extensionally. A given atomic action is identified with
the set of its possible performances. Thus, if A ∈ {KWhite, QWhite, RWhite, BWhite,

NWhite, PWhite}, e.g. A = KWhite, and u, w ∈ W , then A(u, w) takes place if and only
if in the position u the White player moves the knight (according to the movement
regulations for the knight), and w is the chessboard position just after the move.
(According to the algebraic notation, each move of a piece is indicated by the piece’s
uppercase letter, plus the coordinate of the destination square. For example, Be5
(move a bishop to e5), c5 (move a pawn to c5—no letter in the case of pawn moves,
remember).

The system

(
W, R,

{
KWhite, QWhite, RWhite, BWhite, NWhite, PWhite} ∪ (2.1.1)

{
KBlack, QBlack, RBlack, BBlack, NBlack, PBlack}),

where R = RWhite ∪ RBlack is an elementary action system operated by two agents
White and Black. The system is not normal. The reason is in the fact that in the
positions u inwhich the king of a given colour is checked, e.g. thewhite one, the set of
all possible performances of the actionsKWhite, QWhite, RWhite, BWhite, NWhite, PWhite

in the state u is, in general, larger than the set of admissible transitions from the state u
to others, inwhich the king is no longer under threat. In otherwords, RWhite is a proper
subset of the union the relations KWhite ∪ QWhite ∪ RWhite ∪ BWhite ∪ NWhite ∪ PWhite.
Analogously, RBlack is a proper subset of KBlack ∪QBlack ∪RBlack ∪BBlack ∪NBlack ∪
PBlack. Thus, the actions from the above list are not totally performable in some
states.

The system (2.1.1) is complete. Although certain configurations u occur in none
of the chess games, each direct transition u R w is made by means of a certain atomic
action from the above list, i.e., there exists an A such that u A, Rw. From this remark
the completeness of the system follows.

68 2 Situational Action Systems

u0 is the initial configuration accepted in any chess game, i.e., the arrangement
of pieces on the chessboard at the start of each game. The proposition Φ := {u0} is
thus the initial condition of each game.

In the game of chess, a few types of final conditions are distinguished. The most
two important are where the black king is checkmated and where the white king is
checkmated.

Let Ψ Black
0 be the set of all possible positions u on the chessboard in which the

black king is checked by some white piece. The propositionΨ Black
0 expresses the fact

that the black king is checked (but not the fact that the next move must be performed
by the Black player). Analogously, the set Ψ White

0 is defined as the set of positions u
in which the white king is checked.

The king is checkmated when he is in a configuration in which he is checked and
when there is no way of escape nor cannot he in any other way be protected against
the threat of being taken. Checkmate results in the end of the game.

So, the checkmate of the black king is the set Ψ Black of all positions u in which
the black king is checkmated and none of the actions KBlack, QBlack, RBlack, BBlack,

NBlack, PBlack can be undertaken in order to protect the black king. (As noted above,
we are omitting here the possibility of castling as a way to escape checkmate.) This
fact can be simply expressed in terms of the relation RBlack as follows:

Ψ Black := {u ∈ Ψ Black
0 : δBlack

R (u) = ∅}.

(δBlack
R is the graph of the relation RBlack.)
In the analogous waywe define the propositionΨ White which expresses the check-

mate of the white king:

Ψ White := {u ∈ Ψ White
0 : δWhite

R (u) = ∅}.

Thus, in the game of chess, we distinguish two tasks: (Φ0, Ψ
Black) and (Φ0, Ψ

White).
The task (Φ0, Ψ

Black) is taken by the White player. He aims to checkmate the black
king. The states belonging to the proposition Ψ Black define then the goal the White
player wants to achieve. Analogously, (Φ0, Ψ

White) is the task for the Black player.
His goal is to checkmate the white king.

A stalemate is a position in which one of the players, whose turn comes, cannot
move either the king or any other chessman; at the same time the king is not checked.
When there is a stalemate on the chessboard, the game ends in a draw.

Let ΛBlack denote the set of stalemate positions of the black king, i.e.,

ΛBlack := {u ∈ W : u �∈ Ψ Black
0 and δBlack

R (u) = ∅}.

Similarly, ΛWhite denotes the set of stalemate positions of the white king:

ΛWhite := {u ∈ W : u �∈ Ψ White
0 and δWhite

R (u) = ∅}.

2.1 Examples—Two Games 69

If during the game the position u ∈ ΛBlack is reached and the Black player is to
make a move in this position, the game ends in a draw; similarly for when u ∈ ΛWhite

and the White player is to move.
The stalemate positions do not exhaust the set of configurations which give rise

to the game ending. A game ends in a draw when both players know that there exist
possibilities for continuing the game indefinitely which do not lead to positions of
Ψ Black ∪ Ψ White. In practice, a purely pragmatic criterion is applied which says that
the game is drawn after the same moves have been repeated in sequence three times;
the game is also limited by the rule that in 50 moves a pawn must have been moved.

In spite of simplifications made in the chess tournament, we have not explored
all the rules of the game. We know what actions the players perform but we have
not added that they can only do them alternately. The same player is not allowed
to make successively two or more moves (except the case of castling). Moreover,
the game is started only by the White player in the strictly defined initial position.
These facts indicate that the description of the game of chess, expressed by means
of formula (2.1.1), is oversimplified and it does not adequately reflect the real course
of the game. We shall return to this issue in the next paragraph.

The above situational description of the game of chess does not have, obviously,
any greater value as regards its usability. For obvious reasons neither the best of
players nor any computer is able to take on a victor’s strategy through searching all
possible configurations on the chessboard that are continuations of the given situation.
The phenomenon of combinatorial explosion blocks further calculations (we get very
large numbers, even for a small number of steps). At the time of writing, the best
computer can search at the most three moves ahead in each successive configuration
(a move is one made by White and the successive move by Black). It is in this fact,
as well as the rate at which computers operate, that the advantage the computer has
over the humanmanifests itself. One obvious piece of advice and themost reasonable
suggestion offered to the human player is to select a strategy referring based on his
experience as a chess-player and the knowledge gathered over the centuries, where
this includes a description of the finite set (larger but not too large—within the limits
of what a human brain cell remember) of particularly significant games.

2.2 Actions and Situations

The above examples reveal the significant role of situational contexts in which action
systems function. These contexts that influence the course of an action are not deter-
mined just by the current state of the action system but also by other factors. It is
often difficult or even not feasible to specify them all. Moving a black piece to an
empty square may be allowed by the relation RBlack if only the current arrangement
of chessmen is taken into account; the move however will not be permitted when
the previous move was also made by the Black player for two successive moves by
the same player does not comply with the rules of chess. A similar remark applies
to tic-tac-toe.

70 2 Situational Action Systems

The above examples also show that the performability of an action in a particular
state u of the system may depend on the previously undertaken actions, their suc-
cession, and so on. In the light of the above remarks a distinction should be made
between the notion of a state of the system and the situation of the system. In this
chapter this distinction is explored from the perspective of action systems.

The set W of possible states, the relation R of a direct transition between states
and the familyA of atomic actions, fully determine the possible transformations of
the atomic system, i.e., the transformations (carried out by the agents) that move the
system from one state to others. The current situation of the system is in general
shaped by a greater number of factors. A given situation is determined by the data
from the surroundings of the system. The current state of the system is one of the
elements constituting the situation but, of course, not the most important. The agents
are involved in a network of mutual relations. The situation in which the agents act
may depend on certain principles of cooperation (or hostility) as well. Acceptance of
certain norms of action is an example of such interdependencies. Thus, each state of
the system is immersed in certain wider situational contexts. The context is specified,
among others, by factors, not directly bound up with the state of the system as: the
moment when a particular action is undertaken, the place where the system or its part
is located at the moment the action is started or completed, the previously performed
action (or actions) and their agents, the strategies available to the agents, etc. Not all
of the mentioned factors are needed to make up a given situation—it depends on the
depth of the system description and the principles of its functioning. These elements
constitute the situational setting of a given state.

In a game of chess the relation R of direct transition between configurations on
the chessboard defined in Sect. 2.1 as the union R = RWhite ∪ RBlack is insen-
sitive to the situational context the players are involved in. The atomic actions
KWhite, QWhite, RWhite, BWhite, NWhite, PWhite or KBlack, QBlack, RBlack, BBlack,

NBlack, PBlack transform some configurations into others. The above purely exten-
sional, ‘input—output’ description of atomic actions abstracts from some situational
factors which influence the course of the game. The performability of an atomic
action depends here exclusively on the state of the system in which the action is
undertaken (Definition 1.4.1). Thus performability is viewed here as a context-free
property, devoid of many situational aspects whichmay be relevant in the description
of an action.

We shall outline here a situational concept of action performability, according to
which the fact that an action is performable in a given state of the system depends
not only on the state and the relation R of direct transition between states but also
on certain external factors—the situational context the system is set in.

Performing an action changes the state of the system and at the same time it
creates a new situation. A move made by a player in a game of chess changes the
arrangement of chessmen on the board. It also changes the player’s situation: the
next move will be made by his opponent unless the game is finished. It does not
mean that the notion of an action should be revised—as before we identify (atomic)
actions with binary relations on the set W of possible states of the system. We shall,
however, extend the notion of an elementary action system by enlarging it with new

http://dx.doi.org/10.1007/978-94-017-9855-6_1

2.2 Actions and Situations 71

components: the set S of possible situations, the relation T r of a direct transition
between possible situations, and a map f which to every possible situation s assigns
a state f (s) ∈ W . The state f (s) is a part of the situation s—if s occurs then f (s) is
the state of the system corresponding to s. These components enable one to articulate
a new, ‘situational’ definition of the performability of an action. Thus, we will speak
of action performability in a given state of the system with respect to a definite
situational context, or shortly, the performability of an action in a given situation.

Situations are not investigated here in depth as a separate category. That is, we
shall not investigate and develop an ontology of situations but rather limit ourselves
to some general comments. The focus is rather on illustrating the role of situations
in the action theory in various contexts than outlining a general account of structured
situations. The notion of a situation we shall use here is built out of elements taken
from automata theory, theory of algorithms, games and even physics and does not
fully agree with the notions that occur in the literature.

We shall present here a simplified, ‘labeled’ theory of situations. This theory is
convergentwith the early formal approaches to logical pragmatics (see e.g.Montague
1970; Scott 1970). On the other hand, this concept is based on some ideas which
directly stem from the theory of algorithms.

The ontology of actions adopted in this book shows similarities with the situation
calculus applied in logic programming.The situation calculus is a formalismdesigned
for representing and reasoning about dynamic entities (McCarthy 1963; Reiter 1991).
It is based on three key ingredients: the actions that can be performed in theworld, the
situations, and the fluents that describe the state of the world. In Reiter’s approach
situations are finite sequences of actions. Here, situations are isolated and form a
separate ontological category.

Let S be a set, whose elements will be called possible (or conceivable) situa-
tions.2 Each situation s ∈ S is determined by a system of factors. Their specification
depends on the ways of organization and functioning of the action system. A possible
situation can include the following components: the state of the system, the location
of the system (or its distinguished parts), the agent of each atomic action, the action
currently performed on the system, the previously performed action and its agent,
and so on. We can roughly characterize any situation s as a sequence of entities

s = (w, t, x, . . .), (2.2.1)

wherew ∈ W is a possible state of the system, t—time, x—locationof the system, etc.
To each possible situation (2.2.1) a unique state w is assigned—the first component
of the above sequence—which is called the state of the system in the situation s. The
values of all the other parameters (and strictly speaking the names of the values of

2This sentence is a convenient conceptual metaphor. Situations are constituents of the real world.
In this chapter situations are viewed as mathematical (or rather set-theoretical) representations of
these constituents. We therefore speak of sets of conceivable situations.

Of course, any representation of the world of situations and actions does not involve mentioning
all of them individually but it rather classifies them as uniform sorts or types. But token situations
or actions can be individuated, such as the stabbing of Julius Caesar.

72 2 Situational Action Systems

these parameters) defining a given situation form a subsequence of s which is called
the label of the situation s. In the case of situation (2.2.1), its label is equal to the
sequence (t, x, . . .). Thus, each possible situation s can be represented by an ordered
pair

s = (w, a),

where w ∈ W is a state of the system and a is a label.
The labels are assumed to form a set which is denoted by V . (It is not assumed

that the set V is finite.) Thus, the set S of possible situations is equal to the Cartesian
product W × V , i.e.,

S := W × V .

Apart from the set S there is a transition relation T r between situations. If
Tr(s1, s2) holds, then s2 is the situation immediately occurring after the situation
s1; we also say that the situation s1 directly turns into the situation s2. The fact that
Tr(s1, s2) holds does not prejudge the occurrence of the situation s1.

The above remarks enable us to articulate the definition of a situational action
system.

Definition 2.2.1 A situational action system is a six-tuple

Ms := (W, R,A, S, Tr, f),

where

(1) the reduct M := (W, R,A) is an elementary action system in the sense of
Definition 1.2.1;

(2) S is a non-empty set called the set of possible situations the action system M is
set in. The set S is also called the situational envelope of the action system M;

(3) Tr is a binary relation on S, called the direct transition relation between possible
situations;

(4) f : S → W is a mapping which to each situation s ∈ S assigns a state f (s) ∈ W
of the action system M. f (s) is called the state of the action system M corre-
sponding to the situation s, or simply, the state of the system in the situation s.
It is therefore unique, for each situation s;

(5) the relation R of direct transition between states of the action system M =
(W, R,A) is compatible with Tr, i.e., for every pair s1, s2 ∈ S of situations, if
s1 Tr s2 then f (s1) R f (s2). �

The changes in the situational envelope take place according to the relation Tr.
Condition (5) says that the evolution of situations in the envelope is compatible with
transformations between the states of the systemM, defined by the relation R. (In the
‘labeled’ setting of situations, that is, when S = W × V , the function f is defined as
the projection of W × V onto W , i.e., f (s) = w, for any situation s = (w, a) ∈ S.)

It follows from (5) that the set

{
(u, w) ∈ W × W : (∃s, t ∈ S

)(
s Tr t & f (s) = u & f (t) = w

)}

http://dx.doi.org/10.1007/978-94-017-9855-6_1

2.2 Actions and Situations 73

is contained in the relation R. The two sets need not be equal. In other words, it is not
postulated that for any s1 ∈ S, w ∈ W the condition f (s1) R w implies that s1 Tr s2
for some s2 ∈ S such that w = f (s2). (For example, this implication fails to hold in
the situational model of chess playing defined below.) This shows that, in general,
the relation R ⊆ W × W cannot be eliminated from the description of situational
action systems and replaced by the relation Tr).

In the simplest case, possible situations of S are identified with states of the action
system M = (W, R,A), that is, S = W (the label of each situation is the empty
sequence), f is the identity map, and Tr = R, and the situational action system Ms

reduces to the elementary system M.
Definition 2.2.1 is illustrated by means of so-called iterative action systems; the

latter form a subclass of situational systems. Iterative action systems function accord-
ing to simple algorithms that define the order in which particular atomic actions are
performed. A general scheme which defines these systems can be briefly described
in the following way. Let M = (W, R,A) be an elementary action system. It is
assumed that S, the totality of possible situations, is equal to the Cartesian product
W × V , where V is a fixed set of labels. The function f that assigns to each situation
s the corresponding state of the system M is the projection from W × V onto W . In
order to define the relation Tr of a direct transition between situations we proceed as
follows. An action performed in a definite situation changes the state of the system
M and also results in a change of the situational context. The triples

(a, A, b), (2.2.2)

where a and b are labels in V and A ∈ A is an atomic action, are called labeled
actions. The action (2.2.2) has the following interpretation: the atomic action A
performed in a situation with label a changes the state of the system M in such a
way that the situation just after performing this action is labeled by b. Thus, (a, A, b)

leads from situations labeled by a to ones with label b while the states ofM transform
themselves according to the action A and the relation R.

A non-empty set LA of labeled actions is singled out. LA need not contain all the
triples (2.2.2) nor need be a finite set. We say that a labeled action (a, A, b) ∈ LA
transforms a situation s1 into s2 if and only if s1 = (u, a), s2 = (w, b) and, moreover,
it is the case that u A, R w.

The set LA makes it possible to define the transition relation Tr(LA) between
situations. Let s1 = (u, a), s2 = (w, b) ∈ S. Then we put:

(s1, s2) ∈ Tr(LA) if and only if (∃A ∈ A)
(
(a, A, b) ∈ LA & u A, Rw

)
. (2.2.3)

It follows from (2.2.3) that (s1, s2) ∈ Tr(LA) implies that f (s1) R f (s2), i.e., R is
compatible with Tr and that the conditions (1)–(5) of Definition 2.2.1 are met. The
six-tuple

(W, R,A, S, Tr(LA), f)

is a situational action system.

74 2 Situational Action Systems

A finite run of situations is as any finite sequence

(s0, s1, . . . , sn)

of situations such that (si , si+1) ∈ Tr(LA) for every i , 0 � i � n − 1. The situation
s0 is called the beginning of the run.

We may also consider infinite (or divergent) runs of situations as well. These are
infinite sequences of situations

(s0, s1, . . . , sn, . . .)

such that (si , si+1) ∈ Tr(LA), for all i . The problem of divergent runs, interesting
from the viewpoint of computability theory, is not discussed in this book.

In tic-tac-toe two labels are distinguished:X andO.Thus,V := {X,O}. A possible
situation is a pair s = (w, a), where a ∈ V and w ∈ W is a configuration on the
board (each configuration being identified with an appropriate 3 × 3 matrix). The
pair s = (w,X) is read: w is the current configuration on board and X is to make a
move. One interprets the pair (w,O) in a similar way.

The set of labeled actions has two elements: (X, AX,O) and (O, AO,X).3 The
action (X, AX,O) transforms a situation of the form s1 = (u,X) into a situation
s2 = (w,O). The transformation from s1 to s2 is accomplished by performing the
action AX by X. This action moves the system from the state u to w. The labeled
action (O, AO,X) is read in a similar way.

The second example is similarly reconstructed as a situational action system.
In a game of chess we distinguish two labels, BLACK and WHITE, that is V :=
{BLACK,WHITE}. A possible chess situation is thus any pair of the form s =
(w, a), where a ∈ V and w ∈ W is a configuration on the chessboard. The pair
s = (w,WHITE) is interpreted as follows: w is the current configuration on the
chessboard and White is to make a move. The pair (w,BLACK) is read analogously.

The set LA of labeled atomic actions consists of the following triples:

(WHITE, AWhite,BLACK) (2.2.4)

where AWhite ∈ {KWhite, QWhite, RWhite, BWhite, NWhite, PWhite} and

(BLACK, ABlack,WHITE) (2.2.5)

where ABlack ∈ {KBlack, QBlack, RBlack, BBlack, NBlack, PBlack}.
The labeled action (2.2.4) thus transforms situations of the type s1 = (u,WHITE)

into situations s2 = (w,BLACK). The transformation is accomplished by

3Indeed, instead of the triples (X, AX,O) and (O, AO,X) it suffices to take the pairs (AX,O) and
(AO,X), since the actions AX and AO are already labeled by X and O, respectively (that is, they
possess their own names). Defining labeled actions as triples is justified by the fact that elements of
the set of atomic actions in elementary action systems are not basically linguistically distinguished
through investing them with special names.

2.2 Actions and Situations 75

performing in the state u an atomic action by White so that w is the configura-
tion of the chessboard just after the move. The labeled action (2.2.5) is interpreted
in a similar way.

Having defined the setLA, we then define the relationTr(LA) according to formula
(2.2.3). The function f : S → W is defined, as expected, as the projection of S onto
W : f

(
(w, a)

) := w, for all (w, a) ∈ S.
There is only one initial situation s0 := (u0,WHITE), where u0 is the configura-

tion at the outset of the game. Thus, a game of chess is a finite sequence of situations
(s0, s1, . . . , sn), n � 0, such that s0 = (u0,WHITE) is the initial situation and
(si , si+1) ∈ Tr(LA), for all i , 0 � i � n −1. It follows from the definition of Tr(LA)

that successive moves are alternately performed by the players Black and White. The
transition from s0 to s1 is accomplished by White who starts the game. In turn, the
transition from s1 to s2 is made by Black, and so on. Thus, a game of chess can be
represented as an iterative action system, taking into account the simplifications we
have made.

A few words about terminal situations. In the light of the above definitions, a
game of chess may be any long sequence (s0, . . . , sn) of a situation starting with
the initial situation. A game thus defined need not respect the rules of chess. First,
there exist time limitations that do not permit game to go on for too long. (They can
be inserted into the scheme of situation presented here by adjoining an additional
time parameter.) However, there is a more important reason. A game of chess has to
finish in the case of checkmating the adversary. The above definition of a game does
not take this factor into consideration. To resolve the matter we will define a certain
subclass of the class of possible situations. First, we will extend the set of labels with
a new label ω, which will be called the terminal label. Thus

V ′ := {BLACK,WHITE, ω}.

We also say that
S′ := W × V ′.

A possible terminal situation is any situation of the form (w, ω), where w is
a configuration belonging to the set Ψ Black ∪ Ψ White i.e., w is a configuration in
which either the black or the white king is checkmated.

The set LA of labeled atomic actions defined bymeans of the formulas (2.2.4) and
(2.2.5) is also extended to the set LA′ by augmenting it with the following actions:

(BLACK, AWhite, ω) (2.2.6)

where AWhite is an atomic action assigned to White, and

(WHITE, ABlack, ω) (2.2.7)

where ABlack is an atomic action of Black.

76 2 Situational Action Systems

Note One should carefully distinguish between linguistic interpretations of a game
and situational runs of a game. Hereω, BLACK,WHITE are linguistic entities while
AWhite and ABlack are binary relation on the set of states. �

Let Tr(LA′) be the transition relation between situations of S′ determined by
the labeled actions of LA′. As is easy to check, the terminal situations defined as
above are indeed terminal—if s is terminal then there exists no situation s′ such that
Tr(LA′)(s, s′). The notion of a game of chess is defined similarly as above; that is, as
a finite sequence of situations (s0, s1, . . . , sn), n � 0, such that s0 = (u0,WHITE)

is the initial situation and (si , si+1) ∈ Tr(LA′), for all i . A game is concluded if the
situation sn is terminal. (The definition of a concluded game does not exhaust the set
of all situations in which the game is actually concluded. A game can be concluded
through being a draw. To take these situations into account, we would have to further
extend the notion of a situation and the transition relation between situations.)

The distinction between the meanings of ‘state’ and ‘situation’ is not absolute.
When speaking about elementary action systems, we do not always have in mind
sharply-distinguished material objects subject to the forces exerted by the agents.
The definition of an elementary system distinguishes only certain states of affairs
and relations between them; in particular the relation of a direct transition. The selec-
tion of one or other set of states and binary relations representing atomic actions
greatly depends on the ‘world perspective’ and on a definite perception of the ana-
lyzed actions in particular. We may figuratively say that elementary action systems
define what actions are performed while situational action systems also take into
account how they are performed. The borderline between the two concepts is fluid.
For example, one may modify the scheme of chess presented above so as to include
the players in the notion of a state (i.e. a configuration of pieces). Thus, e.g., the fact
that Black is to make a move would be a component of the current state of the game.
Such a step is, of course, possible; it would however complicate the description of
the game.

Suppose M = (W, R,A) is a quite arbitrary elementary action system. If one
wants to restrict uniformly all actions in the system to sequences of states of length
at most n, it suffices to introduce n labels, being e.g. the consecutive natural numbers
(or numerals) 0, 1, . . . , n, and to define the set of possible situations as the product
S := W ×{0, 1, . . . , n}. The function f assigning to each situation s its unique state
is the projection onto the first axis, i.e., f (s) := w for any situation s = (w, k).

A given state may therefore receive n + 1 different labels. The (direct) transition
relation Tr between situations is defined as follows: for s = (w, k) and s′ = (w′, k′),

s Tr s′ ⇔d f w R w′ ∧ w �= w′ ∧ k′ = k + 1.

Each situational transition changes states and increases the label from k to k + 1.
(The second conjunct excludes reflexive points of R but does not exclude loops
of states of longer length from situational transitions. If we want to exclude loops
u R u1 R . . . ul R u altogether as ‘futile’ computations, the problem is much more
complicated and not analysed here.)

2.2 Actions and Situations 77

Ms = (W, R,A, Tr, f) is a well-defined situational action system in which
M = (W, R,A) is contained.

The situations of the form s = (w, n) are terminal, where w is an arbitrary state.
This means that for s = (w, n) there is no situation s′ such that s Tr s′. Therefore
the systems halts at s = (w, n) and the work of the action system M ceases as being
subject to the organization ofMs . In turn, situations of the form (w, 0)may be treated
as initial ones.

Since loops in runs of situations are not excluded, it may happen that there is
a sequence of transitions between situations of length � 3 , say s Tr s1 Tr . . . sl Tr s.
In this case the system starts at s and finishes at s (in the same state). But of course
we may declare at the outset that R does not admit loops.

The width of the situational envelope of an elementary action system depends
on how the system functions. Let us take a look at Example 1.3.3. WT is here the
set of all proofs carried out from T with the help of the rules from a set Θ . Let
w = (φ0, . . . , φn−1, φn) be a fixed proof in WT . In the simplest case, the situational
context of the proof w is constituted by the way the formula φn , i.e., the last element
of the proof w, is adjoined to the shorter proof u = (φ0, φ1, . . . , φn−1). The proof w
is a result of applying a definite rule r ∈ Θ to the some ‘prior’ formulas {φ j : j ∈ J },
where J is a subset of {0, . . . , n − 1}; that is, to some formulas occurring in u. The
situational context of w is therefore represented by means of the triple (u, r, J),
which encodes the above fact. Denoting the pair (r, J) by a, we see that the above
situation can be identified with the pair s = (u, a). A deeper description of possible
situations would take into account not only the way the proposition φn was affixed to
u forming the proof w, but also, for example, the ways all or some of the sub-proofs
of u were formed. Along with changing the width and the depth of the description
of possible situations, the description of the relation Tr of a direct transition between
possible situations would be modified too.

The second remark concerns current situations of action systems. An action sys-
tem always finds itself in a definite situation—the current situation of the system.
The state corresponding to this situation (the state in which the system is) is called
the current state of the system. It is not possible to single out the separate cate-
gory of current situations by means of linguistic procedures though it is possible
to provide an exhaustive list of attributes determining these situations. Hybrid logic
introduces nominals which are objects that signify only one situation, namely the
one which actually happens. For example, one can always describe the configuration
of pieces which are now placed on the chessboard but no linguistic operation is able
to fully render the meaning of the word ‘now’. The terms ‘the current situation’ and
‘the current state’ are demonstratives—their proper understanding always requires
knowledge of extralinguistic factors.

The third remark concerns the relationship between situations and (possibly infi-
nite) runs of situations. Suppose

Ms = (W, R,A, S, Tr, f)

http://dx.doi.org/10.1007/978-94-017-9855-6_1

78 2 Situational Action Systems

is a situational system. A possible (or hypothetical) run of situations (in Ms) is any
function mapping an interval of integers into S. There are thus a priori four possible
types of runs. A run is of type (−∞,+∞) if it is indexed by the set of all integers,
i.e., it is represented as an infinite sequence without end points

(. . . , s−m, s−m+1, . . . , s0, . . . , sn, sn+1, . . .), (2.2.8)

where sk Tr sk+1, for every integer k.
A run is of type (−∞, 0) if it is indexed by the non-positive integers, i.e., it is of

the form

(. . . , s−m, s−m+1, . . . , s0), (2.2.9)

where sk Tr sk+1 for every negative integer k and there does not exist a situation s ∈ S
such that s0 Tr s.

A run is of type (0,+∞) if it is of the form

(s0, . . . , sn, sn+1, . . .), (2.2.10)

where sk Tr sk+1 for every natural number k ∈ ω and there does not exist a situation
s ∈ S such that s Tr s0.

Finally, a run is finite (and terminated in both directions) if it is of the form
(s0, . . . , sn) for some natural number n and there do not exist situations s, s′ ∈ S
such that s Tr s0 or sn Tr s′.

Whenever we speak of a run of situations, we mean any run falling into one of
the above four categories. If a situation s occurs in a run, then the situation s′ in the
run that directly follows s is called the successor of s; the situation s is then called
the predecessor of s′.

Proposition 2.2.2 Let Ms = (W, R,A, S, Tr, f) be a situational action system.
Let s, s′ be two possible situations in S. Then s Tr s′ holds if and only if there exists
a run (of one of the above types) such that s and s′ occur in the run and s′ is the
successor of s.

The proof is simple and is omitted. �
To each situational system Ms the class R of all possible runs of situations in the

system is assigned. It may happen that R includes runs of all 4 types. This property
gives rise to a certain classification of situational systems. For example, a system
Ms would be of category 1 if R contained only finite runs. There are 24 − 1 (=15)
possible categories of situational action systems.

The relation Tr of direct transitions between situations can be unambiguously
described in terms of runs of situations. More precisely, any situational action system
can be equivalently characterized as a quintuple

(W, R,A, S, f) (2.2.11)

2.2 Actions and Situations 79

satisfying the earlier conditions imposed on (W, R,A) and S, f , for which addi-
tionally the class R of runs of situations from S is singled out. R is postulated to be
the class of all runs of situations admissible for the system (2.2.11). The relation Tr
of direct transitions between situations can be then defined by the right-hand side of
the statements of Proposition 2.2.2.

We conclude this section with remarks on the performability of actions in situ-
ational systems. Suppose we are given a situational action system Ms in the sense
of Definition 2.2.1. The fact that A is performable in a definite situation s is fully
determined by the relations Tr and R. Accordingly:

If s is a situation and A ∈ A is an atomic action, then the act of performing
the action A in this situation turns s into a situation s ′ such that s Tr s′ and
f (s) A f (s′).

Immediately after performing the action A the system M = (W, R,A) is in the state
f (s′). This is due to the fact that R is compatible with Tr, i.e., s Tr s′ implies that
f (s) R f (s′).
The above remarks give rise to the following definition:

Definition 2.2.3 Let Ms = (W, R,A, S, Tr, f) be a situational action system and
let s ∈ S and A ∈ A.

(i) The atomic action A is performable in the situation s if and only if there exists
a situation s′ ∈ S such that s Tr s′ and f (s) A f (s′); otherwise A is unper-
formable in s.

(ii) The action A is totally performable in the situation s if and only if it is per-
formable in s and for every state w ∈ W , if f (s) A w, then s Tr s′ for some
situation s′ such that w = f (s′). �

Theperformability of an action A in a situation s is thus tantamount to the existence
of the directTr-transition from s to another situation s′ such that the pair

(
f (s), f (s′)

)
is a possible performance of A (i.e., A is accounted for the transition s Tr s′). The
second conjunct of the definition of total performability of A in s states that every
possible performance of A in the state f (s) results in a new situation s′ such that
s Tr s′ (i.e., the relation Tr imposes no limitations on the possible performances of A
in f (s)).

Similar to the case of elementary action systems, total performability always
implies performability. The converse holds for deterministic actions, i.e. actions A
which are partial functions on W .

The concept of the situational performability of an atomic action is extended
onto non-empty compound actions. Let Ms be a situational system and A ∈ CA
a compound action. A is performable in a situation s if and only if there exists a non-
empty string (s0, . . . , sn) of situations and a string of atomic actions A1 . . . An ∈ A
such that s = s0 Tr s1 . . . sn−1 Tr sn and f (s0) A1 f (s1) . . . f (sn−1) An f (sn) (i.e.,
the transition from s to sn is effected by means of consecutive performances of the
actions A1, . . . , An).

The action A is totally performable in s if and only if A is performable in s
and for every possible performance (u0, . . . , un) of A such that u0 = f (s) there

80 2 Situational Action Systems

exist situations s0, . . . , sn with the following properties: s0 = s, ui = f (si) for
i = 0, . . . , n, and ui Tr ui+1 for all i � n − 1.

The second conjunct of the above definition states that for every performance
(u0, . . . , un) ofA startingwith u0 = f (s) there exists a run of situations (s0, . . . , sn)

with s0 = s such that u0, . . . , un are the states corresponding to s0, . . . , sn .
The existence of a situational envelope of an elementary action system radically

restricts the possibilities of performing compound actions. In any normal elemen-
tary action system M, every compound action not containing the empty string ε is
totally performable (Proposition 1.7.6). However, if the elementary system M is a
part of some situational action system Ms = (W, R,A, S, Tr, f), that is, the reduct
(W, R,A) of Ms coincides with M, then the above result is no longer true (if per-
formability is taken in the sense of Ms).

2.2.1 An Example. Thomson Lamp

Intuitively, a supertask is an activity consisting of an infinite number of steps but
taken, as a whole, during a finite time. Examples of modern supertasks resemble
ancient paradoxes posed by Zeno of Elea (e.g. Achilles and the tortoise). Supertasks
may be identified with infinite strings of atomic actions performed in a finite time
period.

A Thomson lamp is a device consisting of a lamp and a switch set on an electrical
circuit. If the switch is on, then the lamp is lit, and if the switch is off, then the lamp is
off. A Thomson lamp is therefore modelled as a simple elementary action system M
with two states and two atomic action A : ‘Switching on the lamp’ and B : ‘Switching
off the lamp’. The picture gets more complicated if M is contained in a situational
envelope involving only one additional situational parameter—time. Suppose that:

1. At time t = 0 the switch is on.
2. At time t = 1/2 the switch is off.
3. At time t = 3/4 the switch is on.
4. At time t = 7/8 the switch is off.
5. At time t = 15/16 the switch is on, etc.

What is the state of the lamp at time t = 1? Is it lit or not? We see that the above
infinite sequence of alternate atomic actions gives rise to a formulation of non-
trivial questions, depending on the selection of the situational envelope.4 Solving
them requires introducing genuinely infinitistic components into the picture of action
theory presented here. These components are introduced in different ways. One
option is to endow the set of states with a topology or with some order-continuous
properties. This option requires infinite, ordered sets of states exhibiting various
forms of order-completeness. The other option is to embed the atomic system in a

4The above example is taken from Jerzy Pogonowski’s essay Entertaining Math Puzzles which can
be found at www.glli.uni.opole.pl.

http://dx.doi.org/10.1007/978-94-017-9855-6_1

2.2 Actions and Situations 81

situational envelope endowed with various continuity properties. (This is the case
with a Thomson lamp.) A mixture of these two approaches is also conceivable. In
Chap.3 the first option is elaborated in the context of an ordered action system.

2.3 Iterative Algorithms

Let M = (W, R,A) be an elementary action system. An iterative algorithm for M
is a quintuple

D := (W, V,α,ω, LA), (2.3.1)

where W is the set of states of M, V is a finite set called the set of labels of the
algorithm, α and ω are designated elements of V , called the initial and the terminal
(or end) label of the algorithm, respectively, and LA is a finite subset of the Cartesian
product

V \ {ω} × A × V \ {α}.

The members of LA are called labeled atomic actions of the algorithm D. Thus, the
labeled actions are triples (a, A, b), where a and b are labels, called respectively the
input and the output label, and A is an atomic action. Since LA involves only finitely
many atomic actions of A, the members of the set

AD := {A ∈ A : (∃a, b ∈ V) (a, A, b) ∈ LA}

are called the atomic actions of the algorithm D. LA may be empty.
The elements of the set SD := W × V are called the possible situations of the

algorithm. If s = (w, a) ∈ SD , then w is the state corresponding to s, and a is the
label of s. The situations with label α, i.e., the members of W × {α} are (possible)
initial situations of the algorithm while the members of W × {ω}, i.e., the situations
labeled by ω are (possible) terminal situations of the algorithm D.

The relation TrD of direct transition in the algorithm is defined as follows:
if s = (u, a), t = (w, b) are possible situations of D, then

TrD(s, t) if and only if (∃A) (a, A, b) ∈ LA & u A, Rw.

Thus, if s is an initial situation, then Tr(s′, s) for no situation s′ of D. Similarly, if s
is terminal, then there does not exist a situation s′ ∈ S such that Tr(s, s′).

The relationTr∗
D , the transitive and reflexive closure ofTrD , is called the transition

relation in D. Thus,

(s, t) ∈ Tr∗
D if and only if (∃n � 0) (s, t) ∈ (TrD)n .

(Thus, in particular, (TrD)0 = {(s, s) : s ∈ S}.) Finite runs of the algorithm D are
sequences of situations

http://dx.doi.org/10.1007/978-94-017-9855-6_3

82 2 Situational Action Systems

(s0, s1, . . . , sn) (2.3.2)

such that s0 is an initial situation of D and (si , si+1) ∈ TrD for all i , 0 � i � n − 1.
The situations s0 and sn are called the beginning and the end of the run (2.3.2). The
run (2.3.2) is terminated in D if and only if sn is a terminal situation of D.

It may happen that for some run (2.3.2) there does not exist a situation s with the
property that TrD(sn, s); i.e., there is no possibility of continuation of the run (2.3.2),
even if the situation sn is not terminal in D. It is said then that the algorithm D is
stuck in the situation sn . A run with this property is not qualified as terminated in D.

The fact that an algorithm may get jammed in some situations leads us to isolate
the so-called integral iterative algorithms. A situation s = (w, a) is non-terminal
if a �= ω. An iterative algorithm D is integral if the domain of the relation TrD

coincides with the set of all non-terminal situations; that is, if for every non-terminal
situation s there exists a situation s′ such that TrD(s, s′).

If the system M = (W, R,A) is normal and every atomic action A ∈ A is a total
function (with domain W) and the iterative algorithm D for M has the property that
for every triple (a, A, b) ∈ LA with b �= ω there exists a triple (c, B, d) ∈ LA such
that b = c, then D is integral.

Infinite (or divergent) runs of D are defined as infinite sequences of situations

(s0, s1, . . . , sn, . . .)

such that s0 is an initial situation of D and (si , si+1) ∈ TrD for all i . Thus, no terminal
situation occurs in a divergent run.

Every elementary action system M = (W, R,A) with a distinguished iterative
algorithm D for M forms a situational action system. For let

Ms := (W, R,A, SD, TrD, f),

where SD (= W × V) is the set of all possible situations of D, TrD is the transition
relation in D, and f : W × V → W is the projection onto W . Ms is a situational
action system in the sense of Definition 2.2.1.

Each state of W corresponds to a certain initial situation of Ms . This is not the
case in the iterative system associated with chess playing (Sect. 2.2). In a game of
chess there is only one initial situation.

To each iterative algorithm (2.3.1) a binary relation ResD on the set W of states
is assigned and called the resultant relation of the algorithm D:

(u, w) ∈ ResD if and only if
(
(u,α), (w,ω)

) ∈ Tr∗
D.

Equivalently, (u, w) ∈ ResD if and only if there exists a terminated run (s0, . . . , sn)

such that s0 = (u,α) and sn = (w,ω).
The resultant relation ResD is a sub-relation of the reach of the elementary action

system M.

2.3 Iterative Algorithms 83

Example Let M be an arbitrary elementary action system, and let (A1, . . . , An) be
a fixed non-empty sequence of atomic actions ofA. Let V := {0, 1, . . . , n}, α := 0,
ω := n, and LA := {(0, A1, 1), . . . , (n − 1, An, n)}. Then D := (W, V,α,ω, LA)

is an algorithm for M. The resultant relation of D is equal to (A1 ∩ R) ◦ . . . ◦
(An ∩ R). �

An iterative algorithm (2.3.1) is well-designed if and only if for every labeled
action (a, A, b) ∈ LA there exists a finite string A1, . . . , An of atomic actions
of D and a finite sequence a0, a1, . . . , an of labels of V such that a0 = α,
an = ω, (ai , Ai+1, ai+1) ∈ LA for all i � n − 1, and (a, A, b) is equal to a
triple (ai , Ai+1, ai+1) for some i � n − 1. Intuitively, D is well-designed if every
labeled action of LA is employed in some terminated run of D.

Well-designed algorithms are singled out for technical reasons. Each algorithm D
can be transformed into a well-designed algorithm by deleting fromLA those labeled
actions (a, A, b) which do not satisfy the above condition. This operation does not
change the resultant relation of the algorithm.

We recall that REG(A) denotes the family of all regular compound actions
(over A), and REG+(A) := {B ∈ REG(A) : ε �∈ B}. The properties of
the family REG(A) are independent of the internal structure of an action system
M = (W, R,A); the cardinality of A is the only factor that matters. This fact lead
us to distinguish, for each B ∈ CA, the setAB of atomic actions ofA occurring in
the strings of B.

Lemma 2.3.1 If B ∈ REG(A), then AB is finite.

The lemma follows from the definition of a regular language over a (possibly infinite)
alphabet (see Sect. 1.6). �

Let A be a family of binary relations on a set W . The positive Kleene closure of
A, denoted by Cl+(A), is the least family B of binary relations on W which includes
A as a subfamily and satisfies the following conditions:

(i) ∅ ∈ B
(ii) if {P, Q} ⊆ B, then {P ◦ Q, P ∪ Q, P+} ⊆ B.

The Kleene closure of A, denoted by Cl∗(A), is the least family B of binary relations
on W which includes A as a subfamily and satisfies

(i) ∅, EW ∈ B
(ii) if {P, Q} ⊆ B, then {P ◦ Q, P ∪ Q, P∗} ⊆ B.

The purpose of this section is to determine the principles of the functioning of
elementary action systems M which are regulated by appropriate automata. This will
give rise to a class of situational action systems erected on atomic systems.

We henceforth will work with action systems M = (W, R,A) which are normal
and in which the relation R is reflexive. These assumptions imply the total per-
formability of all non-empty compound actions of CA in M, and of the action ε

in particular. (If the reflexivity of R is dropped, one should rather work with the
compound actions of C+A rather than those of CA and with the positive Kleene
closure Cl+.)

http://dx.doi.org/10.1007/978-94-017-9855-6_1

84 2 Situational Action Systems

Proposition 2.3.2 Let M = (W, R,A) be a normal elementary action system with
reflexive R. Then the following conditions hold:

(i) For every regular action B ∈ REG(A), Res B, the resultant relation of B defined
as in the formula (1.7.3) of Sect.1.7, belongs to Cl(AB);

(ii) Conversely, for every binary relation Q ∈ Cl(A) there exists a regular action
B ∈ REG(A) such that Res B = Q and Q ∈ Cl(AB).

Proof (i) We define:

P := {B ∈ CA : Res B ∈ Cl(AB)}.

(AB is a set of binary relations on W , viz, the set of atomic actions occurring in the
compound action B. As R is reflexive, Res B is reflexive, for all non-empty B.)

P has the following properties:

(a) If B ∈ CA is finite then B ∈ P; in particular ∅ ∈ P;
(b) If B, C ∈ P , then B ∪ C, B ◦ C and B∗ belong to P as well.

((b) directly follows from Lemma 1.7.2 and the remarks following it.) Thus, every
regular action of REG(A) belongs to P .

(ii) We define:

L := {
Q ⊆ W × W : (∃B) B ∈ REG(A) & Q = Res B

}
.

We claim that Cl(A) ⊆ L.
∅ ∈ L and EW ∈ L, because∅ = Res ∅ and EW = Res ε. For every atomic action

Q ∈ A, B := {Q} is a regular action on M and, since M is normal, Res B = Q.
Hence,A ⊆ L. Now assume that P, Q ∈ L. We shall show that {P ◦ Q, P ∪ Q, P∗}
⊆ L. We have that P = Res B and Q = Res C for some regular compound actions
B and C on M. Then, by Lemma 1.7.2, P ◦ Q = Res B ◦ Res C = Res (B ◦ C),
P∪Q = Res B∪Res C = Res (B∪C), and, as R is reflexive, (Res B)∗ = Res (B∗).
As B ◦ C, B ∪ C, and B∗ are regular, this proves that Cl(A) ⊆ L.

If Q = Res B for some regular B, then by (i), Res B ∈ Cl(AB), and hence
Q ∈ Cl(AB). So (ii) holds. �

An iterative algorithm D = (W, V,α,ω, LA) for M is said to accept a string
A1 . . . An of atomic actions of M if there exists a sequence a0, . . . , an of labels of
V such that a0 = α, an = ω and (ai , Ai+1, ai+1) ∈ LA, for all i � n − 1. (Thus D
accepts the empty string ε if and only if α = ω. D accepts no strings if and only if
LA is empty and α �= ω.)

The total (compound) action of the algorithm D, denoted by A(D), is defined as
the set of all strings of atomic actions accepted by D.

In particular, for a given algorithm D = (W, V,α,ω, LA), if LA is empty and
α �= ω, then the total action of D is the empty compound action ∅. If LA is empty
and α = ω, then the total action of D equals ε.

http://dx.doi.org/10.1007/978-94-017-9855-6_1
http://dx.doi.org/10.1007/978-94-017-9855-6_1
http://dx.doi.org/10.1007/978-94-017-9855-6_1
http://dx.doi.org/10.1007/978-94-017-9855-6_1

2.3 Iterative Algorithms 85

Thus, D is well-designed if and only AD = AA(D), i.e., every atomic action of
D occurs in some sequence belonging to A(D).

Proposition 2.3.3 Let D be an iterative algorithm for an elementary action system
M = (W, R,A). Then:

(i) the total action A(D) of D is regular, and
(ii) the resultant relation of the total action A(D) (in the sense of formula (1.7.3) of

Sect.1.7) coincides with the resultant relation ResD of D.

Proof To prove (i) we shall employ some facts from the theory of formal grammars.
Let D = (W, V,α,ω, LA). We shall treat the sets V and AD (the set of atomic
actions of D) as disjoint alphabets. V will be the auxiliary alphabet (variables) while
AD will be the terminal alphabet (terminals). The initial label will be regarded as
the start symbol. The set LA of labeled actions of D specifies, in turn, a certain finite
setP of productions:

P := {a → Ab : (a, A, b) ∈ LA} ∪ {a → A : (∃a ∈ V) (a, A,ω) ∈ LA},

where ω is the terminal label. The system GD := (AD, V,P,α) is, thus, a combi-
natorial grammar.

Lemma 2.3.4 The language generated by the grammar GD coincides with the total
action A(D) of the algorithm D.

Proof of the lemma.Wefirst show thatA(D) ⊆ L(GD). Let A1 . . . An ∈ A(D). Then,
for some a0, . . . , an ∈ V with a0 = α and an = ω, we have that (ai , Ai+1, ai+1) ∈
LA for all i � n − 1. This implies that

α ⇒ A1a1 ⇒ A1A2a2 ⇒ . . . ⇒ A1 . . . An−1aa−1 ⇒ A1 . . . An−1An

is a terminated derivation in GD . Hence A1 . . . An ∈ L(GD).
To prove the reverse inclusion L(GD) ⊆ A(D), suppose that A1 . . . An ∈ L(GD)

and let z0 ⇒ z1 ⇒ . . . ⇒ zm−1 ⇒ zm be a derivation of A1 . . . An in GD ,
where z0 = α and zm = A1 . . . An . We show by induction for i = 1, . . . , n − 1 that
zi = A1 . . . Ai ai for some ai ∈ V . This holds for i = 1. Let i � 2 and assume that
z j = A1 . . . A j a j for all j � i − 1. In particular, zi−1 = A1 . . . Ai−1ai−1. Since
i � n − 2, no production of the form a → A can be applied to zi−1 (for otherwise
we would get a word of the form A1 . . . Ai−1A which is different from A1 . . . A; and
the string A1 . . . Ai−1A blocks further derivations). So the word zi−1 derives zi by
means of a production ai−1 → Ab in which A = Ai .

Since zn−1 = A1 . . . An−1an−1, we see that zn must be equal to A1 . . . An . Som =
n, zm = zn , and the word zn−1 derives zn by means of the production an−1 → An .

It follows from the definition of GD that the sequence a0 := α, a1, . . . , an−1,

an := ω has the property that (ai , Ai+1, ai+1) ∈ LA for all i � n−1. So A1 . . . An ∈
A(D). This concludes the proof of the lemma. �

http://dx.doi.org/10.1007/978-94-017-9855-6_1
http://dx.doi.org/10.1007/978-94-017-9855-6_1

86 2 Situational Action Systems

GD is a right linear-grammar. This fact, in view of Theorem 1.6.3, implies that
the language L(GD) (= A(D)) is regular. So (i) holds.

(ii) We have to show that ResD = Res A(D). Let (u, w) ∈ ResD , i.e.,
(
(u,α),

(w,ω)
) ∈ (TrD)+. Hence there exists a finite sequence of situations s0, . . ., sn , where

si = (ui , ai), for all i � n, such that s0 = (u,α), sn = (w,ω) and, for every i � n−1,
there exists an action Ai+1 ∈ A(D) with the property that (ai , Ai+1, ai+1) ∈ P
and ui Ai+1, R ui+1. It follows that the sequence A1 . . . An belongs to A(D) and
(u, w) ∈ (A1 ∩ R) ◦ . . . ◦ (An ∩ R), i.e., (u, w) ∈ Res A(D).

Conversely, let (u, w) ∈ Res A(D). Hence there exists a sequence A1 . . . An ∈
A(D) and a string of states u0, . . . , un such that u0 = u, un = w, and ui Ai+1, R ui+1
for all i � n − 1. Since A1 . . . An ∈ A(D), there exists also a sequence of labels
a0, . . . , an such that a0 = α, an = ω, and (ai , Ai+1, ai+1) ∈ LA, for all i � n − 1,
whichmeans that

(
(ui , ai), (ui+1, ai+1)

) ∈ TrD for every i � n−1. Hence (u, w) ∈
ResD . This proves that ResD = Res A(D). �

Corollary 2.3.5 Let D = (W, V,α,ω, LA) be an iterative algorithm for a normal
system M = (W, R,A) with reflexive R. Then ResD belongs to the Kleene closure
of AD.

Proof Use Propositions 2.3.2 and 2.3.3. �

Regular languages are those accepted by finite automata. Regular compound
actions, however, can be also conveniently characterized in terms of total actions
of iterative algorithms.

Theorem 2.3.6 Let M = (W, R,A) be an elementary action system with reflexive
R. For every compound action B ∈ CA the following conditions are equivalent:

(i) B is regular.
(ii) There exists a well-designed iterative algorithm D for M such that the total

action of D is equal to B and AD = AB.

Proof (ii) ⇒ (i) This is an immediate consequence of Proposition 2.3.3.
(i) ⇒ (ii) The proof of this part of the theorem consists in, for every regular

action B ∈ CA, the effective construction of an iterative algorithm D satisfying the
conditions mentioned in clause (ii). The proof is by induction on complexity of the
regular action B.

Suppose first that the action B is finite and non-empty. Let the initial and the
terminal labels α and ω be fixed. For each sequence A = A1 . . . An ∈ B we select a
string of distinct labels a1, . . . , an−1, and define:

PA := {(α, A1, a1), . . . , (ai−1, Ai , ai), . . . , (an−1, An,ω)},
LA :=

⋃
{PA : A ∈ B}.

Since B is assumed to be finite, LA is finite as well.

http://dx.doi.org/10.1007/978-94-017-9855-6_1

2.3 Iterative Algorithms 87

Let V be the collection of all the labels occurring in the labeled actions of LA.
Then D = (W, V,α,ω, LA) is a well-designed iterative algorithm for M. Moreover,
it follows from the construction of D that the compound action of D is equal to B
and that AD = AB.

If B is empty, it is assumed that α �= ω and LA is empty. It follows that the
transition relation TrD is empty. Consequently, the action of D is equal to ∅.

For the compound action ε, it is assumed that α = ω and LA is empty. This
implies that the transition relation TrD is equal to EW . Consequently, the action of
D is equal to ε.

Now suppose B and C are compound actions on M such that well-designed algo-
rithms D1 and D2 for M have been constructed so that the total action of D1 is equal
to B and the total action of D2 is equal to C. We shall build an algorithm D for M
such that the total action of D is equal to B ∪ C . Let Di = (Wi , Vi ,αi ,ωi , LAi)

for i = 1, 2. Without loss of generality we can assume that α1 = α2 = α and
ω1 = ω2 = ω, and that the sets V1 \ {α,ω} and V2Σ{α,ω} are disjoint. (Otherwise
one can simply rename the labels of V1 and V2.) We then put:

D := (W, V1 ∪ V2,α,ω, LA1 ∪ LA2).

It is easy to see that the total action of D is equal to B ∪ C and AD = AB∪C.
Moreover D is well-designed.

We shall now construct an algorithm D◦ for M such that the total action of D◦ is
equal to B ◦ C. We put:

D◦ := (W, V1 ∪ V2 ∪ {c},α,ω, LA◦),

where c is a new label adjoined to V1 ∪ V2, and LA is the ‘concatenation’ of LA1
and LA2. To define LA◦ formally, we need an auxiliary notion.

A terminated sequence of labeled atomic actions of an algorithm D =
(W, V,α,ω, LA) is any finite sequence of triples

(a0, A1, a1), (a1, A2, a2), . . . , (an−2, An−1, an−1), (an−1, An, an) (2.3.3)

of LA such that a0 = α and an = ω.
For any terminated sequence (2.3.3) of elements of LA1 and any terminated

sequence

(b0, B1, b1), (b1, B2, b2), . . . , (bm−2, Bm−1, bm−1), (bm−1, Bm, bm)

of elements of LA2, where b0 = α and bm = ω, we define a new sequence

(α, A1, a1), (a1, A2, a2), . . . , (an−2, An−1, an−1), (an−1, A − n, c), (2.3.4)

(c, B1, b1), (b1, B2, b2), . . . , (bm−2, Bm−1, bm−1), (bm−1, Bm,ω),

where c is the new label adjoined to V1 ∪ V2.

88 2 Situational Action Systems

LA◦ is, by definition, the set of all labeled atomic actions occurring in all the
sequences of the form (2.3.4).

It is easy to show that the total action of D◦ is equal to B ◦ C, the set of atomic
actions of D◦ is equal toAB◦C, and D◦ is well-designed.

Having given a well-designed algorithm D = (W, V,α,ω, LA) for M such that
the total action of D is equal to B, we define a new well-designed algorithm

D# = (W, V #,α#,ω#, LA#).

Here α# = ω#, V # = (V \ {α,ω}) ∪ {α#, c}, where α# and c are new labels not
occurring in V . Thus, the labels α and ω are removed from V and new labels α#,
c are adjoined.LA# is defined as follows: for every finite number, say k, of terminated
non-empty sequences of labeled atomic actions of D:

(a j
0 , A j

1, a j
1), (a

j
1 , A j

2, a j
2), . . . , (a

j
n j −1, A j

n j , a j
n j) (2.3.5)

where j = 1, . . . , k, and a j
0 = α, a j

n j = ω for all j , a new sequence of labeled
actions is formed:

(α#, A1
1, a1

1), (a1
1, A1

2, a1
2), . . . , (a1

n1−1, A1
n1 , c),

(c, A2
1, a2

1), (a2
1 , A2

2, a2
2), . . . , (a2

n2−1, A2
n2 , c),

...

(c, A j
1, a j

1), (a j
1 , A j

2, a j
2), . . . , (a j

n j −1, A j
n j , c),

...

(c, Ak
1, ak

1), (ak
1, Ak

2, ak
2), . . . , (ak

nk−1, Ak
nk

,ω#).

(2.3.6)

If k = 0, (2.3.6) reduces to the sequence (α#,ω#), which is equal to (α#,α#).
LA# is the set of all labeled atomic actions occurring in the sequences (2.3.6).
The total compound action of the algorithm D# is equal toB∗, the iterative closure

of B. Moreover the set of atomic actions of D# is equal to the set of all atomic actions
occurring in B.

It follows from the above constructions that for every action B ∈ REG(A) there
exists a well-designed iterative algorithm D such that the total action of D is equal
to B and AD = AB. This completes the proof of the theorem 2.3.6. �

The following corollary (in a slightly different but equivalent form) is due to
Mazurkiewicz (1972a):

Corollary 2.3.7 Let M = (W, R,A) be a normal action system with reflexive R,
and let Q be a relation that belongs to the Kleene closure of A. Then there exists an
iterative algorithm D for M such that ResD = Q and Q ∈ Cl(AD).

2.3 Iterative Algorithms 89

Proof According to Proposition 2.3.2.(ii), there exists a regular compound action B
on M such that Q = Res B and Q ∈ Cl(AB). In turn, in view of Theorem 2.3.6,
there exists an iterative algorithm D for M, whose total action A(D) is equal to B
and AD = AB. Hence Q ∈ Cl(AD). Since A(D) = B, Proposition 2.3.3 yields
ResD = Res B = Q. �

Let M = (W, R,A) be a finite elementary action system. In Sect. 1.7, the com-
pound actions Φ☞iΨ have been defined for all Φ,Ψ ⊆ W and i = 1, . . . , 4. Since
these actions are regular, Theorem 2.3.6 implies that Φ☞iΨ is ‘algorithmizable’ for
all Φ,Ψ and i = 1, . . . , 4; that is, there exists a well-designed iterative algorithm D
forM such that the total actionA(D) of D is equal toΦ☞iΨ . In particular this implies
that the resultant relation of Φ☞iΨ coincides with ResD . Speaking figuratively, it
means that the ways the task (Φ,Ψ) is implemented and the goal Ψ is reached in the
finite system M is subordinated to a well-designed iterative algorithm. Thus, there
exists, at least a theoretical possibility of ‘automatizing’ the tasks (Φ,Ψ) in the sys-
tem M. The practical realization of this idea requires adopting realistic assumptions
as regards the cardinalities of the setsA, W and V (the set of labels of the algorithm).

The reach ReM of an elementary action system M is equal to the resultant relation
of the action A∗, the set of all non-empty strings of atomic actions. Since A∗ is
regular if A is finite, Theorem 2.3.6 and Corollary 2.3.7 imply that ReM belongs
to the Kleene closure of A whenever M is a finite normal elementary system with
reflexive R. But this fact can be established directly by appealing to the definition
of ReM .

Let M = (W, R,A) be an elementary action system. Two compound actions
B, C ∈ CA are equivalent over M if and only if AB = AC and Res B = Res C,
i.e., B and C are ‘built up’ with the same atomic actions and the resultant relations
of B and C are identical.

The facts we have established thus far enable us to draw the following simple
corollary:

Corollary 2.3.8 Let M be an elementary normal action system with reflexive R.
Then for every action B ∈ CA the following conditions are equivalent:

(i) B is equivalent to a regular action;
(ii) There exists a well-designed algorithm D for M such that AD = AB and the

resultant relation of B is equal to ResD.

Proof (i)⇒ (ii) SupposeB is equivalent to a regular actionC. ByTheorem2.3.6 there
exists an iterative algorithm D for M such thatAD = AC and the total action A(D)

of D is equal to C. Hence AD = AB and Res B = Res C = Res A(D) = ResD .
So (ii) holds.

(ii) ⇒ (i) Assume (ii) Since D is well-designed, AB = AD = AA(D). By
Proposition 2.3.3, the action A(D) of D is regular. So B is equivalent to A(D) over
M. �

http://dx.doi.org/10.1007/978-94-017-9855-6_1

90 2 Situational Action Systems

The above corollary gives rise to the problem of the preservation of regular actions
by the relation of equivalence. More specifically, we ask if the following is true in
normal action systems M:

(∗) for any two compound actions B, C ∈ CA, if B is regular and equivalent to C
over M, then C is regular as well.

To answer the above question, we shall make use of the Myhill-Nerode Theorem.
Let Σ be an alphabet. For an arbitrary language L over Σ the equivalence relation
RL on the set Σ∗ for all non-empty words is defined as follows:

x RL y if and only if for each word z, either both or neither xz and yz is in L , i.e.,
for all z, xz ∈ L if and only if yz ∈ L .

The Myhill-Nerode Theorem states that for an arbitrary language L ⊆ Σ∗, the
relation RL is of finite index (i.e., the number of equivalence classes of RL is finite)
if and only if L is accepted by somefinite automaton (if and only if, by Theorem1.6.5,
L is regular).

Let Σ := {A, B} and let L := {An Bn : n = 1, 2, . . .}. The language L is not
regular. To show this we define xn := An , yn := Bn for all n � 1. If m �= n then
xm xn �∈ L and xn xn ∈ L . Hence m �= n implies that [xm] �= [xn], where [x] denotes
the equivalence class of x with respect to RL . This means that the index of RL is
infinite. So L cannot be regular.

Let M = (W, R,A) be an action system, whereA = {A, B}, the relations A and
B are transitive, B ⊆ A ⊆ R and R is reflexive. The compound action B is defined
in the same manner as the language L as above, that is, B := {An Bn : n � 1}.

The above argument shows that B is not regular. It is also easy to prove that
Res B = A◦B. Hence trivially Res B belongs to the positiveKleene closure ofAB =
{A, B} which implies, by Corollary 2.3.7, that there exists an iterative algorithm D
for M such thatAD = A and the resultant relation of D is equal to Res B. Thus, B
is equivalent over M to the regular action A(D) of the algorithm. As B is not regular,
we see that (∗) does not hold for B and C.

The above result is not surprising because the definition of a regular compound
action over an action system M does not take into account the internal set-theoretic
structure of the family of atomic actions of M.

2.4 Pushdown Automata and Pushdown Algorithms

A grammar G = (Σ, V,P, α) is context-free if each production of P is of the
form a → x , where a is a variable and x is a string of symbols from (Σ ∪ V)∗.

The adjective ‘context-free’ comes from the fact that every production of the
above sort can be treated as a substitution rule enabling to replace the symbol a by
the word x irrespective of the context in which the symbol occurs.

A language L is context-free if it is generated by some context-free grammar.

http://dx.doi.org/10.1007/978-94-017-9855-6_1

2.4 Pushdown Automata and Pushdown Algorithms 91

Example 2.4.1 Let L := {An Bn : n = 1, 2, . . .}. We showed in Sect. 2.3 that L is
not regular. Let us consider the grammar G = (Σ, V,P, α), where Σ = {A, B},
V = {α} and P = {α → AαB, α → AB}. G is context-free. By applying the
first production n − 1 times, followed by an application of the second production,
we have

α ⇒ AαB ⇒ AAαB B ⇒ A3αB3 ⇒ . . . ⇒ An−1αBn−1 ⇒ An Bn .

Furthermore, induction on the length of a derivation shows that if α ⇒G z1 ⇒G
z2 . . . zn−1 ⇒G zn then zn = An Bn if zn is a terminal and zn = AnαBn

otherwise. Thus L = L(G). �

CFL(Σ) denotes the family of all context-free languages overΣ . CFL+(Σ) is the
class of all context-free languages over Σ which do not involve the empty word ε,

CFL+(Σ) := {L : L ∈ CFL(Σ) and ε �∈ L}.

There are several ways by means of which one can restrict the format of produc-
tions without reducing the generative power of context-free grammars. If L is a non-
empty context-free language and ε is not in L , then L can be generated by a context-
free grammar G which uses productions whose right-hand sides each start with a
terminal symbol followed by some (possibly empty) string of variables. This special
form is called Greibach normal form. We shall formulate this result in a slightly
sharper form.

Let G be context-free. If at each step in a G-derivation a production is applied to
the leftmost variable, then the derivation is said to be leftmost. Similarly a derivation
in which the rightmost variable is replaced at each step is said to be rightmost.

Theorem 2.4.2 (Greibach 1965) Every context-free language L without ε is gener-
ated by a grammar G for which every production is of the form ν → Ax, where ν is a
variable, A is a terminal and x is a (possibly empty) string of variables. Furthermore,
every word of L can be derived by means of a leftmost derivation in G.

The proof of the above theorem is constructive—an algorithm is provided which, for
every context free-grammar G in which no production of the form ν → ε occurs,
converts it to Greibach normal form. We omit the details. �

We shall define a broad class of algorithms which comprises iterative algorithms
as a special, limit case.

Let M = (W, R,A) be an elementary action system. A pushdown algorithm for
M is a quadruple

D := (W, V,α, LA),

where W is, as above, the set of states of M, V is a finite set called the stack alphabet,
α is a particular stack symbol called the start symbol, and LA is a finite set of labeled

92 2 Situational Action Systems

atomic actions of M, i.e., LA is a finite set of triples of the form

(a, A, β), (2.4.1)

where A ∈ A, a ∈ V , and β ∈ V ∗ is a possibly empty string of symbols of V . (The
empty string ε ∈ V ∗ is called the end symbol.) The labels a and β of (2.4.1) are
called the input and the output label of (2.4.1), respectively.

The set
AD := {A ∈ A : (∃a, β) (a, A, β) ∈ LA}

is called the set of atomic actions of the algorithm D. The set is always finite.
Iterative algorithms may be regarded as a limit case of pushdown algorithms. The

former are pushdown algorithms in which the terminal labels β of labeled atomic
actions (a, A, β) ∈ LA have length � 1, i.e., |β| � 1.

The elements of the set SD := W × V ∗ are called the possible situations of the
algorithm. If s = (w, β) ∈ SD , w is the state corresponding to s and β is the label of
the situation s. β is also called the stack corresponding to the situation s. A situation
s is initial if it is of the form (w, α) for some w ∈ W . A situation s is terminal if it
is labeled by the empty string ε of stack symbols; i.e., the stack in this situation is
empty; so terminal situations are of the form (w, ε), w ∈ W .

A labeled action (a, A, β) transforms a situation s1 = (w1, γ1) into a situation
s2 = (w2, γ2) if and only if γ1 = aσ , γ2 = βσ for some σ ∈ V ∗, and w1 A, R w2.
Thus, s1 is a situation in which a is the top symbol on the stack and s2 is the situation
which results from s1 by replacing the top symbol a by the string β and performing
the atomic action A so that the system moves from w1 to the state w2.

The transition relation TrD in a pushdown algorithm D is defined similarly as in
the case of iterative algorithms:

(s1, s2) ∈ TrD if and only if there exists a labeled action (a, A, β) ∈ LA which
transforms s1 into s2.

The notions of finite, infinite or terminated runs of situations in D are defined in
the well-known way. The latter are finite sequences (s0, . . . , sn) such that s0 is an
initial situation, Tr(si , si+1) for all i � n − 1, and sn is a terminal situation.

Every elementary normal action system M = (W, R,A) together with a distin-
guished pushdown algorithm D for M form, in a natural way, a situational action
system. (To simplify matters, it is also assumed that R is reflexive.) We put:

Ms := (W, R,A, SD, TrD, f)

where SD and TrD are defined as above, and f is the projection from SD (= W ×V ∗)
onto W . Ms is easily seen to satisfy the conditions imposed on situational action
systems.

2.4 Pushdown Automata and Pushdown Algorithms 93

The resultant relation ResD of a pushdown algorithm D is defined as follows:

(u, w) ∈ ResD if and only if
(
(u,α), (w, ε)

) ∈ (TrD)∗.

ResD is a subrelation of the reach of M.
Themembers ofV ∗ represent possible contents of the stack.A stringa1. . .an ∈ V ∗

is a possible state of the stack with a1 the top symbol of the stack. The strings of V ∗
are called control labels of the algorithm. Every pair (a, β) with a ∈ V and β ∈ V ∗
defines the control relation, denoted by a → β, on the set V ∗:

γ1(a → β)γ2 if and only if (∃σ ∈ V ∗) (γ1 = aσ & γ2 = βσ). (2.4.2)

a → β is in fact a partial function, whose intended meaning is to modify control
labels of situations during the work of the algorithm. The functions a → β enable
us to express neatly possible transformations of the situations of the algorithm: a
labeled action (a, A, β) transforms a situation s1 = (w1, γ1) into s2 = (w2, γ2) if
and only if γ1(a → β)γ2 and w1 A, R w2. The functions a → β are also used in
defining a certain compound action on the system M called the total action of the
pushdown algorithm D. More specifically, a finite string A1 . . . An of atomic actions
of M is said to be accepted by the algorithm D if and only if there exists a sequence

(a1, A1, β1), . . . , (an, An, βn)

of labeled actions of LA and a sequence of control labels γ1, . . . , γn+1 ∈ V ∗ with
the following properties:

(i) γ1 = a1 = α (= the start symbol), γn+1 = ε (= the end symbol)
(ii) γi (ai → βi)γi+1 for all i � n.

The elements of the string A1 . . . An are therefore consecutive actions of the algorithm
leading from initial to terminal situations.

The total action of a pushdown algorithm D is defined as the set A(D) of all
non-empty strings of atomic actions accepted by D.

SinceAD , the set of all atomic actions the algorithm D involves, is always finite,
the composite action A(D) is a language over the alphabet AD .

The resultant relation Res A(D) of the action A(D) coincides with the resultant
relation ResD of the algorithm D. This is an immediate consequence of the following
simple observations:

(i) If (s0, . . . , sn) is a terminated run of situations, where si = (wi , γi),
i = 0, 1,. . ., n, then (w0, w1,. . ., wn) is a realizable performance of A(D).

(ii) If (w0, w1, . . . , wn) is a realizable performance of A(D), then there exist labels
α = γ0, . . . , γn = ε such that (w0, γ0), . . . , (wn, γn) is a terminated run of
situations.

The following theorem characterizes the compound actions of pushdown algo-
rithms.

94 2 Situational Action Systems

Theorem 2.4.3 Let M = (W, R,A) be an elementary action system. Then for every
non-empty compound action B ∈ CA which does not contain the empty word ε the
following conditions are equivalent:

(i) B is context-free,
(ii) There exists a pushdown algorithm D for M such that B is the total action of D.

Proof (ii) ⇒ (i) Assume B = A(D) for some pushdown automaton D for M. The
idea of the proof is similar to the one applied in the proof of Proposition 2.3.3. The
stack alphabet V is treated here as an auxiliary alphabet, while the members ofAD

are terminals. The label α is the start symbol. To the set LA of labeled actions of D
the following finite listP of productions is assigned:

P := {a → Aβ : (a, A, β) ∈ LA}.

The system
GD := (AD, V,P,α)

is then a grammar in Greibach normal form.
It is easy to see that the total action A(D) of D coincides with the set L of words

overAD that can be derived fromα bymeans of leftmost derivations inGD . Theorem
2.4.2 implies that L = L(GD). Hence B = A(D) = L(GD). Since every language
generated by a Greibach grammar is context-free, (i) thus follows.

(i) ⇒ (ii) The proof of this part is also easy. Let B be a context-free compound
action (over the finite alphabet AB). Since B contains only non-empty finite strings
of atomic actions, the language B is generated by a grammar

G = (AB, V,P,α) (2.4.3)

inwhich every production ofP is of the forma → Aβ, wherea ∈ V , A ∈ AB, andβ

is a possibly empty string of elements of V . (This immediately follows fromGreibach
Normal Form Theorem 2.4.2; the auxiliary alphabet V is obviously individually
suited to the language B.)

Let D := (W, V,α, LA) be the pushdown algorithm for M in which the set LA
of labeled actions is defined as follows:

LA := {(a, A, β) : a → Aβ is in P}.

The total action of the algorithm D is easily seen to be equal to the set of words
over AB obtained by means of all leftmost derivations in the grammar (2.4.3). But
in view of Theorem 2.4.2, the latter set of words is equal to the language (overAB)
generated by the grammar (2.4.3). Thus, A(D) = L(G) = B. �

Finite automata over some finite alphabet function according to a simple rule.
They read consecutive symbols in a word while assuming different states. Formally,
this requires assuming a specification of a finite set of states, a next-move function

2.4 Pushdown Automata and Pushdown Algorithms 95

δ from states and symbols to finite subsets of states, and a distinction between an
initial state and the set of final states of the automaton.

Pushdown automata are much more powerful tools equipped with a restricted
memory.Apushdownautomaton can keep afinite stack during its reading aword. The
automaton may use a separate stack alphabet. The ‘next-move’ function indicates,
for each state, the symbol read and the top symbol of the stack, the next state of the
automaton, as well as the string of stack symbols which will be entered or removed
at the top of the stack.

Formally, a pushdown automaton (PDA) is a system

A = (W,Σ, Γ, δ, w0,α, F) (2.4.4)

where

(i) W is a finite set of states of the automaton
(ii) Σ is an alphabet called the input alphabet
(iii) Γ is an alphabet called the stack alphabet
(iv) w0 is the initial state of the automaton
(v) α ∈ Γ is a distinguished stack symbols called the start symbol
(vi) F ⊆ W is the set of final states
(vii) δ is a mapping from W × Σ ∪ {ε} × Γ to finite non-empty subsets

of W × Γ ∗.

The interpretation of

δ(u, a, Z) = {(w1, γ1), (w2, γ2), . . . , (wm, γm)},

where w1, . . . , wm ∈ W and γ1, . . . ,m ∈ Γ ∗, is that the PDA in state u, with input
symbol a and Z the top symbol on the stack, can, for any i (i = 1, . . . , m), enter state
wi , replace the symbol Z by the string γi , and advance the input head one symbol.
The convention is adopted that the leftmost symbol of γi will be placed highest on
the stack and the rightmost symbol lowest on the stack. It is not permitted to choose
the state wi and the string γ j for some j �= i in one move. In turn,

δ(u, ε, Z) = {(w1, γ1), (w2, γ2), . . . , (wm, γm)}

says that M in the state u, independent of the input symbol being scanned with Z
the top symbol on the stack, enters one of the states wi and replaces Z by γi for
i = 1, . . . , m. The input head is not advanced.

To formally describe the configuration of a PDA at a given instant one intro-
duces the notion of an instantaneous description (ID). Each ID is defined as a triple
(w, x, γ), where w is a state, x is a string of input symbols, and γ is a string of stack
symbols. According to the terminology adopted in this chapter, each instantaneous
description s = (w, x, γ) can be regarded as a possible situation of the automaton—
w is the state of the automaton in the situation s while the label (x, γ) of the situation

96 2 Situational Action Systems

s defines the string x of input symbols read by the automaton and the string γ of
symbols on the stack.

If M = (W,Σ, Γ, δ, w0,α, F) is a PDA, then we write (u, ax, Zγ) �M
(w, x, βγ) if δ(u, a, Z) contains (w, β). a is an input symbol or ε. �∗

M is the
reflexive and transitive closure of �M . L(M) is the language defined by final state
of M. Thus,

L(M) := {x ∈ Σ∗ : (w0, x,α) �∗
M (w, ε, γ) for some w ∈ F and γ ∈ Γ ∗}.

Theorem 2.4.4 The class of languages accepted for by PDA’s coincides with the
class of context free languages.

The book by Hopcroft and Ullman (1979) contains a proof of the above theorem and
other relevant facts concerning various aspects of PDA’s. �

Turing machines can be represented as situational action systems too. The tran-
sition relations between possible situations in such systems are defined in a more
involved way however.

The characteristic feature of iterative and pushdown algorithms is that they pro-
vide global transformation rules of possible situations. In the simple case of iter-
ative algorithms, transformation rules are defined by means of a finite set LA of
labeled actions and then by distinguishing the set of all possible pairs of sequences
of labels (a0, . . . , an) and atomic actions A1 . . . An such that a0 = α, an = ω, and
(ai , Ai+1, ai+1) ∈ LA.

The conjugate sequences (a0, . . . , an) and (A1, . . . , An) define ways of trans-
forming some situations into others. The transition from a situation labeled by ai

to a situation labeled by ai+1 is done through performing the action Ai+1 (for
i = 0, . . . , n − 1). The rules neither distinguish special states of the system nor
do they impose any restrictions on transitions between the states corresponding to
situations other than what relation R dictates. To put it briefly, they abstract from the
local properties of the action system.

Schemes of action which are not captured by the above classes of algorithms can
be easily provided. Let us fix an atomic action A ∈ A. Let Φ ⊂ W be a non-empty
set of states. The program ‘while Φ do A’ defines the way the action A should be
performed: whenever the system is in a state belonging to Φ, iterate performing the
action A until the system moves out of Φ. (We assume here for simplicity that A
is atomic; the definition of ‘while – do’ programs also makes sense for compound
actions.) The program ‘while Φ do A’ is identified with the set of all operations of
the form

u0 A u1 A u2 . . . un−1 A un (2.4.5)

such that u0, . . . , un−1 ∈ Φ and un �∈ Φ. (The above program also comprises infinite
operations

u0 A u1 A u2 . . . un−1 A un . . .

such that ui ∈ Φ for every i � 0.)

2.4 Pushdown Automata and Pushdown Algorithms 97

We claim that the above program is not determined by a pushdown algorithm. This
statement requires precise formulation. To this end we define, for every pushdown
algorithm D = (W, V,α, LA), the notion of the program Pr(D) corresponding to
the algorithm D (see Sect. 1.8).

Pr(D) is the set of all finite operations u0 A1 u1 . . . un−1 An un with A1 . . . An

ranging over the total action A(D) of D. (As mentioned earlier, the notion of a
program is usually conceived of as a certain syntactic entity. Here it is identified with
its meaning; i.e., as a set of computations.)

Let M = (W, R, {A}) be a normal elementary action system in which A is a total
unary function on W . Let Φ be a proper non-empty subset of W closed with respect
to A. (This means that for every pair of states u, w ∈ W , u ∈ Φ and u A w imply
that w ∈ Φ.)

Proposition 2.4.5 There does not exist a pushdown algorithm D for M such that

Pr(D) = while Φ do A. (2.4.6)

Proof It follows from the definitions of A and Φ that:

For any n � 1, there exist states u0, . . . , un such that u0 A u1 . . . un−1 A un

and u0, . . . , un ∈ Φ. (2.4.7)

We apply a reductio ad absurdum argument. Suppose that (2.4.6) holds for some
algorithm D. It is clear thatA(D) is a compound action over the one-element alphabet
{A}. Let A . . . A be a word ofA(D) of length n. As (2.4.6) holds, we have that for any
string (u0, . . . , un) of states, u0 A u1 . . . un−1 A un implies that u0, . . . , un−1 ∈ Φ

and un �∈ Φ. But this contradicts (2.4.7). �

The program ‘while Φ doA’ defines a situational systemMs overM. (The system
M need not be normal.) The set V of labels consists of two elements, V := {a,ω},
where ω is the terminal label and the label a is identified with the name of the action
A.

S := W × V is the set of possible situations. A pair (u, a) ∈ S has the following
interpretation: u is the current state of the system and the action A is performed.
Analogously, (u,ω) is read: u is the current state of the system and no action is
performed in u. S0 := Φ × {a} is the set of initial situations, while the members of
S := (W \Φ)×{ω} are terminal situations. The relation Tr of the transition between
situations is defined as follows:

Tr(s, t) if and only if either s = (u, a), t = (w, a), u ∈ Φ, w ∈ Φ and u A, Rw
or s = (u, a), t = (w,ω), u ∈ Φ, w �∈ Φ and u A, Rw.

Let f : W × V → W be the projection from S onto W . The six-tuple

Ms := (W, R, {A}, S, Tr, f)

http://dx.doi.org/10.1007/978-94-017-9855-6_1

98 2 Situational Action Systems

is called the situational action system associated with the program ‘while Φ do A’
on M.

Finite runs of situations are defined in the usual way; they are sequences of situ-
ations

(s0, . . . , sn) (2.4.8)

such that s0 ∈ S0 and Tr(si , si+1) for all i � n − 1. The run (2.4.8) is terminated if
sn ∈ Sω.

Not every run (2.4.8) can be prolonged to a terminated run. It may happen that
for some sn = (un, a) there are no states w such that un A, R w. The program gets
jammed in the state un .

2.5 The Ideal Agent

A theory of action should distinguish between praxeological and epistemic aspects
of action. (This issue is also discussed in the last chapter of this book.) In this work,
we will not discuss at length such praxeological elements of action as the cost of
action, available means, money, etc. These ‘hard’ praxeological factors are en bloc
represented by the relation R of direct transition between states. These problems are
closely connected with practical reasoning and with the studies on deliberation in
particular. As Segerberg (1985, p. 195) points out: “It is well-known how crucially
deliberation depends on the faculties and outlook of the agent, but it depends not
only on his knowledge, beliefs and values, but also how he perceives the situation,
what ways he has of acquiring new situation, his imagination, what action plans he
has available and what decision he employs.”

The very nature of agency and the problem of the epistemic status of agents in
particular are the most difficult issues that a theory of action has to resolve. In its
lexical meaning, the theory typically describes an action as behaviour caused by an
agent in a particular situation. The agent’s desires and beliefs (e.g. my wanting a
glass of water and believing the clear liquid in the cup in front of me is water) lead to
bodily behavior (e.g. reaching over for the glass). According to Davidson (1963), the
desire and belief jointly cause the action. But Bratman (1999) has raised problems
for such a view and has argued that one should take the concept of intention as basic
and as not analyzable into beliefs and desires (the Belief-Desire-Intention model of
action).5

5An interesting example which might be discussed with the problem of agency is that of micro-
management where pathological relations hold between individual and collective agents. Roughly,
micromanagement is defined as “attention to small details in management: control of a person or
a situation by paying extreme attention to small details”. The notion of micromanagement in the
wider sense describes social situations where one person (the micromanager) has an intense degree
of control and influence over the members of a group. Often, this excessive obsession with the most
minute of details causes a direct management failure in the ability to focus on the major details.

2.5 The Ideal Agent 99

We make in this section the assumption that the agents operating a situational
action system

Ms = (W, R,A, S, Tr, f)

are omniscient in the generous sense. To bemore specific, suppose a1, . . . , an is a list
of agents operating the system Ms . It is assumed that :

(1) each agent ai (i = 1, . . . , n) knows all possible states of the system, i.e.,
the elements of W , and all possible direct transitions between states, i.e., the
elements of R;

(2) each agent ai (i = 1, . . . , n) knows the elements of S, Tr, and f ;
(3) each agent ai (i = 1, . . . , n) knows, for every A ∈ A, not what will in fact

happen, but what can happen if the action A is performed, i.e., for every u ∈ W
and every A ∈ A, the agent ai knows the elements of the set {w ∈ W : u A w};

(Postulates (1)–(3) thus ascertain that the internal structure of the system (W, R,A),
aswell as the situational envelope are completely transparent to the agents a1,. . ., an .)

(4) each agent ai always knows the current situation of the system; in particular the
agent knows the current state of the system;

(The postulates (1)–(4), thus, enable each agent ai to state if a quite arbitrary action
A ∈ A is performable (or totally performable) in the current situation.)

(5) if ai is the agent of an action A ∈ A in a situation s and A is performable in s,
then ai knows what will happen, if he performs A in s.

The principle (5) thus says that the actions performed by the agent are completely
subject to his free will. It is not assumed that to each atomic action A only one agent
is assigned, where he is the same in all possible situations. The agents of A may vary
from one situation to another. We state however that every action is carried out by
at the most only one agent in a given situation (the agent who actually performs the
action). Even if the agents are ideal, if the system is operated by more than one agent,
they may not foresee the evolution of the system. The agent may not know who is
going to perform an action in the next move, what action the other agent is going to
perform and how the action will be performed. (The first case is obviously excluded
in a game of chess but the other two are not.) It is conceivable that in some situation s
there may be many agents who are allowed to perform certain actions. For example,
agent a1 could perform action A1 or A2 in s and agent a2 could perform A3, A4 or
A5 in the same situation s. This may happen in some situational action systems. The
relation Tr of direct transition between situations allows for many possible courses
of events commencing with s. Whether agent a1 or agent a2 is going to make a move
in s may be a random matter; the situation s and the relation Tr need not determine
this accurately.

Free will, according to its lexical meaning, is the agent’s power of choosing and
guiding his actions (subject to limitation of the physical world, social environment
and inherited characteristics). Free will enables the agent, in a particular situation in
which he can act, both to choose an action he would like to perform (if there is more

100 2 Situational Action Systems

than one possible action he can perform in this situation) and to be completely free
in his way of accomplishing it. In the framework of the formalism accepted here,
the fact that an action A is performed according to the agent’s free will means only
that the moment the action is undertaken (a situation s), the system may pass to any
of the states from the set { f (s′) : s Tr s′ and f (s) A f (s′)}. The free agent is not
hindered from transferring the system to any of the states belonging to the above set
(provided that the set is non-empty); his practical decision in this area is the result
of a particular value, and so something that in the given situation the agent considers
proper.

The notion of an agent should be widely understood; he can be a real man or
a group of people (a collective agent); or a man cooperating with a machine or a
robot. A detailed analysis of the concept of agent is not necessary for the present
investigation. We want, however, this notion to be devoid of any anthropocentric
connotation. (This view is not inconsistent with the above postulates (1)–(5) if the
meaning of the phrase ‘the agent knows’ is properly understood.)

Realistic theories of action should be based on more restrictive postulates than
those defining the epistemic and praxeological status of ideal agents. For instance,
in the game of bridge the players never know the current distribution of cards—the
postulate (4) is not true in this case. The agents may not know the members of W ,
as well as the pairs of states which are in the relation R. The agent of an action may
not know all the possible performances of this action. The knowledge of S and Tr
may also be fragmentary.

In Part II an approach to action theory is outlined which takes into account the
above limitations and assumes that agents’ actions are determined and guided by
systems of norms. Norms determine what actions in given conditions are permitted
and which are not. Agents’ actions are then controlled by the norms. The relationship
between this concept of action and deontic logic is also discussed there.

A theory of action is the meeting ground of many interests, and therefore many
approaches. The formal approach attempts to answer the following question: how
should actions be described in terms of set-theoretic entities? Any answer to this
question requires, of course, some ontological presuppositions. In this book we pro-
pose, in a tentative spirit, a relatively shallow analysis of this subject. First, we
assume that there exist states of affairs and processes. Furthermore, we claim that
these simple ontological assumptions can be rendered adequately into the language
of set theory. This leads to the definition of a discrete system. The set W of states is
the mathematical counterpart of the totality of states of affairs, and R, the relation of
direct transitions, represents possible processes (i.e., transitions) between states of
affairs. Apart from these concepts the category of situations is singled out. It is an
open problem whether situations can be faithfully represented by set theory. We do
not discuss this issue here because we would have to begin with a general account of
what a situation is. Instead, we aim at showing that in some simple cases the theory
of sets provides a good framework for the concepts of action and situation.

2.6 Games as Action Systems 101

2.6 Games as Action Systems

In this section, as an illustration of the theory expounded above, a class of idealized,
infinite mathematical games will be presented. These games will be modeled as
simple, situational action systems.

We recall that the symbols N and ω interchangeably denote the set of natural
numbers with zero. In set theory the set of natural numbers is defined as the least
non-empty limit ordinal. The elements ofω are also called finite ordinals. Thus 0 = ∅
is the least natural number and n + 1 = {0, 1, . . . , n}, for all n ∈ ω, according to the
standard set-theoretic definition of natural numbers.

If n ∈ ω, then n A is the set of functions from n to A. Note that 0A = {∅}.
The empty function ∅ is also denoted by 0. The length of the sequence 0 is 0.
A = (W,Σ, Γ, δ, w0,α, F).

We then define
<ω A :=

⋃
n∈ω

n A

If p ∈ n A, we also write p = (a0, a1, . . . , an−1), or simply p = a0a1 . . . an−1,
where ak := p(k) for k = 0, 1, . . . , n − 1. |p| is the length of p. (Formally, |p|
coincides with the domain of p.)

We consider the scheme of an infinite game between two players, denoted respec-
tively by I (the first player) and II (the second player).

Let A be a fixed non-empty set, e.g., the set of natural numbers.

(i) The players alternately choose elements of A. Each choice is a move of the
game; and each player before making each of his moves is privy to all the
previous moves.

(ii) Infinitely many moves are to be performed;
(iii) Player I starts the game.

The resulting infinite sequence of elements of A

a = a0, a1, . . . , an, an+1, . . .

is called a play of the game. The even numbered elements of a, viz., a2n , n = 0, 1, . . .
are established byplayer Iwhile the odd-numbered elements ofa,a2n+1,n = 0, 1, . . .
by player II.

Each set Z of infinite sequences of elements of A, Z ⊆ ω A determines a game
G(Z). Z is called the payoff of the game G(Z).

A play a of the game G(Z) is won by player I if it is the case that a ∈ Z . If a �∈ Z—
the play a is won by II. Thus the game G(Z) is decidable in the sense that for each
play a either I or II wins a (there are no draws).

Every initial segment a�n = a0, a1, . . . , an−1 of a possible play a is called a
partial play. <ω A is the set of all partial plays.

Let πn be the projection of ω A onto the nth axis, that is, πn(a) is the nth term of
the sequence a for all a ∈ ω A, n ∈ ω.

102 2 Situational Action Systems

Suppose that πn(Z) is a proper subset of A for some odd n. Then II wins the
game irrespective of the first n moves a0, a1, . . . , an−1 made by the players. In the
nth step player II selects an arbitrary element an ∈ A \ πn(Z). Then for any play a
being a continuation of the initial segment a0, a1, . . . , an it is the case that a ∈ Z .
(For if a ∈ Z , then πm(a) ∈ πm(Z), for all m ∈ ω, which is excluded.) Thus the
play a is won by II. Intuitively, the winning strategy for II is any function S defined
on all possible positions of even length such that S(p) ∈ A \ πn(Z) for any position
p = a0, a1, . . . , an−1 of length n with n defined as above.

We shall express the above remarks in a more formal setting as follows. We shall
limit ourselves to deterministic games, i.e., the ones in for each player in any position
there is only one option open to him according towhich he continues the game, which
means that the strategy available to him is a function.

Definition 2.6.1 Let A be a non-empty set.

1. The set W := <ω A is called the set of possible positions or, in the terminology
of action theory, it is called the set of possible states.

2. Any function S : W → A is called a deterministic strategy in A.
3. A play in A is any mapping P : ω → A. �

Lemma 2.6.2 For any deterministic strategy S in A there exists a unique play P in
A such that P(n) = S(P�n) for all n ∈ ω.

(Note that P(0) = S(P�0) = S(P�∅) = S(0).)

Proof This is an application of the known Principle of Definability by Arithmetic
Recursion. �

Putting P(n) = an for all n ∈ ω, the above lemma says that a0 = S(0) and
an = S(a0, a1, . . . , an−1) for all n. P is called the play played according to the
strategy S.

From the perspective of action theory, each strategy S defines a binary relation
RS on the set W = <ω A is of states—possible positions. RS is the relation of direct
transition between possible situations. Intuitively, for u, w ∈ W , the fact u RS w
means that w results form u by an application of the strategy S to u and w is the
position obtained from the sequence u by adjoining the element S(u) at the end of u.
Formally, u RS w ⇔d f w = u, S(u).

Since the strategy S is deterministic, RS is a function from W to W . It follows
that (W, RS) is a deterministic discrete system.

We are interested in a mathematical analysis of two-person games. To represent
such games in terms of action systems, we define the operation of the merger of any
two strategies.

The definition of the merger of two strategies takes into account the context-
sensitive aspect of each play, represented by the situation whose component is not
only the finite string of moves made by one player up to some phase of the play, but
also the respective moves of his opponent. Formally, this situation is represented by
the following mathematical construction. The players I and II have certain strategies

2.6 Games as Action Systems 103

S1 and S2 at their disposal. The strategy S1 defines the elementary action AI of the
player I on the set of states W . AI is defined as above as the transition relations
between positions imposed by the strategy S1 on the set of positions. Thus, for any
positions p, q ∈ W ,

p AI q ⇔d f q = p, S1(p).

Analogously one defines the action of the other player: for p, q ∈ W ,

p AII q ⇔d f q = p, S2(p).

It is clear that the relations AI and AII are both unary functions from W to W .
However, in two-person games the relation of direct transition between states is

defined in a more involved way. According to the rules, each play is represented by
a sequence

a0, b0, a1, b1, . . . , an, bn, an+1, . . .

The moves made by I are influenced not only by his earlier choices a0, a1, . . . , an

but also by the moves made by the second player, represented by the sequence
b0, b1,. . ., bn . The choice of an+1 is motivated not only by the moves a0, a1,. . ., an

but also by b0, b1, . . . , bn . In other words, in the context-sensitive strategy avail-
able for I the consecutive moves performed by him are determined not only by
a0, a1, . . . , an but by the sequence a0, b0, a1, b1, . . . , an, bn . Analogously, in the
context-sensitive strategy of II the (n + 1)-th move of II is determined not by
b0, b1, . . . , bn , but by the sequence a0, b0, a1, b1, . . . , an, bn, an+1. This sequence
determines the next move bn+1.

To define properly the relation R of direct transition between states of W we first
define the notion of the the merger of two strategies.

Definition 2.6.3 Let S1 and S2 be two strategies in A. The merger of S1 and S2 is
the unique strategy S1 ⊕ S2 in A such that for every p ∈ <ω A,

(S1 ⊕ S2)(p) :=
{

S1(p) if |p| is even
S2(p) if |p| is odd. �

If |p| = 0, i.e., p is empty, p = 0, then

(S1 ⊕ S2)(p) = S1(0),

and if |p| = 1, then
(S1 ⊕ S2)(p) = S2(p).

The above definition says that if p = (a0, b0, a1, b1, . . . , an, bn), then

(S1 ⊕ S2)(p) = S1
(
(a0, b0, a1, b1, . . . , an, bn)

)

104 2 Situational Action Systems

and if p = (a0, b0, a1, b1, . . . , an, bn, an+1), then

(S1 ⊕ S2)(p) = S2
(
(a0, b0, a1, b1, . . . , an, bn, an+1)

)
.

In particular, (S1 ⊕ S2)(0) = S1(0) = a0 and (S1 ⊕ S2)(〈a0〉) = S2
(
(a0)

) = b0.
Applying Lemma 2.6.2 to the strategy S1 ⊕ S2 we get

Corollary 2.6.4 For any strategies S1, S2 there exists a unique play P in A such
that P(n) = (S1 ⊕ S2)(P�n) for all n ∈ ω. �

It follows from the above corollary and the definition of S1 ⊕ S2 that

P(2n) = S1(P�2n) and P(2n + 1) = S2(P�2n + 1)

for all n ∈ ω.
The relation R of direct transition on W is defined as the transition relation deter-

mined by the merger S1⊕ S2, that is, R = RS1⊕S2 . Thus, for any positions p, q ∈ W ,

p R q ⇔d f q = p, (S1 ⊕ S2)(p).

We thus arrive at the definition of an elementary action system M = (W, R,

{AI, AII}) endowed with two atomic actions. M is called the action system corre-
sponding to the two-person game with strategies S1 and S2.

Taking into account the typology of action systems adopted in Chap.1, Defini-
tion 1.2.3, we have:

Proposition 2.6.5 The system M = (W, R, {AI, AII}) is deterministic and complete.

Proof Immediate. �

The system M is not normal, because neither AI ⊆ R nor AII ⊆ R. It may also
happen that the intersection AI ∩ AII is non-empty. Therefore the system need not
be separative. One may also easily check that the system is irreversible. This follows
from the fact that p R q implies that |p| < |q|, for any positions p and q.

The systemM has another property: the set of statesW is ordered by the relation�,
where for p, q ∈ W , p � q means that p = q or p is a proper prefix of q. M is
therefore an ordered action system. (Ordered systems are defined in Chap.3.)

The system M is operated by two agents: I and II. Though each of them is able
to foresee the course of states according to his own strategy, the situation changes
when they play together. As a rule each player does not know his opponent’s strategy
and therefore is unable to predict consecutive positions that will be taken during
the game. In other words, each of them knows the action he will perform, because
each knows his own strategy. However, they individually may not know the relation
of direct transition R because they do not necessarily know the merger S1 ⊕ S2.
Consequently, the players need not know the unique play P determined by S1 ⊕ S2.

http://dx.doi.org/10.1007/978-94-017-9855-6_1
http://dx.doi.org/10.1007/978-94-017-9855-6_1
http://dx.doi.org/10.1007/978-94-017-9855-6_3

2.6 Games as Action Systems 105

But during the course of the game, the consecutive positions P(n) of the game are
revealed to both of them. Summing up, according to the remarks from the preceding
section, each of the agents I and II is an ideal one. However, the rules of the game
exclude the possibility that each of them knows the strategy available to his opponent.
In this sense they are not omniscient.

(The problem of agency in games is investigated by many thinkers—see e.g.
van Benthem and Liu (2004). Various “playing with information” games, public
announcements and, more generally, verbal actions are not analysed here.)

The above definition of a deterministic strategy is strong from the epistemic view-
point. So as to continue the game, the strategy S refers toall earlier positions occurring
in the course of the play determined by S. In other words, to make a successive move
in a given position p, the agent knows the sequence p; in particular he knows all the
prefixes of p, and therefore he knows all earlier positions in the play determined by
S. Mathematically, this means that the strategy of an agent is a function defined on
the set of all possible positions W = <ω A. In practice, the agent is not omniscient
and he is able to remember at most two or three earlier moves. It is therefore tempting
to broaden the definition of a deterministic strategy by allowing functions S which
are defined not on <ω A but merely on a subset of the form n A for some (not very
large) n. The organization of the game is then different. For example, for n = 2,
the play determined by such a new strategy S : 2A → A is defined by declaring
in advance the first two moves a0 and a1. Then successive moves are determined
by S; the function S takes into account merely the last two moves and determines
the subsequent move. We may call such functions S : n A → A Fibonacci-style
strategies, by analogy with Fibonacci sequences.

Mathematically, such a broadening of the definition of a strategy does not change
the scope of game theory because, as one can easily check, for every Fibonacci-
like strategy S there is a “standard” strategy S′ such that both S and S′ determine
the same play. However, this distinction between the standard and Fibonacci-style
strategies may turn out to be relevant in various epistemic contexts in which agents
with restricted memory resources compete.

The game is not fully encoded in the elementary action system M. We must
also take into account rules (i)–(iii) above that organize the game. They constitute
the situational envelope of M. More specifically, by a possible situation we shall
understand any element of the set

S := W × {I, II}.

Thus, S is a set of labeled situations with labels being the elements of {I, II}. The
pair (0, I) is called the initial situation. (The symbol “S” also ranges over strategies,
but such a double use of this letter should not lead to confusion.)

The relation of transition Tr between situation is defined in accordance with the
above requirements (i)–(iii). Thus, if s1, s2 ∈ S and s1 = (p, a), s2 = (q, b), then

106 2 Situational Action Systems

s1 Tr s2 ⇔d f either p is a position of even length, a = I, b = II, and AI(p, q)

or p is a position of odd length, a = II, b = I, and AII(p, q).

Intuitively, if p is a position whose length is an even number, then in the situation
(p, I) player I performs the action AI and the situation (p, I) turns into (q, II), where
q = p, (S1 ⊕ S2)(p) (= p, S1(p)). Analogously, if p is a position whose length is
an odd number, then in the situation (p, II) player II performs the action AII and the
situation (p, II) turns into (q, I), where q = p, (S1 ⊕ S2)(p) (= p, S2(p)).

f : S → W is defined as the projection onto the first axis: if s = (p, a), then
f (s) := p, for all s ∈ S.
The relation R of direct transition between states of the above action system M

is compatible with Tr; that is, for every pair s1, s2 ∈ S of situations, if s1 Tr s2 then
f (s1) R f (s2). Indeed, assume s1 Tr s2. If s1 = (p, a), and the length of p is even,
then a = I, s2 = (q, II), where q = p, (S1⊕ S2)(p). Hence p R q, which means that
f (s1) R f (s2). The case when s1 = (p, a), and the length of p is odd, is analogously
checked.

It follows from the above remarks that

Ms = (W, R, {AI, AII}, S, Tr, f)

is a situational action system. Ms is the system associated with the above game.
Ms , together with the initial situation (0, I) being distinguished, faithfully encodes
all aspects of the game with one exception, however; the target of the game has not
been revealed thus far. In other words, to have the game fully determined, the payoff
set must be defined. Below we present some remarks on wining strategies.

Let Z be a subset of ω A (i.e., Z is a set of infinite functions from ω to A). Let, as
above, S1 ⊕ S2 be the merge of strategies S1 and S2 and let P = a0, b0, a1, b1, . . . ,
an, bn, an+1, . . . be the play determined by S1 ⊕ S2.

Player I wins the play P for Z if the infinite sequence P belongs to Z . Player II
wins the play P for Z if P does not belong to Z .

S1 is a winning strategy in Z (for player I) if for every strategy S2 chosen by
player II it is the case that the resulting play P = a0, b0, a1, b1, . . . , an, bn, an+1, . . .

determined by S1 ⊕ S2 belongs to Z .
S2 is awinning strategy in Z (for the second player) if for every strategy S1 chosen

by player I it is the case that the play P determined by S1 ⊕ S2 is not in Z .
Examples illustrating the above notions beloware taken fromBłaszczyk andTurek

(2007), Sect. 17.3.

Example Weassume A = ω. Any two-person play consists in selection of a sequence
a0, b0, a1, b1, . . . , an, bn, . . . of natural numbers.

Let Z = ωω. Then every strategy of I is a winning strategy for I, because for all
n, each selection of numbers a0, a1, . . . , an by I guarantees that I wins every play
(irrespective of the corresponding moves b0, b1, . . . , bn made by II).

If Z = ∅, then every strategy of II is a winning strategy for II.

2.6 Games as Action Systems 107

Let us consider a less trivial case: Z is a countable subset of ωω, i.e., Z is a
countable set of infinite sequences zn , n ∈ ω. We define the following strategy for
the second player II:

S2(0) := z0(0) + 1,

S2(c0, c1, . . . , cn) := zn+1
(
2(n + 1)

) + 1,

for all n ∈ ω and all (c0, c1, . . . , cn) ∈ n+1ω.
S2 is called the diagonal strategy. (Here zn = (zn(0), zn(1), . . .) and zn

(
2(n +1)

)
is the value of zn for 2(n + 1)).

Proposition 2.6.6 The diagonal strategy is a winning strategy for the second player.

Proof Let S1 be an arbitrary strategy of player I. The play P defined by S1 ⊕ S2 is
represented by an infinite sequence

a0, b0, a1, b1, . . . , an, bn, an+1, bn+1, . . .

where b0 = z0(0) + 1 = a0 + 1 and bn = zn(2n) + 1 for n = 1, 2, . . .
It suffices to notice that a0, b0, a1, b1, . . . , an, bn, an+1, . . . is not in Z . Indeed,

the above sequence can be written as

z0(0)+1, b0, z1(2)+1, b1, z2(4)+1, b2, z3(6)+1, b3, . . . , zn(2n)+1, bn, . . . (∗)

The above sequence differs from the sequences zn , n ∈ ω, because if (∗) were
equal to some zn , we would have that the element zn(2n) of zn would be equal to
the element of (∗) with index 2n; i.e., it would be equal to zn(2n) + 1, which is
excluded. �

A set Z ⊆ ωω is said to be determined if in the two-player game G(Z) one of the
players, I or II, has a winning strategy. According to the above proposition, every
countable set Z ⊆ ωω is determined. Determined sets, when taken collectively, do
not show regular algebraic properties. For example, one cannot prove that they form
a Boolean algebra. In 1976 Martin proved the following theorem:

Theorem Assume the set theory Z F of Zermelo Fraenkel. Every Borel subset of R
is determined. �

The situation changes if one introduces the following set-theoretic axiom:

Axiom of Determinacy (AD) Every subset of ωω is determined. �
It is easy to see that AD is equivalent to the following statement:

For every countably infinite set A, every subset of ω A is determined. �

108 2 Situational Action Systems

Other games, as e.g. Banach–Mazur games or parity games, can be also repre-
sented in a similar manner as situational action systems. (Parity games are played
on a coloured directed graphs. These games are history-free determined. This means
that if a player has a winning strategy then he has a winning strategy that depends
only on the current position in the graph, and not on earlier positions.)

The games presented in this chapter are all qualified as games with perfect infor-
mation, which means that they are played by ideal agents in the sense expounded in
Sect. 2.5. Card games, where each player’s cards are hidden from other players, are
examples of games of imperfect information.

2.7 Cellular Automata

Cellular automata form a class of situational action systems. Here, we shall only
outline the functioning of one-dimensional cellular automata, the latter being a par-
ticular case of the general notion. Supposewe are given an infinitely long tape (in both
directions) divided into cells. From the mathematical viewpoint, the tape is identified
with the set of integers Z . Cells are, therefore, identified with integers. Each cell has
two immediate neighbors, viz. the left and the right adjacent cells. There are two
possible states for each cell, labeled 0 and 1. The state of a given cell c, together with
the states of its immediate neighbors, fully determines a configuration or possible
situation of the cell c. There are 8 = 23 possible situations of each cell. Possible
configurations are written in the following order

111, 110, 101, 100, 011, 010, 001, 000,

where the underlined digit indicates the current state of a particular cell c. The rules
defining a cellular one-dimensional automaton specify possible transitions for each
such situation. These rules are identified with functions assigning to each situation
a state from 0, 1. There are, therefore, 256 = 28 such rules. Each rule individually
defines a separate cellular automaton and its action. For instance,

possible situations 111, 110, 101, 100, 011, 010, 001, 000,
new state for center cell 0 1 1 0 1 1 1 0

is a rule which assigns to each possible configuration of the center cell a new state
of this cell.

Stephen Wolfram proposed a scheme, known as the Wolfram scheme, to assign
to each rule a number from 0 to 255. This scheme has become standard (see e.g.
Wolfram 2002).

As each rule is fully determined by the sequence forming new states for the center
cell, this sequence is encoded first as the binary representation of an integer and then

2.7 Cellular Automata 109

by its decimal representation. This number is taken to be the rule number of the
automaton. For example, the above rule is encoded by 011011102 which is 110 in
base 10. This is, therefore, Wolfram’s rule 110.

In the above infinitemodel, each cell c has two immediate neighbors: c−1 (the left
one) and c + 1 (the right one). Each mapping u : Z → {0, 1} defines the global
state of an automaton. (One may think of an automaton as a system of conjugate
cells subject to a given transformation rule.) Each rule r determines transformations
of global states of the automaton. Suppose that the following sequence of states (the
second row) have been assigned to the displayed finite segment of the sequence of
integers (cells):

. . . , −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, . . .

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, . . .

The rule 110 turns the above states assigned to −2,−1, 0, 1, 2, 3, 4, 5, 6 to the fol-
lowing sequence

. . . , −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, . . .

. . . 1, 1, 1, 1, 1, 1, 1, 0, 0, . . .

(The new states of the cells −3 and 7 are not displayed because the initial states
assigned to the left neighbour of −3 and the right neighbour of 7 have not been
disclosed.) Further iterations of the rule produce new global states.

One may also define an elementary cellular automaton with a finite number of
cells, say 1, 2, . . . , n by declaring that 1 is the right neighbour of n and n is the left
neighbour of 1. (Of course, n−1 is the left neighbour of n and 2 is the right neighbour
of 1.) It is also natural to take all the n complex roots of degree n of 1 as cells).

Each Wolfram rule r may be regarded as a certain context-dependent substitu-
tion. In each sequence of zeros and ones (of the type of integers) it replaces each
consecutive element of the sequence by a new one by looking at the left and right
immediate neighbours of this element in the sequence and then applying the adopted
rule. Wolfram rules act as rules with limited memory. In order to make a successive
substitutions in a 0-1 sequence, the rule merely assumes the knowledge of three con-
secutive elements of the sequence. One may complicate Wolfram rules in various
ways such as by taking into account more distant neighbours.

From the algebraic viewpoint, eachWolfram rulemay be treated as a ternary oper-
ation of the two-element (Boolean) algebra {0, 1}. In turn, each (infinite) elementary
cellular automaton is regarded as an action of this algebra on the uncountable set
{0, 1}Z in the way which was explained above.

It is worth noticing that the automaton determined by the rule 110 is capable of
universal computation (Cook 2004) and is therefore equivalent to a universal Turing
machine.

Suppose a Wolfram rule r has been selected. Each individual cell c may be then
regarded as a simple two-state situational action system Mc = (W, R,A, S, Tr, f)

which we shall describe. Here W = {0, 1} is the set of states. Possible situations s

110 2 Situational Action Systems

are labeled states, s = (u; a), where u is the state of s and a the label of s. Labels
are ordered pairs of states, a = (uL , u R), where uL is a state of the left neighbour
of c and u R is a state of the right neighbour of c. Possible situations may therefore
be identified with configurations of c. Thus, if e.g., 011 is a configuration of c, then
s = (1; 01) is the possible (labeled) situation corresponding to 011: 1 is the current
state of c and 0 and 1 are the current states of the left and the right neighbour of c
respectively. There are, of course, 4 = 22 labels and 8 possible situations of Mc.
Label = {00, 01, 10, 11} is the set of labels and S is the set of possible situations.

The work of Mc is not, however, organized in the same way as in the case of the
situational action systems corresponding to iterative or pushdown algorithms.

Each label a ∈ Label gives rise to an atomic deterministic action Aa on W .
For suppose u ∈ W and a = (uL , u R). Then, (uL , u, u R) is a configuration. The
rule r assigns to this configuration a unique state w. We then put: Aa(u) := w. (The
correspondence a → Aa , a ∈ Label, need not be one-to-one. It is dependent on the
choice of a Wolfram rule.) We, therefore, have at most 4 atomic actions, all being
unary functions). We put:

A := {Aa : a ∈ Label}.

Rule r determines transitions between states. As each state u is nested in some
configuration (there are four such configurations for u), the rule r defines at the most
four possible immediates successors of u. Thus,

u R w if and only if for some configuration (uL , u, u R) it is the case
that r assigns the state w to (uL , u, u R).

Equivalently,

u R w if and only if w = Aa(u) for some a ∈ Label.

It follows that (W, R,A) is a deterministic and normal action system. (But R need
not be a function.)

The function f is a projection assigning to each possible situation s = (u; a) the
state u.

It remains to define the transition relation Tr between possible situations. How do
situations evolve? Suppose (uL , u, u R) is a current configuration of the cell c, where
u is the current state of c. Rule r merely unambiguously determines the next state
of c. The clue is that the configuration being the successor of (uL , u, u R) depends
not only on the current states uL and u R of the left and right neighbours of c, i.e. the
current states of the cells c − 1 and c − 1, but it is also determined by the current
states of farther neighbours, these being the cells c − 2 and c + 2. Thus, in order
to predict at least on move in a trajectory of situations, one has to know a quintuple
of states (uL L , uL , u, u R, u R R) with uL L being the current state of c − 2, the left
neighbour of c − 1, and u R R being the current state of c + 2, the right neighbour of
c+1. Rule r then assigns to the configurations (uL L , uL , u) and (u, u R, u R R) certain
states, say w1, w2, respectively, and it assigns to the configuration (uL , u, u R) a state

2.7 Cellular Automata 111

w. Taking this into account, we see that the configuration (w1, w, w2) is a successor
of (uL , u, u R).

The above remarks enable one to define the relationTr of direct transitions between
possible situations. Note that generally Tr need not be a function because the con-
figuration (w1, w, w2) depends not only on (u, u R, u R R) but also on states uL L and
u R R . On the other hand, any situation s has at the most four intermediate successors,
according to Tr. Each such successor is determined by states of the cells c − 2 and
c + 2.

The relation R of direct transition between states of the above action system
(W, R,A) is compatible with Tr, i.e., for every pair s1, s2 ∈ S of situations, it is the
case that if s1 Tr s2 then f (s1) R f (s2). It follows that Mc = (W, R,A, S, Tr, f) is
a well-defined situational action system.

The action systemsMc are identical, for all cells c. The functioning of each system
Mc is a kind of a local feedback amongMc and the surrounding systemsMc−2,Mc−1,
Mc+1 and Mc+2, for all cells c. The structure of this feedback is determined by a
definite Wolfram rule r .

The evolution of the system of automata Mc, c ∈ Z , (Z—the set of integers) is
initialized by declaring a global initial state (a global configuration) of the system.
This is done by selecting a mapping u : Z → {0, 1}. (For example, one may assume
that u assigns the zero state to each cell.) The system is set in motion by the action
of the Wolfram rule r for the cell u(0) and its neighbours. Then the evolution of the
system proceeds spontaneously.

The theory of one-dimensional cellular automata is a particular case of the more
general theory of finitely many dimensional automata. We shall restrict our atten-
tion to the two-dimensional case because it gives a sufficient insight into the basic
intuitions underlying the general definition. A standard way of depicting a two-
dimensional cellular automaton is with an infinite sheet of graph paper and a set
of rules for the cells to follow. Each square is called a ‘cell’ and each cell has two
possible states, black and white. The ‘neighbours’ of a cell are the 8 squares touching
it. Mathematically, each cell (or square) is identified with a pair of integers (a, b).
Any pair of the form (c, d) with c = a ± 1 or d = b ± 1 is therefore a neighbour
of (a, b). (All these pairs form the Moore neighbourhood of (a, b). One may also
take a non-empty subset of the defined set of pairs (c, d) to form a narrower neigh-
bourhood of (a, b); in a particular case one gets the von Neumann neighbourhood of
(a, b) by taking the pairs (c, d) with c = a ± 1 and d = b ± 1.) For such a cell and
its neighbours, there are 512 (= 29) possible patterns. For each of the 512 possible
patterns, the rule table states whether the center cell will be black or white on the
next time interval.

It is usually assumed that every cell in the universe starts in the same state, except
for a finite number of cells in other states, often called a (global) configuration. More
generally, it is sometimes assumed that the universe starts out covered with a periodic
pattern and only a finite number of cells violate that pattern. The latter assumption
is common in one-dimensional cellular automata.

112 2 Situational Action Systems

2.8 A Bit of Physics

We have been concerned thus far with discrete situational action systems. A quite
natural question which can be posed in this context is: what about continuous situa-
tional action systems? How should we understand them? We shall not dwell on this
topic and discuss it thoroughly here. The paradigmatic examples of one-agent contin-
uous situational action systems occupy a central place in classical mechanics and the
behaviour of these systems is well described by appropriate differential equations.
An analysis of the mathematical apparatus pertinent to classical mechanics might
provide some clues which would enable one to build a theory of continuous action
systems in a much wider conceptual setting than that provided by physics. We shall
now briefly recall some basic facts, whichwill be very familiar to physicists. Suppose
we are given a physical body consisting of finitely many particles whose individual
sizes may be disregarded. We may therefore identify the body with a finite set of
material points. Hamiltonianmechanics, being a reformulation of classical principles
of Newtonian physics, was introduced in the 19th century by the Irish mathematician
William Rowan Hamilton. The key role is played by the Hamiltonian function H.
The value of the Hamiltonian is the total energy of the system being described. For a
closed system, it is the sum of the kinetic and potential energy of the system. The time
evolution of the system is expressed by a system of differential equations known as
the Hamiltonian equations. These equations are used to describe such systems as a
pendulum or an oscillating spring in which energy changes from kinetic to potential
and back again over time. Hamiltonians are also applied to model the energy of other
more complex dynamic systems such as planetary orbits in celestial mechanics.

Each state w of the system is represented by a pair of vectors w = (p, q) from a
vector space V. To simplify matters, we shall assume that V is a finitely dimensional,
real space, say V = R

n for some positive n. (The number n is called the degree
of freedom of the system.) V has therefore well-established topological properties.
(Topology is introduced by any of the equivalent norms onV.) The vectorq represents
the (generalized) coordinates of the particles forming the system, and p represents the
(generalized) momenta of these particles (conjugate to the generalized coordinates).
IfV is endowedwith a Cartesian coordinate system, then the vectors p are “ordinary”
momenta. In the simplest case, when the systems consists of one particle only, not
subject to external forces, one may assume that q = (x, y, z) is a vector in the three
dimensional Euclidean spaceR3, being the coordinates of the particle, and the vector
p = (px , py, py) representing the momentum of the particle.

W := V × V is the set of possible states of the system. W is called a phase
space. We define an action system which is operated by one agent. We call him
Hamilton. He performs one continuous action only. His action is identified with
the Hamiltonian function H. The Hamiltonian H = H(p, q, t) is a (scalar valued)
function and it specifies the domain T of values in which the time parameter t varies.
The domain of H is a subset of V × V × T but we assume that the Hamiltonian H
makes sense for all t ∈ T . The set T is usually an open interval on the straight line
R (or R itself).

2.8 A Bit of Physics 113

By a possible situation we shall mean any pair s = (w, t), where w is a state and
t is real number representing time moments. In other words, possible situations are
just members of the set S := V×V× T (= W × T). We therefore identify possible
situations with triples s = (p, q, t), with p and q described as above. The members
of T play the role of labels of possible situations. We define f to be the projection
assigning to each possible situation s = (w, t) the state w.

How does Hamilton act? Suppose we are given a quite arbitrary situation s0 =
(p0, q0, t0) ∈ S from the domain of H. s0 is called an initial situation. The action
of Hamilton undertaken in the state (p0, q0) labeled by t0 carries over the system,
for every moment t , from the state (p0, q0) to a uniquely defined state (p, q) with
label t . In other words, for every t ∈ T , Hamilton turns the initial situation s0 into
a uniquely defined situation s = (p, q, t). We may therefore say that Hamilton
assigns to each situation s0 from its domain a phase path in the phase space, i.e.,
a continuous mapping from T to W . Moreover, this path passes through the state
(p0, q0) at t0. It is now quite obvious how to define the transition relation Tr between
possible situations. For any pair of situations s0 = (p0, q0, t0), s = (p, q, t) ∈ S, it
is the case that s0 Tr s if and only if both situations s0 and s belong to the domain of
H and the phase path assigned to s0 passes through the state (p, q) at t . In light of
the above remarks, the relation Tr is reflexive on the domain ofH. How to compute
this path? We shall discuss this issue below.

The action of Hamilton is a binary relation AH defined on the set W . It is
assumed that the transition relation R between states is identicalwith the relation AH.
(Hamilton is omnipotent because he establishes the rules that govern mechanics.)
Therefore the system we define is normal. In light of the above remarks, given a
state (p0, q0) and t0 ∈ T , the set fR(p0, q0) contains in particular the range of the
unique phase path assigned to the situation s0 = (p0, q0, t0), provided that s0 is in
the domain of H. We assume that for every state (p0, q0), the set fR(p0, q0) is the
union of co-domains of all possible phase paths assigned to s0 = (p0, q0, t0), for all
possible choices of t0 ∈ T .

It follows from these definitions that the relation R is compatible with Tr; that is,
for any situations s0 = (p0, q0, t0), s = (p, q, t), s0 Tr s implies that f (s0) R f (s).
Indeed, s0 Tr s means that the phase path assigned to s0 passes through the point (p, q)

of the phase space at t . Hence (p, q) belongs to the range of this path. Consequently,
(p, q) ∈ fR(p0, q0), i.e., f (s0) R f (s).

We have defined a one-agent situational action system

Ms := (W, R, {AH}, S, Tr, f).

The class of all such systems Ms is called the Hamiltonian class.
How do we compute the phase paths involved in the above definitions? One

assumes that:

(1) H possesses the continuous partial derivatives with respect to p, q (in the sense
of the vector space V) and t .

114 2 Situational Action Systems

(2) For every initial condition s0 = (p0, q0, t0) belonging to the domain of H, the
phase path assigned to s0 is a pair of continuous functions (p(t), q(t)), each
function being a map from T to V, such that p(t0) = p0 and q(t0)=q0. (In
the Cartesian coordinate system, the vector function q(t) describes the trajecto-
ries of the particles in space while p(t) defines their momenta, and hence their
velocities.) Moreover, by solving the Hamiltonian equations:

d

d t
p(t) = − ∂

∂q
H(

q(t), p(t), t
)

d

d t
q(t) = + ∂

∂p
H(

q(t), p(t), t
)

with the initial condition p(t0) = p0 and q(t0) = q0, one computes the values
of p(t) and q(t) at any moment t belonging to T .

http://www.springer.com/978-94-017-9854-9

	2 Situational Action Systems
	2.1 Examples---Two Games
	2.1.1 Noughts and Crosses
	2.1.2 Chess Playing

	2.2 Actions and Situations
	2.2.1 An Example. Thomson Lamp

	2.3 Iterative Algorithms
	2.4 Pushdown Automata and Pushdown Algorithms
	2.5 The Ideal Agent
	2.6 Games as Action Systems
	2.7 Cellular Automata
	2.8 A Bit of Physics

