Chapter 2
DNA Methylation and Cell-Type Distribution

E. Andrés Houseman

Abstract Epigenetic processes form the principal mechanisms by which cell
differentiation occurs. Consequently, DNA methylation measurements are strongly
influenced by the DNA methylation profiles of constituent cell types as well as by
their mixing proportions, raising the potential for confounding of direct molecular
associations at single CpG dinucleotides by associations between overall cell-type
distribution with phenotype or exposure. In this chapter we review the literature on
epigenetics and cell mixture; we then present techniques for deconvolution of DNA
methylation measurements, either in the presence or in the absence of reference
data. Finally, we present several data analysis examples.

Keywords Cell composition ¢ Confounding ¢ DMP ¢ DMR ¢ Immune
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2.1 Introduction

In the last decade, numerous published articles have demonstrated associations
between DNA methylation profiles and disease or exposure phenotypes. For
example, DNA methylation profiles measured in blood have been shown to correlate
with ovarian cancer (Teschendorff et al. 2009), bladder cancer (Marsit et al. 2011),
cardiovascular disease (Kim et al. 2010), obesity (Dick et al. 2014), and environ-
mental exposures (Kile et al. 2014; Koestler et al. 2013a; Joubert et al. 2012). These
associations have led to an interest in epigenome-wide association studies (EWAS),
which aim to investigate associations between DNA methylation and health or
exposure phenotypes across the genome (Rakyan et al. 2011a). Many of these
epidemiologic studies have employed the Infinium platforms by Illumina, Inc. (San
Diego, CA): the older HumanMethylation27 (27K) platform, which interrogates
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Fig. 2.1 Mediation by cell composition

27,578 CpG loci, and the newer HumanMethylation450 (450K) platform, which
interrogates 485,412 CpG loci. Both of these platforms measure locus-specific DNA
methylation on an average beta scale, which is confined to the unit interval [0, 1]
and roughly represents the fraction of methylated molecules in the given sample at
the genomic position represented by the locus.

However, DNA methylation, associated with chromatin alterations, is partially
responsible for coordination of gene expression in individual cells (Ji et al. 2010;
Khavari et al. 2010; Natoli 2010). Consequently, normal tissue differentiation and
cellular lineage is regulated by epigenetic mechanisms (Khavari et al. 2010), and
DNA methylation shows substantial variation across tissue types (Christensen et al.
2009) as well as individual cell types, particularly distinct types of leukocytes (Ji et
al. 2010). This understanding has led to a search for differentially methylated regions
(DMRs) that distinguish specific cell lineages with high sensitivity and specificity
(Baron et al. 2006). Figure 2.1 illustrates the consequence of heterogeneity in DNA
methylation profile across cell types as it pertains to epidemiologic analysis of DNA
methylation. In particular, DNA methylation measured in a tissue sample will be
influenced both by cellular heterogeneity and by direct locus-specific phenotype
effects. If the phenotype alters the composition of cells in the sample, then the
total effect of phenotype on measured DNA methylation will be partially mediated
by effects of phenotype on cell composition. For example, if a phenotype alters
the immune system, then DNA methylation measured in blood will register both
the indirect effects of the phenotype on the immune system as well as any direct
effect not mediated by cell composition. When the direct effects are of principal
interest in a study, then the cell-composition effects will represent a confound of the
direct effects if they are not taken into account. This issue has been highlighted
in numerous recent publications (Jaffe and Irizarry 2014; Koestler et al. 2012;
Langevin et al. 2012, 2014; Li et al. 2014).
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2.2 Fundamental Concepts

Much has been written about mediation and confounding, which are interrelated
but distinct concepts (Robins and Greenland 1992; Pearl 2009; VanderWeele 2009).
However, linear analysis is sufficient to untangle direct and mediated effects when
(1) there is no modification of the effect of the independent variable (phenotype) on
dependent variable (DNA methylation) by the mediator (cell composition) and (2)
errors in the measurement of mediator (cell composition) and dependent variable
(DNA methylation) are uncorrelated. Under these assumptions, several techniques
are currently available for analyzing DNA methylation data while accounting for
cellular heterogeneity. All of them assume essentially the following linear model
for m CpG loci measured on n subjects:

Y=BX" + MQ" +E, 2.1)

where Y is an m X n matrix of average beta values, X is an n x d design
matrix of phenotype variables and potential confounders (for a total of d covariates
including an intercept), B is the m x d matrix of regression coefficients representing
direct effects, MQT represents a linear mixture effect, with M an m x k matrix
representing m CpG-specific methylation states for k cell types, & is an n x k
matrix representing subject-specific cell-type distributions (each row representing
the cell-type proportions for a given subject), and E is an m x n matrix of errors
with £ (E) = 0,,x,. Note that the value k is assumed to be known in advance. Note
also that the entries of Y, of M, and of & are assumed to lie in the unit interval, and
that the rows of £ sum to one. In addition, we assume €2 is a random variable that is
potentially associated with X. Although a Dirichlet model would most appropriately
model the rows of 2, we assume the following linear model as a computationally
efficient approximation:

Q=XI+E, 2.2)

where I is a d x k matrix of covariate effects upon cell proportion and E is an n x k
error matrix. Figure 2.1 depicts these quantities in the context of mediation. Note
that Eq. (2.1) explicitly omits interaction between X and . With the additional
assumption that E and E are independent (and independent of X), linear regression
is sufficient for studying the mediation of phenotype effects on DNA methylation
by cell composition. In particular, substituting (2.2) in (2.1),

Y=BX"+MQ"+E=(B+MI'")X" + (ME +E), (2.3)

the total effect of X upon Y is E (Y‘X) = (B + MTI'") X", the direct effect is BXT,

and the mediated, or cell-composition effect, is AXT, where A = MTI'T. Note that
the error term for the total effects model is ME + E, which includes a term that
depends on the cell-type-specific coefficient matrix M.
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In the remainder of this chapter, we present methods for estimating the total,
direct, and cell-composition effects. We present both reference-based methods, that
is, those relying on the availability of an external reference data set for estimating
the matrix M, and reference-free methods, those that do not require such reference
data and treat M as essentially unknown.

2.3 Reference-Based Methods

When € is known through explicitly measured cell counts, then it can be absorbed
into the covariate matrix after deleting one of the cell types (in order to circumvent
over-parameterization of the design matrix); subsequently, simple linear model
methods such as limma (Smyth 2004) can be employed for analysis. For example,
when a single cell type is being analyzed, & = 1,, and cell type can effectively
be ignored. Examples of single-cell-type studies include an analysis of DNA
methylation associations with diabetes in CD144- monocytes (Rakyan et al. 2011b)
as well as associations between DNA methylation and autism in ectodermal cells
(Berko et al. 2014). Alternatively, leukocyte counts may be available through
standard complete blood count (CBC) methods and converted to proportions to
obtain €2, although standard methods will typically provide only coarse categories,
for example, grouping all lymphocyte types together. Generally, finely differentiated
cell counts can be obtained using cell sorting methods such as fluorescence-activated
cell sorting (FACS) or magnetic-activated cell sorting (MACS). DNA methylation
in a community cohort was characterized for peripheral blood mononuclear cells
(PBMCs), accompanied by CBC counts (Lam et al. 2012). Another recent example
demonstrated associations of DNA methylation with depression in postmortem
brains using proportions of neuron and glial cells (Guintivano et al. 2013). Note that
some mRNA expression analyses of blood have incorporated FACS measurements
of individual leukocyte counts (Shen-Orr et al. 2010), but to date there are no major
analyses of DNA methylation data in whole blood or PBMC:s that have incorporated
comprehensive FACS or MACS counts.

In many studies, it may be infeasible to obtain direct measures of cell counts.
Fortunately, DNA methylation measurements themselves may be used to obtain
approximate cell proportion estimates, as long as a reference data set is available
for measuring the cell-type-specific mean methylation for a set of CpG loci that
differentiate the types with a high degree of sensitivity and specificity. We have
referred to such loci as pseudo-DMRs, since they are single locus markers rather
than regions, although they are also commonly known as differentially methylated
positions (DMPs). Interest in the detection of DMRs and DMPs for specific types
of leukocytes has arisen from the study of tumor infiltration by lymphocytes
(Accomando et al. 2012; Wiencke et al. 2012); this, in turn has led to more
comprehensive characterization of genome-wide DNA methylation profiles for
major types of leukocytes. Existing reference sets include an Infinium 27K data
set (Houseman et al. 2012) as well as an Infinium 450K data set (Reinius et al.
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2012). These data sets can be deployed to obtain estimates Q of cell proportions, as

Houseman et al. (2012) have shown. The method is briefly described as follows.
Suppose S is an ordered set of DMP loci for distinguishing k cell types, y?s)

is a DNA methylation measurement on the set S for a purified sample of type

I € {l,...,k}, and E (yfs)) = MS) for a vector u}s) whose elements fall

in the unit interval. If M) = [u(ls) ceees IL;({S)] and y is a vector of DNA

measurements on S for a heterogeneous tissue sample of mixed cell types, type

k
I representing proportion w; > 0 of the tissue sample (Zl_lwl < 1), then
E (yf)) = M® w, where ®" = [wy, ..., wx]. It follows that  can be estimated

2
by minimizing the quantity Hyf) ~MS @ H ; although this problem is easily solved
by computing the least squares estimator for w, slightly better results can be

k
obtained by imposing the natural constraints w; > 0 and Z w; < 1 onto

the solution space. Quadratic programming (Goldfarb and Idnani 1983) can easily
be employed to obtain an estimate @ that obeys these constraints. This cellular
deconvolution method was initially shown to work well in recovering proportions
of artificial blood mixtures (Houseman et al. 2012). Subsequent validation studies
have demonstrated acceptable performance of cellular deconvolution of DNA
methylation data. Comparing estimated proportions of monocytes within PBMC
samples (which lack granulocytes) obtained from a community cohort (Lam et al.
2012) to their corresponding CBC-derived quantities, Koestler et al. (2013b)
measured a root-mean-square-error (RMSE) of approximately 5 percentage points
(Koestler et al. 2013b). In a comprehensive analysis of six donor blood samples with
counts measured using three distinct FACS techniques, Accomando et al. (2014)
estimated a RMSE of about 3.0—4.3 percentage points for six distinct leukocyte
subtypes; when compared with each other, the FACS methods produced RMSE
values of approximately 2 percentage points (i.e., only slightly smaller magnitude)
(Accomando et al. 2014). First popularized in a study of rheumatoid arthritis (Liu
et al. 2013), the method has become a widely adopted method for estimating cell
proportions when individual count data are unavailable.

The method is available in the R/Bioconductor package minfi (function Esti-
mateCellCounts). The minfi library also supports mutual normalization of reference
and target data sets, which leads to some improvement in the estimation of cell
proportions. The R/bioconductor package FlowSorted.Blood.450k encapsulates the
450K leukocyte reference data set published by Reinius et al. (2012); a 27K
leukocyte reference data set is available on Gene Expression Omnibus (GEO),
accession number GSE39981.

Note that M® should represent a reasonably exhaustive characterization of
the cell types comprising the tissue to be analyzed, in that the k profiled types
represent the major portion of each sample (Houseman et al. 2012). Under these

circumstances, the sum Z[_la)/ will typically lie close to 1 for each sample.
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Consequently, when incorporated into the design matrix X of Eq. (2.1) for data
analysis, the matrix @ derived from these measures should omit one of the types,
otherwise the resulting design matrix will exhibit poor conditioning and lead
to unstable estimates. For example, in analyzing whole blood, the granulocyte
proportion might be omitted, and in analyzing PBMC samples, the monocyte
proportion might be omitted.

Note also that the cell-composition term M®T in Eq. (2.1) entails a linear
mixing assumption that is most plausible for measurement scales which correspond
to fractions of cells or molecules. Consequently, cellular deconvolution should
always be performed on the average beta scale instead of a popular alternative,
the M-value scale obtained by logit-transforming the average beta. In addition,
genome-wide application of Eq. (2.1) is likely to produce slightly better fit to
data when beta values are used instead of M-values. However, use of average beta
values in regression analysis is complicated slightly by the non-normal nature of
the error term. For mid-range values, beta values and M-value will covary in an
approximately linear fashion, so that both scales will return similar results for loci
that exhibit great sensitivity to cell composition (i.e., DMPs). An alternative to
applying Eq. (2.1) directly is to remove the cell-composition effects on the beta
scale before implementing genome-wide regression analysis on the M-value scale.
This strategy is consistent with removal of unwanted variability (RUV) (Gagnon-
Bartsch and Speed 2012; Jaffe and Irizarry 2014). In this approach, M is obtained

AT
by fitting the genome-wide DNA methylation data to the equation Y = M2 + E,
each column y of Y is adjusted for cell composition via y4) «— y — M (® — ®)

~ ~T
(where @ is the corresponding column of , ® = n~'& 1, is the average cell
proportion profile), and each resulting adjusted value is logit-transformed to an M-

value, m&“dj) <« log, (max {y;adj), e}) —log, (max {1 - y;adj), 8}), with ¢ a small
value chosen to avoid infinite M-values. Note that centering ® by @ is necessary to
avoid a non-negligible proportion of adjusted values y](."d’) lying outside the unit

interval, as the resulting values of y;adj) will be centered around the average DNA
methylation value.

Finally, we note that associations between X and 2 may be of scientific interest.
Analysis is straightforward when 2 is measured directly. However, when € is
estimated via cellular deconvolution, it is desirable to account for all sources of
variability, including the contribution of measurement error from the reference data
set. Houseman et al. (2012) describe a comprehensive method for conducting such
analysis.

2.4 Reference-Free Methods

Although the method of Houseman et al. (2012) provides an algorithm for estimat-
ing cell proportions £ from DNA methylation data, it requires the existence of a
reference data set. To date, such data sets exist only for blood (Accomando et al.
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2012; Houseman et al. 2012; Reinius et al. 2012) and, to a limited extent, brain
tissue (Guintivano et al. 2013). However, other tissues are of interest in EWAS. For
example, population-based studies of DNA methylation have been published with
DNA methylation measured in placenta (Banister et al. 2011; Suter et al. 2011;
Wilhelm-Benartzi et al. 2012), umbilical cord tissue (Teh et al. 2014), and (with
sparser arrays) buccal swabs (Breton et al. 2009; Kaminsky et al. 2009); no reference
sets currently exist for these and other tissues of interest (e.g., adipose tissue).

To circumvent this problem, Houseman et al. (2014) propose a method for
approximating the 2012 method. This method also assumes Eq. (2.1), but treats the
matrix M as unknown. The method works by first fitting the model for total effects,

Y =B*X" +E*
where B* = B + MI'T and E* = MET + E, as evident from Eq. (2.3). Note that
R=[B*E*|=M[T".E"] + [B.E]. (2.4)

With k%, the number of assumed cell types, chosen in advance by prior biological
knowledge or using a method for estimating the number of factors in a factor-
analytic model [e.g., using random matrix theory (Teschendorff et al. 2011)], the
method associates the largest k singular values of R with cell-composition effects.

Specifically, applying a singular value decomposition (SVD) to R = [ﬁ* E*],

R = UiA V] + UA,V], where U is an orthogonal m x k matrix, U, is an
orthogonal m x (n — k) matrix, UlTUz = Ok x(n—k), V1 is an orthogonal n X k matrix,
V, is an orthogonal n x (n — k) matrix, A is a diagonal k x k matrix, A, is a
diagonal (n — k) x (n — k) matrix, and the two terms separate the k largest singular
values from the n — k smallest ones (i.e., every diagonal element of A is larger
than every diagonal element of A»), it is assumed that M [l"T, ET] = UlAlVlT
and [B,E] = U,A, V. Note that the two terms on the right hand side of Eq. (2.4)
must be orthogonal in order for this identity to hold; to ensure orthogonality it is
sufficient to assume MTE = 0y, and M’B = 0. The former condition is
an essential assumption entailed by the linear regression represented by Eq. (2.1);
the latter assumption, that “indirect” effects lie in a space orthogonal to the cell-
type-specific profiles, represents an unverifiable biological condition also necessary
for the deconvolution method of Houseman et al. (2012), although the Supplement
of the 2012 paper argues that orthogonality will approximately hold if the effects
in B are relatively sparse. Note also that association of the k largest singular values
with cell-composition effects represents another biological assumption, that the cell-
composition effects will dominate the linear associations evident in the array. Under
the assumptions just described, B is obtained by selecting the first d columns of
UzAng. Note that A = B* — B represents the matrix of coefficients that explain
the cell-mediated associations between X and Y, which may be of interest in some
studies.
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Houseman et al. (2014) also propose a method for generating bootstrap samples
from the sampling distribution of B* and B from which standard errors for B* B
and A can be estimated. Briefly, the method generates a bootstrap sample Y(”) of
DNA methylation average beta values as Y® = B*X” + E®, where B* is the
estimated coefficient of total effects and E® is a bootstrap error matrix constructed

element-wise as e( ) = q,(]b) Mi; (1 —[2;j), where [i;; is the element of B*X”

corresponding to the i column and j" row, qub) is the element of the matrix obtained

by sampling with replacement from the columns of Q , each of whose elements
g; were obtained from E* = (&;;) and B*XT as q;; = &%/,/flij (1 — fiyj). The
method factors the error E* element-wise as the product of a mean-dependent
scaling factor ,/[L;; (1 - ﬁ,-j) and a “dispersion” value g;;; this strategy respects
the approximate beta distribution of Y, while simultaneously preserving correlation
across the rows (CpGs). The estimation method, as well as its corresponding
bootstrap generation procedure, is publicly available in an R package entitled
RefFreeEWAS.

The 2014 method is similar to surrogate variable analysis (SVA) (Leek and
Storey 2007; Teschendorff et al. 2011), which uses a factor-analytic decomposition
similar to Eq. (2.1) but applies SVD or independent components analysis (ICA)

to the error term E* rather than R = [ﬁ*, E*], thus potentially missing linear

effects that are explicitly the result of cell composition. It is also similar in spirit
to the recently published Ewasher method (Zou et al. 2014); this method models
the phenotype as a function of methylation and potentially other confounding
covariates, instead of modeling methylation as a function of phenotype and potential
confounders. Specifically, the following model is assumed:

x=pVy; + 278 + m™ Y u +e;, 2.5)

where x is the n x 1 matrix of subject phenotypes (dichotomous or continuous), y;
is the n x 1 matrix of DNA methylation value measured for each at CpG j, Z is
an x d’ matrix of potential confounders for each subject (including an intercept
term), Y is the m x n matrix of standardized DNA methylation values obtained from
Y by standardizing each row (CpG), u is an m x 1 matrix of Gaussian random
effects, each having variance 03 and uncorrelated across entries, €; is an n X 1
matrix of independent errors having variance Gzzi’ and ,3](.Y) and B](.Z) are coefficients
to be estimated. Estimation proceeds by considering the multivariate distribution
of x, whose variance—covariance matrix is X, = m_lofi(Ti( + ai i I,x.. Note

that if Y = MQ7 captures the rescaled cell-composition effects, then Y'Y =
QMTMSZT, which is essentially the contribution to X, that would result from
substituting the explicit cell-composition effect ML for m~/2YTu in Eq. (2.5).
Thus, the term m~/2Y"u captures cell-composition effects in a manner similar to
the approach based on Eq. (2.1).
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Note that these reference-free methods entail strong linearity assumptions and,
ultimately, assumptions about the relationship between measured DNA methylation
and the actual proportion of methylated cytosine molecules among the specific
targeted loci. Consequently, the technical properties of the assay to be used should
be considered carefully, and analysis should be preceded by the execution of a pre-
processing pipeline that results in DNA measurements that are as comparable as
possible across loci. For example, use of the popular 450K assay should entail
proper normalization (Marabita et al. 2013), alignment of the biochemically distinct
Type I and Type II probes (Dedeurwaerder et al. 201 1; Teschendorff et al. 2013), and
removal of loci whose probes contain common variants or cross-hybridize across the
genome (Chen et al. 2013).

2.5 Data Examples

Several published analyses of DNA methylation data have employed the methods
described above to adjust for heterogeneity in cell composition. Guintivano et al.
(2014) incorporated blood count data to adjust for cellular heterogeneity in asso-
ciation between DNA methylation measured in blood and postpartum depression
(Guintivano et al. 2014). Liu et al. (2013) published the first analysis that employed
the Houseman et al. (2012) method of estimating cell proportions from DNA
methylation data, demonstrating marked attenuation of significance in association
of DNA methylation measured in blood with rheumatoid arthritis after adjusting
for estimated cell proportions (Liu et al. 2013). Similarly, in a perinatal study of
arsenic exposure in Bangladesh, Kile et al.(2014) demonstrated marked attenuation
of significance in association of DNA methylation measured in cord blood with
ingestion of inorganic arsenic via drinking water after adjusting for cell proportions,
additionally suggesting that arsenic exposure could alter the proportion of CD4+4
and CD8+ T lymphocytes (Kile et al. 2014). Koestler et al. (2013a, b) demonstrated
association of cord blood methylation and urinary inorganic arsenic concentration
after adjusting for cell proportion (Koestler et al. 2013a). Finally, Jaffe and Irizarry
(2014) employed several methods including the Houseman et al. (2012) method
to demonstrate that the commonly acknowledged association between age and
DNA methylation can be explained in large part by age-related changes in cell
composition (Jaffe and Irizarry 2014).

Using two data sets, we briefly compare and contrast some of the methods
described in this chapter: the community cohort data published by Lam et al. (2012)
and re-analyzed by Koestler et al. (2013a, b), and the rheumatoid arthritis data set
published by Liu et al. (2013) and re-analyzed by Houseman et al. (2014) and Zou
et al. (2014). See Houseman et al. (2014) for additional details.

For 26,486 autosomal CpG sites assayed by the 27K array, Fig. 2.2 shows
quantile-quantile (QQ) plots on a logarithmic scale comparing a uniform distribu-
tion against nominal p-values obtained using several different methods: unadjusted
(“Unad;j”, representing total effect B*), reference-based [“Ref”, representing direct
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Fig. 2.2 Analysis of DNA
methylation and IL-6
response bioassay in a
community cohort

“log10{nominal p valug)

-log10{uniform quantile)

effect B obtained by applying the method of (Houseman et al. 2012), to obtain cell
proportion estimates §], a direct effect based on monocyte/lymphocyte proportions
measured by CBC (“Measured”), a direct effect estimate based on SVA (“SVA”)
with k = 11 assumed surrogate variables, and a direct effect estimate based on
the reference-free approach of Houseman et al. (2014) with k = 10 (see the
original article for details on the choice of k). Each p-value represents significance of
association between DNA methylation in PBMCs measured on an average beta scale
and IL-6 response to phorbol-12-myristate-13-acetatein. All methods except the
unadjusted method result in p-values that are effectively uniform (i.e., characteristic
of a null effect). This suggests that there may be a strong total effect of the IL-6
phenotype on DNA methylation, but that this effect is explained by alterations in
monocyte/lymphocyte proportions and accounted for using the reference-based and
SVA methods. Note that Fig. 2.2 suggests a small number of CpGs with slightly
elevated significance for the reference-free method; however, the distribution of p-
values across the 26,486 CpGs is consistent with a uniform distribution, as Fig. 2.3
implies. Figure 2.3 shows the QQ plots for unadjusted and reference-free methods,
superimposed upon 95 % probability bands representing their corresponding null
distributions obtained from 1,000 bootstrap estimates using a method suggested in
the supplementary material of Houseman et al. (2014). This plot suggests significant
modification of total DNA methylation by the IL-6 phenotype, but no significant
alteration after accounting for covariation in monocytes. Figure 2.4 compares
significance of the A coefficients from the reference-free method with significance
of the monocyte coefficients from the linear model using only the measured
monocyte proportions. There is high concordance in significance between the two
methods; by Fisher’s exact test, concordance of p-values less than 0.001 is quite high
(oddsratio =47.5,95 % confidence interval: 21.1-106, Fisher p < 10719). Thus, this
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Fig. 2.3 Analysis of DNA
methylation and IL-6 -
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Fig. 2.4 Analysis of DNA -
methylation and IL-6 °
response bioassay in a
community cohort:
comparison of significance of
cell-composition effects from
reference-free methods with
significance of effects of
known monocyte proportions

-log10({menocyte p value)
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analysis demonstrates how A coefficients can be used to identify DMPs for distinct
cell types within a sample. This strategy was used in a recent article evaluating the
effect of cellular heterogeneity on breast tissue (Houseman and Ince 2014).

For 384,410 autosomal CpG sites assayed by the 450K array and having probes
free of common variants, Fig. 2.5 shows QQ plots on a logarithmic scale comparing
a uniform distribution against nominal p-values obtained using the same methods
as for Fig. 2.2, except for the “Measured” method since measured cell counts were
unavailable for this data set. Additionally, for SVA, k = 53 surrogate variables were
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Fig. 2.5 Analysis of DNA
methylation and rheumatoid
arthritis 8 A
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assumed, and for the reference-based method, k = 37 cell types were assumed;
these values were based on application of appropriate dimension-estimating algo-
rithms (Houseman et al. 2014). Each p-value represents significance of association
between rheumatoid arthritis case status and DNA methylation in whole blood
measured on an average beta scale. The unadjusted and SVA-adjusted methods
result in QQ plots reflecting strong significance; the QQ plot from the reference-
based approach reflects attenuated but still moderately strong significance; and
the reference-free approach reflects null association. As previously suggested
(Houseman et al. 2014), the reference-free approach may be capturing subtle shifts
in proportions of cell types not profiled in the reference data set used for the
reference-based adjustment. Note that while SVA was adequate for cell-composition
adjustment in the previous analysis, it was insufficient for the present one.

2.6 Conclusions

Heterogeneity in cell type is an important consideration in the analysis of DNA
methylation measured from complex tissues. In many applications, the phenotype of
interest may alter the composition of cell types within the target tissue, thus altering
DNA methylation profile independently of specific molecular alterations that are not
mediated by cell type. Therefore, proportions of each cell type should be included
in models for phenotypic effects of DNA methylation. In the best-case scenario,
proportions of each cell type will be available for each sample. However, since the
cell sorting techniques necessary for measuring these proportions can be costly,
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many studies lack these measurements. In such a situation, the cell proportions
can be estimated directly from DNA methylation data if a reference data set exists
for the cell types that constitute the target tissue. If no such reference data set
exists, recently published reference-free methods can be used to account for cellular
heterogeneity when estimating phenotype associations with DNA methylation,
although more work is needed to validate these new methods.
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