
Lecture 2: Elements of the History
of Quantum Mechanics II

1 Birth of Quantum Mechanics 3: Born, Heisenberg, Jordan

We mentioned in chapter “Lecture 1: Elements of the History of Quantum
Mechanics I” that a line of research was centered on finding relations between the
structure of the energy levels and the frequency of the emitted radiation and on
describing the scattering from a dipole. A preliminary theoretical analysis of the
polarization problem was done by van Velt [3, 23].

Later Born [2] made a more detailed study with the purpose of presenting the
results in a form that may give suggestions on how to make the transition from
Classical Mechanics to a New Mechanics. In this paperBorn notices that a completely
integrable system (such as the Coulomb system) when presented in action-angle
variables appears as a system of harmonic oscillators. By means of perturbation
theory (developed by Hamilton) this description can be carried over to the same
system in interaction with the electromagnetic field. If one describes these virtual
oscillators according to Bohr’s rules, their frequencies must satisfy

ν(n, n′) = 1

h
[E(n) − E(n′)] (1)

where h is Planck’s constant and E(n) is the energy of the nth state.
At the conclusions of this fundamental paper Born outlines the guiding lines

of the search for a new mechanics and predicts that in this new mechanics finite
difference equations will substitute the ordinary differential equations of the old
mechanics. Strictly speaking Born’s suggestion proved to be incorrect, but a trace
of finite difference scheme can be seen in the formulation of the theory in terms of
Hilbert space operators (infinite matrices).

Bohr’s correspondence principle states that if k and n are very large and |k−n|
k

is very small, formula (Eq. (13) in chapter “Lecture 1: Elements of the History of
QuantumMechanics I”) for the frequency of the radiation emitted or absorbed in the
transition between atomic levels must have a classical analogue [1, 3]. According to
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Bohr’s correspondence principle the parameters should be determined by comparison
with the classical theory.

Each stationary state σn of the atom is regarded by Born as equivalent to a
collection of harmonic oscillators (virtual resonators) with frequency νn;m, m ∈ N .

One has νn;m = K |νn − νm | with a universal constant K . Remark that harmonics do
not appear in general because En−Em

En−Eh
, k �= m are not in general rational numbers.

This avoids in perturbation theory the problem of the small denominators that makes
perturbation analysis difficult in Classical Hamiltonian Mechanics.

The interaction with an electromagnetic field results in a change in frequencies
in the oscillators.

It is convenient at this point to recall some elements of the description in classical
mechanics of the interaction between an electric dipole and the electromagnetic field,
of which Eq. (14) is an approximation in the case of damped harmonic oscillator. The
problem can be stated as follows. A completely integrable system with N degrees of
freedom is described in action-angle variables by a hamiltonian H0 = F(J ) where
J ≡ {J1, . . . JN )} are the action variables. We denote by θk, k = 1, . . . N the
corresponding angular variables.

We set

ωk = 1

2π
|νk |, νk = ∂H0

∂ Jk
(2)

In hamiltonian mechanics the interaction of an electric dipole with the electric field
is described by an interaction hamiltonian Hint ≡ P · E(t), P ∈ R3, where P is
the total momentum of the system and E(t) is the electric field. We denote by

P0 =
∑

ki ∈N , i=1,...N

Ak1,..kn (J )e2iπ(k1ω1+···kN ωN ) (3)

the electric dipole of the unperturbed system.
We assume that the field isweak (in order to apply perturbation theory) and express

this by multiplying the interaction term by a small factor ε to keep track of the order
of approximation. The interaction hamiltonian is then

Hint = εP0 · E(t) = ε
∑

ki

E(t) · Ak1,..kN (J )e{2iπ(ω1k1+···+ωN kN )} (4)

To determine (to first order in perturbation theory) the dipole momentum of the
system one performs a canonical transformation Jk, θk → J ε

k , θε
k chosen so that the

total hamiltonian H ε ≡ H0 + εHint is written in the new canonical variables as

H0(J ) + εHint (J, θ) = Hε(J ε) + ε2K (J ε, θε, ε) (5)

where K is a suitable function, which is assumed to be regular.
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By Hamilton’s perturbation theory the function H ε in the new canonical variables
takes the form

H ε(J ε · θε) = H0(J ε) + E · p1(J ε) + E · p0(J ε) + O(ε2) (6)

where for each (small) value of ε, J ε ≡ {J ε
1 , . . . J ε

N } are a new system of variables
in involution and p0(J ε) is the average of p0 over the angles θk . Notice that H ε in
(6) depends on θε at order ε2 only.

The term E · p1(J ε) + E · p0(J ε) represent the effective energy of the system
(to first order in ε) and therefore

p1(J ε) + p0(J ε) (7)

is the effective electric dipole of the system (to first order in ε). Notice that (6)
describes the system in term of adiabatic invariants (the action variables).

If E(t) is mono-cromatic with frequency ν0 the average of the function H(J, θ)
over the torus is zero. The canonical transformation which produces (6) is obtained
through a generating function S(θ, J ε, ε) by setting

θε
k ≡ ∂S

∂ Jk
, J ε

k ≡ ∂S

∂θk
(8)

The function S is a solution of the Hamilton-Jacobi equation to first order in ε. The
new momentum is to first order in ε

p0 + εp1; p1 =
∑

k

[
∂ p0
∂ Jk

∂S

∂ωk
− ∂ p0

∂ωk

∂S

∂ Jk

]
(9)

Using (8), (9)

p1 = −E cos 2πν0t
∑

k

∑

ν·τ>0

τk
∂

∂ Jk

(
2|Aτ |2 ν · τ

(ν · τ )2 − ν20

)
(10)

where νk = ∂H0
∂ J k are the frequencies of the oscillators (for each value of k the index

τk runs over the integers.
A hint on the structure of the new mechanics should be obtained comparing (10)

with the empirical formula obtained by Kramers.
By construction the sequence {En} is increasing and has a limit which we

conventionally take to be zero (it is the ionization threshold). For n large and n−m of
order one Em − En is infinitesimal with respect to En . The correspondence principle
states that near the ionization threshold the quantum laws should be comparable to
the classical laws. Therefore the parameters should be chosen through a comparison
of (10) with Kramer’s empirical formula [17].
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The correspondence rule that emerges by the analysis by Born is

ν · τ → νn,m, J → nh (11)

The second arrow in (11) is Bohr’s correspondence principle.
To understand better the role of the first arrow notice that one can envisage an

artificial adiabatic process under which the system goes from the state n to the state
m through (fictitious) very small intermediate steps. One has then

ν · τ =
∑

k

∂H0

∂ Jk
τk ∼= 1

h

∑

k

∂H0

∂ Jk

∂ Jk

∂μ
= 1

h

∂H0

∂μ
(12)

This approximation is better justified if μ is small and therefore if n − m is of order
of magnitude αh where α is very small.

On the other hand, by Einstein’s rule, if m = n + τ one has

νm,n = 1

h
|E(n + τ ) − E(n)| (13)

Comparing (12) with (13) one sees that the operation performed in passing from the
classical rules to the quantum ones consists in substituting differentials with finite
difference quotients (the finite differences being of order h). This allows the use of
the correspondence principle to obtain a relation between the classical and quantum
coefficients.

Consider the case τ
n << 1. Then

∑

k

τk
∂Φ

∂ Jk
→

∫ 1

0
dμ

∑

k

τk
∂Φ

∂ Jk
(14)

FromBohr’s quantization rule, if τ
n is sufficiently small (and therefore τh

J sufficiently
small) one can consider τkdμ � d Jk and therefore

∫ 1

0

∑

k

∂Φ

∂ Jk
τkdμ �

∫ 1

0

∑

k

∂Φ

∂ Jk
d Jk = 1

h
(Φ(n + τ ) − Φ(n)) (15)

This identification must hold for any quantum observable in the limit τ
n → 0. More-

over, since |Aτ (J )|2 = Aτ (J )A−τ (J ) and A−τ (J ) = A∗
τ (J ) one must have

|Aτ (J )|2 ≡ Γ (n, m) = Γ (m, n), m = n + τ (16)

Performing in (10) the substitutions indicated in (13)–(15) and recalling the definition
of Γ in (16) one obtains
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p1 = E cos(2πν0t)
1

h

∑

τk>0

[2Γ (n + τ , n)νn+τ ,n

ν2n+τ ,n − ν20
− 2Γn,n−τ νn,n−τ

ν2n,n−τ − ν20
] (17)

This expression must be compared with Kramer’s empirical rule (Eq. (16) in
Lecture 1). There is a fair agreement if one chooses

− e2

4π2m
fn,m = 1

h
2Γ (n, m)νn,m, Γ (n, m) ≡ |Am−n|2 (18)

It follows from (18) that the knowledge of the emission and absorption frequencies
is not sufficient to determine the matrix elements An,m . Only their absolute values
are determined; to determine the phases it is necessary to go further in the order of
approximation or to study a problem in which the coupling to the electric field has
a different expression (e.g. Heisenberg approximated the atom by an anharmonic
oscillator).

Recall that Aτ (J ) are the elements of the series expansion of the momenta pk

as functions of the angles θk . Therefore in accordance with Kramers’s formula in
quantum mechanics the momentum is represented by a quantity which depends on
two indices m and n, namely by a matrix. When mk = nk + hτk and τk is small
with respect to nk the quantity An+hτk ,n plays the role of Aτ (J ) in the classical case,
where J is the set of action variables associated to the state n.

2 Birth of Quantum Mechanics 4. Heisenberg
and the Algebra of Matrices

The next step in the construction of the new mechanics was taken byW. Heisenberg.
He analyzed the connections among the quantities of type An,m associated to classical
quantities other that momentum. These could be obtained studying other types of
interactions with the electromagnetic field e.g. making use of interactions in which
the classical form of the interaction hamiltonian is of the type x · E (e.g. the formulas
for the polarization in a slowly varying electric field).

In this way one can determine the matrices which the new mechanics associates
to the observable position and more generally to observables that in hamiltonian
mechanics are described by polynomials in the canonical variables position and
momentum.

Heisenberg [10] did a detailed analysis of the corresponding formulas and in
particular of those that refer to the anomalous Zeeman effect, which is described in
classical theory by the equation ẍ = −ω2x −ε x4. This led to establish the following
correspondence (to the left the classical case, to the right the quantum case)

ν(nτ ) ≡ τν(n) ≡ τ
1

h

∂E

∂n
→ νn,n−τ = 1

h
(E(n) − E(n − τ ))

νn,τ1 + νn,τ2 = νn,τ1+τ2 → νn,n−τ + νn−τ ,n−τ−τ1 = νn,n−τ−τ1 (19)
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On this basis Heisenberg stated that the correspondence

aτ (n) eit (ω(n)·τ ) → An,n−τ eitω(n,n−τ ) (20)

holds for any classical observable a which can be expressed in the form a =∑
τ aτ (n)eit (ω(n)·τ ).

Heisenberg found the following relation between the quantum representatives â, b̂
of the classical observables a, b

b̂n,n−τ =
∑

α

ân,n−αân−α,n−τ (21)

This is to be compared to the classical case

(a2)(n, t) =
∑

α

a2
β(n)eit (ω(n)·β) =

∑

α,β

aα(n)aβ−α(n)eit[(ω(n)·α)+(ω(n)·(β−α)] (22)

Remark that (21) is the product rule for matrices, extended to the case of matrices of
infinite rank.

This analysis was summarized in two papers by Born and Jordan [4] and by
Born et al. [5]. The latter paper is nicknamed the three men’s work. In this paper
the Authors state that, rather then adapting the formalism of Classical Mechanics
in an artificial way, an organic description of a new theory is established and a
mathematically coherent theory is presented which describes the properties which
is characteristic of quantum phenomena and at the same time shows a remarkable
analogy with Classical Mechanics.

In this [5] the Authors speak for the first time explicitly of a symbolic quantum
geometry which tends for small values of h to the visualizable geometry of Classical
Mechanics. The Authors also speak of relations among observables and state that
any observable can be represented by an infinite matrix (i.e. a linear operator in an
infinite dimensional Hilbert space). The Authors stress that these matrices are not of
the same type as those which Hilbert was studying in the same years (at that time
both the Authors and D. Hilbert were working in Göttingen). The operators that
Hilbert was studying are now called Hilbert-Schmidt operators; we will verify that
the operators which represent position and momentum cannot be of Hilbert-Schmidt
type.

In [4, 5] the Authors develop the quantum matrix calculus, establish perturbation
theory in Quantum Mechanics (in strict analogy with hamiltonian perturbation the-
ory) and develop in detail the formalism up to second order. The example treated in
more detail is that of the anharmonic oscillator with a fourth order anharmonic term.
The results were in good agreement with experimental data. It is curious to observe
that in this case the perturbation series does not converge. The series is however
asymptotic, therefore for small perturbations the analysis to second order gives a
satisfactory answer.
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The contents of these important papers establish the essential part of the present
day algebraic-axiomatic formulation of Quantum Mechanics. One can evidence

• the use of methods of simbolic differentiation that (in a present days language)
substitutes the vector field of Classical Mechanics with the algebraic expression
commutator of two matrices. In this respect a special role is taken by the matrices
q̂k , p̂k which are associated to the coordinates in phase space.

• the writing of the equations in the form

dq̂k

dt
= i[Ĥ , q̂k] d p̂k

dt
= i[Ĥ , p̂k] k = 1, . . . N (23)

where the matrix Ĥ describes the interactions present in the system and N is the
number of degrees of freedom of the classical system.

• the proof that the Eq. (23) are (formally) variational equation for the functional

∫
[( p̂, q̂) − Ĥ(q̂, p̂)]dqdp q = {q1, . . . qN } p = {pi , . . . pn}

(if the definition of integral is properly interpreted).
• the demonstration that the quantum counterpart of

1 = 2π
∑

τ

{qh
τ , ph

τ }, ph
τ ≡ ∇τ (q

k
τ ) (24)

(where {q, p} denotes Poisson brackets) is the identity

[ p̂k, q̂h] = h

2iπ
δk,h I (25)

where I is the (infinite dimensional) identity matrix.

Still it should be remarked that the other identities

[ p̂k, p̂h] = [q̂k, q̂h] = 0, k �= h (26)

is postulated by Born, Heisenberg and Jordan without strictly convincing arguments.
From this brief analysis it is clear that in the new mechanics a special role is

reserved to infinite matrices q̂k, p̂h which satisfy, at least formally, the commutation
relations

[q̂k, p̂h] = i�δh,k I, h, k = 1 . . . N � = h

2π
(27)

all other commutators being set equal to zero.
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Notice that in view of (27) the matrices that appear in quantum mechanics are
complex valued. We shall see that the natural space for their action is the linear space
of sequences of complex numbers φ ≡ {cn,m, m ∈ Z} such that∑∞

m=1 |cn,m |2 = 1.
From (2) follow Heisenberg’s uncertainty relations i.e. that there is no basis in

which the matrices q̂k and p̂k can be simultaneously diagonalized (we shall see later
a more precise statement).

Later we shall see that the context of the theory led to interpret |ck |2 as the
probability that system be in the kth (atomic) state.

It follows that
∑ |ck |2 = 1. If one endows the linear space with the scalar product

(φ1,φ2) ≡
∑

k

(c1k )
∗ c2k (28)

the space becomes the Hilbert space l2(N ).
We shall see that in order to represent observable quantities the matrices must

have real eigenvalues. This forces these matrices to be hermitian. In fact a stronger
requirement must be satisfied, i.e. acting on l2(N ) they must be self-adjoint (in the
course of these lecture we will explain the difference).

A relevant contribution to the success of the new Quantum Mechanics was the
analysis made by Pauli [20] of the spectrum of the Hydrogen atom using only the
algebraic rules of matrix mechanics, i.e. only the commutation relations between the
operators (matrices) obtained by using the algebraic rules for the generators of the
rotation group and the Runge-Lenz vector (which are constants of motion) for fixed
values of the hamiltonian. We shall sketch the analysis of Pauli at the end of this
lecture and give more details in chapter “Lecture 18: Weyl’s Criterium, Hydrogen
and Helium Atoms”.

The analogy of the new formalism with hamiltonian Dynamics permits also a
description in the new theory of the interactions of particles in space, in particular
scattering. In the same way as Pauli did for the hydrogen atom one can use the
algebraic rules of matrix mechanics to describe Rutherford’s scattering by an atomic
nucleus.

3 Birth of Quantum Mechanics 5. Born’s Postulate

A very important step in the formulation of Quantum Mechanics was taken by
M. Born. He noticed that all waves corresponding to atomic states were square
integrable while in classical mechanics one has integrability of the (real valued)
distribution of charge, masses etc.

This suggests that |φ(x)|2 have a role similar to density. Since the particle is not a
fluid Max Born assumed that the real positive function |φ(x)|2 represents a density
of probability i.e. a probability density.

http://dx.doi.org/10.2991/978-94-6239-118-5_18
http://dx.doi.org/10.2991/978-94-6239-118-5_18
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In particular, if one performs a measurement of position,
∫
Ω

|φ(x)|2dx is the
probability that the particle be found in Ω. It follows that

∫

R3
F(x)|φ(x)|2dx (29)

gives the average of the results that are obtained measuring the observable F(x) in
a state described by φ.

In the sameway, according toBorn, if φ̂(p) is the Fourier transform ofφ, the quan-
tity |φ̂(p)|2 represents the probability density that, if one measures the momentum
of the particle, the integral

∫

R3
G(p)|φ̂(p)|2dp (30)

gives the average result that one obtains making a measurement of the observable
G(p) in a state described by φ.

In the Hilbert space terminology, Born’s postulate takes the form

F̄φ = (φ, F(x)φ), Ḡφ = (φ̂, G( p̂)φ̂) (31)

and can be extended to any other quantum observable if one were able to associate
to any observable a an operator A. The mean value of a in the state φ will then be
āφ = (φ, Aφ). In order to obtain real numbers the operator A must symmetric.

4 Birth of Quantum Mechanics 6. Pauli; Spin, Statistics

Returning now to Schrödinger’s formulation of Quantum Mechanics we remark the
solution to evolution equation

i�
∂φ

∂t
= Hφ (32)

where φ belongs to a complex Hilbert space H and H is a suitable operator is (at
least formally)

φ(t) = e−i t
�

H φ(0) (33)

By Born’s postulate the map φ(0) → φ(t) must be unitary and this implies that the
operator H is self-adjoint (we will explain later the difference between “self-adjoint”
and “closed and symmetric”; in the finite-dimensional case there is no difference).

Moreover Born’s postulate implies the wave functions that differ by a constant
phase represent the same state. This property implies that symmetries of the system
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under a group G of transformations are described by projective representations of
G in the Hilbert space. An important example is symmetry under rotations and the
introduction of the spin.

To account for the hyperfine structure of the spectrum of the atoms, in particular
of the helium atom, Pauli [15, 16] postulated the existence of particles of spin 1

2 ,

introducing thereby the spin, a quantity extraneous to Classical Mechanics.
The wave function of a particles of spin 1

2 transforms under rotations according
to a faithful representation of the SU2 group (which is a double covering of the rota-
tion group) acting in a two-dimensional complex Hilbert space. This is a projective
representation of the rotation group. It is by definition a spinor. The name spin is
somewhat connected with spinning, i.e. set something in rotation. The notation 1

2 has
its origin in the fact that the product of two two-dimensional representations of SU2
contains the (real) vector representation of the rotation group which corresponds to
angular momentum one. Therefore in some sense these particles have half unit of
angular momentum.

The presence of spin doubles the number of atomic levels, and the coupling of
spin degree of freedom with the magnetic field accounts for a small difference in
energy between the two levels in a pair, i.e. for the hyperfine structure of the emission
lines.

The doubling of the number of degrees of freedom has an another important
consequence.

Consider

H ≡ L2(R3) × C2, Φ ∈ H ≡ {φ1,φ2} φi ∈ L2(R3) (34)

as a Hilbert space with scalar product

(φk,φh) =
∫

φ̄k(x) · φh(x)dx k, h = 1, 2 (35)

In this space which is isomorphic to L2(R) ⊗ C2 one can define, following Pauli, a
first order differential operator ∇̃ whose “square” is minus the Laplacian times the
identity. It is defined by the matrix-value differential operator

∇̃Φ =
3∑

h=1

σh∇Φ (36)

where the 2 × 2 hermitian matrices σi (Pauli matrices) are such that

[σkσh] = iεk,h, jσ j , k, h, j = 1, 2, 3 (37)

Here ε is the Ricci symbol, taking value zero if two of the indices are equal, plus
one if the permutation is even and minus one if the permutation is odd. One has
T r(σk) = 0 ∀k (the matrices σk have trace zero).
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It is also easy to verify that

(∇̃)∗∇̃ = −Δ × I (38)

Therefore the operator ∇̃ deserves the name of “square root” of minus the Laplacian
(notice that theLaplacian is a negative operator as one sees takingFourier transforms).

Notice now that from (38) it follows that the solution of the equation

i
∂Φ(t, x)

∂t
= (−Δ × I )Φ(t, x) φ ∈ L2(R3) ⊗ C2 (39)

is a spinor with components that satisfy the free Schrödinger equation.
In the interacting case, one distinguishes between interaction with the electro-

magnetic field and other type of interactions. As in the classical case, the interaction
with the electromagnetic field is described by adding a vector potential A to the
momentum and a scalar term (electrostatic potential) to the potential.

In the Schrödinger equation this results in substituting i∇̃ with i∇̃ − A(t, x) × I
(recall that i∇ is a symmetric operator) and adding a term U (t, x) to the interaction
potential.

Therefore Eq. (39) becomes

i
∂Φ

∂t
= (i∇̃ + A × I )2Φ(t, x) + V (x)Φ(t, x) (40)

for some potential V (that includes the electrostatic potential).
Another very important consequence of the fact that wave function which differ

only by a constant phase represent the same state is the possibility to introduce the
statistics of identical particles. The (elementary) particles are subdivided in two dis-
tinct categories: that of bosons for which the permutation of the indices of identical
particles does not alter the wave function (Bose-Einstein statistics) and that of fermi-
ons in which this operation multiplies the wave function by a factor−1 (Fermi-Dirac
statistics).

It follows that the wave function of a state which describes two identical fermions
cannot be the product of the corresponding wave function: two fermions cannot be in
the same state (Pauli exclusion principle) [16]. This is at the basis of the properties of
the spectra of atoms and molecules and is also responsible for the stability of matter.

To the contrary the wave function ψ(x1, . . . xN ) of any number of bosons may be
the product of the same wave function, i.e.

ψ(x1, . . . xN ) = φ(x1) · · · φ(xN ) (41)

i.e. two identical bosons are allowed to occupy the same state.
This is at the root of the properties of the black-body radiations if one assumes

that the photons satisfy the Bose-Einstein statistics; it also at the root of the Bose-
Einstein condensation, a phenomenon predicted by Bose and Einstein and observed
experimentally only in recent years.
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The ability to account in a simple way for phenomena which don’t have a classical
counterpart has contributed to the success of Quantum Mechanics.

Notice that it is a matter of fact that in nature the wave function of a bosons
transform under rotation according to a representation of the rotation group while
the wave function of a fermion transforms according to a representation of SU (2).

Notice that there is a strict correspondence between the symmetry properties
under exchange of indices and the behavior under the rotation group. This fact has no
explanation within non-relativistic QuantumMechanics although is true that only in
the case of particles with spin 1

2 one is naturally led to use a Hilbert space that admits
a non-trivial representation of the permutation group. In the relativistic Quantum
Field Theory the connection between spin and statistics is a consequence of locality
and positivity of energy.

5 Further Developments: Dirac, Heisenberg, Pauli,
Jordan, von Neumann

Soon after the proposals ofWaveMechanics by Schrödinger and ofmatrixmechanics
by Born, Heisenberg and Jordan, the equivalence, at least at a formal level, of the two
formulations was noticed by Schrödinger [21], Eckart [9], Jordan [13], Lademburg
[18], Pauli [19], Dirac [6].

It is indeed easy to verify that the canonical commutation relations (27) are
satisfied (at least formally) by operators that act on spaces of function on L2(Rn) as
follows

q̂kψ(x) ≡ xkψ(x), p̂k ≡ −i�
∂ψ(x)

∂xk
k = 1 . . . n (42)

Notice that the operator −i�∂ψ(x)
∂xk

has as (generalized) eigenvectors the de Broglie’s
states of definite values of momentum. From this point of view the indeterminacy
relations between position and momentum, justified by Heisenberg considering vir-
tual experiments, is a consequence of the properties of the Fourier transform.

The similarity between the formulation of dynamics in Hamiltonian Mechanics
and in Quantum Mechanics has its roots in the fact that the basic elements of the
two formalisms have the same algebraic structure. If the hamiltonian in the classical
case is taken to be Hclass(q, p) the evolution of the observables is given by

d Aclass

dt
= {Aclass, Hclass} (43)

where { f, g} is Poisson bracket.
Formally the solution of the Schrödinger equation i� dφ

dt = Hφ is φ(t) = e−i t H ψ.

By duality it follows that the evolution of the observables Â (operators in the Hilbert
space in which the system is described) is described by the equation
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d Â

dt
= i[ Â, H ] (44)

where [A1, A2] ≡ A1A2 − A2A1 is the commutator of the matrices A1, A2.

The operation on the right hand side in (43) (which acts on functions on phase
space) and that in (44) (which acts on bounded operators in a complex Hilbert space)
have the same algebraic structure: they are ∗-derivations, i.e. the commute with
taking adjoints, satisfy Leibnitz’s rule and Jacobi’s identity. Notice that in Quantum
Mechanics the imaginary unit i takes the role of the symplectic structure J (recall
that J is the imaginary unit in the presentation of the symplectic structure as complex
structure). This algebraic homeomorphism was particularly emphasized by P. Dirac.

Soon after the formulation of Matrix Mechanics P. Dirac, who had become aware
of those results without probably knowing many details, develops the Quantum
Algebra [7]. In this very important paper Dirac introduces explicitly the terms
Quantum Algebra,Quantum Differentiation,Quantum Poisson Brackets and remarks
that the relation between Hamiltonian Mechanics and Quantum Mechanics lies in
the isomorphism of the underlying algebraic structures.

Still, same care has to be taken in exploiting this relation because the algebra of
functions on phase space is well defined while the algebra of unbounded operators
in a Hilbert space must be treated with care. This leads to some difficulties if one
attempts to formulate precisely the correspondence between the two theories.

6 Abstract Formulation

The formalism of Quantum Mechanics was later described in more mathematical
terms by von Neumann [22], without restriction to the quantization of the canonical
variables and connecting the formalism to the theory of algebras of operators in a
(separable)Hilbert space.Very important contributions in this directionweremade by
A. Weyl; these Authors proved that, under suitable assumption, all representations
of of the canonical commutation relations are unitary equivalent. Later in these
Lectures we will come back to this point and make more precise the statement of
unitary equivalence.

Research on these more abstract aspects of QuantumMechanics have led to major
developments in the theory of C∗-algebras and of partial differential equations. It is
safe to say that the main progress in these fields came through deepening the answers
to questions that arise in Quantum Mechanics.

The exploitation of the structure of QuantumMechanics and the need to refine the
mathematical instruments led quickly to a distinction between researches on Quan-
tum Mechanics: those with primary interest in the mathematical aspects and those
with main interest in the properties of specific systems: atoms, molecules, crystals,
semiconductors. The analysis of these systems have an independent mathematical
interest and have greatly contributed to the field of Quantum Chemistry and Solid
State Theory.
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The first line of research has led to an axiomatic formulation of the theory and has
laid the bases for the mathematical treatment of systems with infinitely many degrees
of freedom (Quantum Field Theory, Algebraic Quantum Theory and Quantum
Statistical Mechanics). This line of research favors in general algebraic structures.

The second line of research uses mostly Schrödinger’s representation, and there-
fore itsmathematics ismostly in the field of functional analysis and partial differential
equations. This line of research benefits greatly from the visualization associated to
the use of configuration space. The extraordinary success of Quantum Mechanics in
the field of advanced technology comes from this line of research.

Both lines of research have put little emphasis on conceptual problems, e.g. on the
theory of measurement, which is considered trivially solved in Classical Mechanics
and is up to now far from being solved in Quantum Mechanics. We shall come back
to this point in chapter “Lecture 4: Entanglement, Decoherence, Bell’s Inequalities,
Alternative Theories”.

7 Quantum Field Theory

Soon after the writing of Quantum Mechanics in quantum canonical variables, the
structurewas extended, at least formally, to systemwith an infinite number of degrees
of freedom by Heisenberg and Pauli [11], Jordan and Pauli [15], and by Dirac [7].

The extension was naturally accomplished by choosing a basis of functions in
the Hilbert space L2(R3) and promoting the functions in the basis chosen to be
“quantum coordinates” satisfying Heisenberg commutation relations. A natural field
of application is given by theMaxwell equations (quantum electrodynamics) and the
Klein-Gordon equation (particle physics). Classically these systems are described by
P.D.E. (partial differential equations) with a natural symplectic structure. The choice
of a basis of functions fk(t, x) turns this formalism into a system of differential
equation in infinite dimension. These equations can bewritten, introducing a (formal)
symplectic form, as Hamilton equations for an infinite set of harmonic oscillators.

One can quantize the system, at least formally, selecting a basis in L2(R3) and
introducing quantum coordinates q̂k, p̂k associated to the elements of the basis cho-
sen. One can then define quantum fields φ(t, x), π(t, x) by

q̂k ≡
∫

φ(t, x) fk(x)d3x, p̂k ≡
∫

π(t, x) fk(x)d3x (45)

The basis can be chosen in such a way that the resulting commutation relations for
the fields be (at least formally)

[φ(t, x),π(t, y)] = iδ(y − x) [φ(t, x),φ(t, y)] = [π(t, x),π(t, y)] = 0 x, y ∈ R3

(46)

http://dx.doi.org/10.2991/978-94-6239-118-5_4
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where if z ∈ R3 one defines δ(z) ≡ δ(z1)δ(z2)δ(z3). The symbol δ(w),w ∈ R1

(invented by Dirac) [7] is defined by

∫
δ(w − w′) f (w′)dw′ = f (w) (47)

for any continuous function f. In treating electrodynamics one has to pay special
attention to gauge invariance. Notice that through (45)–(47) we have introduced
quantum fields through which we describe the quantum mechanical version of the
classical fields.

The formulation (46) through the use of Dirac distributions evidences local prop-
erties of the fields. It has set the basis for the treatment of the Quantized Electro-
magnetic Field and the development of Quantum Electrodynamics. An equivalent
formulation has been given by Heisenberg and Pauli and later by Pauli and Wigner
using proper bases in the Hilbert space. Although Jordan and Klein [12, 14] proved
the equivalence of the two types of field quantization, Dirac’s approach is remarkable
for simplicity and clarity of exposition and has remained a milestone in Quantum
Mechanics. It is reported in almost all textbooks on Quantum Field Theory and in
almost all research papers. Only occasionally one finds reference to the more mathe-
matically correct quantization which uses an orthonormal basis in the Hilbert space.

The fact that the system has now an infinite number of degrees of freedom gives
rise to formal difficulties. These difficulties can be overcome in the case of a free
field theory but if one introduces a relativistic local interaction between the fields
one rums into very serious difficulties, mainly due to the distributional properties of
the fields and to the need to control convergence of the formal series. The former can
be attacked with appropriate redefinitions of products of distributions; convergence
of the series is more difficult; in favorable cases one prove Borel summability.

Very soon Fock, and later Dirac, noticed that the quantization of the fields could
be given a different form. Take for simplicity the case of the wave equation (massless
Klein-Gordon equation) in one dimension

∂2

∂t
φ(t, x) = ∂2

∂x
φ(t, x) (48)

which in Fourier basis can be written

∂2

∂t
φ̂(t, k) = k2φ̂(t.k) (49)

i.e. as an infinite (non-denumerable) collection of harmonic oscillators.
On the other hand, setting

a(k) = 1√
2
( p̂(k) + i q̂(k)), a∗ = 1

2
( p̂(k) − i q̂(k)) (50)
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it is easy to verify for each k that the operator a∗(k)a(k) is the hamiltonian of
a quantum harmonic oscillator in L2(R) with elastic constant |k|. This operator is
selfadjoint and has (simple) eigenvalues (n+ 1

2 )k
2, n = 0, 1, . . . ; the corresponding

normalized eigenfunctions ψn(k) are the Hermite polynomials.
We have therefore obtained two representations of the scalar field of mass zero:

one through the operators Q̂(k), P̂(k) and one through the operators a(k), a∗(k).

The first is a quantization of the solutions of the wave equation. To each config-
uration of the classical field corresponds in this quantization a quantum state. This
state can be written as superposition (with prescribed phases) of elements which an
increasing number of particles (coherent states). This representation of the (quan-
tized) free electromagnetic field which is commonly used in Quantum Optics.

The representation through the operators ak, a∗
k is particularly convenient when

one introduces an interaction that does not preserve the number of particles. The
quantization usually employed to describe the interaction of particles with the elec-
tromagnetic field (modulo difficulties connected with gauge invariance).

8 Anticommutation Relations

The Dirac-Fock representation is also interesting because it suggests how to pro-
vide in a simple way a Fock space for fermions through the introduction of anti-
commutation relations. Indeed if f, g are test functions and a( f ) ≡ ∫

a(x) f (x)dx
we require that the following relations (anti-commutation relations) be satisfied

{a( f ), a∗( f )} = | f |2, {a( f ), a( f )} = a2( f ) = 0 {a∗( f ), a∗( f )} = (a∗( f )) = 0
(51)

where {b, c} ≡ bc + cb. It follows that two fermions cannot be in the same state and
n f ≡ a∗( f )a( f ) can be either zero or | f |2.I.

This field quantization through anticommutation relations has the advantage of
incorporation “Pauli statistics” (in an unpublished manuscript Jordan described what
is now called Fermi-Dirac statistic and attributed it to Pauli) [1, 12, 13]. We shall
discuss the anti-commutation relations in the second part of these Lecture Notes.

Jordan returned later to this field quantization in a paper together with Wigner
[16] and gave an alternative derivation of the anti-commutation relations. Jordan
arrived at the description of anti-commuting fields through an attempt to overcome
the ambiguity in the order of operators in Quantum Mechanics. He defined a new
product for operators that is symmetric the Jordan product. For two operators A, B
it is defined as

A · B ≡ 1

2
(AB + B A) ≡ 1

2
{A, B} (52)
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This product is commutative but not associative. It satisfies however a weak form of
associativity

(A2 · B) · A = A2 · (B · A), A2 ≡ A · A (53)

Consider the bilinear operation on hermitian operators

[A, B] = i

2
(AB − B A) (54)

(the imaginary unit is there to assure hermiticity). This antisymmetric bilinear oper-
ation satisfies the Jacobi identity

[[A, B]C] + [[B, C]A] + [[C, A], B] = 0 (55)

and therefore defines a Lie algebra structure. The lack of commutativity of the Jordan
product is linked to this Lie structure by

(A · B) · C − A · (B · C) = [B, [A, C]] (56)

and is is easy to see that bilinear forms in the operators a( f ), a∗( f ) satisfy (54)–
(56) if and only if the anticommutation relations (51) are satisfied. Recalling the in
classical electromagnetism the observable (currents, Pointing vector) are quadratic
in the field this led naturally Jordan and Wigner to introduce fields that obey Fermi-
Dirac statistics.

In this way Jordan in an unpublished manuscript arrived through his Jordan alge-
bra to a formulation of what is now called Fermi-Dirac statistics for particles which
satisfy Pauli’s exclusion principle.

It should also be remarked that Jordan [13, 14] was the first to generalize the
new Quantum Mechanics to a system with infinitely many degrees of freedom by
quantizing the wave function and introducing a (formal) functional calculus for a col-
lection of functions on ⊕n∈N L2(Rd). This is a quantization adapted to the classical
Lagrangian field formalism. Onemay say that the purpose of Jordan was to introduce
as configuration space a space in which the point are substituted with suitable (gener-
alized) functions. The quantized fieldswould appear as (non-commuting) functionals
on this space. It was therefore more akin to the quantization of the solutions of the
wave equation introduced later by I. Segal.

9 Algebraic Structures of Hamiltonian and Quantum
Mechanics. Pauli’s Analysis of the Spectrum of the
Hydrogen Atom

We noticed that the basic structures with which time evolution is generated in both
theories by derivations i.e. operations which are linear and satisfy Leibnitz’s rule.
In Hamiltonian Dynamics they are given by Poisson brackets on the algebra of
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functions on phase space. In Quantum Dynamics they are given by fs on the alge-
bra of observables. These structures satisfy Leibnitz’ rule and Jacobi’s identity and
are algebraically isomorphic. This algebraic isomorphism allows to set up easily a
perturbation theory in analogy with hamiltonian perturbation.

It was soon realized that in quantum mechanics perturbation theory does not have
the difficulties which plagued the classical case and which were emphasized by
H. Poincaré, namely the small denominators problem. This is due to the fact that in
general no harmonics appear in the frequencies of an atom. Perturbation theory as
developed by Born and Heisenberg in analogy with Hamiltonian dynamics is still at
present at the basis of dynamics in quantum mechanics.

Pauli made use of this algebraic isomorphism to determine the energy spectrum of
the hydrogen atom. As already mentioned this had a relevant role in the acceptance
of Quantum Mechanics by the community of researchers in Physics.

The classical equation for the energy a particle with mass m attracted by a particle
of mass M by the coulomb force is hamiltonian. The hamiltonian is in cartesian
coordinates

H = p2

2μ
− e

r
, r = |x | (57)

where μ is the reduced mass and e the charge.
The stationary Schrödinger equation for the Hydrogen atom is

Ĥφ(x) = Eφ(x) Ĥ ≡ −�
2Δ

2μ
− e

|x | (58)

The quantum hamiltonian is derived from the classical one using the quantization
we have described. In the analysis that follows we don’t pay attention to domain
problems (most of the operators considered are unbounded); a more refined analysis
will be given in chapter “Lecture 19: Estimates of the Number of Bound States. The
Feshbach Method”.

Equation (58) had been solved by Schrödinger [21] providing the spectrum of the
Hydrogen atom and the eigenfunctions. Following Pauli we use the correspondence
between Poisson brackets and commutators to determine the discrete part of the
spectrum of the operator (58).

In classical mechanics it is known the invariance of the Hamiltonian under spacial
rotation implies that the angularmomentum L ≡ q∧p is conserved.Correspondingly
in quantum mechanics the momentum Ĵ = x̂ ∧ p̂ is conserved (commutes with the
Hamiltonian).

It is known in Hamiltonian mechanics that in the case of Coulomb (=Kepler)
system there is a further vector which is constant of motion, the Runge-Lenz vector

R = p

μ
∧ L − e2

x

|x | (59)

http://dx.doi.org/10.2991/978-94-6239-118-5_19
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In hamiltonian mechanics the presence of this further integral of motion implies hat
the energy can be made to depend on only one action variable; the value of the two
other constants of motion are determined by the parameters of the theory. This leads
to a particularly simple solution of the equation of motion.

Pauli investigated the commutation relations of the hermitian part of the operator
which is obtained form R applying the rules of the quantum correspondence. This
hermitian part is

M̂ = (2μ)−1 p̂ ∧ Ĵ − (2μ)−1 J ∧ p̂ − e2
x

|x | (60)

By using formally Heisenberg’s commutation relations one can see that H, Mk, Jk

satisfy (formally) the following commutation relations

[H, Ĵk] = 0, [H, M̂k] = 0 [ Ĵi , Ĵk] = i�εi,k,l Ĵl

[ Ĵm, M̂k] = i�εi,k,l M̂l [M̂ j , M̂k] = 2�

iμ
ε j,k,l Ĵl H (61)

Ĵ .M̂ = M̂ . Ĵ = 0, (M̂)2 − e2 = 2

μ
Ĥ( Ĵ )2 + �

2 (62)

Since Ĵ and M̂ commute with the hamiltonian it is possible to restrict oneself to a
representation in which the hamiltonian is diagonal and negative (bound states).

Consider a subspace in which the Hamiltonian has value E < 0. Introducing the

operator M̃i = μ
2|E |

1
2 M̂i one verifies that the vector valued operators Ĵ±M̃

2 com-
mute and the components of each pair satisfy the commutation relations of angular
momentum. Hence

( Ĵ + M̃)2 = 4�
2 j1( j1 + 1) ( Ĵ − M̃)2 = 4�

2 j2( j2 + 1) (63)

where j1, j2 may take integer or half-integer values. But Ĵ .M̃ = M̃ . Ĵ = 0 and
therefore

( Ĵ + M̃)2 = ( Ĵ − M̃)2 (64)

and j1 = j2 ≡ j.
Assume for the moment that 2 j can take any integer value. We derive from (62)

2e

μ
(M̃2 + Ĵ )2 + m�

2 = m − e2 (65)

and then

(M̃2 + Ĵ 2n + �
2)4[(M̃ + Ĵ )2 + (M̃ − Ĵ )2] + �

2 = �
2(2 j + 1)2
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It follows

E = −μe2

2�2

1

(2 j + 1)2
(66)

The procedure we have followed shows also that the degeneracy of the levels is
(2 j + 1)2.

The commutation relations (61) and (62) are those of the generators (properly
normalized) of the Lie algebra sO(4). Since SO(4) is semisimple and the represen-
tation of sO(4) is irreducible the representation lifts to an irreducible representation
of SO(4).

This analysis can be done also in the Schrödinger representation but is more
cumbersome (the operator M̃ is in the Schrödinger representation a second-order
differential operator).

The work of Pauli, based on the newly established homeomorphism between
commutators and Poisson brackets had a relevant role in the acceptance of the new
Mechanics by the community of theoretical physicists.

10 Dirac’s Theorem

For the description of dynamics the formulation given by Schrödinger and by
Heisenberg depend heavily on analogies with hamiltonian dynamics. The systematic
use made by von Neumann of a Hilbert space structure and of the structure of the
algebra of operators acting on this space makes no longer necessary for the descrip-
tion of dynamics to choose in advance a representation (a special presentation of
the Hilbert space). We shall see in chapter “Lecture 5: Automorphisms; Quantum
Dynamics; Theorems of Wigner, Kadison, Segal; Continuity and Generators” that
the structure of QuantumMechanics as described by its axioms has in itself a natural
definition of evolution (of dynamics), independent of classical analogies. Of course
specific problems, that have a classical analogue, benefit form analogies with the
hamiltonian formalism of classical dynamics. And then the best choice of represen-
tation is determined by the specific problem at hand.

While quantum dynamics can be obtained without reference to the isomorphism
between commutators and Poisson brackets, the structural rigidity of the connec-
tion of dynamics in Quantum Mechanics with the hamiltonian structure Classical
Dynamics is well described by the following theorem due to Dirac.

Recall that in Hamitonian Dynamics the vector field on the space of differentiable
function on phase space that describes the evolution under the action of a hamiltonian
H is a derivation (satisfies Leibnitz’ rule and the Jacobi indentity).

An analogous structure exists for matrices. Let Mn be the algebra of rank n
matrices; a linear operator δ on Mn is called a derivation if it satisfies Leibniz’s rule
for the product. It is a star-derivation if δ(a∗) = (δ(a))∗ for a ∈ Mn, where a∗ is the
Hermitian conjugate of a. We shall say that the derivation δ is an inner derivation if
there exists h ∈ Mn such that δ(a) = i[h, a].

http://dx.doi.org/10.2991/978-94-6239-118-5_5
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Theorem (Dirac) Every *-derivation of Mn is inner (and the matrix h can be chosen
to be hermitian).

We shall give in the course of these Lectures a proof of Dirac’s theorem placing it
in the more general setting of operator theory on infinite dimensional Hilbert spaces
and C∗-algebras (Bratteli). We remark here that Dirac’s theorem implies that every
linear dynamics on Mn has the form

i
da

dt
= ha − ah (67)

where the matrix h is hermitian and unique modulo addition of a term proportional
to the identity I ∈ Mn . The solution of (67) is a(t) = e−i tha eith . One can interpret
Dirac’s theorem by saying that (in finite dimensions) every quantum vector field is
hamiltonian and every evolution is unitary.
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