
Chapter 2

Real-Time Deformation of Constrained

Meshes Using GPU

Alexandre Kaspar and Bailin Deng

Abstract Constrained meshes play an important role in free-form architectural

design, as they can represent panel layouts on free-form surfaces. It is challenging

to perform real-time manipulation on such meshes, because all constraints need to

be respected during the deformation while the shape quality needs to be maintained.

This usually leads to nonlinear constrained optimization problems, which are

challenging to solve in real time. In this chapter, we present a GPU-based shape

manipulation tool for constrained meshes, using the parallelizable algorithm pro-

posed in Deng et al. (Computer-Aided Design, 2014). We discuss the main chal-

lenges and solutions for the GPU implementation and provide timing comparison

against CPU implementations of the algorithm. Our GPU implementation signifi-

cantly outperforms the CPU version, allowing real-time handle-based deformation

for large constrained meshes.

2.1 Introduction

With the advances in computer-aided design tools, complex free-form shapes are

becoming more and more popular in architectural design nowadays. While digital

models can be easily created using a computer, the construction of such shapes

remains a challenge, due to the limitation of fabrication technologies. To realize

free-form architectural designs at a reasonable cost, the design surfaces usually

need to be decomposed into panels of simple shapes that facilitate manufacturing.

This process is called rationalization, which amounts to approximating the

NURBS-based design surface using a set of panels subject to requirements such

as approximation tolerance, panel types, aesthetics of panel layouts, etc. Rational-

ization usually involves nonlinear optimization with a large number of variables

and is therefore computationally expensive [1].
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From a designer’s point of view, it is important to explore different design

shapes and their corresponding panel layouts. One possible way is to modify the

NURBS design and perform rationalization for each new shape. Due to the heavy

computational cost of rationalization, it is time-consuming to explore designs via

this approach. An alternative approach is to directly manipulate the panel shapes

and layouts while respecting the shape requirements for panel types and

maintaining the aesthetics of the overall shape. In this way, the user only explores

panel layouts that satisfy all the requirements, with intuitive feedback about what

modifications are possible under the given requirements. Such fabrication-aware
shape exploration methods for free-form architecture have been a popular research

topic recently [2–7].

Usually, a panel layout can be represented by a polygonal mesh, with mesh faces

representing the panels and mesh edges representing the panel boundaries. The

shape requirements for panel layout induce geometric constraints for mesh ele-

ments. For example, a layout of planar panels corresponds to a polygonal mesh

where the vertices of each face are required to be coplanar (see Fig. 2.1). Therefore,

manipulating the panel layout reduces to deforming the mesh while satisfying

certain geometric constraints and maintaining the shape quality. This usually

leads to a nonlinear constrained optimization problem for mesh vertex positions.

Due to the difficulty of the optimization, it is a challenging task to perform real-time

manipulation, especially for large meshes.

Bouaziz et al. [3] proposed a general framework for handle-based deformation

of meshes subject to soft constraints, formulated as a nonlinear least-squares

problem. Utilizing projections of individual mesh elements onto their feasible

configurations, they propose an iterative solver that alternates between global linear

system solving and local mesh element projections. The projections are indepen-

dent and can be executed in parallel, thus achieving significant speedup on multi-

core processors. When run on a multi-core CPU, the method achieves interactive

results for meshes with about 1K vertices, but is still unable to handle large meshes.

Recently, this method was extended in [8] to allow both hard and soft constraints.

The proposed numerical solver consists of a series of simple subproblems similar to

those in [3], enabling speedup from parallelism. In this chapter, we present an

implementation of the method in [8] on GPU using CUDA, which provides many

more computational cores than CPU. By carefully optimizing for performance, our

implementation allows real-time deformation of constrained meshes with up to

20 K vertices and 20 K constraints.

2.1.1 Related Work

Besides [3] and [8], other handle-based deformation methods for constrained

meshes have been developed in recent years. Zhao et al. [5] extended the shape

space exploration approach in [2], using curve handles to control target shapes.

Vaxman [4] proposed a method to deform polyhedral meshes while keeping their
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faces planar, using affine transformations of mesh faces. The computation reduces

to solving a linear system for mesh vertex positions, allowing real-time deforma-

tion. The method only works for polyhedral meshes (meshes with planar faces).

Moreover, since only affine transformations are allowed, only a subset of the

feasible deformations are considered, which limits the degree of freedom for

shape control. Poranne et al. [6] provided an optimization approach to deform

polyhedral meshes, not limited to affine transformations of faces. The deformation

is computed through an alternating least-squares approach similar to [3]. However,

only face planarity constraints are considered by the method. Deng et al. [7]

proposed a framework to deform meshes under hard constraints, with a focus on

computing local deformations. But their framework does not consider soft con-

straints. On the contrary, the deformation method in this chapter considers general

shape constraints for meshes and allows both soft and hard constraints, providing

more flexibility in shape manipulation.

Recently, computational design shape exploration tools have also been proposed

for other types of architecture, such as reciprocal frame structures [9] and building

layouts [10]. As these problems require other representations than polygonal

meshes, they cannot be handled by our method.

2.1.2 Overview

The rest of the chapter is organized as follows. Section 2.2 briefly presents the

method in [8]. Section 2.3 gives an overview of the implementation of our system.

Section 2.4 provides more details about the CUDA implementation. Finally, results

are presented in Sect. 2.5, followed by a discussion about limitation and future work

in Sect. 2.6. The final section concludes this chapter.

Fig. 2.1 Panel layouts can be represented by polygonal meshes subject to geometric constraints.

Left: Yas Viceroy Hotel in Abu Dhabi, designed by Asymptote Architecture (image courtesy of

Asymptote Architecture). Right: a quad mesh representing the hotel facade, with the constraint that

the vertices of each face lie on a common plane. This constrained mesh represents a layout of

planar quadrilateral panels on the facade
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2.2 Overview of the Method

In this section, we give a brief overview of the problem formulation in [8], as well

as its numerical solution. Interested readers are referred to [8] for more details.

2.2.1 Problem Formulation

We consider polygonal meshes as a representation of panel layouts for free-form

architectural surfaces. The mesh is deformed by changing its vertex positions while

fixing its topology. During deformation, the vertex positions are subject to certain

soft constraints and/or hard constraints. To control the deformation, a user specifies

target positions for some vertices using handles that are freely movable. When the

handles are moved, the mesh vertex positions are updated such that:

• The new mesh satisfies the soft constraints as much as possible and satisfies the

hard constraints strictly.

• The handle vertices are close to their target positions.

• The non-handle vertices stay close to their original positions.

• The vertex deformation field is smooth across the mesh.

With a given topology, the shape of a mesh is determined by its vertex positions

p1,p2, . . .,pN2ℝ3, where N is the number of vertices. A shape constraint involving

m vertex positions pi1 ,pi2 , . . . ,pim can be represented by the condition

pi1 ; . . . ; pim
� � 2 C, where C � ℝ3m is the feasible set. We assume that the constraint

is translation invariant, meaning that applying a common translation to all involved

vertices does not change the status of constraint satisfaction (which is the case for

most shape constraints relevant to free-form architecture). To facilitate numerical

solution, we introduce auxiliary variables yi1 , yi2 , . . . , yim 2 ℝ3 and rewrite the

constraint as

yi1 . . . yim

� �
2 C,

pj �mean pi1 ; . . . ; pim
� � ¼ yj, for j ¼ i1, . . . , im;

(
ð2:1Þ

where mean pi1 ; . . . ; pim
� � ¼ pi1 þ � � � þ pim

� �
=m is the barycenter of pi1 , . . . , pim :

Note that the second constraint in (2.1) is a linear condition which can be written in

matrix form ACp ¼ yC; where vector p2ℝ3N packs all vertex positions, vector yC
2 ℝ3m packs the auxiliary variables, and matrix AC 2 ℝ3m�3N . For each soft

constraint with feasible set S, we introduce auxiliary variables yS 2 S to derive

an equivalent condition ASp ¼ yS . Then the constraint violation can be measured

with a function FS ¼ ASp� yS
�� ��2

2
. Similarly for each hard constraint with

feasible set ℋ, we introduce auxiliary variables yℋ2ℋ to derive its equivalent
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condition Aℋp¼ yℋ. Given Ns soft constraints and Nh hard constraints with

feasible sets Sj j ¼ 1, . . . ,Nsj� �
and {ℋk|k¼ 1, . . .,Nh}, respectively, the vertex

positions p are computed by the following optimization:

min
p, y

whFhandle þ wcFclose þ wfFfair þ
XNs

j¼1

ws
j FSj

þ
XNs

j¼1

σSj
ySj

� �
þ
XNh

k¼1

σℋk
yℋk

� �
s:t: Bp ¼ yH:

Here y ¼ yS1
; . . . ; ySNs

; yℋ1
; . . . ; yℋNh

h i
packs all auxiliary variables for soft

constraints and hard constraints, FSj
is the soft constraint violation function

introduced above, and side condition Bp¼ yH collects all linear relations from

the equivalent conditions of hard constraints, with B ¼ AT
ℋ1

; . . . ;AT
ℋNh

h iT
and

yH ¼ yT
ℋ1

; . . . ; yT
ℋNh

h iT
. Functions Fhandle,Fclose,Ffair measure respectively the

distance from handle vertices to their target positions, the distance from

non-handle vertices to their original positions, and the smoothness of the vertex

deformation field based on its Laplacian:

Fhandle ¼
X
i2Γ

pi � tik k22, Fclose ¼
X
j=2Γ

pj � p0j

��� ���2
2
, Ffair ¼ L p� p0

� ��� ��2
2
;

where Γ is the index set for handle vertices, ti is the target position for vertex i, p
0
j is

the original position for vertex j, p0 packs the original positions for all vertices, and

L is the Laplacian matrix. The indicator function σSj
ySj

� �
makes sure ySj

2 Sj in

the solution, with

σSj
ySj

� �
¼ 0, if ySj

2 Sj,

þ1, otherwise:

	

Indicator function σℋk
yℋk

� �
is defined in the same way. wh,wc,wf and wSj

are

positive weights trading off different terms. The optimization problem can be

written in matrix form as

min
p, y

Dp� rk k22 þ wf L p� p0ð Þ�� ��2
2
þ
XNs

j¼1

ws
j ASj

p� ySj

��� ���2
2

þ
XNs

j¼1

σSj
ySj

� �
þ
XNs

j¼1

σℋk
yℋk

� �
,

s:t: Bp ¼ yH;

ð2:2Þ
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where

D ¼
d1I3

⋱
dNI3

2
4

3
5, r ¼

r1
⋮
rN

2
4

3
5;

with I3 being the 3� 3 identity matrix, and

di ¼
ffiffiffiffiffiffi
wh

p
if i 2 Γffiffiffiffiffi

wc
p

otherwise
, ri ¼

	
diti if i 2 Γ
dip

0
i otherwise

	
for i ¼ 1, . . . ,N:

2.2.2 Numerical Solution

2.2.2.1 Alternating Minimization

Without hard constraints, problem (2.2) reduces to minimizing quadratic terms with

indicator functions. It is solved by alternating between two steps until convergence:

1. Projection: fix p and minimize over y.

2. Linear solve: fix y and minimize over p.

The minimization in step 2 simply amounts to solving a symmetric positive

definite (SPD) sparse linear system, hence the name. For step 1, the problem is

separable for auxiliary variables from different constraints and is solved in parallel.

Specifically, we solve a set of independent subproblems, each of which is associ-

ated with one constraint and has the following form:

min
yC

yC � x
�� ��2

2
þ σC yC

� �
;

where C is the feasible set and yC are the auxiliary variables for the constraint. The

solution is the closest projection from x ontoC, which we call the proximal operator
of C for input data x. For many constraints, we can derive the closed-form

representation of the proximal operator. For example (see [3] for details):

• Coplanarity. This constraint requires n> 3 vertices to lie on a common plane. It

can be used to model planar panels, for example, by requiring the vertices of each

mesh face to be coplanar (see Fig. 2.1). The proximal operator finds n coplanar

points y1, . . ., yn2ℝ3 closest to the input data x1, . . ., xn2ℝ3. The solution is yi
¼ xi � n n � xi � xð Þ½ � i ¼ 1, . . . , nð Þ; where x ¼ mean x1; . . . ; xnð Þ and n is the

left singular vector of matrix [x1, . . ., xn] for the smallest singular value.

• Regular polygon. This constraint requires a face with n� 3 vertices to be a

regular n-gon. It can be used to induce shape regularity of mesh elements (see

Fig. 2.2). The proximal operator finds a regular n-gon closest to a polygon with

vertices x1, . . ., xn2ℝ3. This can be done by computing the translation, rotation,

and scaling of a predefined regular n-gon to fit the target polygon, using the

algorithm in [11].
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2.2.2.2 Augmented Lagrangian Method

When dealing with hard constraints, extra care has to be taken to ensure that the

linear side constraints in problem (2.2) are satisfied. This is done using the aug-
mented Lagrangian method (ALM) [12], which searches for a saddle point of the

following augmented Lagrangian function:

ℒ p; y; λ; μð Þ ¼ F p; yð Þ þ λTh p; yð Þ þ μ h p; yð Þk k22; ð2:3Þ

where F(p, y) is the target function in (2.2), h(p, y)¼Bp� yH is the residual of side

constraints in (2.2), λ is a vector of dual variables, and μ> 0 is a penalty parameter.

The solver iteratively updates p, y, λ and μ until convergence. In each iteration, new

values p̂ , ŷ , λ̂ , μ̂ are computed from current values p, y, λ, μ using the following

steps:

1. Primal update: ðp̂ , ŷ Þ ¼ minp,yℒ p; y; λ; μ
� �

.

2. Dual update: λ̂ ¼ λþ μh ; p̂; ŷð Þ.
3. Penalty update: choose μ̂ � μ.

The problem in step 1 has a similar structure as the one from Sect. 2.2.2.1 and is

solved in the same way. Specifically, it alternates between two steps:

1. Projection step with proximal operator evaluations:

Fig. 2.2 Handle-based deformation of a constrained mesh subject to the soft constraint that each

face is a regular polygon. Left: the initial mesh with the handles (shown in red and blue) attached to
the boundary vertices and four vertices in the middle. The handles for the middle positions are

moved to new target positions (shown in red). Right: the mesh deforms according to the handle

positions while satisfying the soft constraints
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min
ySj

ySj
� ASj

p

��� ���2
2
þ σSj

ySj

� �
, j ¼ 1, . . . ,Ns,

min
yℋk

yℋk
� Aℋk

pþ λℋk

2μ

� �����
����
2

2

þ σℋk
yℋk

� �
, k ¼ 1, . . . ,Nh;

where λℋk
collects the components of λ in the same positions as yℋk

in yH.

2. Solving a sparse SPD system for p:

DTDþ wfL
TLþ μBTBþ

XNs

j¼1

ws
j A

T
Sj
ASj

 !
p

¼ DTrþ wfL
TLp0 þ μBT yH � λ

2μ

� �
þ
XNs

j¼1

ws
j A

T
Sj
ySj

:

ð2:4Þ

The primal update step is the most time-consuming part of the solver. We will

not go into the details of steps 2 and 3, but refer the readers to [8] instead. Note that

for a given problem, the linear system matrix in (2.4) only changes according to the

penalty parameter μ. The penalty update scheme in [8] only generates a predefined

set of values for μ, so we can precompute all linear system matrices that appear in

(2.4).

2.3 General Implementation Strategies

We developed an interactive handle-based shape manipulation system for

constrained meshes, based on the algorithms presented in the previous section.

For an initial mesh, the user selects a set of handle vertices and specifies their target

positions (which we call handle positions) by dragging 3D manipulators. Whenever

the manipulators are moved, the system deforms the mesh according to the new

handle positions, providing immediate feedback to the user (see Fig. 2.2 for an

example).

Figure 2.3 shows the architecture of our system. Here we distinguish between the

work of the threads from the user side (user interface, mouse and keyboard

interaction, mesh display, etc.), which we gather as the user module, and the

work done within a single thread dedicated to a GPU-based ALM solver, which

we call the optimization module. The latter loops over three main logical steps:

1. Input phase: transfer current handle positions to GPU.

2. Optimization phase: iterate the ALM steps on GPU, until some output conditions

are satisfied.

3. Output phase: read back updated vertex positions from GPU.

To run the ALM solver on GPU, we store on the GPU all the optimization

variables, as well as other auxiliary data [such as matrices ASj
,B,D and vector r in
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formulation (2.2) and the linear system matrices in problem (2.4)]. Many of these

data remain constant during optimization and only need to be initialized once at the

beginning. Thus, in the input phase, we only need to transfer the latest handle

positions to the GPU to update the problem specification.

As an iterative solver, the optimization phase requires initial values of the

variables. To initialize the current optimization phase, we always use the resulting

variable values from the previous optimization phase. The motivation is that when a

Fig. 2.3 The architecture of our GPU-based implementation

Fig. 2.4 The update of the handle data on GPU is done using a kernel that fills vector r according

to the handle position vector (on GPU) and a precomputed index map
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user drags the handles continuously, the handle positions used in two consecutive

optimization phases are close to each other. Thus, their solutions will be close to

each other as well, making the solution from the previous phase a good guess for the

current solution.

Depending on the data, the optimization phase might take a large number of

iterations to fully converge. To keep the process interactive, we allow switching

from optimization phase to output phase even if it is not fully convergent yet. When

the handles are dragged, they are likely to be moving at the same time as the ALM

solver is running. Rather than solving the current problem to a very high accuracy, it

is more important to output the current result and start a new optimization phase

with the new handle positions, so that the mesh shape follows the handle positions

smoothly and shows how the shape reacts to handle position changes. Even if the

output mesh shape is not the exact solution, it is still a good approximation because

the solver usually converges quickly to an approximate solution [13]. Therefore, we

switch from optimization phase to output phase, if one of the following conditions

is satisfied:

1. The optimization phase fully converges.

2. The number of iterations within the optimization phase exceeds a limit Mmax.

The output phase is responsible for reading back new vertex positions in order to

update the mesh data structure in host memory, which is then used to update the

mesh display. Both operations (vertex readback and mesh display update) involve

data transfer between CPU and GPU. To avoid unnecessary transfer while keeping

the process interactive, we only read back vertex positions if the elapsed time

(in milliseconds) from the last readback is larger than a threshold ε. With such a

strategy, the maximum frame rate for mesh display is 1, 000/ε FPS.
After the output phase, depending on the availability of new handle positions and

the convergence of the optimization phase, we are in one of the following cases:

• If there are new handle positions, transfer them to GPU and start a new

optimization phase.

• Otherwise, if the previous optimization phase was not fully convergent, resume

the optimization.

• Otherwise, wait for new handle positions.

2.4 CUDA Implementation Details

Our GPU implementation was done with CUDA. We targeted NVIDIA GeForce

GTX 580 [14], which runs under the Fermi architecture [15, 16]. It has 16 streaming

multiprocessors providing a total of 512 cores. Each of them has 64 kB of memory

available between the L1 cache and the shared memory. The rest of this section will

present the challenges and specific implementation details.
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2.4.1 Kernels

We implemented custom kernels for two critical operations: updating the handle

data and evaluating the proximal operators.

2.4.1.1 Handle Update

When starting an optimization phase with new handle positions, we need to update

the GPU memory storage of vector r in formulation (2.2). With the number of

handle vertices being usually much smaller than the number of vertices, we first

transfer the handle positions onto the GPU as a contiguous vectorVh2ℝ3 |Γ|. Then a

custom kernel updates the entries of r according to Vh, using a precomputed index

map (see Fig. 2.4). Note that the index map remains unchanged during optimiza-

tion, since neither the choice of handle vertices nor the mesh topology is allowed to

change.

Another strategy would be to transfer only the handle positions that are being

changed by the user. This requires a dynamic index map for writing to vector r, as

well as checking which handles are being moved. To simplify implementation, we

did not use such strategy.

2.4.1.2 Proximal Operator Evaluation

As we saw in Sect. 2.2, proximal operators are responsible for updating auxiliary

variables. Each type of constraint corresponds to one proximal operator, which

involves a predefined set of operations. For different constraints of the same type,

their proximal operator evaluation is independent since the involved auxiliary

variables do not overlap. Such characteristics make it suitable to evaluate proximal

operators using custom CUDA kernels. Specifically, we implement one kernel for

each type of constraint, within which each thread handles one constraint.

For high performance, we need to ensure coalesced memory access. Thus, we

store the auxiliary variables y in formulation (2.2) into a contiguous array in global

memory, where the components corresponding to the same kernel reside in a

contiguous region. The input data for proximal operators are of the same dimension

as y, and we store them with an array in global memory using the same layout as

y (see Fig. 2.6 for an example).

Another performance consideration is the grid and block sizes. We follow [17]

which suggests a number of threads per block:

1. Dividing the maximum number of threads per SM, i.e., 1,536 for Fermi

2. At least 32 threads per block, i.e., the warp size

3. At most 3 blocks per SM, so as to maximize occupancy (and thus at least 1,536/

8¼ 192 threads per block)
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Since we do not know the relation between different types of kernels, we chose

to simply saturate them by using a block size of 512 threads, which proved to be

sufficient for our need according to experiments.

Coplanarity Constraint

Because of specific features and limitations of GPU, additional care needs to be

taken when implementing some proximal operators. Here we use the vertex copla-

narity constraint as an example to show the challenges and our solutions. Copla-

narity constraint is one of the most important shape constraints in free-form

architecture. It can be used to model planar panels [18] (Fig. 2.1), as well as planar
webswhich consist of curve elements of planar shapes [19] (Fig. 2.5). For input data

x1, . . ., xn2ℝ3, a key step of the proximal operator is a singular value decomposi-

tion (SVD) to extract the left singular vector of M¼ [x1, . . ., xn]2ℝ3� n for the

smallest singular value (see Sect. 2.2.2.1).

Due to the memory layout requirement mentioned before, the global memory

storage of x1, . . ., xn is already a column-major representation for matrixM. Thus, a

naı̈ve approach is to implement an SVD solver that operates directly on the global

memory storage of M. However, this might lead to excessive access to global

memory, lowering the performance significantly [20].

To reduce global memory access, we implemented the kernel as follows. First,

note that the target singular vector is the same as the right singular vector of 3� 3

matrix MMT¼∑ n
i¼ 1xix

T
i for the smallest singular value. Thus, we create matrix

MMT on local memory, by reading each xi from global memory and summing up

xix
T
i . Afterwards, we perform SVD on matrix MMT. In this way, each global

memory element of M needs to be accessed only once for computing the singular

vector. Moreover, this approach only performs SVD on a 3� 3 matrix. For copla-

narity constraints involving a large number of vertices, this significantly reduces the

Fig. 2.5 For a regular triangle mesh (i.e., each interior vertex has valence 6, and each boundary

vertex has valence no larger than 6), there exist three families of edge polylines (shown in blue).
Being a planar web requires each polyline to be planar, namely, all vertices on the polyline lie in a

common plane
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matrix storage on local memory compared to the original matrix M. Such compact

storage helps to reduce register spilling and L1 cache misses, which improves the

performance of the kernel. Furthermore, with this approach, we are able to deal with

coplanarity constraints with different number of vertices using a single kernel, by

precomputing an array that stores for each coplanarity constraint the following

information: (1) the number of vertices and (2) the address of input data. Using a

single kernel helps to increase parallelism for the implementation, resulting in

improved throughput of the system. Figure 2.6 provides a schematic diagram for

the kernel of coplanarity constraints.

Fig. 2.6 Schematic diagram for the proximal operator kernel of coplanarity constraints. Input data

x and output data y are stored in two contiguous arrays, respectively. Within each array, data

associated with a thread reside in a contiguous region. Our implementation is able to handle

coplanarity constraints for different number of vertices within a single kernel. Here N-planarity
refers to a coplanarity constraint for N vertices
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For 3� 3 SVD, we implemented a simple SVD solver based on [21]. There

exists a branch-free 3� 3 SVD solver [22] that might provide higher performance,

but our simple implementation turned out to be sufficient.

2.4.2 Sparse Linear Algebra

In general, all matrices in formulation (2.2) are sparse, while the vectors are all

dense. Therefore, the solver requires many sparse matrix vector multiplications

(SpMV). For these operations, we used the Cusp library [23] which provides an

easy C++ interface for sparse linear algebra with CUDA. Among the sparse matrix

formats provided by Cusp, we chose the hybrid format (ELL +COO) as it provides

faster linear operations for general unstructured sparse matrices [24].

Since we are targeting large meshes, we solve the sparse linear system (2.4)

using a conjugate gradient (CG) solver provided by Cusp. To warm-start the solver,

we always use the previous CG solution as initial value for the current CG solving.

Typically, the right-hand side of system (2.4) changes gradually within the ALM

solver; thus, two consecutive solutions of problem (2.4) do not deviate significantly

from each other, making this warm-starting strategy a reasonable choice. Alterna-

tively, direct solvers based on Cholesky factorization can be more efficient. On the

other hand, they often require more memory storage, because the sparsity of the

linear system matrix is not preserved by its Cholesky factors. This could be an issue

for GPU, since typically the amount of GPU memory is smaller than the host

memory. Thus, in our implementation, we opted for a simple CG solver.

2.5 Results

In this section, we provide some performance results of our GPU-based constrained

mesh deformation method and compare them against the CPU version. The CPU

version follows the same optimization workflow as described in Sect. 2.3, except

that all the data reside in the host memory so there is no need to transfer handle

positions in input phase and read back vertex positions in output phase. For both

CPU and GPU versions, the frame rate was limited to 30 FPS (i.e., the minimum

elapsed time between two vertex readback operations is 33.3 ms), and the maxi-

mum number of iterations in optimization phase was set to Mmax¼ 50.

Both CPU and GPU versions were implemented for double-precision floating

point data. We used two CPU implementations with different solvers for system

(2.4): one uses CG, and the other uses a direct solver based on Cholesky factoriza-

tion. Both CPU implementations reduce system (2.4) into three smaller systems for

the x, y, z coordinates of the vertices, respectively, with the same system matrix

[3]. This allows the three coordinates of each vertex to be solved in parallel. The

CPU version utilized OpenMP for the parallelization of proximal operator evalua-

tion and linear system solving and used the Eigen library [25] for linear algebra
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operations. For the CG solver on both CPU and GPU, we set the maximum number

of iterations to 100 and the tolerance for the 2-norm ratio between the residual and

right-handle side to 1� 10� 6. The CPU and GPU implementations were run on a

PC with an NVIDIA GTX 580 and an Intel Core i7 870 with four cores.

For comparison, each implementation was run with the same set of meshes and

constraints. Since the optimization phase spends most of the running time on

proximal operator evaluation and linear system solving, we focused the perfor-

mance comparison on these two steps. Thus, we only used soft constraints in our

experiments, so that the optimization phase alternated between proximal operator

evaluation and linear system solving. Figures 2.7 and 2.8 show the meshes used in

our experiments, with the configuration of meshes and their constraints listed in

Fig. 2.7 The first sets of models with their configuration and output illustrations
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Table 2.1. Here the initial mesh in Roof2 is a subdivided version of the initial mesh

in Roof1, while Lilium1 and Lilium2 have the same initial mesh shape under

different constraints. The coplanarity constraints (for planar faces and planar

web) are applied to a face or a polyline only if it has more than three vertices,

while the constraints of regular polygons are applied to all faces of a mesh.

For each mesh, some boundary vertices and interior vertices were chosen as

handle vertices, with their handle positions shown in blue and red, respectively. In

each experiment, the red handles were moved to trigger mesh deformation.

Fig. 2.8 The second sets of models with their configuration and output illustrations
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Table 2.2 shows the average elapsed time between two entries to the output

phase, which we refer to as average frame time. A system with average frame time

of α milliseconds can achieve an average frame rate up to 1, 000/α FPS if the frame

rate is not limited. Thus, smaller average frame time indicates more interactive

result. We can see that even for a mesh with 80K vertices and 79K constraints, our

GPU implementation achieves a frame rate of 9 FPS, while the frame rates for CPU

implementations are much lower than 1 FPS. For a smaller model with about 1K

vertices and 1K constraints, our GPU implementation can potentially achieve a

frame rate of over 300 FPS, well beyond the specified upper limit. The comparison

on average frame time shows that our GPU implementation gained significant

speedups with respect to the CPU implementations.

The accompanying video shows the user interaction for Roof2. We can see that

due to the large number of vertices and constraints, the CPU implementations failed

to respond quickly to handle position changes. On the other hand, the GPU

implementation remains interactive, leading to more intuitive shape manipulation.

Finally, Table 2.3 gives the timing ratio between input phase (input), proximal

operator evaluation (projection), linear system solving (CG), and output phase

(output) for a typical interaction session on GPU. It can be seen that linear system

solving spent the largest portion of time.

Table 2.1 Configurations for meshes shown in Figs. 2.7 and 2.8

Reference label Vertices Faces Constraint type Handles

Roof1 20,464 19,712 Planar faces 1,505

Roof2 80,352 78,848 Planar faces 3,012

Lilium1 3,504 3,505 Regular polygon faces 100

Lilium2 3,504 3,505 Planar faces 100

Skyscraper 1,517 2,884 Planar web 5

Snale 1,092 1,020 Planar faces 143

Yas 1,085 976 Planar faces 221

Table 2.2 Average frame

time for different

implementations
Mesh

Average frame time [ms]

CPU CG CPU Cholesky GPU CG

Roof1 2,159.43 791.03 29.32

Roof2 14,965.90 3,842.25 107.20

Lilium1 638.45 132.84 17.82

Lilium2 210.34 43.99 14.01

Skyscraper 119.77 279.12 3.92

Snale 115.29 63.78 23.89

Yas 94.64 52.45 3.04
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2.6 Limitation and Future Work

In our system, the linear system solving is the bottleneck of performance. This is

due to the well-known fact that SpMV involves irregular data access and thus

achieves lower performance compared to dense operations on GPU. This motivates

us to explore more advanced GPU SpMV techniques such as [26] to further

optimize the performance. Another option is to adapt Cholesky-based direct solvers

to GPU, as direct solvers outperformed CG for CPU implementations in many of

our experiments.

A more ambitious improvement would be a hybrid GPU/CPU optimization.

Currently, the CPU is only used for managing the GPU, and it is mostly idle during

the optimization. Thus, we plan to investigate workload distribution between CPU

and GPU to gain higher performance.

Our implementation requires frequent readback of vertex positions from GPU in

order to update the display, which incurs some performance loss. One of our future

plans is to directly update mesh display on GPU using vertex buffer object, thus

totally avoiding data transfer between CPU and GPU in the output phase.

Finally, our system runs on CUDA-enabled GPUs only. We intend to develop an

OpenCL-based system to make the algorithm available for a wider range of

hardwares and platforms and to compare the performance between different GPUs.

Conclusion

In this chapter, we present an efficient handle-based constrained mesh manip-

ulation system implemented on GPU. The mesh manipulation is formulated

as a constrained optimization problem, which is decomposed into simple

subproblems that can be solved in parallel. Utilizing the computational

power of GPU, we achieve significant speedup of constrained mesh defor-

mation compared to CPU implementations, as shown by our experiments on

meshes with different sizes and constraints. On the other hand, linear system

solving becomes the performance bottleneck, which provides an interesting

avenue for future research.

Table 2.3 Ratio of running time in each part of the optimization phase on GPU

Mesh

% of the time spent in GPU optimization phase

Input Projection CG Output

Roof1 0.34 4.27 88.29 7.10

Roof2 0.00 3.32 86.81 9.87

Lilium1 0.00 0.21 98.01 1.78

Lilium2 0.04 0.16 97.22 2.59

Skyscraper 0.00 0.85 98.43 0.72

Snale 0.01 0.04 99.89 0.07

Yas 0.28 0.74 98.71 0.28
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