Chapter 2
Using Python as a Calculator

One of the most important tasks that a computer performs is mathematical computa-
tion. In fact, the computation of mathematical functions had been the driving moti-
vation for the invention of ‘computing machines’ by pioneer researchers. As other
programming languages do, Python provides a direct interface to this fundamental
functionality of modern computers. Naturally, an introduction of Python could start
by showing how it can be used as a tool for simple mathematical calculations.

2.1 Using Python as a Calculator

The easiest way to perform mathematics calculation using Python is to use IDLE,
the interactive development environment of Python, which can be used as a fancy
calculator. To begin with the simplest mathematical functions, including integral
addition, subtraction, multiplication and division, can be performed in IDLE using

the following mathematical expressions':

>>> 345 # addition

8

>>> 3-2 # subtraction

1

>>> 6*7 # multiplication
42

>>> 8/4 # division

2

As can be seen from the examples above, a simple Python expression is similar to a
mathematical expression. It consists of some numbers, connected by a mathematical
operator. In programming terminology, number constants (e.g. 3, 5, 2) are called
literals. An operator (e.g. +, —, *) indicates the mathematical function between

I'The content after the # symbols are comments and can be ignored when typing the examples.
Details about comments are given in Chap.3 or the rest of the book >>> indicates an IDLE
command.

© Springer Science+Business Media Singapore 2015 13
Y. Zhang, An Introduction to Python and Computer Programming,
Lecture Notes in Electrical Engineering 353, DOI 10.1007/978-981-287-609-6_2

http://dx.doi.org/10.1007/978-981-287-609-6_3

14 2 Using Python as a Calculator

its operands, and hence the value of the expression (e.g. 3 + 5). The process of
deriving the value of an expression is called the evaluation of the expression. When
a mathematical expression is entered, IDLE automatically evaluates it and displays
its value in the next line.

Since expressions themselves represent values, they can be used as operands in
longer composite expressions.

>>> 3+2-5+1
1

In the example above, the expression 34-2 is evaluated first. Its value 5 is combined
with the next literal 5 by the — operator, resulting in the value O of the composite
expression 3 4 2 — 5. This value is in turn combined with the last literal 1 by the +
operator, ending up with the value 1 for the whole expression.

In the example, operators are applied from left to right, because 4 and — have the
same priority. In an expression that contains more than one operators, not necessarily
all operators have the same priority. For example,

>>> 3+2*5-4
9

The expression above evaluates to 9, because the multiplication () operator has a
higher priority compared with the + and — operators. The order in which operators are
applied is called operator precedence, and mathematical operators in Python follow
the natural precedence by the mathematical function. For example, multiplication
() and division (/) have higher priorities than addition (+) and subtraction (—). An
operator that has higher priority than multiplication is the power operator (s:x).

>>> 5 ** D # power
25

In general, a ** b denotes the value of a to the power of b.
Similar to mathematical equations, Python allows the use of brackets (i.e.
‘(’ and ‘)’) to manually specify the order of evaluation. For example,

>>> (3+42) *(5-4) # brackets
5

The value of the expression above is 5 because the bracketed expressions 3 + 2
and 5 — 4 are evaluated first, before the * operator is applied.

In the examples above, an operator connects two literal operands, and hence they
are called binary operators. An operator can also be unary, taking only a single
operand. An example unary operator is —, which takes a single operand and negates
the number.
>>> - (5*1) # negation
-5

There is also a ternary operator in Python, which takes three operands. It will be
introduced in a later chapter.

Until this point, all the mathematical expressions have been integral, with the
values of literal operands and expressions being integers. Take the division operator
(/) for example,

2.1 Using Python as a Calculator 15

>>> 5/2 # division with Iinteger operands
2

The result of the integral division operation is the quotient 2, with the fractional
part 1 discarded. To find the remainder of integer division, the modulo operator (%)
can be used.

>>> 5%2 # modulo
1

2.1.1 Floating Point Expressions

So for all the expressions in this chapter are integer expressions, of which all the
operands and the value are integers. However, for the expressions 5/2, sometimes
the real number 2.5 is a more appropriate value. In computer science, real number
are typically called floating point number. To perform floating point arithmetics,
at least one floating point number must be put in the expression, which results in a
floating point expression. For example,

>>> 5.0/2 # floating point division
2.5

>>> 5/2.0 # floating point division
2.5

>>> 25 ** (.5 # floating point power
5.0

The last example above calculates the positive square root of 25. Regardless of
operands, when all the numbers in a Python expression are integers, the expression
is an integer expression, and the value of the expression itself is an integer. However,
when there is at least one floating point number in an expression, the expression is
a floating point expression, and its value is a floating point number. Below are some
more examples, which show that 4+, — and * operators can all be applied to floating
point numbers, resulting in floating point numbers.

>>> 3.0+5.1 # floating point addition

8.1

>>> 1.0-2.4 # floating point subtraction
-1.4

>>>5.5*0.3 # floating point multiplication
1.65

The observation above leads to an important fact about Python: things have types.
Literals have types. The literal 3 indicates an integer, and the literal 3.0 indicates a
floating point number. Expressions have types, and their types are the types of their
values. The type of a literal or expression can be examined by using the following
commands:
>>> type (3)
<type ‘int’>
>>> type (3.0)

16 2 Using Python as a Calculator

<type ‘float’'>
>>> type (3+5)
<type ‘int’>
>>> type (3+5.0)
<type ‘float’'>

The command type(x) returns the type of x. This command is a function call in
Python, which fype is a built-in function of Python. We call a function with specific
arguments in order to obtain a specific return value. In the case above, calling the
function type with the argument 3 results in the ‘integer type’ return value.

Function calls are also expressions, which are written in a form similar to mathe-
matica function, with a function name followed by a comma-separated list of argu-
ments enclosed in a pair of brackets. The value of a function call expression is the
return value of the function. In the above example, fype is the name of a function,
which takes a single argument, and returns the type of the input argument. As a result,
the function call type(3.0) evaluates to the ‘float type’ value.

Intuitively the return value of a function call is decided by both the function itself
and the arguments of the call. To illustrate this, consider two more functions. The int
function takes one argument and converts it into an integer, while the float function
takes one argument and converts it into a floating point number.
>>> float (3)

3.0

>>> int (3.0)

3

>>> float (3)/2

1.5

>>> 3*float (3-2*5+4) **2
27.0

As can be seen from the examples above, when the function is fype, the return
values are different when the input argument is 3 and when the input argument is
3.0. On the other hand, when the input argument is 3, the return value of the function
type differs from that of the function float. This shows that both the functions and
the arguments determine the return value.

The last two examples above is a composite expression, in which the function call
float(3) is evaluated first, before the resulting value 3.0 is combined with the literal 2
by the operator /. Function calls have higher priorities than mathematical operators
in operator precedence.

The int function converts a floating point number into an integer by discarding all
the digits after the floating point. For example,
>>> int (3.0)

3
>>> int (3.1)
3

>>> 1int (3.9)
3

In the last example, the return value of in#(3.9) is 3, even though 3.9 is numerically
closer to the integer 4. For floating-point conversion by rounding up an integer, the
round function can be used.

2.1 Using Python as a Calculator 17

>>> round (3.3)
3
>>> round (3.9)
4

The round function can round up a number not only to the decimal point, but also to
a specific number of digits after the decimal point. In the latter case, two arguments
must be given to the function all, with the second input argument indicating the
number of digits to keep after the decimal point. The following examples illustrate
this use of the round function with more than one input arguments. Take note of the
comma that separates two input arguments.
>>> round (3.333, 1)
3.3

>>> round (3.333, 2)
3.33

A floating point operator that results in an integer value is the integer division
operator (//), which discards any fractional part in the division.

>>> 3.0//2
1
>>> 3.5//2
1

Correspondingly, the modulo operator can also be applied to floating point divi-
sion.

>>> 3.5%2
1.5

Another useful function is abs, which takes one numerical argument and returns
its absolute value.

>>> abs (1)

1

>>> abs (1.0)
1.0

>>> abs (-5)
5

One final note on floating point numbers is that their literals can be expressed by
a scientific notation. For example,

>>> 3el

30.0

>>> 3e-1
0.3

>>> 3E2

300.0

The notations xey and xEy have the same meaning. They indicate the value of
x x 107,

18 2 Using Python as a Calculator

2.1.2 Identifiers, Variables and Assignment

The set of arithmetic expressions introduced above allows simple calculations using
IDLE. For example, suppose that the annual interest rate of a savings account is 4 %.
To calculate the amount of money in the account after three years, with an initial
sum of 3, 000 dollars is put into the account, the following expression can be used.

>>> 3000*1.04**3
3374.592

One side note is that brackets can be used to explicitly mark the intended operator
precedence, even if they are redundant. In the case above, 3000 x 1.04 x %3 can
be written as 3000 % (1.04 x *%3) to make the operator precedence more obvious.
In general, being more explicit can often make the code easier to understand and
less likely to contain errors, especially when there are potential ambiguities (e.g.
non-intuitive or infrequently used operator precedence).

For a second example, suppose that the area of a square is 10m?. The length of
each edge can be calculated by:

>>> 10**0.5
3.1622776601683795

The result can be rounded up to the second decimal place.

>>> round (10**0.5, 2)
3.16

For notational convenience and to make programs easier to maintain, Python
allows names to be given to mathematical values. An equivalent way of calculating
the edge length is:
>>> a=10
>>> w=a**0.5

>>> round(w, 2)
3.16

In the example above, a denotes the area of the square, and w denotes its width.
The use of a and w makes it easier to understand the underlying physical meanings
of the values. a and w are called identifiers in Python. Each Python identifiers is
bound to a specific value. In the example, a is bound to 10 and w is bound to +/10.
Identifiers can be bound to new value:
>>> x=1
>>> X
1
>>> x=2

>>> X

2

In the example, the value of x is first 1, and then 2. Because identifiers can change
their values, they are also called variables.

The = sign in the above example is not an operator, and hence the commands
a = 10 and w = round (a * *%0.5) are not expressions. They bare no values. Instead,

2.1 Using Python as a Calculator

Table 2.1 List of keywords in Python

19

and as assert break class
continue def del elif else
except exec finally for from
global if import in is
lambda not or pass print
raise return try while with
yield

the = sign denotes an assignment statement, which binds an identifier to a value.
Here a statement is a command to be executed by Python, and statements are the
basic execution units in Python. There are different types of statements, as will be
introduced in this book. In an assignment statement, the identifier to which a value is
assigned must be on the left hand side of =, and the value to assign to the identifier,
which can be any expression, should be on the right hand side of =. Python gives a
name to a value by binding the value to an identifier.

An intuitive difference between identifiers and literals is that the former are names
while the latter are values. Formally, an identifier must start with a letter or underscore
(L), and contain a sequence of letters, numbers and underscores. For example, area,
a, a0, area_of _square and _a are all valid identifiers, but Oa, area of square or al!
are not valid identifiers. An additional rule is that identifiers must not be keywords
in Python, which are a list of reserved words. There are 31 keywords in total, which
are listed in Table 2.1. Each keyword can be associated with one or more statements,
which will be introduced in the subsequent chapters.

For another example problem, suppose that a ball is tossed up on the edge of a
cliff with an initial velocity v0, and that the initial altitude of the ball is Om. The
question is to find the vertical position of the ball at a certain number of seconds ¢
after the toss. If the initial velocity of 5 m/s and the time is 0.1 s, the altitude can be
calculated by:
>>> v0=5
>>> g=9.81
>>> t=0.1
>>> h = v0*t-0.5%g*t**2
>>> round(h, 2)

0.45

To further obtain the vertical location of the ball at 1s, only 7 and /& need to be
modified.
>>> t=1
>>> h=v0*t-0.5*g*t**2
>>> round(h, 2)
0.09

Note that the value of & must be calculated again after the value of ¢ changes.
This is because an assignment statement binds an identifier to a value, rather than

20 2 Using Python as a Calculator

establishing a mathematical correlation between a set of variables. When & = v0 *
t —05 % g x g %t *x2is executed, the right hand side of = is first evaluated
according to the current values of v0, g and ¢, and then the resulting value is bound
to the identifier /. This is different from a mathematical equation, which establishes
factual relations between values. When the value of ¢ changes, the value of 7 must
be recalculated using 7 = v0 % t — 0.5 % g % g =t * *2. For another example,
>>> x=1

>>> x=x+1

>>> X
2

There are three lines of code in this example. The first is an assignment statement,
binding the value 1 to the identifier x. The second is another assignment statement,
which binds the value of x + 1 to the identifier x. When this line is executed, the
right hand side of = is first evaluated, according to the current value of x. The result
is 2. This value is in turn bound to the identifier x, resulting in the new value 2 for
this identifier. The third line is a single expression, of which the value is displayed
by IDLE. Think how absurd it would be if the second line of code is treated as a
mathematical equation rather than an assignment statement!

An equivalent but perhaps less ‘counter-intuitive’ way of doing x = x + 1 is
x+=1.
>>> x=1
>>> x+=1

>>> X

2

The same applies to x = x — 3, x = x * 6, and other arithmetic operators.

>>> x-=3
>>> X

-1

>>> x*=6
>>> x

-6

In general, x <op> =y is equivalent to x=x<op>y, where <op> can be +, —, *,
/, % etc. The special assignment statements +=, —=, *=, /= and %= can be used
as a concise alternative to a = assignment statement when it incrementally changes
the value of one variable.

Given the fact above, it is not difficult to understand the outputs, if the following
commands are entered into IDLE to find the position of the ball after 3s in the
previous problem.

(continued from above)

>>> t=3

>>> round(h, 2)

0.09

>>> h=v0*t-0.5*g*t**2
>>> round(h, 2)
-29.15

2.1 Using Python as a Calculator 21

The commands above are executed sequentially and individually. When ¢ is bound
to the new value 3, 4 is not affected, and remains 0.09. After the new h assignment is
executed, its value changes to —29.15 according to the new . Cascaded assignments.
Several assignment statements to the same value can be cascaded into a single line.
For example, @ = 1 and b = 1 can be cascaded intoa = b = 1.
>>>a=b=1
>>>a
1

>>>Db

1

2.2 The Underlying Mechanism

Floating point arithmatic can be inaccurate in calculators; the same happens in
Python.

>>> x=1.0/7

>>> X+X+X+X+X+X+X

0.9999999999999998

>>> 3.3%2
1.2999999999999998

In both cases, the expression is evaluated to an imprecise number. The main
reason is limitation of memory space. A floating point number can contain an infinite
amount of information, if there is an infinite number of digits after the decimal point.
However, the amount of information that can be processed or stored by a calculator
or a computer is finite. As a result, floating point numbers cannot be stored to an
arbitrary precision, and floating point operators cannot be infinitely precise. The error
that results from the imprecise operations is called rounding off error.

At this point it is useful to know a little about the underlying mechanism of
Python, so that deeper understanding can be gained on facts such as rounding off
errors, which enables more solid programs to be developed. This section discusses the
prepresentation and storage of numbers, the way in which arithmetic operations are
carried out by Python, and the underlying mechanisms of identifiers and assignment
statements.

The basic architecture of a computer is shown in Fig. 2.2 in the previous chapter.
On the bottom of the figure, the main hardware components are shown, which include
the CPU, memory and devices. Among the three main components, the CPU is the
most important; it carries out computer instructions, including arithmetic operations.
The typical way in which arithmetic operations are executed is: the CPU takes the
operands from the memory, evaluates the result by applying the operator on them, and
then stores the result back into the memory. The memory can be regarded as a long
array of information storage units. Each unit is capable of storing a certain amount
of information, and the index of its location in the long array if also referred to as its
memory address. Devices are the channel through which computers are connected

22 2 Using Python as a Calculator

to the physical world. Keyboards, mouses, displays, speakers, microphones are a
few commonly-used devices. An important device is the hard disk, on which the OS
defines a file system for external storage of information.

2.2.1 Information

Computers are information-processing machines. The rounding-off error examples
show that the basic unit of storage and computation can only accommodate a limited
amount of information. But what is information, and how can one store information?
A short answer to the first question is that, information is represented in computers
as discrete numbers, or integers. It is an abstraction of real physical quantities, such
as the pitch of sound, the colour, and the alphabet. Signals from input devices are
transformed into discrete numbers before being processed by a computer, and output
devices turn discrete values back into physical signals.

For example, letters typed on a keyboard are mapped into discrete numbers (e.g.
‘A" — 64) before being stored into the memory. Sound waves received by a micro-
phone are sampled at a certain rate (e.g. 256,000 times a second), and then turned into
an array of discrete values. Such type of sound information can be processed (e.g.
denoised) or transformed (e.g. enlarged), and than passed to a sound output device
and transformed back into sound waves. A black and white display transforms a grid
of numbers into a gird of pixels, each number depicting the brightness of a pixel
on the display. A robot can move according to input numbers that indicate desired
velocity and direction. In all these cases, devices act as a channel between computers
and the physical world.

To answer the second question above, the easiest data storage medium that can
be found is probably some material that can have two states (e.g. hight-voltage vs.
low-voltage, solid vs. liquid, hot vs. cold). A basic storage unit made of such material
can store a binary value, denoted as O or 1, each representing a distinct state of the
material. Larger integers can be stored by using a combination of multiple basic
storage units. For example, the combination of rwo basic storage units can store four
distinct values: 00, 01, 10 and 11. An illustration is shown in Fig.2.1. In general,
the total number of possible states by combining n basic storage units is 2”. On the
other hand, at any time, the combined units can only have one actual combined state,
which can be represented by a unique array of Os and 1s.

Itis natural to associate an array of O s and 1s with a discrete number (integer). One
way to number distinct states of N basic storage units s, s1, ...y, s; € {0, 1}is to
interpret each distinct state as a non-negative binary number, treating the value of
SNSN—1...50as 2N sy +2V Lasy_1+.. .+20>x<s0 = ZlN:O ;20 For example, the
state 101 corresponds tothe integer 1 %22 + 0% 2! +1%20 = 1 %4 +0%2+1x1 =
5, and 1101 corresponds to the integer 1 % 23 + 1 % 22 +0 % 2! +1 % 20 =
1 %841 x4+0 411 = 13.Inthis way, a natural connection is established between
the states of data storage materials and integers, which represent information. In
computer science, each binary-valued digit is called a bit, and a combination of

2.2 The Underlying Mechanism 23

0 Jo o ©) -

U o1 [0 Jo Jw@

o [e

Fig. 2.1 Distinct states that can be represented by a combination of binary storage units

8 bits is a byte. A byte storage unit can store 28 = 256 distinct numbers, which can
be index by the integers 0-255. Most modern computers treat 8 bytes, or 64 bits, as
a word, which serves as the basic units for storage.

As mentioned earlier, a digital number represents abstract information. Numbers,
alphabets, sounds and all other types of information are abstracted and represented by
binary numbers in computers. In information theory, the amount of information is
measured by bits. A 64-bit word can represent 64 bits of information, which translates

o 264 distinct integers. The abstract information, however, can be interpreted in
different ways. The aforementioned interpretation of information as non-negative
integer values is just one example, which can be used to represent the brightness of
a pixel on a black and white monitor.

Another example is the 2’s complement interpretation of signed integers, which
uses 64 bits to represent an integer that ranges from —2° to 293 — 1. In this repre-
sentation, the first bit always indicates the sign: when it is 0, the number is positive;
when it is 1, the number is negative. When the number is positive, the remaining 63
bits indicate the absolute value of the number. Negative numbers are represented in
a slightly more complicated way. Rather than concatenating the sign bit (i.e. 1) with
a 63-bit representation of the absolute value, a negative number is represented by
first inversing its absolute value bit by bit, and then adding 1 to the result. For the
convenience of illustration, take a byte-sized number for example. To find the repre-
sentation of —13, two steps are necessary. First, the absolute value, 13, or 00001101 in
binary form, is inversed bit by bit into 11110010. Then 1 is added to the back of the
number:

11110010
+) 00000001

11110011

The resulting number, 1110011, is the binary representation of —13 in 2’s com-
plement form. Note that the first bit is 1, indicating that it is a negative number. For

24 2 Using Python as a Calculator

another example, to represent —16, its absolute value 00010000 is first inversed bit
by bitinto 11101111, and then 1 is added to the number,

11101111
+) 00000001

11110000

As aresult,—13 and —16 are 11110011 and 11110000, respectively, according to
2’s complement representation. The same process of negative number interpretation
applies to 64-bit words. The advantage of 2’s complement representations is that the
addition operation between numbers can be performed in the same way regardless
of whether negative numbers are involved or not. For example, —13 + 13 can be
performed by

11110011
+) 00001101

100000000

With the first bit being discarded (it runs out of the 8-bit boundary, and hence
cannot be recorded by 8-bit physical media), the result is 0, the correct answer.

A third useful interpretation of information is floating point numbers. When
sound is concerned, floating point numbers give a more convenient model of the
pitches in sound wave samples. As discussed earlier, all floating point numbers
cannot be represented using a finite amount of information, and therefore some have
to be truncated when represented using a computer word. A standard approach of
representing floating point numbers in a finite number of bits is to split the total
number of bits into two parts, one representing a base number (also referred to as
the significant) and the other representing the exponent. For example, from a 64-
bit word, 11 bits can be used to denote the exponent (¢) and 53 bit the base (b).
This type of representation naturally corresponds to the scientific notation of float
literals in Python, where bEe = b x 10°. Of course, abstract information can also
be interpreted as letters and other quantities in the physical world, which are out of
the scope of this book.

Words are used not only as the basic units of data storage, but also as the basic
units of computation. In digital circuits, of which all modern computers are made,
electric signals are represented by binary values, with a high voltage in a wire
denoting the value 1, and a low voltage denoting 0. Digital chips, such as CPUs,
takes a fixed number of binary signals as input, and have a fixed number of output.
64-bit CPUs perform arithmetic operations on 64-bit operands, yielding 64-bit results
by hardware computation. As a consequence, floating point numbers can contain
only 64 bits of information, and floating point arithmetics have rounding off errors.
In fact, integers are also represented by words on computer hardware, typically in
2’s complement form. However, Python provides a new type, long, which repre-
sents numbers that exceeds the range of 64 bits. Python converts large integers into
the long type automatically, and performs arithmetic operations between long type
numbers implicitly by using a sequence of 64-bit integer arithmetic operations, so
that programmers can use a large integer in Python without noticing the difference

2.2 The Underlying Mechanism 25

between int and long. Long type numbers can be identified by examining their types
explicitly.

>>> type (111)

<type ‘int’>

>>> type (2**64)

<type ‘long’>

A long type number can also be specified explicitly using long literals, which are
integer literals with a ‘I’ or ‘L’ added to the end

>>> type (111L)
<type ‘long’>

In summary, information that a computer stores and processes is ultimately rep-
resented by a finite number of Os and 1s (i.e. bits), organized in basic unites (e.g.
words). They are interpreted in different ways when turned into specific types.

2.2.2 Python Memory Management

When evaluating an arithmetic expression, Python first constructs an object in the
memory for each literal in the expression, and then applies the operators one by
one to obtain intermediate and final values. All the intermediate and final values
are stored in the memory as objects. Python objects are one of the most important
concepts in understanding the underlying mechanism of Python. Integers, floating
point numbers and instances of many more types to be introduced in this book, are
maintained in the memory as Python objects.

Fig.2.2 illustrates how the memory changes when some arithmetic expressions
are evaluated. After IDLE starts, the memory contains some default objects, which
are not under concern at this stage, and therefore not shown in the figure. When the
expression 3.0 is evaluated, a new float object is constructed in the memory. Python
always creates a new object when it evaluates a literal. When the expression 3+ 52
is evaluated, the integer constants 3, 5 and 2 are constructed in the memory, before
the operators * and + are executed in their precedence. When * is executed, Python
passes the values of the objects 5 and 2 to the CPU, together with the *x operator,
and stores the result 10 as a new integer object in the memory. When + is executed,
Python invokes the CPU addition operation with the values of the objects 3 and 10,
storing the result 13 as a new object.

Identifiers are names of objects in memory, used by Python to access the cor-
responding objects. Python associates identifiers to their corresponding values, or
objects, by using a binding table, which is a lookup table.

Figure 2.3 shows an example of the binding table, and how it changes as Python
executes assignment statements. After IDLE starts, some default entries are put into
the binding table, which are ignored in this figure. When x = 6 is executed, the
expression 6 is first evaluated, resulting in the integer object 6in the memory. Then
Python adds an entry in the binding table, associating the name x with the object 6.

26

2 Using Python as a Calculator

Fig. 2.2 Example memory IDLE memory
structure for expressions Se>

>>>3.0

>>> 3+5*2

w
o
(=]
[~]
(]

e
o
=l
[~]
(]
.
H

€
o
.
w
5
-
o

(]
(]

When y = x % %2 is executed, the value of the expression x * 2 is first evaluated by
evaluating x, and 2, and then calculating x * %2. When Python evaluates the literal
2, it creates a new object in the memory; then when it evaluates the identifier x, it
looks up the binding table for an entry named x, which is bound to the object 6. The
final value of the expression x * %2 is saved to a memory object 36, and bound to the
identifier y.

When the statement x = 3 is executed next, the expression 3 is first evaluated,
resulting in a new object 3 in the memory, which is bound to the name x in the binding
table. The old association between the name x and the object 6 is deleted, since one
name can be bound to only one object. Note that the assignment statement al/ways
binds a name in the binding table with an object in the memory. Like all other Python
statements, the execution is rather mechanic. Given this fact, it is easy to understand
the reason why the value of y does not change to 9 automatically when x = 3 is
executed.

At this stage, the objects 2 and 6 are still in the memory, although they are not
bound to any identifiers. As the number of statements increases, the memory can
be filled with many such objects. They are no longer used, but still occupy memory
space. Python has a garbage collector that periodically removes unused objects from
the memory, so that more memory space can be available. Note also that Fig.2.2 does

2.2 The Underlying Mechanism 27

Fig. 2.3 Example memory IDLE memory

structure for assignments

>>>

e ERIES e 3

>>> y=x**2 » IE‘

T
|
B

>>> x=3

x [+ 6]
y F—»

not show the binding table, although it exists in the memory, containing identifiers
that are irrelevant to the example.

For readers who know C++ and Java variables, it is worth nothing that Python
variables are not exactly the same as their C++ and java counterparts. Specifically,
the assignment statement in Python changes the value of a variable by changing
the binding (i.e. associating the identifier to a different object in the binding table),
while the assignment statement of C++ and Java directly changes the value of the
object that the identifier is associated with, without changing the binding between
identifiers and memory objects. Although in many cases, Python variable can be used
in the same way as C++ and Java variables from the programming perspective, an
understanding of this difference could be useful in a voiding subtle errors, especially
when mutability (Chap. 7) is involved.

Python provides a special statement, the del statement, for deleting an identifier
from the binding table.
>>> x=1
>>> y=2
>>> X

http://dx.doi.org/10.1007/978-981-287-609-6_7

28 2 Using Python as a Calculator

1
>>> vy
2

>>> del x
>>> X

Traceback (most recent call last):
File "<pyshell#5>", 1line 1, in <module>
X

NameError: name 'x’ 1is not defined
>>> vy

2

As can be seen from the example above, the del statement begins with the del
key word, followed by an identifier. It deletes the identifier from the binding table.
As the second last command shows, Python reports a name error when the value of
x is requested after the identifier x has been deleted from the binding table. After
an identifier is deleted, the objected that it is bounded to is not deleted immediately.
Instead, the garbage collector will remove it later when no other identifiers are bound
to it.

Each Python object has a unique identify, which is typically its memory address.
Python provides a function, id, which takes a Python object as its input argument,
and returns the identify of the object. For example,”
>>> x=12345
>>> 1d(x)

4535245720
>>> y=X

>>> 1d(y)
4535245720
>>> y=23456
>>> 1d(x)
4535245720
>>> 1d(y)
4535245672
>>> id (12345)
4535245984

When x is assigned to the value 12345, it is bound to a new object 12345 in the
memory. When y is assigned to the value of x, it is bound to the same object 12345.
Hence the identifies of x and y are the same. When y is reassigned to the value 23456,
anew object 23456 is constructed in the memory, occupying a new memory address,
and y is bound to his object. Hence the identify of y changes, while the identify of x
remains the same. The last command shows the identify of a new object, constructed
by the evaluation of the expression 12345. It is different from that of x, because every
time a literal is evaluated, a new object is constructed in the memory. Here is another
example.

>>> x=12345
>>> y=Xx
>>> 1d(x)

2The memory addresses in the examples below are unlikely to be reproduced when the examples
are tried again, since the allocation of memory addresses is dynamic and runtime dependent.

2.2 The Underlying Mechanism 29

4462893976
>>> 1d(y)
4462893976
>>> x=12345
>>> 1d(x)
4462894072
>>> 1d(y)
4462893976

When x is assigned to the value 12345 the second time, the right hand side of
the assignment statement is evaluated first, which leads to a new object having the
value 12345 in the memory. x is bound to this new object, while y remains the same.
Although the values of x and y are the same, their memory addresses, or identifies
are different, because they are bound to two different objects.

Note that the observations above may not hold for small numbers (e.g. 3 instead
of 12345). This is because to avoid frequent construction of new objects, Python
constructs at initialization a set of frequently used objects, including small integers,
so that they are reused rather than constructed afresh when their literals are evaluated.
>>> x=10
>>> y=10
>>> 1d(x)

140621696282752

>>> 1d(y)
140621696282752

In the example above, y is assigned the value 10 after x is assigned the value 10.
In each case, no new object is created when the literal 10 is evaluated, because an
object with the value 10 has been created in the memory location 140621696282752
to represent all objects with this value.’

In summary, in addition to a value, a Python object also has an identify and a type.
Once constructed, the identify and type of an object cannot be changed. For number
objects, the value also cannot be changed after the object is constructed.

2.3 More Mathematical Functions Using the math
and cmath Modules

Several mathematical functions have been introduced so far, which include addi-
tion, subtraction, multiplication, division, modulo and power. There are more math-
ematical functions that a typical calculator can do, such as factorial, logarithm and
trigonometric functions. These functions are supported by Python through a special
module called math.

A Python module is a set of Python code that typically includes the definition of
specific variables and functions. The next chapter will show that a Python module can

3Exactly which small values are represented as frequently accessed objects depends on the Python
distribution.

30 2 Using Python as a Calculator

be nothing but a normal Python program. In order to use the variables and functions
defined in a Python module, the module must be imported. For example,

>>> import math

>>> math.pi

3.141592653589793

>>> math.e
2.718281828459045

In the example above, the math module is imported by the statement import math.
The import statement is the third type of statement introduced in this chapter, with
the previous two being the assignment statement and the del statement. The import
statement loads the content of a specific module, and adds the name of the module in
the binding table, so that content of the module can be accessed by using the name,
followed by a dot (.).

Two mathematical constants pi and e, are defined in the math module, and accessed
by using ‘math.’ in the above example. Both pi (7) and e are defined as floating point
numbers, up to the precision supported by a computer word.

Mathematical functions can be accessed in the same way as constants, by using
‘math.’. For example, the factorial function returns the factorial of the input argument.
>>> import math
>>> math. factorial (3)

6

>>> math. factorial (8)
40320

The math module provides several classes of functions, including power and
logarithmic functions, trigonometric functions and hyperbolic functions. The two
basic power and logarithmic functions are math.pow(x, y) and math.log(x, y), which
take two floating point arguments x, and y, and return x” and log, x, respectively.

>>> import math

>>> math.pow (2, 5)
32.0

>>> math.pow (25,0.5)
5.0

>>> math.log (1000,10)
2.9999999999999996

Note the rounding off error in the last example. The functions math.pow and
math.log always return floating point numbers. The function math.log can also take
one argument only, in which case it returns the natural logarithm of the input argu-
ment.

>>> import math

>>> math.log (1)

0.0

>>> math.log(math.e)
1.0

>>> math.log (10)
2.302585092994046

2.3 More Mathematical Functions Using the math and cmath Modules 31

There is also a handy function to calculate the base-10 logarithm of an input float-
ing point number: math.log10(x). The function take a single floating point argument.
As two other special power functions, math.exp(x) can be used to calculate the value
of ¢, and math.sqrt(x) can be used to calculate the square root of x.

The set of trigonometric functions that the math module provide include math.sin
(x), math.cos(x), math.tan(x), math.asin(x), math.acos(x) and math.atan(x), which
calculate the sine, the cosine, the tangent, the arc sine, the arc cosine, the arc tangent
of x, respectively.
>>> import math
>>> math.sin (3)

0.1411200080598672

>>> math.cos (math.pi)
-1.0

>>> math.tan (3*math.pi)
-3.6739403974420594e-16
>>> math.asin (1)
1.5707963267948966

>>> math.acos (1)

0.0

>>> math.atan (100)
1.5607966601082315

Note the rounding off errors in some of the examples above. All angles in the
functions above are represented by radians. The math module provides two functions
to convert between radians and degrees: the math.degrees function takes a single
argument x, and converts x from radians to degrees; the math.radians function takes
a single argument x, and converts x from degrees to radians.

The set of hyperbolic functions include math.sinh(x), math.cosh(x), math.tanh(x),
math.asinh(x), math.acosh(x) and math.atanh(x), which calculate the hyperbolic
sine, the hyperbolic cosine, the hyperbolic tangent, the inverse hyperbolic sine, the
inverse hyperbolic cosine, and the inverse hyperbolic tangent of x, respectively.

There are more functions that the math module provides, including math.ceil(x),
which returns the smallest integer that is greater than or equal to x, and math.floor(x),
which returns the largest integer that is less than or equal to x. It does not make sense
to remember all the functions that Python provides for the purpose of programming,
although remembering a few commonly-used functions would be useful for the effi-
ciency of programming. A good practice is to keep the Python documentation at
hand, which is also easily accessible online. For example, searching for the key words
‘Python math’ using a search engine can lead to the Python documentation for the
math module.

2.3.1 Complex Numbers and the cmath Module

Complex literals. In some engineering disciplines, complex numbers are commonly
useful. A complex number consists of a real part and an imaginary part. While the
real part of a complex number is an arbitrary real number, represented by a floating

32 2 Using Python as a Calculator

point number in Python, the imaginary part is based on j, the imaginary square root
of —1. Python represents the imaginary part of a complex literal by a floating point
number, followed by the special character j.

>>> c=17j

>>> type(c)

<type ‘complex’>

>>> c*c

(-1+03)

In the example above, c is a complex number that has only the imaginary part,
1j. The square of cis 1j x 1j = —1. In Python, if a complex number co-exists
in an expression with floating point numbers and integers, the type of the whole
expression becomes a complex number. Therefore, the value of the expression ¢ * ¢
is the complex number (—1 + 0j).

1 is a special complex number, with the real part being 0. In general, a complex
number is specified by the sum of its real part and imaginary part, as shown by IDLE
in the example above.
>>> a=1+27
>>> a
(1+27)
>>> type(a)
<type ‘complex’>
>>> b=3+47
>>> Db
(3+47)
>>> type (b)
<type ‘complex’>

Type conversion from integers and floating point number into complex num-
bers. Similar to the construction of integer and floating number objects using the
functions int and float introduced earlier, a complex number can be constructed from
integers and floating point numbers by using the function complex.
>>> complex (1,2)

(1+27)
>>> a=complex (-1, 0.5)

>>> a
(-1+0.53)

As shown by the example above, the function complex takes two numeric argu-
ments specifying the real and imaginary components, respectively, and returns a
complex object.

Complex operators. Similar to integers and floating point numbers, complex
numbers also support arithmetic operations by using operators. The +, —, *, / and
xx operators for integers and floating point numbers also apply to complex numbers.
>>> a=1+27]
>>> b=-1+37
>>> a+b
53
>>> a-b
(2-13)

2.3 More Mathematical Functions Using the math and cmath Modules 33

>>> a*b

(-7+173)

>>> a/b
(0.5-0.4999999999999999435)
>>> a**2

(-3+473)

Functions for complex numbers. The abs function, when applied to complex
numbers, returns the magnitude of the number.
>>> a=3+47]j

>>> abs (a)
5.0

In the example above, the input argument to the function call abs(a) is a complex
number, and the return value is a floating point number. However, no built-in function
or operator takes floating point numbers but results in a complex number. In other
words, the default domain in which Python handles mathematical expressions is real
numbers. For example, trying to obtain the square root of —1 by the *x* operator, or
using the math.sqrt function, will result in an error.

>>> (-1)**0.5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: negative number cannot be raised to a
fractional power
>>> import math
>>> math.sqgrt (-1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: math domain error

This choice of the default mathematical domain for Python is based on the fact
that real numbers are the most widely used, while complex numbers are common
only in specific fields. Some users of Python might not even know the existence of
complex numbers. As a result, the most natural choice is to leave their processing
only to specific modules. Python provides a module, cmath, for complex numbers.

The cmath module. The power and logarithmic functions that the cmath module
provides include cmath.exp, cmath.log, cmath.logl0 and cmath.sqrt. They bare the
same names as their counterparts in the math module, with the difference being
that they can be applied to complex numbers, and can return complex numbers. For
example, to get the square root of —1 in the complex domain, the cmath.sqrt function
should be used.

>>> import cmath
>>> cmath.sqgrt (-1)
13

The cmath module also provides the trigonometric functions cmath.sin, cmath.cos,
cmath.tan, cmath.asin, cmath.acos and cmath.atan, and the hyperbolic functions
cmath.sinh, cmath.cosh, cmath.tanh, cmath.asinh, cmath.acosh and cmath.atanh,
with exactly the same use as their math counterparts except of the domain.

34 2 Using Python as a Calculator

While the abs(x) function returns the magnitude of a complex number x, the
function cmath.phase(x) returns the phase of x. The cmath.polar(x) function returns
the representation of a complex number x in polar coordinates, while the function
cmath.rect(r, p) returns the complex number x given it polar coordinates (r, p).

2.3.2 Random Numbers and the random Module

For one last example of modules in this chapter, the random module provides func-
tions for generating random numbers. Itis useful to arange of mathematical problems,
including a branch of numerical simulation methods that will be introduced in this
book.

Two important functions provided by the random module include random.random
and random.randint. random.random() takes no input arguments, and returns a ran-
dom floating point number in the range [0.0, 1.0). random.randint(a, b) takes two
integer input arguments a and b, and returns a random number between a and b,
inclusive.
>>> import random
>>> random.random ()

0.1265646141812915

>>> random.random ()
0.5701294637390362

>>> random.random ()
0.8842027581970576

>>> random.randint (10,20)
12

>>> random.randint (10,20)
17

>>> random.randint (10,20)
17

>>> random.randint (10,20)
19

In general, many commonly-used mathematical functions are provided by Python,
and it would always be useful to look for a readily-available implementation via the
Python documentation and other resources. However, there are also cases where a
customized function is needed. The following chapters will introduce step by step
how complex functionalities can be achieved by the powerful Python language.

Exercises

1. What are the values of the following expressions?

(@ 1+3%2—5+4
b) 1+3%(2—5)+4
(C) S¥¥2%H2%34]

(d) 5FF(2##2)#3+1

(e) 1+3/2

2.3 More Mathematical Functions Using the math and cmath Modules 35

®
(@
(h)
(i)
)]
(k)

1+3.0/2
2.1
-2-1)
3.0+3/2
343/2.0
_1#%0.5

2. Use IDLE to calculate the following mathematical values.

(a)
(b)
(©
(d)
(e)
()
(@
(h)
()
G

10°

V10

the roots of x2 — 7x + 10 = 0

Ig(2 4 /5)

the area of a circle with a radius of 5.5
sin2.5

the complex roots of x> —2x + 10 =0
4!

>k

[IiLs

3. What are the values of the following binary numbers if they are (a) non-negative;
or (b) 2’s Complements?

(a)
(b)
(©
(d)
(e)

01001
100

1100
11111
11111111

4. Use IDLE to solve the following mathematical problems.

(a)

(b)

(c)

A car runs at a constant speed of 20km/h. When it passes another case, the
latter starts to accelerate in order to catch up. Assuming that the first case
keeps a constant speed, and the second car keeps a constant acceleration of
2m/s”. After how many seconds will the second car catch up with the first
one?

The annual interest rate of a savings account is 4.1 %. John has $10,000 in
his account, and aims at saving $50,000 within 5 years by depositing a fixed
amount of money to his account in the beginning of each year, including
this year. How much money does John need to save each year in order to
achieve his goal?

In a shooting exercise, a coach stands 5 m away from a trainee, and throws
a target up vertically at S5m/s. If the trainee must fire her gun exactly 0.5s
after the throwing of the ball, then at which angle should she aim? If she
must fire the gun exactly 1s after the throwing, then at which angle should
she aim?

36 2 Using Python as a Calculator

(d) John deposited an initial sum of $3000 in his account. After 3years, the
balance reaches $3335.8 due to composite interest. What is the interest rate
per annual?

(e) The three sides of a triangle are 3, 4 and 6m, respectively. What is its area?

5. What are the three most important properties of a Python object? Which of them
can change after the object is constructed, if the object is a number?

6. State the main differences between identifiers and literals. Given a token in a
program, how does Python know whether it is an identifier or a literal?

2 Springer
http://www.springer.com/978-981-287-608-9

An Introduction to Python and Computer Programming
Zhang, Y.

2015, ¥, 295 p. 58 illus., 5 illus. in color., Hardcover
ISBN: 278-981-287-608-9

	2 Using Python as a Calculator
	2.1 Using Python as a Calculator
	2.1.1 Floating Point Expressions
	2.1.2 Identifiers, Variables and Assignment

	2.2 The Underlying Mechanism
	2.2.1 Information
	2.2.2 Python Memory Management

	2.3 More Mathematical Functions Using the math and cmath Modules
	2.3.1 Complex Numbers and the cmath Module
	2.3.2 Random Numbers and the random Module

