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Abstract. Medical ultrasound imaging technology has a large scale practical
applications in medical diagnostics. In medical ultrasonic synthetic aperture
imaging, an array of sensors receive ultrasound echoes and process the echoes to
gain low-resolution images which are further processed to obtain high-resolution
images. Currently the most common processing algorithm to obtain
low-resolution images is delay-and-sum method. This paper mainly focuses on
implementing synthetic aperture algorithm in high-performance embedded
platform and evaluating its performance. In the estimation of the ultrasonic
synthetic aperture algorithm, Field II simulator was used to generate the needed
digital ultrasound transducer data. The high-performance embedded computing
platform with a graphics processing unit was used to build the synthetic aperture
solution and gained an 85 x speedup as compared to its single-core embedded
processor implementation. Furthermore, the embedded implementation frame-
work we have built can be easily used to build other high-definition medical
ultrasound imaging algorithms.
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1 Introduction

Medical ultrasound imaging technology has been widely used and has been rapidly
developed. This is because of its advantages of real-time imaging capability, low cost and
high safety. In a variety of ultrasound imaging techniques, synthetic aperture imaging
technology is one of the high-definition imaging technology. By using this technology,
the ultrasound scanner can effectively improve imaging precision to obtain high-
resolution ultrasound images. Ultrasonic synthetic aperture technique origins from syn-
thetic aperture radar technology. Synthetic aperture radar [1-3] imaging technique is
obtained by processing the reception data to make the relative motion of the small aperture
radar and the object become a relatively larger synthesized aperture. In medical ultra-
sound imaging, synthetic aperture imaging technique [4, 5] processes the received echoes
from the sensor array to obtain a low-resolution image, thereby repeatedly superimposing
the low-resolution images to form a high-resolution image. Currently the most widely
used low-resolution image processing algorithm is delay-and-sum algorithm.
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High-performance embedded platforms integrated with graphics processing units [6]
possess the characteristics of targeted functionality, high computing performance, rel-
atively lower expense, small footprint, and low energy consumption. Such character-
istics make the high-performance embedded computing platforms suitable for mobile
and portable functional solutions [7]. Therefore, implementing ultrasonic synthetic
aperture imaging algorithm on the high-performance embedded computing platform,
can help to effectively reduce the cost of building high-definition medical ultrasound
imaging systems, and can help to facilitate future development of portable medical
ultrasound imaging systems.

2 Medical Ultrasonic Synthetic Aperture Algorithm

Based on the research of medical ultrasonic synthetic aperture algorithm [8—10], this
section will describe the details of the algorithm which is closely related to the sub-
sequent design and implementation in the next section.

2.1 Low-Resolution Image Acquirement

The most commonly used algorithm for low-resolution image acquirement is
delay-and-sum algorithm. Before the delay apodization is applied, the ultrasound receive
channel data is first manipulated with Hilbert transform. The Hilbert-transformed
ultrasound data sample is calculated by the following convolution output:

. i+T-1 .
convp (i) = Z/':l h(j)dap(j) (1)

In Eq. (1), a represents for the ath ultrasound receive channel, b represents for the
bth transmit firing, and i represents for the ith ultrasound imaging depth sample, thus
dap(j) is the jth data sample of ath ultrasound receive channel for bth transmit firing.

Furthermore, h(j) denotes the Hilbert transform coefficient which is expressed as:

. 0 for even j
i ={2 i @

Hilbert transform function is similar to a finite-impulse response (FIR) filter with T
number of taps, as shown in Eq. (1), where T is usually set as 51. The Hilbert transform
process is shown in Fig. 1.

Delay-and-sum beamforming method is applied on the Hilbert transformed data to
obtain a low-resolution image for the b th transmit firing. Use L,(p) to represent the
value of pixel p in the low-resolution image of b th transmit firing, according to
delay-and-sum algorithm, L,(p) can be expressed as:

L(p) =Y wa xan(p) (3)
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Fig. 1. Hilbert transform process

In Eq. (3), w, is the apodization weight for the a th ultrasound receive channel
which adopts Hanning window function, and a,q = N. x,p(p) is the interpolated
channel data sample which can be obtained by:

Xap(p) = 7 - convap(B) + (1 = y) - convap(B + 1) 4)

convgy(f) and convep(f+ 1) are the two adjacent Hilbert-transformed data sam-
ples corresponding the most closely with the pixel’s focusing delay in the a th channel.
B is the imaging depth sample index corresponding to the focusing delay d,(p), as
shown in Fig. 2(a), and 7 is the interpolation weight (between O and 1). For a given
sampling rate f;, f and 0, (p) can be found as:

B = floor(f; - Sap(p)) (5)
7 =14+B—f dan(p) (6)

In Eq. (5), floor operation outputs the largest integer which is not greater than
(fs - 0an(P))- 0ap(p) is calculated by:

dan(p) = (Di(p) +Dr(p)) + ¢ ™)

In Eq. (7), D;(p) and D,(p) denote the transmit propagation distance and the
receive propagation distance respectively, as shown in Fig. 2(b). ¢ is the ultrasound
propagation speed.

2.2 High-Resolution Image Recursive Synthesis

High-resolution image is obtained by recursively synthesize a series of low-resolution
images. For kth high-resolution image with a frame size of M, its value of pixel p is
calculated as:
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Fig. 2. (a) f = floor(f; - d,p(p)) for the a th ultrasound receive channel, where J,(p) is the
focusing delay; (b) transmit propagation distance and the receive propagation distance.

H(p) = . L) (8)

L;(p) is the corresponding pixel value from the ith low-resolution image. Equation (8)
can be rewritten as:

Hi(p) = Hy1(p) + Li(p) — Li—m(p) )

In Eq. 9), Hi_1(p), Li(p) and Li_p(p) are the corresponding pixel value for
previous high-resolution image, the latest low-resolution image and the earliest
low-resolution image.

3 High-Performance Embedded Platform and Algorithm
Implementation

3.1 High-Performance Embedded Computing Platform with GPU

Figure 3 demonstrates the hardware architecture of the high-performance embedded
computing platform with graphics processing unit. The simulated ultrasound channel
data was first transmitted to the random-access memory (RAM) on the embedded
computing platform. The synthetic aperture algorithm was performed in the embedded
GPU. After the imaging process data was ready for final display, OpenCV library
functions were used to display the images on the connected monitor. Finally, the
imaging processed data was stored in the storage unit.
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Fig. 3. Architecture of high-performance embedded computing platform

3.2 Implementation of Medical Ultrasound Synthetic Aperture Imaging

This section will describe the implementation methodology of medical ultrasound
synthetic aperture imaging on high-performance embedded computing platform. The
implementation procedures were conducted based on the algorithm details elaborated
in Sect. 2.

Hilbert Transform Implementation. Athread block in the graphics processing unit
was assigned to compute one ultrasound receive channel pre-process data. Within the
thread block, each computing thread was used to execute one Hilbert transform
operation to derive the Hilbert-transformed data samples for an array of consecutive
imaging data samples in the receive channel. The processing data sample array was
updated time by time to refresh the computing input data sources. This method was
used to keep the run-time data storage at an appropriate size, so as to realize a
high-efficient parallelization. The Hilbert transform implementation parallelization is
shown in Fig. 4.

Threads in a Data samplesin a
thread block receive channel

. One thread .
* | handlesone data | °
sample

Fig. 4. GPU parallelization for Hilbert transform implementation. A thread block processes one
column of 256 data samples at a time, and then repeats.
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Delay-and-Sum Algorithm Implementation. Delay-and-sum processing block pro-
cesses the Hilbert-transformed data samples to generate a series of low-resolution
images. To complete this imaging process, the graphics processing unit assigns every
thread block to compute the pixel values of the low-resolution images on a
two-dimensional GPU compute grid basis, as shown in Fig. 5. Within the thread block,
each thread is designed independently to calculate a single low-resolution image pixel
value. The computation procedures are deduced from Egs. (3), (4), (5), (6) and (7).
Basically, the computation process is implemented by first calculating the focusing
delay of the targeted pixel referring to Eq. (7). Based on the focusing delay value,
calculate the imaging depth sample index corresponding to the focusing delay and the
interpolation weight, according to Egs. (5) and (6). Then, compute for the interpolated
channel data sample using Eq. (4). Finally, obtain the targeted pixel value of the
low-resolution image by applying apodization weights to the interpolated channel data
sample as illustrated in Eq. (3).

High-Resolution Image Recursive Calculation. When low-resolution images are
produced, they are transmitted to high-resolution processing block to compute for the
high-resolution image. As the high-resolution image calculation process is recursive
but the calculation of each high-resolution image pixel value is independent with each
other, each computing thread in the graphics processing unit can be used to perform
one high-resolution image pixel value, and multiple threads conduct the calculation
process simultaneously.

Memory Access and Management. Memory utilization is an important part of
building such a high-performance embedded medical ultrasound imaging platform. The
memory access speed in the high-performance embedded computing platform is reg-
ister files > local memory > global memory, but the memory capacity distribution is
register files < local memory < global memory. As a result, the register files are so
precious that only current processing data and results are stored in them. Local memory
is usually used for intermediate calculation results, and global memory is used to store
initial data and final results.

GPU compute grid
lateral width

16x16
thread block

Each thread block
computes a 16x16
pixel matrix

GPU compute grid
axial width

Fig. 5. GPU computing scheme for delay-and-sum algorithm implementation.
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4 Experimental Design and Results

4.1 Experimental Environment and Lab Scenario Design

The experiments adopted Field II simulator [11, 12] to simulate the ultrasound channel
data samples. The simulation parameters are shown in Table 1.

Table 1. Field II simulation parameters.

Parameter Value

Ultrasonic speed propagated in human tissue | 1540 m/s

Number of transducer elements 128
Element pitch 0.3048 mm
Pulse repetition rate 5 kHz
Sampling rate 40 MHz

The experimental high-performance embedded computing platform is Nvidia Jet-
son TK1 embedded evaluation platform. The computing resources of this platform are
a 4-plus-1 Cortex-A15 ARM processor and an Nvidia Kepler GPU with 192 CUDA
computing cores. Such computing core can afford required computing power for the
experiments. The architecture details of Jetson embedded computing platform is shown
in Table 2.

Table 2. Nvidia Jetson TK1 embedded platform computing parameters.

Parameter Value
ARM processor clock rate 2.3 GHz
DDR3 memory size 2 GB
GPU processor clock rate 0.85 GHz
Global memory size 1746 MB
L2 cache size 128 KB
Constant memory 64 KB
Shared memory size per block |48 KB
Register files size per block | 32768

In the Hilbert transform stage, one thread block take charge of a whole receive
channel’s data sample processing, and each thread inside the thread block handles the
Hilbert transform for each data sample. The size of the thread block is 256, thus if the
total size of the receive channel data samples is larger than 256, the computing process
repeats. In delay-and-sum processing stage, every thread block calculates the
low-resolution image pixel values for a two-dimensional block of 16 x 16 pixels.
Besides, the compute grid of the thread blocks is also two-dimensional, with the lateral
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Fig. 6. Performance evaluation experimental scenario

size as one-sixteenth of the image lateral pixel size, and the axial size as one-sixteenth
of the image axial pixel size.

Figure 6 illustrates the experimental scenario to evaluate the performance of the
imaging algorithm implementation.

4.2 Experimental Results and Discussions

Figure 7 shows the experimental imaging output of the simulated scenario. As shown
in Fig. 7, the high-definition quality of the medical ultrasonic synthetic aperture
imaging was maintained by this high-performance embedded computing solution.

The computing performance improvement is shown in Table 3. As seen from
Table 3, using the 4-core multi-core ARM processor can accelerate the medical
ultrasonic synthetic aperture imaging algorithm by nearly 4 % speedup, and using the
192-core GPU can accelerate the imaging algorithm by around 85 x speedup, both
compared to the single-core ARM processor’s execution timing result.

As a result, accelerating the compute-intensive medical ultrasound synthetic
aperture without distortion using high-performance parallel computing technique is a
feasible. Thus, such platform can be used to facilitate other high-definition medical
ultrasound imaging algorithms’ acceleration and the future development of portable
medical ultrasound imaging systems.
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Fig. 7. Experimental output image of simulated scenario

Table 3. Imaging performance for various computing resources (number of opera-
tions = 28923002880 Ops).

Computing resource Execution time (ms) | Throughput (Gflop/s)
Single-core ARM processor | 192160.000 0.15
Multi-core ARM processor | 51649.500 0.56
GPU processing cores 2282.035 12.68

5 Conclusions

We investigated the acceleration feasibility of compute-intensive medical ultrasound
synthetic aperture imaging algorithm on high-performance embedded computing
platform with graphics processing unit in this paper. As the data independency of the
synthetic aperture imaging algorithm and the high parallelization of the GPU pro-
cessing units on the embedded computing platform, the embedded GPU cores’ com-
putational acceleration is 85 x as compared to the single-core ARM processor.
Furthermore, the embedded implementation framework we have built can be easily
used to build other high-definition medical ultrasound imaging algorithms, which will
be done in our subsequent research.
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