Chapter 2

Real-Time Deformation of Constrained
Meshes Using GPU

Alexandre Kaspar and Bailin Deng

Abstract Constrained meshes play an important role in free-form architectural
design, as they can represent panel layouts on free-form surfaces. It is challenging
to perform real-time manipulation on such meshes, because all constraints need to
be respected during the deformation while the shape quality needs to be maintained.
This usually leads to nonlinear constrained optimization problems, which are
challenging to solve in real time. In this chapter, we present a GPU-based shape
manipulation tool for constrained meshes, using the parallelizable algorithm pro-
posed in Deng et al. (Computer-Aided Design, 2014). We discuss the main chal-
lenges and solutions for the GPU implementation and provide timing comparison
against CPU implementations of the algorithm. Our GPU implementation signifi-
cantly outperforms the CPU version, allowing real-time handle-based deformation
for large constrained meshes.

2.1 Introduction

With the advances in computer-aided design tools, complex free-form shapes are
becoming more and more popular in architectural design nowadays. While digital
models can be easily created using a computer, the construction of such shapes
remains a challenge, due to the limitation of fabrication technologies. To realize
free-form architectural designs at a reasonable cost, the design surfaces usually
need to be decomposed into panels of simple shapes that facilitate manufacturing.
This process is called rationalization, which amounts to approximating the
NURBS-based design surface using a set of panels subject to requirements such
as approximation tolerance, panel types, aesthetics of panel layouts, etc. Rational-
ization usually involves nonlinear optimization with a large number of variables
and is therefore computationally expensive [1].
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From a designer’s point of view, it is important to explore different design
shapes and their corresponding panel layouts. One possible way is to modify the
NURBS design and perform rationalization for each new shape. Due to the heavy
computational cost of rationalization, it is time-consuming to explore designs via
this approach. An alternative approach is to directly manipulate the panel shapes
and layouts while respecting the shape requirements for panel types and
maintaining the aesthetics of the overall shape. In this way, the user only explores
panel layouts that satisfy all the requirements, with intuitive feedback about what
modifications are possible under the given requirements. Such fabrication-aware
shape exploration methods for free-form architecture have been a popular research
topic recently [2-7].

Usually, a panel layout can be represented by a polygonal mesh, with mesh faces
representing the panels and mesh edges representing the panel boundaries. The
shape requirements for panel layout induce geometric constraints for mesh ele-
ments. For example, a layout of planar panels corresponds to a polygonal mesh
where the vertices of each face are required to be coplanar (see Fig. 2.1). Therefore,
manipulating the panel layout reduces to deforming the mesh while satisfying
certain geometric constraints and maintaining the shape quality. This usually
leads to a nonlinear constrained optimization problem for mesh vertex positions.
Due to the difficulty of the optimization, it is a challenging task to perform real-time
manipulation, especially for large meshes.

Bouaziz et al. [3] proposed a general framework for handle-based deformation
of meshes subject to soft constraints, formulated as a nonlinear least-squares
problem. Utilizing projections of individual mesh elements onto their feasible
configurations, they propose an iterative solver that alternates between global linear
system solving and local mesh element projections. The projections are indepen-
dent and can be executed in parallel, thus achieving significant speedup on multi-
core processors. When run on a multi-core CPU, the method achieves interactive
results for meshes with about 1K vertices, but is still unable to handle large meshes.
Recently, this method was extended in [8] to allow both hard and soft constraints.
The proposed numerical solver consists of a series of simple subproblems similar to
those in [3], enabling speedup from parallelism. In this chapter, we present an
implementation of the method in [8] on GPU using CUDA, which provides many
more computational cores than CPU. By carefully optimizing for performance, our
implementation allows real-time deformation of constrained meshes with up to
20 K vertices and 20 K constraints.

2.1.1 Related Work

Besides [3] and [8], other handle-based deformation methods for constrained
meshes have been developed in recent years. Zhao et al. [5] extended the shape
space exploration approach in [2], using curve handles to control target shapes.
Vaxman [4] proposed a method to deform polyhedral meshes while keeping their
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Fig. 2.1 Panel layouts can be represented by polygonal meshes subject to geometric constraints.
Left: Yas Viceroy Hotel in Abu Dhabi, designed by Asymptote Architecture (image courtesy of
Asymptote Architecture). Right: a quad mesh representing the hotel facade, with the constraint that
the vertices of each face lie on a common plane. This constrained mesh represents a layout of
planar quadrilateral panels on the facade

faces planar, using affine transformations of mesh faces. The computation reduces
to solving a linear system for mesh vertex positions, allowing real-time deforma-
tion. The method only works for polyhedral meshes (meshes with planar faces).
Moreover, since only affine transformations are allowed, only a subset of the
feasible deformations are considered, which limits the degree of freedom for
shape control. Poranne et al. [6] provided an optimization approach to deform
polyhedral meshes, not limited to affine transformations of faces. The deformation
is computed through an alternating least-squares approach similar to [3]. However,
only face planarity constraints are considered by the method. Deng et al. [7]
proposed a framework to deform meshes under hard constraints, with a focus on
computing local deformations. But their framework does not consider soft con-
straints. On the contrary, the deformation method in this chapter considers general
shape constraints for meshes and allows both soft and hard constraints, providing
more flexibility in shape manipulation.

Recently, computational design shape exploration tools have also been proposed
for other types of architecture, such as reciprocal frame structures [9] and building
layouts [10]. As these problems require other representations than polygonal
meshes, they cannot be handled by our method.

2.1.2 Overview

The rest of the chapter is organized as follows. Section 2.2 briefly presents the
method in [8]. Section 2.3 gives an overview of the implementation of our system.
Section 2.4 provides more details about the CUDA implementation. Finally, results
are presented in Sect. 2.5, followed by a discussion about limitation and future work
in Sect. 2.6. The final section concludes this chapter.
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2.2 Overview of the Method

In this section, we give a brief overview of the problem formulation in [8], as well
as its numerical solution. Interested readers are referred to [8] for more details.

2.2.1 Problem Formulation

We consider polygonal meshes as a representation of panel layouts for free-form
architectural surfaces. The mesh is deformed by changing its vertex positions while
fixing its topology. During deformation, the vertex positions are subject to certain
soft constraints and/or hard constraints. To control the deformation, a user specifies
target positions for some vertices using handles that are freely movable. When the
handles are moved, the mesh vertex positions are updated such that:

¢ The new mesh satisfies the soft constraints as much as possible and satisfies the
hard constraints strictly.

* The handle vertices are close to their target positions.

« The non-handle vertices stay close to their original positions.

» The vertex deformation field is smooth across the mesh.

With a given topology, the shape of a mesh is determined by its vertex positions

P1. P2 - - Py € R?, where N is the number of vertices. A shape constraint involving
m vertex positions p;,p;,--.,p; can be represented by the condition
(pi,---»p; ) € C, where C C R*" is the feasible set. We assume that the constraint

is translation invariant, meaning that applying a common translation to all involved
vertices does not change the status of constraint satisfaction (which is the case for
most shape constraints relevant to free-form architecture). To facilitate numerical
solution, we introduce auxiliary variables y;.,y,,...,y;, € R* and rewrite the
constraint as

() <e o

p; —mean(pil,...,pim) =y, forj=iy, ... in,

where mean (pil, ceey pim) = (pi1 4+ 4 pim)/m is the barycenter of p; , ...,p; -
Note that the second constraint in (2.1) is a linear condition which can be written in
matrix form A¢p =y, where vector p € R packs all vertex positions, vector Ve
€ R¥ packs the auxiliary variables, and matrix Ac € RN, For each soft
constraint with feasible set S, we introduce auxiliary variables y; € S to derive
an equivalent condition Asp = ys. Then the constraint violation can be measured
with a function Fg= HAgp — ySH; Similarly for each hard constraint with
feasible set Jf, we introduce auxiliary variables ygp € I to derive its equivalent
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condition Agep =Yyge. Given N; soft constraints and N, hard constraints with

feasible sets {Sj[j =1, ...,Ns} and {0 lk=1,...,N,}, respectively, the vertex
positions p are computed by the following optimization:

N Ny Np
min WhFhandle + Wchlose + WfFfair + ZW/AFS, + ZUS,' (YSI) + Zaﬂﬁ (y(‘}f’k)
k=1

P,y j=1 j=1
s.t. Bp=yy.
Here y = {ysl,...,ysN ,y%,...,ym/h} packs all auxiliary variables for soft

constraints and hard constraints, Fs, is the soft constraint violation function
introduced above, and side condition Bp =y collects all linear relations from

T
the equivalent conditions of hard constraints, with B = [Aggl e ,A;FN } and
h

T
yy = [y;ﬂ,...,y;%} . Functions Fpandies Feloses Frair Measure respectively the

distance from handle vertices to their target positions, the distance from
non-handle vertices to their original positions, and the smoothness of the vertex
deformation field based on its Laplacian:

2
Fhandle = Z ||pz - ti”; Felose = Z HP, - pj‘)Hz’ Frayr = ||L(p - PO)H;
JjEr

ier
where I is the index set for handle vertices, t; is the target position for vertex i, pj(-’ is
the original position for vertex j, p° packs the original positions for all vertices, and
L is the Laplacian matrix. The indicator function os, (y 5/-) makes sure yg € S; in
the solution, with

Cfo.  ifys €8,
os; (ysf) - {—l—oo, otherwise.

Indicator function ogp, (y;}ek> is defined in the same way. wp, w., wr and wg, are

positive weights trading off different terms. The optimization problem can be
written in matrix form as

NS 2
min - [IDp — |3 +we[[L(p —p) 5 + D _w;
9 j:1

Ny Ny
+ o, (Ys/) + o, (Ym)v
=1 =1

s.t. Bp=yy,

AS"p_ysf“z

(2.2)



20 A. Kaspar and B. Deng

where
d15 r
| dyls r;v
with I being the 3 x 3 identity matrix, and

_ /W ifier L d;t; ifierl .
di = {\/M_Z otherwise” ' | d;p? otherwise for i=1,....N.

2.2.2 Numerical Solution
2.2.2.1 Alternating Minimization

Without hard constraints, problem (2.2) reduces to minimizing quadratic terms with
indicator functions. It is solved by alternating between two steps until convergence:

1. Projection: fix p and minimize over y.
2. Linear solve: fix y and minimize over p.

The minimization in step 2 simply amounts to solving a symmetric positive
definite (SPD) sparse linear system, hence the name. For step 1, the problem is
separable for auxiliary variables from different constraints and is solved in parallel.
Specifically, we solve a set of independent subproblems, each of which is associ-
ated with one constraint and has the following form:

min [lve = x][; + oe(¥c),

where C is the feasible set and y,, are the auxiliary variables for the constraint. The
solution is the closest projection from x onto C, which we call the proximal operator
of C for input data x. For many constraints, we can derive the closed-form
representation of the proximal operator. For example (see [3] for details):

e Coplanarity. This constraint requires n > 3 vertices to lie on a common plane. It
can be used to model planar panels, for example, by requiring the vertices of each
mesh face to be coplanar (see Fig. 2.1). The proximal operator finds n coplanar
points yy, . ..,y, € R closest to the input data Xi, . . ., X, € R>. The solution is y;
=x;—nn-(x;,—X)] (i=1,...,n), where X = mean(xy,...,X,) and n is the
left singular vector of matrix [Xy, ..., X,] for the smallest singular value.

e Regular polygon. This constraint requires a face with n>3 vertices to be a
regular n-gon. It can be used to induce shape regularity of mesh elements (see
Fig. 2.2). The proximal operator finds a regular n-gon closest to a polygon with
vertices X, ...,X, € R3. This can be done by computing the translation, rotation,
and scaling of a predefined regular n-gon to fit the target polygon, using the
algorithm in [11].
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Fig. 2.2 Handle-based deformation of a constrained mesh subject to the soft constraint that each
face is a regular polygon. Left: the initial mesh with the handles (shown in red and blue) attached to
the boundary vertices and four vertices in the middle. The handles for the middle positions are
moved to new target positions (shown in red). Right: the mesh deforms according to the handle
positions while satisfying the soft constraints

2.2.2.2 Augmented Lagrangian Method

When dealing with hard constraints, extra care has to be taken to ensure that the
linear side constraints in problem (2.2) are satisfied. This is done using the aug-
mented Lagrangian method (ALM) [12], which searches for a saddle point of the
following augmented Lagrangian function:

L(p,y, A1) = F(p,y) + A'h(p,y) + u|[h(p, )|, (2.3)

where F(p,y) is the target function in (2.2), h(p, y) = Bp — yy is the residual of side
constraints in (2.2), 4 is a vector of dual variables, and p > 0 is a penalty parameter.
The solver iteratively updates p, y, 4 and y until convergence. In each iteration, new

values p,y A, ji are computed from current values p,y, 4,7 using the following
steps:

1. Primal update: (p,y) = minp,y;ﬁ(p, Y, 4, ;7).

2. Dual update: A =7+ gh(,p,¥).

3. Penalty update: choose ji > pi.

The problem in step 1 has a similar structure as the one from Sect. 2.2.2.1 and is
solved in the same way. Specifically, it alternates between two steps:

1. Projection step with proximal operator evaluations:
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2
‘2+68/(y3j)’ j:17""NS’

min Hys/_ —Asp
Ys;

min
Yae,

dae\ |IP
Ve, — (Aggkp-i- 2/;) , + og¢, (ym), k=1,...,Ny,

where 4gp, collects the components of 4 in the same positions as ygp, in yy.

2. Solving a sparse SPD system for p:

Ns
(DTD + wiL'L 4+ uB"B + ZWJ.JA;AS,) P
J=1

(2.4)

A ak
— D'r+wiL'Lp® + uB" (yH - ﬂ) + ) WAL,
=1 '

The primal update step is the most time-consuming part of the solver. We will
not go into the details of steps 2 and 3, but refer the readers to [8] instead. Note that
for a given problem, the linear system matrix in (2.4) only changes according to the
penalty parameter u. The penalty update scheme in [8] only generates a predefined

set of values for u, so we can precompute all linear system matrices that appear in
(2.4).

2.3 General Implementation Strategies

We developed an interactive handle-based shape manipulation system for
constrained meshes, based on the algorithms presented in the previous section.
For an initial mesh, the user selects a set of handle vertices and specifies their target
positions (which we call handle positions) by dragging 3D manipulators. Whenever
the manipulators are moved, the system deforms the mesh according to the new
handle positions, providing immediate feedback to the user (see Fig. 2.2 for an
example).

Figure 2.3 shows the architecture of our system. Here we distinguish between the
work of the threads from the user side (user interface, mouse and keyboard
interaction, mesh display, etc.), which we gather as the user module, and the
work done within a single thread dedicated to a GPU-based ALM solver, which
we call the optimization module. The latter loops over three main logical steps:

1. Input phase: transfer current handle positions to GPU.

2. Optimization phase: iterate the ALM steps on GPU, until some output conditions
are satisfied.

3. Output phase: read back updated vertex positions from GPU.

To run the ALM solver on GPU, we store on the GPU all the optimization
variables, as well as other auxiliary data [such as matrices As,, B, D and vector r in
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Fig. 2.3 The architecture of our GPU-based implementation

. Handle positions

Fig. 2.4 The update of the handle data on GPU is done using a kernel that fills vector r according
to the handle position vector (on GPU) and a precomputed index map

formulation (2.2) and the linear system matrices in problem (2.4)]. Many of these
data remain constant during optimization and only need to be initialized once at the
beginning. Thus, in the input phase, we only need to transfer the latest handle
positions to the GPU to update the problem specification.

As an iterative solver, the optimization phase requires initial values of the
variables. To initialize the current optimization phase, we always use the resulting
variable values from the previous optimization phase. The motivation is that when a
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user drags the handles continuously, the handle positions used in two consecutive
optimization phases are close to each other. Thus, their solutions will be close to
each other as well, making the solution from the previous phase a good guess for the
current solution.

Depending on the data, the optimization phase might take a large number of
iterations to fully converge. To keep the process interactive, we allow switching
from optimization phase to output phase even if it is not fully convergent yet. When
the handles are dragged, they are likely to be moving at the same time as the ALM
solver is running. Rather than solving the current problem to a very high accuracy, it
is more important to output the current result and start a new optimization phase
with the new handle positions, so that the mesh shape follows the handle positions
smoothly and shows how the shape reacts to handle position changes. Even if the
output mesh shape is not the exact solution, it is still a good approximation because
the solver usually converges quickly to an approximate solution [13]. Therefore, we
switch from optimization phase to output phase, if one of the following conditions
is satisfied:

1. The optimization phase fully converges.
2. The number of iterations within the optimization phase exceeds a limit M ..

The output phase is responsible for reading back new vertex positions in order to
update the mesh data structure in host memory, which is then used to update the
mesh display. Both operations (vertex readback and mesh display update) involve
data transfer between CPU and GPU. To avoid unnecessary transfer while keeping
the process interactive, we only read back vertex positions if the elapsed time
(in milliseconds) from the last readback is larger than a threshold . With such a
strategy, the maximum frame rate for mesh display is 1,000/ FPS.

After the output phase, depending on the availability of new handle positions and
the convergence of the optimization phase, we are in one of the following cases:

e If there are new handle positions, transfer them to GPU and start a new
optimization phase.

e Otherwise, if the previous optimization phase was not fully convergent, resume
the optimization.

¢ Otherwise, wait for new handle positions.

2.4 CUDA Implementation Details

Our GPU implementation was done with CUDA. We targeted NVIDIA GeForce
GTX 580 [14], which runs under the Fermi architecture [15, 16]. It has 16 streaming
multiprocessors providing a total of 512 cores. Each of them has 64 kB of memory
available between the L1 cache and the shared memory. The rest of this section will
present the challenges and specific implementation details.
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2.4.1 Kernels

We implemented custom kernels for two critical operations: updating the handle
data and evaluating the proximal operators.

2.4.1.1 Handle Update

When starting an optimization phase with new handle positions, we need to update
the GPU memory storage of vector r in formulation (2.2). With the number of
handle vertices being usually much smaller than the number of vertices, we first
transfer the handle positions onto the GPU as a contiguous vector Vy, € R>"". Then a
custom kernel updates the entries of r according to Vi, using a precomputed index
map (see Fig. 2.4). Note that the index map remains unchanged during optimiza-
tion, since neither the choice of handle vertices nor the mesh topology is allowed to
change.

Another strategy would be to transfer only the handle positions that are being
changed by the user. This requires a dynamic index map for writing to vector r, as
well as checking which handles are being moved. To simplify implementation, we
did not use such strategy.

2.4.1.2 Proximal Operator Evaluation

As we saw in Sect. 2.2, proximal operators are responsible for updating auxiliary
variables. Each type of constraint corresponds to one proximal operator, which
involves a predefined set of operations. For different constraints of the same type,
their proximal operator evaluation is independent since the involved auxiliary
variables do not overlap. Such characteristics make it suitable to evaluate proximal
operators using custom CUDA kernels. Specifically, we implement one kernel for
each type of constraint, within which each thread handles one constraint.

For high performance, we need to ensure coalesced memory access. Thus, we
store the auxiliary variables y in formulation (2.2) into a contiguous array in global
memory, where the components corresponding to the same kernel reside in a
contiguous region. The input data for proximal operators are of the same dimension
as 'y, and we store them with an array in global memory using the same layout as
y (see Fig. 2.6 for an example).

Another performance consideration is the grid and block sizes. We follow [17]
which suggests a number of threads per block:

1. Dividing the maximum number of threads per SM, i.e., 1,536 for Fermi

2. At least 32 threads per block, i.e., the warp size

3. At most 3 blocks per SM, so as to maximize occupancy (and thus at least 1,536/
8 =192 threads per block)
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Fig. 2.5 For a regular triangle mesh (i.e., each interior vertex has valence 6, and each boundary
vertex has valence no larger than 6), there exist three families of edge polylines (shown in blue).
Being a planar web requires each polyline to be planar, namely, all vertices on the polyline lie in a
common plane

Since we do not know the relation between different types of kernels, we chose
to simply saturate them by using a block size of 512 threads, which proved to be
sufficient for our need according to experiments.

Coplanarity Constraint

Because of specific features and limitations of GPU, additional care needs to be
taken when implementing some proximal operators. Here we use the vertex copla-
narity constraint as an example to show the challenges and our solutions. Copla-
narity constraint is one of the most important shape constraints in free-form
architecture. It can be used to model planar panels [18] (Fig. 2.1), as well as planar
webs which consist of curve elements of planar shapes [19] (Fig. 2.5). For input data
X1,.. X, € R?, a key step of the proximal operator is a singular value decomposi-
tion (SVD) to extract the left singular vector of M =[xy,...,X,] € R for the
smallest singular value (see Sect. 2.2.2.1).

Due to the memory layout requirement mentioned before, the global memory
storage of Xy, . . ., X,, is already a column-major representation for matrix M. Thus, a
naive approach is to implement an SVD solver that operates directly on the global
memory storage of M. However, this might lead to excessive access to global
memory, lowering the performance significantly [20].

To reduce global memory access, we implemented the kernel as follows. First,
note that the target singular vector is the same as the right singular vector of 3 x 3
matrix MM" =Y"_ x;x! for the smallest singular value. Thus, we create matrix
MM on local memory, by reading each x; from global memory and summing up
x;x!. Afterwards, we perform SVD on matrix MM, In this way, each global
memory element of M needs to be accessed only once for computing the singular
vector. Moreover, this approach only performs SVD on a 3 x 3 matrix. For copla-
narity constraints involving a large number of vertices, this significantly reduces the
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Fig. 2.6 Schematic diagram for the proximal operator kernel of coplanarity constraints. Input data
x and output data y are stored in two contiguous arrays, respectively. Within each array, data
associated with a thread reside in a contiguous region. Our implementation is able to handle
coplanarity constraints for different number of vertices within a single kernel. Here N-planarity
refers to a coplanarity constraint for N vertices

matrix storage on local memory compared to the original matrix M. Such compact
storage helps to reduce register spilling and L1 cache misses, which improves the
performance of the kernel. Furthermore, with this approach, we are able to deal with
coplanarity constraints with different number of vertices using a single kernel, by
precomputing an array that stores for each coplanarity constraint the following
information: (1) the number of vertices and (2) the address of input data. Using a
single kernel helps to increase parallelism for the implementation, resulting in
improved throughput of the system. Figure 2.6 provides a schematic diagram for
the kernel of coplanarity constraints.
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For 3 x3 SVD, we implemented a simple SVD solver based on [21]. There
exists a branch-free 3 x 3 SVD solver [22] that might provide higher performance,
but our simple implementation turned out to be sufficient.

2.4.2 Sparse Linear Algebra

In general, all matrices in formulation (2.2) are sparse, while the vectors are all
dense. Therefore, the solver requires many sparse matrix vector multiplications
(SpMYV). For these operations, we used the Cusp library [23] which provides an
easy C++ interface for sparse linear algebra with CUDA. Among the sparse matrix
formats provided by Cusp, we chose the hybrid format (ELL + COO) as it provides
faster linear operations for general unstructured sparse matrices [24].

Since we are targeting large meshes, we solve the sparse linear system (2.4)
using a conjugate gradient (CG) solver provided by Cusp. To warm-start the solver,
we always use the previous CG solution as initial value for the current CG solving.
Typically, the right-hand side of system (2.4) changes gradually within the ALM
solver; thus, two consecutive solutions of problem (2.4) do not deviate significantly
from each other, making this warm-starting strategy a reasonable choice. Alterna-
tively, direct solvers based on Cholesky factorization can be more efficient. On the
other hand, they often require more memory storage, because the sparsity of the
linear system matrix is not preserved by its Cholesky factors. This could be an issue
for GPU, since typically the amount of GPU memory is smaller than the host
memory. Thus, in our implementation, we opted for a simple CG solver.

2.5 Results

In this section, we provide some performance results of our GPU-based constrained
mesh deformation method and compare them against the CPU version. The CPU
version follows the same optimization workflow as described in Sect. 2.3, except
that all the data reside in the host memory so there is no need to transfer handle
positions in input phase and read back vertex positions in output phase. For both
CPU and GPU versions, the frame rate was limited to 30 FPS (i.e., the minimum
elapsed time between two vertex readback operations is 33.3 ms), and the maxi-
mum number of iterations in optimization phase was set to M ,,.x = 50.

Both CPU and GPU versions were implemented for double-precision floating
point data. We used two CPU implementations with different solvers for system
(2.4): one uses CG, and the other uses a direct solver based on Cholesky factoriza-
tion. Both CPU implementations reduce system (2.4) into three smaller systems for
the x, y, z coordinates of the vertices, respectively, with the same system matrix
[3]. This allows the three coordinates of each vertex to be solved in parallel. The
CPU version utilized OpenMP for the parallelization of proximal operator evalua-
tion and linear system solving and used the Eigen library [25] for linear algebra
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Fig. 2.7 The first sets of models with their configuration and output illustrations

operations. For the CG solver on both CPU and GPU, we set the maximum number
of iterations to 100 and the tolerance for the 2-norm ratio between the residual and
right-handle side to 1 x 10 °. The CPU and GPU implementations were run on a
PC with an NVIDIA GTX 580 and an Intel Core i7 870 with four cores.

For comparison, each implementation was run with the same set of meshes and
constraints. Since the optimization phase spends most of the running time on
proximal operator evaluation and linear system solving, we focused the perfor-
mance comparison on these two steps. Thus, we only used soft constraints in our
experiments, so that the optimization phase alternated between proximal operator
evaluation and linear system solving. Figures 2.7 and 2.8 show the meshes used in
our experiments, with the configuration of meshes and their constraints listed in
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Fig. 2.8 The second sets of models with their configuration and output illustrations

Table 2.1. Here the initial mesh in Roof2 is a subdivided version of the initial mesh
in Roofl, while Lilium1 and Lilium2 have the same initial mesh shape under
different constraints. The coplanarity constraints (for planar faces and planar
web) are applied to a face or a polyline only if it has more than three vertices,
while the constraints of regular polygons are applied to all faces of a mesh.

For each mesh, some boundary vertices and interior vertices were chosen as
handle vertices, with their handle positions shown in blue and red, respectively. In
each experiment, the red handles were moved to trigger mesh deformation.
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Table 2.1 Configurations for meshes shown in Figs. 2.7 and 2.8

Reference label Vertices Faces Constraint type Handles
Roof1 20,464 19,712 Planar faces 1,505
Roof2 80,352 78,848 Planar faces 3,012
Lilium1 3,504 3,505 Regular polygon faces 100
Lilium2 3,504 3,505 Planar faces 100
Skyscraper 1,517 2,884 Planar web 5
Snale 1,092 1,020 Planar faces 143
Yas 1,085 976 Planar faces 221

Table 2.2. Average frame Average frame time [ms]

time for different Mesh CPU CG CPU Cholesky | GPU CG

implementations
Roofl 2,159.43 791.03 29.32
Roof2 14,965.90 3,842.25 107.20
Lilium1 638.45 132.84 17.82
Lilium2 210.34 43.99 14.01
Skyscraper 119.77 279.12 3.92
Snale 115.29 63.78 23.89
Yas 94.64 52.45 3.04

Table 2.2 shows the average elapsed time between two entries to the output
phase, which we refer to as average frame time. A system with average frame time
of @ milliseconds can achieve an average frame rate up to 1, 000/a FPS if the frame
rate is not limited. Thus, smaller average frame time indicates more interactive
result. We can see that even for a mesh with 80K vertices and 79K constraints, our
GPU implementation achieves a frame rate of 9 FPS, while the frame rates for CPU
implementations are much lower than 1 FPS. For a smaller model with about 1K
vertices and 1K constraints, our GPU implementation can potentially achieve a
frame rate of over 300 FPS, well beyond the specified upper limit. The comparison
on average frame time shows that our GPU implementation gained significant
speedups with respect to the CPU implementations.

The accompanying video shows the user interaction for Roof2. We can see that
due to the large number of vertices and constraints, the CPU implementations failed
to respond quickly to handle position changes. On the other hand, the GPU
implementation remains interactive, leading to more intuitive shape manipulation.

Finally, Table 2.3 gives the timing ratio between input phase (input), proximal
operator evaluation (projection), linear system solving (CG), and output phase
(output) for a typical interaction session on GPU. It can be seen that linear system
solving spent the largest portion of time.
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Table 2.3 Ratio of running time in each part of the optimization phase on GPU

% of the time spent in GPU optimization phase
Mesh Input Projection CG Output
Roofl 0.34 4.27 88.29 7.10
Roof?2 0.00 3.32 86.81 9.87
Lilium1 0.00 0.21 98.01 1.78
Lilium2 0.04 0.16 97.22 2.59
Skyscraper 0.00 0.85 98.43 0.72
Snale 0.01 0.04 99.89 0.07
Yas 0.28 0.74 98.71 0.28

2.6 Limitation and Future Work

In our system, the linear system solving is the bottleneck of performance. This is
due to the well-known fact that SpMV involves irregular data access and thus
achieves lower performance compared to dense operations on GPU. This motivates
us to explore more advanced GPU SpMV techniques such as [26] to further
optimize the performance. Another option is to adapt Cholesky-based direct solvers
to GPU, as direct solvers outperformed CG for CPU implementations in many of
our experiments.

A more ambitious improvement would be a hybrid GPU/CPU optimization.
Currently, the CPU is only used for managing the GPU, and it is mostly idle during
the optimization. Thus, we plan to investigate workload distribution between CPU
and GPU to gain higher performance.

Our implementation requires frequent readback of vertex positions from GPU in
order to update the display, which incurs some performance loss. One of our future
plans is to directly update mesh display on GPU using vertex buffer object, thus
totally avoiding data transfer between CPU and GPU in the output phase.

Finally, our system runs on CUDA-enabled GPUs only. We intend to develop an
OpenCL-based system to make the algorithm available for a wider range of
hardwares and platforms and to compare the performance between different GPUs.

Conclusion

In this chapter, we present an efficient handle-based constrained mesh manip-
ulation system implemented on GPU. The mesh manipulation is formulated
as a constrained optimization problem, which is decomposed into simple
subproblems that can be solved in parallel. Utilizing the computational
power of GPU, we achieve significant speedup of constrained mesh defor-
mation compared to CPU implementations, as shown by our experiments on
meshes with different sizes and constraints. On the other hand, linear system
solving becomes the performance bottleneck, which provides an interesting
avenue for future research.
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