
CHAPTER 2

STATISTICS AND
MEASUREMENT

Good measurement is fundamental to quality assurance. That which cannot be
measured cannot be guaranteed to a customer. If Brinell hardness 220 is needed
for certain castings and one has no means of reliably measuring hardness, there
is no way to provide the castings. So successful companies devote substantial
resources to the development and maintenance of good measurement systems.
In this chapter, we consider some basic concepts of measurement and discuss a
variety of statistical tools aimed at quantifying and improving the effectiveness of
measurement.

The chapter begins with an exposition of basic concepts and introduction
to probability modeling of measurement error. Then elementary one- and two-
sample statistical methods are applied to measurement problems in Sect. 2.2.
Section 2.3 considers how slightly more complex statistical methods can be
used to quantify the importance of sources of variability in measurement. Then
Sect. 2.4 discusses studies conducted to evaluate the sizes of unavoidable mea-
surement variation and variation in measurement chargeable to consistent differ-
ences between how operators use a measurement system. Section 2.5 considers
statistical treatment of the measurement calibration problem. Finally, in Sect. 2.6
the chapter concludes with a brief section on contexts where “measurements” are
go/no-go calls on individual items.
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34 Chapter 2. Statistics and Measurement

2.1 Basic Concepts in Metrology and Probability
Modeling of Measurement

Metrology is the science of measurement. Measurement of many physical quan-
tities (like lengths from inches to miles and weights from ounces to tons) is so
commonplace that we think little about basic issues involved in metrology. But
often engineers are forced by circumstances to leave the world of off-the-shelf
measurement technology and devise their own instruments. And frequently bec-
ause of externally imposed quality requirements for a product, one must ask “Can
we even measure that?” Then the fundamental issues of validity, precision, and
accuracy come into focus.

Definition 4 A measurement or measuring method is said to be valid if it usefully
or appropriately represents the feature of the measured object or phenomenon
that is of interest.

Definition 5 A measurement system is said to be precise if it produces small vari-
ation in repeated measurement of the same object or phenomenon.

Definition 6 A measurement system is said to be accurate (or sometimes unbi-
ased) if on average it produces the true or correct values of quantities of interest.

Validity is the first concern when developing a measurement method. Without
it, there is no point in proceeding to consider precision or accuracy. The issue is
whether a method of measurement will faithfully portray the quantity of interest.
When developing a new pH meter, one wants a device that will react to changes in
acidity, not to changes in temperature of the solution being tested or to changes in
the amount of light incident on the container holding the solution. When looking
for a measure of customer satisfaction with a new model of automobile, one needs
to consider those things that are important to customers. (For example, the number
of warranty service calls per vehicle is probably a more valid measure of customer
satisfaction or aggravation with a new car than warranty dollars spent per vehicle
by the manufacturer.)

Precision of measurement has to do with getting similar values every time a
particular measurement is done. A bathroom scale that can produce any number
between 150 lb and 160 lb when one gets on it repeatedly is really not very use-
ful. After establishing that a measurement system produces valid measurements,
consistency of those measurements is needed. Figure 2.1 portrays some hardness
measurements made by a group of students (Blad, Sobotka, and Zaug) on a sin-
gle metal specimen with three different hardness testers. The figure shows that
the dial Rockwell tester produced the most consistent results and would therefore
be termed the most precise.
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FIGURE 2.1. Brinell hardness measurements made on three different machines

Precision is largely an intrinsic property of a measurement method or device.
There is not really any way to “adjust” for poor precision or to remedy it except
to (1) overhaul or replace measurement technology or to (2) average multiple
measurements. In this latter regard, the reader should be familiar with the fact
from elementary statistics that if y1, y2, . . . , yn can be thought of as independent
measurements of the same quantity, each with some mean μ and standard devi-
ation σ, then the sample mean, y, has expected or average value μ and standard
deviation σ/

√
n. So people sometimes rely on multiple measurements and aver-

aging to reduce an unacceptable precision of individual measurement (quantified
by σ) to an acceptable precision of average measurement (quantified by σ/

√
n).

But even validity and precision together don’t tell the whole story regarding the
usefulness of real-world measurements. This can be illustrated by again consider-
ing Fig. 2.1. The dial Rockwell tester is apparently the most precise of the three
testers. But it is not obvious from the figure what the truth is about “the” real
Brinell hardness of the specimen. That is, the issue of accuracy remains. Whether
any of the three testers produces essentially the “right” hardness value on aver-
age is not clear. In order to assess that, one needs to reference the testers to an
accepted standard of hardness measurement.

The task of comparing a measurement method or device to a standard one and,
if necessary, working out conversions that will allow the method to produce “cor-
rect” (converted) values on average is called calibration. In the United States,
the National Institute of Standards and Technology (NIST) is responsible for
maintaining and disseminating consistent standards for calibrating measurement
equipment. One could imagine (if the problem were important enough) sending
the students’ specimen to NIST for an authoritative hardness evaluation and using
the result to calibrate the testers represented in Fig. 2.1. Or more likely, one might
test some other specimens supplied by NIST as having known hardnesses and use
those to assess the accuracy of the testers in question (and guide any recalibration
that might be needed).

An analogy that is sometimes helpful in remembering the difference between
accuracy and precision of measurement is that of target shooting. Accuracy in
target shooting has to do with producing a pattern centered on the bull’s eye
(the ideal). Precision has to do with producing a tight pattern (consistency). Fig-
ure 2.2 on page 36 illustrates four possibilities for accuracy and precision in target
shooting.
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FIGURE 2.2. Measurement/target-shooting analogy

FIGURE 2.3. The distribution of a measurement y of a quantity x where measurement
bias is δ and standard deviation of measurement is σmeasurement. Modified from “Elementary
Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010, The American
Statistician, 64(1), 47. c© 2010 Taylor & Francis. Adapted with permission

Probability theory provides a helpful way to describe measurement error/
variation. If a fixed quantity x called the measurand is to be measured with error
(as all real-world quantities are), one might represent what is actually observed as

y = x+ ε (2.1)

where ε is a random variable, say with mean δ and standard deviation
σmeasurement. Model (2.1) says that the mean of what is observed is

μy = x+ δ . (2.2)

If δ = 0, the measurement of x is accurate or unbiased. If δ is not 0, it is called
the measurement bias. The standard deviation of y is (for fixed x) the standard
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deviation of ε, σmeasurement. So σmeasurement quantifies measurement precision in
model (2.1). Figure 2.3 pictures the probability distribution of y and the elements
x, δ, and σmeasurement.

Ideally, δ is 0 (and it is the work of calibration to attempt to make it 0). At a
minimum, measurement devices are designed to have a linearity property. This

Device
“Linearity”

means that over the range of measurands a device will normally be used to evalu-
ate, if its bias is not 0, it is at least constant (i.e., δ does not depend upon x). This
is illustrated in Fig. 2.4 (where we assume that the vertical and horizontal scales
are the same).

FIGURE 2.4. Measurement device “linearity” is bias constant in the measurand

Thinking in terms of model (2.1) is especially helpful when the measurand x
itself is subject to variation. For instance, when parts produced on a machine have
varying diameters x, one might think of model (2.1) as applying separately to
each individual part diameter. But then in view of the reality of manufacturing
variation, it makes sense to think of diameters as random, say with mean μx and
standard deviation σx, independent of the measurement errors. This combination
of assumptions then implies (for a linear device) that the mean of what is obs-
erved is

μy = μx + δ (2.3)

and the standard deviation of what is observed is

Standard
Deviation of
Observations
Subject to
Measurement
Error

σy =
√
σ2
x + σ2

measurement . (2.4)

A nonzero δ is still a measurement bias, but now observed variation across
parts is seen to include one component due to variation in x and another due to
measurement error. The relationships (2.3) and (2.4) between the distributions of
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measurement error (ε) and item-to-item variation in the measurand (x) and the
distribution of the observed measurements (y) are pictured in Fig. 2.5.

FIGURE 2.5. Random measurement error (maroon) and part variation (maroon) combine
to produce observed variation (black). Modified from “Elementary Statistical Methods and
Measurement Error” by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 47.
c© 2010 Taylor & Francis. Adapted with permission

Left to right on Fig. 2.5, the two distributions in maroon represent measurement
error (with bias δ > 0) and measurand variation that combine to produce variation
in y represented by the distribution in black. It is the middle (maroon) distribution
of x that is of fundamental interest, and the figure indicates that measurement error
will both tend to shift location of that distribution and flatten it in the creation of
the distribution of y. It is only this last distribution (the black one) that can be
observed directly, and only when both δ and σmeasurement are negligible (close
to 0) are the distributions of x and y essentially the same.

Observe that Eq. (2.4) implies that

σx =
√
σ2
y − σ2

measurement .

This suggests a way of estimating σx alone. If one has (single) measurements y
for several parts that produce a sample standard deviation sy and several measure-
ments on a single part that produce a sample standard deviation s, then a plausible
estimator of σx is

Estimator of
Process or
Part Variation
Excluding
Measurement
Error

σ̂x =
√
max

(
0, s2y − s2

)
. (2.5)

In the next sections, we will explore the use of reasoning like this, formulas like
(2.5), and the application of elementary confidence interval methods to quantify
various aspects of measurement precision and bias.

Section 2.1 Exercises

1. In a calibration study one compares outputs of a measurement device to
“known” or “standard” values. What purpose does this serve?



Chapter 2. Statistics and Measurement 39

2. Pellet Densification. Crocfer, Downey, Rixner, and Thomas studied the
densification of Nd2O3. Pellets of this material were fired at 1,400 ◦C for
various lengths of time and the resulting densities measured (in g/cc). In
this context, what are the measurand (x), y, ε, and δ?

3. Suppose that in the context of problem 2, five pellets were each fired (for
the same length of time), and their densities were each measured using a
single device. Further, assume the measurement device has constant bias.
How many measurands (xs), ys, εs, and δs are there in this setting?

4. In the study of problem 2, the purpose was to evaluate the effect of fir-
ing on pellet density. Each of the pellets fired had different original densi-
ties (that were not recorded). Does the measurement protocol described in
problem 2 provide data that track what is of primary interest, i.e., does it
produce a valid measure of firing effect? What additional data should have
been collected? Why?

5. In the context of problem 2, the density of a single pellet was repeat-
edly measured five times using a single device. How many measurands
(xs), ys, εs, and δs are there in this setting?

6. In the context of problem 2 suppose that the standard deviation of densities
from repeated measurements of the same pellet with the same device is√
2.0. Suppose further that the standard deviation of actual densities one

pellet to the next (the standard deviation of measurands) is
√
1.4. What

should one then expect for a standard deviation of measured density values
pellet to pellet?

7. Consider the five pellets mentioned in problem 3. Density measurements
similar to the following were obtained by a single operator using a single
piece of equipment with a standard protocol under fixed physical circum-
stances:

6.5, 6.6, 4.9, 5.1, and 5.4 .

(a) What is the sample standard deviation of the n = 5 density measure-
ments?

(b) In the notation of this section, which of σy, σx, or σmeasurement is
legitimately estimated by your sample standard deviation in (a)?

8. Again consider the five pellets of problem 3 and the five density values
recorded in problem 7.

(a) Compute the average measured density.

(b) Assuming an appropriate model and using the notation of this section,
what does your sample average estimate?
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2.2 Elementary One- and Two-Sample Statistical
Methods and Measurement

Elementary statistics courses provide basic inference methods for means and
standard deviations based on one and two normal samples. (See, e.g., Sects. 6.3
and 6.4 of Vardeman and Jobe’s Basic Engineering Data Collection and Analy-
sis.) In this section we use elementary one- and two-sample confidence interval
methods to study (in the simplest contexts possible) (1) how measurement error
influences what can be learned from data and (2) how basic properties of that
measurement error can be quantified. Subsequent sections will introduce more
complicated data structures and statistical methods, but the basic modeling ideas
and conceptual issues can most easily be understood by first addressing them
without unnecessary (and tangential) complexity.

2.2.1 One-Sample Methods and Measurement Error

“Ordinary” confidence interval formulas based on a model that says that y1, y2,
. . . , yn are a sample from a normal distribution with mean μ and standard devia-
tion σ are

Confidence
Limits for a
Normal Mean

y ± t
s√
n

for estimating μ (2.6)

and

Confidence
Limits for a
Normal
Standard
Deviation

(
s

√
n− 1

χ2
upper

, s

√
n− 1

χ2
lower

)
for estimating σ . (2.7)

These are mathematically straightforward, but little is typically said in basic
courses about the practical meaning of the parameters μ and σ. So a first point
to make here is that sources of physical variation (and in particular, sources of
measurement error and item-to-item variation) interact with data collection plans
to give practical meaning to “μ” and “σ.” This in turn governs what of practical
importance can be learned from application of formulas like (2.6) and (2.7).

Two Initial Applications

Figures 2.6 and 2.7 are schematic representations of two different ways that a
single “sample” of n observed values y might arise. These are:

1. Repeat measurements on a single measurand made using the same device,
and
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2. Single measurements made on multiple measurands coming from a stable
process made using the same (linear) device.

Notice that henceforth we will use the language “device” as shorthand for a fixed

This Book’s
Use of the
Word “Device”

combination of physical measurement equipment, operator identity, measurement
procedure, and surrounding physical circumstances (like time of day, temperature,
etc.). We will also use the shorthand “yi’s ∼ ind(μ, σ)” for the model statement
that observations are independent with mean μ and standard deviation σ. And in
schematics like Figs. 2.6 and 2.7, the rulers will represent generic measurement
devices, the spheres generic measurands, and the factories generic processes.

FIGURE 2.6. A single sample derived from n repeat measurements made with a fixed
device on a single measurand. Modified from “Elementary Statistical Methods and Mea-
surement Error” by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 48. c©
2010 Taylor & Francis. Adapted with permission

FIGURE 2.7. A single sample derived from single measurements made with a fixed (linear)
device on each of n different measurands from a physically stable process. Modified from
“Elementary Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010,
The American Statistician, 64(1), 48. c© 2010 Taylor & Francis. Adapted with permission

The case represented in Fig. 2.6 also corresponds to Fig. 2.3 (where “measure-
ment” variation is simply that inherent in the reuse of the device to evaluate a
given measurand). The case represented in Fig. 2.7 also corresponds to Fig. 2.5
(where again “measurement” variation is a variation inherent in the “device” and
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now real part-to-part variation is represented by σx). Consider what formulas (2.6)
and (2.7) provide in the two situations.

First, if as in Fig. 2.6 n repeat measurements of a single measurand,
y1, y2, . . . , yn, have sample mean y and sample standard deviation s, applying
the t confidence interval for a mean, one gets an inference for

x+ δ = measurand plus bias .

So:

1. In the event that the measurement device is known to be well-calibrated
(one is sure that δ = 0, there is no systematic error), the limits y ± ts/

√
n

based on ν = n− 1 df are limits for x,

2. In the event that what is being measured is a standard for which x is
known, one may use the limits

(y − x)± t
s√
n

(once again based on ν = n− 1 df) to estimate the device bias, δ.

Further, applying the χ2 confidence interval for a standard deviation, one has an
inference for the size of the device “noise,” σdevice.

Next consider what can be inferred from single measurements made on n
different measurands y1, y2, . . . , yn from a stable process with sample mean y
and sample standard deviation s as illustrated in Fig. 2.7. Here:

1. The limits y ± ts/
√
n (for t based on ν = n− 1 df) are limits for

μx+δ = the mean of the distribution of true values plus (the constant) bias,

2. The quantity s estimates σy =
√
σ2
x + σ2

device that we met first in display
(2.4) and have noted really isn’t of fundamental interest. So there is little
point in direct application of the χ2 confidence limits (2.7) in this context.

Example 7 Measuring Concentration. Below are n = 5 consecutive concen-
tration measurements made by a single analyst on a single physical specimen of
material using a particular assay machine (the real units are not available, so for
the sake of example, let’s call them “moles per liter,” mol/ l):

1.0025, .9820, 1.0105, 1.0110, .9960

These have mean y = 1.0004mol/ l and s = .0120mol/ l . Consulting an χ2

table like Table A.3 using ν = 5 − 1 = 4 df, we can find 95% confidence limits
for σdevice (the size of basic measurement variability) as

.0120

√
4

11.143
and .0120

√
4

.484
i.e., .0072mol/ l and .0345mol/ l .
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(One moral here is that ordinary small sample sizes give very wide confidence
limits for a standard deviation.) Consulting a t table like Table A.2 also using
4 df, we can find 95% confidence limits for the measurand plus instrument bias
(x+ δ) to be

1.0004± 2.776
.0120√

5
, i.e., 1.0004mol/ l± .0149mol/ l .

Note that if the measurements in question were done on a standard material
“known” to have actual concentration 1.0000mol/ l, these limits then corre-
spond to limits for device bias of

0.0004mol/ l± .0149mol/ l .

Finally, suppose that subsequently samples from n = 20 different batches are
analyzed and y = .9954 and sy = .0300. The 95% t confidence limits

.9954± 2.093
.0300√

20
, i.e., .9954mol/ l ± .0140mol/ l .

are for μx + δ, the process mean plus any device bias/systematic error.

Application to a Sample Consisting of Single Measurements of a Single
Measurand Made Using Multiple Devices (From a Large Population of Such
Devices)

The two cases illustrated by Figs. 2.6 and 2.7 do not begin to exhaust the ways
that the basic formulas (2.6) and (2.7) can be applied. We present two more appli-
cations of the one-sample formulas, beginning with an application where single
measurements of a single measurand are made using multiple devices (from a
large population of such devices).

There are contexts in which an organization has many “similar” measurement
devices that could potentially be used to do measuring. In particular, a given piece
of equipment might well be used by any of a large number of operators. Recall that
we are using the word “device” to describe a particular combination of equipment,
people, procedures, etc. used to produce a measurement. So, in this language,
different operators with a fixed piece of equipment are different “devices.” A way
to compare these devices would be to use some (say n of them) to measure a
single measurand. This is illustrated in Fig. 2.8 on page 44.

In this context, a measurement is of the form

y = x+ ε ,

where ε = δ + ε∗, for δ the (randomly selected) bias of the device used and ε∗

a measurement error with mean 0 and standard deviation σdevice (representing a
repeat measurement variability for any one device). So one might write

y = x+ δ + ε∗ .
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FIGURE 2.8. A single sample consisting of n single measurements of a fixed measurand
made with each of n devices (from a large population of such devices with a common pre-
cision). Modified from “Elementary Statistical Methods and Measurement Error” by S.B.
Vardeman et al., 2010, The American Statistician, 64(1), 49. c© 2010 Taylor & Francis.
Adapted with permission

Thinking of x as fixed and δ and ε∗ as independent random variables (δ with mean
μδ , the average device bias, and standard deviation σδ measuring variability in
device biases), the laws of mean and variance from elementary probability then
imply that

μy = x+ μδ + 0 = x+ μδ (2.8)

and

σy =
√
0 + σ2

δ + σ2
device =

√
σ2
δ + σ2

device (2.9)

as indicated on Fig. 2.8. The theoretical average measurement is the measurand
plus the average bias, and the variability in measurements comes from both the
variation in device biases and the intrinsic imprecision of any particular device.

In a context where a schematic like Fig. 2.8 represents a study where several
operators each make a measurement on the same item using a fixed piece of equip-
ment, the quantity √

σ2
δ + σ2

device

is a kind of overall measurement variation that is sometimes called “σR&R,” the

Repeatability
and
Reproducibility

first “R” standing for repeatability and referring to σdevice (a variability for fixed
operator on the single item) and the second “R” standing for reproducibility and
referring to σδ (a between-operator variability).

With μy and σy identified in displays (2.8) and (2.9), it is clear what the one-
sample confidence limits (2.6) and (2.7) estimate in this context. Of the two, int-
erval (2.7) for “σ” is probably the most important, since σy is interpretable in
the context of an R&R study, while μy typically has little practical meaning. It is
another question (that we will address in future sections with more complicated
methods) how one might go about separating the two components of σy to assess
the relative sizes of repeatability and reproducibility variation.
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Application to a Sample Consisting of Differences in Measurements on
Multiple Measurands Made Using Two Linear Devices

Another way to create a single sample of numbers is this. With two devices avail-
able and n different measurands, one might measure each once with both devices
and create n differences between device 1 and device 2 measurements. This is a
way of potentially comparing the two devices and is illustrated in Fig. 2.9.

FIGURE 2.9. A single sample consisting of n differences of single measurements of n
measurands made using two devices (assuming device linearity). Modified from “Elemen-
tary Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010, The Amer-
ican Statistician, 64(1), 49. c© 2010 Taylor & Francis. Adapted with permission

In this context, a difference is of the form

d = y1 − y2 = (x+ ε1)− (x+ ε2) = ε1 − ε2

and (again applying the laws of mean and variance from elementary probability)
it follows that

μd = δ1 − δ2 and σd =
√
σ2

device1 + σ2
device2

as indicated on Fig. 2.9. So applying the t interval for a mean (2.6), the limits

Confidence
Limits for a
Mean
Difference

d± t
s√
n

(2.10)

provide a way to estimate δ1 − δ2, the difference in device biases.

2.2.2 Two-Sample Methods and Measurement Error

Parallel to the one-sample formulas are the two-sample formulas of elementary
statistics. These are based on a model that says that

y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2
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are independent samples from normal distributions with respective means μ1 and
μ2 and respective standard deviations σ1 and σ2.In this context, the so-called

Confidence
Limits for a
Difference in
Normal Means

Satterthwaite approximation gives limits

y1 − y2 ± t̂

√
s21
n1

+
s22
n2

for estimating μ1 − μ2 , (2.11)

where appropriate “approximate degrees of freedom” for t̂ are

Satterthwaite
Degrees of
Freedom for
Formula (2.11)

ν̂ =

(
s21
n1

+
s22
n2

)2

s41
(n1 − 1)n2

1

+
s42

(n2 − 1)n2
2

. (2.12)

(This method is one that you may not have seen in an elementary statistics
course, where often only methods valid when one assumes that σ1 = σ2 are
presented. We use this method not only because it requires less in terms of model
assumptions than the more common formula but also because we will have other
uses for the Satterthwaite idea in this chapter, so it might as well be met first in
this simple context.) It turns out that min ((n1 − 1), (n2 − 1)) ≤ ν̂, so that a
simple conservative version of this method uses degrees of freedom

Conservative
Simplification
of Formula
(2.12)

ν̂∗ = min ((n1 − 1), (n2 − 1)) . (2.13)

Further, in the two-sample context, there are elementary confidence limits

Confidence
Limits for a
Ratio of Two
Normal
Standard
Deviations

s1
s2

· 1√
F(n1−1),(n2−1),upper

and
s1
s2

· 1√
F(n1−1),(n2−1),lower

for
σ1

σ2
(2.14)

(and be reminded that F(n1−1),(n2−1),lower = 1/F(n2−1),(n1−1),upper so that stan-
dard F tables giving only upper percentage points can be employed).

Application to Two Samples Consisting of Repeat Measurements of a Single
Measurand Made Using Two Different Devices

One way to create “two samples” of measurements is to measure the same item
repeatedly with two different devices. This possibility is illustrated in Fig. 2.10.

Direct application of the two-sample confidence interval formulas here shows
that the two-sample Satterthwaite approximate t interval (2.11) provides limits for

μ1 − μ2 = (x+ δ1)− (x+ δ2) = δ1 − δ2

(the difference in device biases), while the F interval (2.14) provides a way of
comparing device standard deviations σdevice1 and σdevice2 through direct estima-
tion of

σdevice1

σdevice2
.
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FIGURE 2.10. Two samples consisting of n1 and n2 measurements of a single measurand
with two devices. Modified from “Elementary Statistical Methods and Measurement Error”
by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 49. c© 2010 Taylor &
Francis. Adapted with permission

This data collection plan thus provides for straightforward comparison of the basic
characteristics of the two devices.

Example 8 Measuring Polystyrene “Packing Peanut” Size. In an in-class mea-
surement exercise, two students used the same caliper to measure the “size” of a
single polystyrene “packing peanut” according to a class-standard measurement
protocol. Some summary statistics from their work follow.

Student 1 Student 2
n1 = 4 n2 = 6
y1 = 1.42 cm y2 = 1.44 cm
s1 = .20 cm s2 = .40 cm

In this context, the difference in the two measurement “devices” is the difference
in “operators” making the measurements. Consider quantifying how this differ-
ence affects measurement.

To begin, note that from formula (2.12)

ν̂ =

(
(.20)2

4
+

(.40)2

6

)2

(.20)
4

(4− 1) (4)
2 +

(.40)
4

(6− 1) (6)
2

≈ 7.7,

or using the more conservative display (2.13), one gets

ν̂∗ = min ((4− 1), (6− 1)) = 3.

So (rounding the first of these down to 7) one should use either 7 or 3 degrees of
freedom with formula (2.11). For the sake of example, using ν̂∗ = 3 degrees
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of freedom, the upper 2.5% point of the t distribution with 3 df is 3.182. So
95% confidence limits for the difference in biases for the two operators using
this caliper are

1.42− 1.44± 3.182

√
(.20)

2

4
+

(.40)
2

6
,

i.e.,

−.02 cm± .61 cm .

The apparent difference in biases is small in comparison with the imprecision
associated with that difference.

Then, since the upper 2.5% point of the F3,5 distribution is 7.764 and the upper
2.5% point of the F5,3 distribution is 14.885, 95% confidence limits for the ratio
of standard deviations of measurement for the two operators are

.20

.40
· 1√

7.764
and

.20

.40
·
√
14.885,

i.e.,

.19 and 1.93.

Since this interval covers values both smaller and larger than 1.00, there is in the
limited information available here no clear indicator of which of these students is
the most consistent in his or her use of the caliper in this measuring task.

Comparing
Devices When
Measurement
is Destructive

Application to Two Samples Consisting of Single Measurements Made with
Two Devices on Multiple Measurands from a Stable Process (Only One
Device Being Used for a Given Measurand)

There are quality assurance contexts in which measurement is destructive (and
cannot be repeated for a single measurand) and nevertheless one needs to some-
how compare two different devices. In such situations, the only thing that can be
done is to take items from some large pool of items or from some stable process
and (probably after randomly assigning them one at a time to one or the other of
the devices) measure them and try to make comparisons based on the resulting
samples. This possibility is illustrated in Fig. 2.11. This is a schematic for two
samples consisting of single measurements made with two devices on multiple
measurands from a stable process (only one device used for a given measurand).

Direct application of the two-sample Satterthwaite approximate t interval
(2.11) provides limits for

μ1 − μ2 = (μx + δ1)− (μx + δ2) = δ1 − δ2

(the difference in device biases). So, even in contexts where measurement is des-
tructive, it is possible to compare device biases. It’s worth contemplating, how-
ever, the difference between the present scenario and the immediately preceding
one (represented by Fig. 2.10).
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FIGURE 2.11. Two samples consisting of single measurements made on n1 + n2 mea-
surands from a stable process, n1 with device 1 and n2 with device 2. Modified from
“Elementary Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010,
The American Statistician, 64(1), 50. c© 2010 Taylor & Francis. Adapted with permission

The measurements y in Fig. 2.10 on page 47 are less variable than are the mea-
surements y here in Fig. 2.11. This is evident in the standard deviations shown on
the figures and follows from the fact that in the present case (unlike the previous
one), measurements are affected by unit-to-unit/measurand-to-measurand varia-
tion. So all else being equal, one should expect limits (2.11) applied in the present
context to be wider/less informative than when applied to data collected as in the
last application. That should be in accord with intuition. One should expect to
be able to learn more useful to comparing devices when the same item(s) can be
remeasured than when it (they) cannot be remeasured.

Notice that if the F limits (2.14) are applied here, one winds up with only an
indirect comparison of σdevice1 and σdevice2, since all that can be easily estimated
(using the limits (2.14)) is the ratio

√
σ2
x + σ2

device1√
σ2
x + σ2

device2

and NOT the (more interesting) ratio σdevice1/σdevice2.

Application to Two Samples Consisting of Repeat Measurements Made with
One Device on Two Measurands

A basic activity of quality assurance is the comparison of nominally identical
items. Accordingly, another way to create two samples is to make repeated mea-
surements on two measurands with a single device. This is illustrated in Fig. 2.12
on page 50.

In this context,

μ1 − μ2 = (x1 + δ)− (x2 + δ) = x1 − x2
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so that application of the two-sample Satterthwaite approximate t interval (2.11)
provides limits for the difference in the measurands and a direct way of compar-
ing the measurands. The device bias affects both samples in the same way and
“washes out” when one takes a difference. (This, of course, assumes that the
device is linear, i.e., that the bias is constant.)

FIGURE 2.12. Two samples consisting of repeat measurements made with one device on
two measurands. Modified from “Elementary Statistical Methods and Measurement Error”
by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 50. c© 2010 Taylor &
Francis. Adapted with permission

Application to Two Samples Consisting of Single Measurements Made Using
a Single Linear Device on Multiple Measurands Produced by Two Stable
Processes

Another basic activity of quality assurance is the comparison of nominally iden-
tical processes. Accordingly, another way to create two samples is to make single
measurements on samples of measurands produced by two processes. This pos-
sibility is illustrated in Fig. 2.13.

In this context,

μ1 − μ2 = (μx1 + δ)− (μx2 + δ) = μx1 − μx2

so that application of the two-sample Satterthwaite approximate t interval (2.11)
provides limits for the difference in the process mean measurands and hence a
direct way of comparing the processes. Again, the device bias affects both samples
in the same way and “washes out” when one takes a difference (still assuming that
the device is linear, i.e., that the bias is constant).

If the F limits (2.14) are applied here, one winds up with only an indirect
comparison of σx1 and σx2, since what can be easily estimated is the ratio

√
σ2
x1 + σ2

device√
σ2
x2 + σ2

device

and not the practically more interesting σx1/σx2.
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FIGURE 2.13. Two samples consisting of single measurements made using a single device
on multiple measurands produced by two stable processes. Modified from “Elementary
Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010, The American
Statistician, 64(1), 50. c© 2010 Taylor & Francis. Adapted with permission

Section 2.2 Exercises

1. Consider again the Pellet Densification case of problem 7 in Sect. 2.1. Sup-
pose the five data values 6.5, 6.6, 4.9, 5.1, and 5.4 were measured densi-
ties for a single pellet produced by five different operators using the same
piece of measuring equipment (or by the same operator using five differ-
ent pieces of equipment—the two scenarios are conceptually handled in
the same way). Use the notation of this section (x, δ, μδ, σδ , and σdevice)
below.

(a) What does the sample average of these five data values estimate?

(b) What does the sample standard deviation of these five data values
estimate?

(c) Which of the two estimates in (a) and (b) is probably more important?
Why?

2. Return again to the context of problem 7 of Sect. 2.1. Suppose the origi-
nal set of five data values 6.5, 6.6, 4.9, 5.1, and 5.4 was obtained from five
different pellets by operator 1 using piece of equipment 1. Using a second
piece of equipment, operator 1 recorded densities 6.6, 5.7, 5.9, 6.2, and 6.3
for the same five pellets. So, for pellet 1, “device 1” produced measure-
ment 6.5 and “device 2” produced 6.6; for pellet 2, “device 1” produced
measurement 6.6 and “device 2” produced 5.7 and so on.
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(a) Give the five differences in measured densities (device 1 minus device
2). Calculate the sample average difference. What does this estimate?
(Hint: Consider δs .)

(b) Calculate the sample standard deviation of the five differences (device
1 minus device 2). What does this estimate? (Hint: Consider the
σdevices.)

(c) Find 90% confidence limits for the average difference in measure-
ments from the two devices.

3. Suppose the two sets of five measurements referred to in problems 1 and 2
actually came from one pellet, i.e., operator 1 measured the same pellet five
times with piece of equipment 1 and then measured that same pellet five
times with piece of equipment 2.

(a) Find a 95% confidence interval for the ratio of the two device stan-
dard deviations (σdevice1/σdevice2). What do your limits indicate about
the consistency of measurements from device 1 compared to that of
measurements from device 2?

(b) Find a 95% two-sample Satterthwaite approximate t interval for the
difference in the two device averages (device 1 minus device 2). If
your interval were to include 0, what would you conclude regarding
device biases 1 and 2?

4. Consider now the same ten data values referred to in problems 2 and 3, but
a different data collection plan. Suppose the first five data values were mea-
surements on five different pellets by operator 1 using piece of equipment 1
and the second set of data values was for another set of pellets by operator
1 using piece of equipment 2. Assume both sets of pellets came from the
same physically stable process.

(a) What does the sample standard deviation from the first set of five data
values estimate?

(b) What does the sample standard deviation from the second set of five
data values estimate?

(c) What does the difference in the two-sample average densities esti-
mate?

5. Reflect on problems 3 and 4. Which data-taking approach is better for esti-
mating the difference in device biases? Why?

6. In the same Pellet Densification context considered in problems 1 through
5, suppose one pellet was measured five times by operator 1 and a different
pellet was measured five times by operator 1 (the same physical equipment
was used for the entire set of ten observations). What is estimated by the
difference in the two sample averages?
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7. Once again in the context of problems 1 through 6, suppose the first five
data values were measurements on five different pellets made by operator
1 using piece of equipment 1 and the second five were measurements of a
different set of pellets by operator 1 using piece of equipment 1. Assume
the two sets of pellets come from different firing methods (method 1 and
method 2). Assume the two firing processes are physically stable.

(a) Find the two-sided 95% two-sample Satterthwaite approximate t int-
erval for the difference in the process mean measurands (method 1
minus method 2).

(b) In words, what does the interval in (a) estimate? In symbols, what
does the interval in (a) estimate?

(c) With this approach to data taking, can either device bias be estimated
directly? Why or why not?

8. Still in the context of problems 1 through 7, density measurements
6.5, 6.6, 4.9, 5.1, and 5.4 were obtained for five different pellets by a single
operator using a single piece of measuring equipment under a standard
protocol and fixed physical circumstances. Use the t confidence interval for
a mean, and give 95% confidence limits for the mean of the distribution of
true densities plus measurement bias.

9. Suppose the five measurements in problem 8 are repeat measurements from
only one pellet, not from five different pellets.

(a) Use the χ2 confidence limits for a standard deviation (from elemen-
tary statistics), and give a 95% confidence interval for σmeasurement.

(b) Use the t confidence interval formula for a mean from elementary
statistics and give 95% confidence limits for the (single) true pellet
density plus measurement bias.

2.3 Some Intermediate Statistical Methods
and Measurement

Through reference to familiar elementary one- and two-sample methods of statis-
tical inference, Sect. 2.2 illustrated the basic insight that:

How sources of physical variation interact with a data collection plan
governs what of practical importance can be learned from a data set,
and in particular, how measurement error is reflected in the data set.

In this section we consider some computationally more complicated statistical
methods and what they provide in terms of quantification of the impact of mea-
surement variation on quality assurance data.
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2.3.1 A Simple Method for Separating Process
and Measurement Variation

In Sect. 2.1 we essentially observed that:

1. Repeated measurement of a single measurand with a single device allows
one to estimate device variability,

2. Single measurements made on multiple measurands from a stable process
allow one to estimate a combination of process and measurement variabil-
ity,

and remarked that these facts suggest formula (2.5) as a way to estimate a process
standard deviation alone. Our first objective in this section is to elaborate a bit on
this thinking.

FIGURE 2.14. Schematic of a data collection plan that allows evaluation of σx without
inflation by measurement variation

Figure 2.14 is a schematic of a data collection plan that combines elements 1
and 2 above. Here we use the notation y for the single measurements on n items
from the process and the notation y′ for the m repeat measurements on a single
measurand. The sample standard deviation of the ys, sy, is a natural empirical
approximation for σy =

√
σ2
x + σ2

device and the sample standard deviation of the
y′’s, s, is a natural empirical approximation for σdevice. That suggests that one
estimates the process standard deviation with

Estimator of
Process
Standard
Deviation not
Inflated by
Measurement
Variability

σ̂x =
√
max

(
0, s2y − s2

)
(2.15)

as indicated in display (2.5). (The maximum of 0 and s2y − s2 under the root is
there simply to ensure that one is not trying to take the square root of a negative
number in the rare case that s exceeds sy .) σ̂x is not only a sensible single-number
estimate of σx, but can also be used to make approximate confidence limits for the
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process standard deviation. The so-called Satterthwaite approximation suggests
that one uses

Satterthwaite
Approximate
Confidence
Limits for a
Process
Standard
Deviation

σ̂x

√
ν̂

χ2
upper

and σ̂x

√
ν̂

χ2
lower

(2.16)

as limits for σx, where appropriate approximate degrees of freedom ν̂ to be used
finding χ2 percentage points are

Satterthwaite
Approximate df
for Use With
Limits (2.16)

ν̂ =
σ̂4
x

s4y
n− 1

+
s4

m− 1

(2.17)

Example 9 (Example 7 Revisited.) In Example 7, we considered m = 5 mea-
surements made by a single analyst on a single physical specimen of material
using a particular assay machine that produced s = .0120mol/ l . Subsequently,
specimens from n = 20 different batches were analyzed and sy = .0300mol/ l .
Using formula (2.15), an estimate of real process standard deviation uninflated
by measurement variation is

σ̂x =

√
max

(
0, (.0300)

2 − (.0120)
2
)
= .0275mol/ l

and this value can be used to make confidence limits. By formula (2.17) approxi-
mate degrees of freedom are

ν̂ =
(.0275)

4

(.0300)4

19 + (.0120)4

4

= 11.96 .

So rounding down to ν̂ = 11, since the upper 2.5% point of the χ2
11 distribution

is 21.920 and the lower 2.5% point is 3.816, by formula (2.16) approximate 95%
confidence limits for the real process standard deviation (σx) are

.0275

√
11

21.920
and .0275

√
11

3.816
,

i.e.,
.0195mol/ l and .0467mol/ l .
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2.3.2 One-Way Random Effects Models and Associated
Inference

One of the basic models of intermediate statistical methods is the so-called one-
way random effects model for I samples of observations

y11, y12, . . . , y1n1

y21, y22, . . . , y2n2

...
yI1, yI2, . . . , yInI

This model says that the observations may be thought of as

One-Way
Random
Effects Model

yij = μi + εij

where the εij are independent normal random variables with mean 0 and standard
deviation σ, while the I values μi are independent normal random variables with
mean μ and standard deviation σμ (independent of the εs). (One can think of I
means μi drawn at random from a normal distribution of μis and subsequently
observations y generated from I different normal populations with those means
and a common standard deviation.) In this model, the three parameters are σ (the
“within-group” standard deviation), σμ (the “between-group” standard deviation),
and μ (the overall mean). The squares of the standard deviations are called “vari-
ance components” since for any particular observation, the laws of expectation
and variance imply that

μy = μ+ 0 = μ and σ2
y = σ2

μ + σ2

(i.e., σ2
μ and σ2 are components of the variance of y).

Two quality assurance contexts where this model can be helpful are where

1. Multiple measurands from a stable process are each measured multiple
times using the same device,

2. A single measurand is measured multiple times using multiple devices.

These two scenarios and the accompanying parameter values are illustrated in
Figs. 2.15 and 2.16.

There are well-established (but not altogether simple) methods of inference
associated with the one-way random effects model that can be applied to make
confidence intervals for the model parameters (and inferences of practical inter-
est in metrological applications). Some of these are based on so-called ANOVA
methods and the one-way ANOVA identity that says that with

yi =
1

ni

∑
j

yij , n =
∑
i

ni, and y =
1

n

∑
i

niyi,
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FIGURE 2.15. Multiple measurands from a stable process each measured multiple times
using the same device

FIGURE 2.16. A single measurand measured multiple times using multiple devices

it is the case that

One-Way
ANOVA
Identity

∑
i,j

(yij − y)
2
=
∑
i

ni (yi − y)
2
+
∑
i,j

(yij − yi)
2 (2.18)

or in shorthand “sum of squares” notation

One-Way
ANOVA
Identity in Sum
of Squares
Notation

SSTot = SSTr+ SSE (2.19)

SSTot is a measure of overall raw variability in the whole data set. SSTot is
n−1 times the overall sample variance computed ignoring the boundaries between
samples. SSE is a measure of variability left unaccounted for after taking account
of the sample boundaries and is a multiple of a weighted average of the I sample
variances. SSTr is a measure of variation in the sample means yi. and is most
simply thought of as the difference SSTot− SSE. The “sums of squares” SSE
and SSTr have respective associated degrees of freedom n − I and I − 1. The
ratios of sums of squares to their degrees of freedom are called “mean squares”
and symbolized as

MSE =
SSE

n− I
and MSTr =

SSTr

I − 1
. (2.20)
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Confidence limits for the parameter σ2 of the one-way random effects model
can be built on the error mean square. A single-number estimate of σ is

One-Way
ANOVA
Estimator
of σ

σ̂ =
√
MSE (2.21)

and confidence limits for σ are

One-Way
ANOVA-Based
Confidence
Limits for σ

σ̂

√
n− I

χ2
upper

and σ̂

√
n− I

χ2
lower

(2.22)

where the appropriate degrees of freedom are ν = n− I . Further, in the case that
all nis are the same, i.e., ni = m for all i, the Satterthwaite approximation can
be used to make fairly simple approximate confidence limits for σμ. That is, a
single-number estimator of σμ is

One-Way
ANOVA-Based
Estimator
for σμ

σ̂μ =

√
1

m
max (0,MSTr−MSE) , (2.23)

and with approximate degrees of freedom

Satterthwaite
Approximate df
for Use with
Limits (2.25)

ν̂ =
m2 · σ̂4

μ

MSTr2

I − 1
+

MSE2

n− I

(2.24)

approximate confidence limits for σμ are

One-Way
ANOVA-Based
Confidence
Limits for σμ

σ̂μ

√
ν̂

χ2
upper

and σ̂μ

√
ν̂

χ2
lower

. (2.25)

Operationally, the mean squares implicitly defined in displays (2.18) through
(2.20) are rarely computed “by hand.” And given that statistical software is
going to be used, rather than employ the methods represented by formulas (2.21)
through (2.25), more efficient methods of confidence interval estimation can be
used. High-quality statistical software (like the open-source command line-driven
R package or the commercial menu-driven JMP package) implements the best
known methods of estimation of the parameters σ, σμ, and μ (based not on
ANOVA methods, but instead on computationally more difficult REML methods)
and prints out confidence limits directly.

Example 10 Part Hardness. Below are m = 2 hardness values (in mm) mea-
sured on each of I = 9 steel parts by a single operator at a farm implement
manufacturer.

Part 1 2 3 4 5 6 7 8 9
3.30 3.20 3.20 3.25 3.25 3.30 3.15 3.25 3.25
3.30 3.25 3.30 3.30 3.30 3.30 3.20 3.20 3.30
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This is a scenario of the type illustrated in Fig. 2.15. Either working “by hand”
with formulas (2.18) through (2.20) or reading directly off a report from a statis-
tical package,

MSE = .001389 and MSTr = .003368

So using formulas (2.21) and (2.22) (here n = mI = 18 so that error degrees of
freedom are n − I = 18 − 9 = 9), 95% confidence limits for σdevice (= σ here)
are

√
.001389

√
9

19.023
and

√
.001389

√
9

2.700
,

i.e.,
.026mm and .068mm .

Further, using formulas (2.23) through (2.25), Satterthwaite degrees of freedom
for σ̂μ are

ν̂ =

(
22
) (

1
2 (.003368− .001389)

)2
(.003368)

2

9− 1
+

(.001389)
2

18− 9

≈ 2.4

and rounding down to 2 degrees of freedom, approximate 95% confidence limits
for σx (= σμ here) are
√

1

2
(.003368− .001389)

√
2

7.378
and

√
1

2
(.003368− .001389)

√
2

.051
,

i.e.,

.016mm and .197mm .

The JMP package (using REML methods instead of the Satterthwaite approxima-
tion based on ANOVA mean squares) produces limits for σx:

0mm and
√
.0027603 = .053mm .

These more reliable limits at least confirm that the simpler methods “get into the
right ballpark” in this example.

What is clear from this analysis is that this is a case where part-to-part varia-
tion in hardness (measured by σx) is small enough and poorly determined enough
in comparison with basic measurement noise (measured by σdevice estimated as
.03726 =

√
.001389) that it is impossible to really tell its size.

Example 11 Paper Weighing. Below are m = 3 measurements of the weight (in
g) of a single 20 cm × 20 cm piece of 20 lb bond paper made by each of I = 5
different technicians using a single balance.

Operator 1 2 3 4 5
3.481 3.448 3.485 3.475 3.472
3.477 3.472 3.464 3.472 3.470
3.470 3.470 3.477 3.473 3.474
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This is a scenario of the type illustrated in Fig. 2.16 and further illustrates the con-
cepts of repeatability (fixed device) variation and reproducibility (here, device-to-
device, i.e., operator-to-operator) variation first discussed on page 44. Use of the
JMP statistical package (and REML estimation) with these data produces 95 %
confidence limits for the two standard deviations σδ (= σμ here) and σdevice (= σ
here). These place

0 < σδ <
√
4.5× 10−5 = .0067 g

and
.0057 g =

√
3.2× 10−5 < σdevice <

√
.0002014 = .0142 g

with 95 % confidence. This is a case where repeatability variation is clearly larger
than reproducibility (operator-to-operator) variation in weight measuring. If one
doesn’t like the overall size of measurement variation, it appears that some fun-
damental change in equipment or how it is used will be required. Simple training
of the operators aimed at making how they use the equipment more uniform (and
reduction of differences between their biases) has far less potential to improve
measurement precision.

Section 2.3 Exercises

1. Fiber Angle. Grunig, Hamdorf, Herman, and Potthoff studied a carpet-like
product. Fiber angles (to the backing) were of interest. Operator 1 obtained
the values 19, 20, 20, and 23 (in degrees) from four measurements of fiber
angle for a single specimen. This same operator then measured fiber angles
once each for three other specimens of the “carpet” and obtained the values
20, 15, and 23.

(a) Using the methods of this section, give an estimate of the specimen-
to-specimen standard deviation of fiber angle.

(b) Give the appropriate “approximate degrees of freedom” associated
with your estimate from (a). Then find a 95% confidence interval for
the specimen-to-specimen fiber angle standard deviation.

2. Continue with the Fiber Angle case of problem 1. Operator 2 obtained
the fiber angle measurements 20, 25, 17, and 22 from the first specimen
mentioned in problem 1 and operator 3 obtained the values 20, 19, 15, and
16. (Fiber angle for the same specimen was measured four times by each of
the three operators.) As before, all measurements were in degrees. The data
summaries below are from the use of the JMP statistical package with
these n = 12 measurements of fiber angle for this specimen. Use them
to answer (a) through (c). (The estimates and confidence intervals in the
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second table are for variances, not standard deviations. You will need to
take square roots to get inferences for standard deviations.)

ANOVA table
Source SS df MS
Operator 28.66 2 14.33
Error 60 9 6.66

Total 88.66 11

REML variance component analysis
Random effect VarComponent 95% lower 95% upper
Operator 1.92 −5.27 9.11
Error 6.66 3.15 22.22

(a) Give an appropriate single-number estimate of σrepeatability. Deter-
mine 95% confidence limits for device (repeatability) standard devi-
ation, σrepeatability.

(b) From the computer output, give the appropriate estimate of
σreproducibility. Give 95% confidence limits for σreproducibility.

(c) Based on your answers to (a) and (b), where would you focus mea-
surement improvement efforts?

3. Continuing with the Fiber Angle case, in addition to the repeat measure-
ments 19, 20, 20, and 23 made by operator 1 on specimen 1, this person
also measured angles on two other specimens. Four angle measurements
on specimen 2 were 15, 17, 20, and 20, and four angle measurements on
specimen 3 were 23, 20, 22, and 20. The data summaries below are from
the use of the JMP statistical package with these n = 12 measurements
for these three specimens. Use them to answer (a) through (c). (The esti-
mates and confidence intervals in the second table are for variances, not
standard deviations. You will need to take square roots to get inferences for
standard deviations.)

ANOVA table
Source SS df MS
Specimen 23.17 2 11.58
Error 33.75 9 3.75

Total 56.92 11

REML variance component analysis
Random effect VarComponent 95 % lower 95% upper
Specimen 1.96 3.78 7.69
Error 3.75 1.77 12.5

(a) Give an appropriate single-number estimate of σdevice. Determine
95% confidence limits for device variation, σdevice.
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(b) From the computer output, give an appropriate estimate of σx. Give
95 % confidence limits for σx.

(c) Based on your answers to (a) and (b), does it seem possible to det-
ermine fiber angle for a fixed specimen with acceptable precision?
(Hint: Consider the sizes of the estimated σdevice and σx.)

2.4 Gauge R&R Studies

We have twice made some discussion of “gauge R&R,” first on page 44 in the
context of comparison of two operators and then in Example 11, where three
operators were involved. In both cases, only a single part (or measurand) was
considered. In a typical industrial gauge R&R study, each of J operators uses
the same gauge or measurement system to measure each of I parts (common to
all operators) a total of m different times. Variation in measurement typical of
that seen in the m measurements for a particular operator on a particular part is
called the repeatability variation of the gauge. Variation which can be attributed
to differences between the J operators is called reproducibility variation of the
measurement system.

This section considers the analysis of such full-blown gauge R&R studies inv-
olving a total of mIJ measurements. We begin with a discussion of the two-way
random effects model that is commonly used to support analyses of gauge R&R
data. Then primarily for ease of exposition and making connections to common
analyses of gauge R&R studies, we discuss some range-based statistical meth-
ods. Finally, we provide what are really superior analyses, based on ANOVA
calculations.

2.4.1 Two-Way Random Effects Models and Gauge
R&R Studies

Typical industrial gauge R&R data are conveniently thought of as laid out in the
cells of a table with I rows corresponding to parts and J columns corresponding
to operators.

Example 12 Gauge R&R for a 1-Inch Micrometer Caliper. Heyde, Kuebrick,
and Swanson conducted a gauge R&R study on a certain micrometer caliper as
part of a class project. Table 2.1 shows data that the J = 3 (student) operators
obtained, each making m = 3 measurements of the heights of I = 10 steel
punches.

Notice that even for a given punch/student combination, measured heights are
not exactly the same. Further, it is possible to verify that averaging the 30 mea-
surements made by student 1, a mean of about .49853 in is obtained, while cor-
responding means for students 2 and 3 are, respectively, about .49813 in and
.49840 in. Student 1 may tend to measure slightly higher than students 2 and
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TABLE 2.1. Measured heights of ten steel punches in 10−3 in

Punch Student 1 Student 2 Student 3
1 496, 496, 499 497, 499, 497 497, 498, 496
2 498, 497, 499 498, 496, 499 497, 499, 500
3 498, 498, 498 497, 498, 497 496, 498, 497
4 497, 497, 498 496, 496, 499 498, 497, 497
5 499, 501, 500 499, 499, 499 499, 499, 500
6 499, 498, 499 500, 499, 497 498, 498, 498
7 503, 499, 502 498, 499, 499 500, 499, 502
8 500, 499, 499 501, 498, 499 500, 501, 499
9 499, 500, 499 500, 500, 498 500, 499, 500
10 497, 496, 496 500, 494, 496 496, 498, 496

3. That is, by these rough “eyeball” standards, there is some hint in these data
of both repeatability and reproducibility components in the overall measurement
imprecision.

To this point in our discussions of R&R, we have not involved more than a
single measurand. Effectively, we have confined attention to a single row of a
table like Table 2.1. Standard industrial gauge R&R studies treat multiple parts
(partially as a way of making sure that reliability of measurement doesn’t obvi-
ously vary wildly across parts). So here we consider the kind of multiple-part case
represented in Table 2.1.

The model most commonly used in this context is the so-called two-way ran-
dom effects model that can be found in many intermediate-level statistical method
texts. (See, e.g., Section 8.4 of Vardeman’s Statistics for Engineering Problem
Solving.) Let

yijk = the kth measurement made by operator j on part i .

The model is

Two-Way
Random
Effects Model

yijk = μ+ αi + βj + αβij + εijk , (2.26)

where the μ is an (unknown) constant, the αi are normal random variables with
mean 0 and variance σ2

α, the βj are normal random variables with mean 0 and
variance σ2

β , the αβij are normal random variables with mean 0 and variance
σ2
αβ , the εijk are normal random variables with mean 0 and variance σ2, and

all of the αs, βs, αβs, and εs are independent. In this model, the unknown con-
stant μ is an average (over all possible operators and all possible parts) measure-
ment, the αs are (random) effects of different parts, the βs are (random) effects
of different operators, the αβs are (random) joint effects peculiar to particular
part×operator combinations, and the εs are (random) measurement errors. The
variances σ2

α, σ
2
β , σ

2
αβ , and σ2 are called “variance components” and their sizes

govern how much variability is seen in the measurements yijk .
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Consider a hypothetical case with I = 2, J = 2, and m = 2. Model (2.26) says
that there is a normal distribution with mean 0 and variance σ2

α from which α1

and α2 are drawn. And there is a normal distribution with mean 0 and variance σ2
β

from which β1 and β2 are drawn. And there is a normal distribution with mean
0 and variance σ2

αβ from which αβ11, αβ12, αβ21, and αβ22 are drawn. And
there is a normal distribution with mean 0 and variance σ2 from which eight εs
are drawn. Then these realized values of the random effects are added to produce
the eight measurements as indicated in Table 2.2.

TABLE 2.2. Measurements in a hypothetical gauge R&R study
Operator 1 Operator 2

Part 1
y111 = μ+ α1 + β1 + αβ11 + ε111
y112 = μ+ α1 + β1 + αβ11 + ε112

y121 = μ+ α1 + β2 + αβ12 + ε121
y122 = μ+ α1 + β2 + αβ12 + ε122

Part 2
y211 = μ+ α2 + β1 + αβ21 + ε211
y212 = μ+ α2 + β1 + αβ21 + ε212

y221 = μ+ α2 + β2 + αβ22 + ε221
y222 = μ+ α2 + β2 + αβ22 + ε222

Either directly from Eq. (2.26) or as illustrated in Table 2.2, according to the

Repeatability
Standard
Deviation in the
Two-Way
Model

two-way random effects model, the only differences between measurements for a
fixed part×operator combination are the measurement errors ε. And the variability
of these is governed by the parameter σ. That is, σ is a measure of repeatability
variation in this model, and one objective of an analysis of gauge R&R data is to
estimate it.

Then, if one looks at a fixed “part i” (row i), the quantity μ + αi is common
across the row. In the context of a gauge R&R study this can be interpreted as
the value of the ith measurand (these vary across parts/rows because the αi vary).
Then, still for a fixed part i, it is the values βj + αβij that vary column/operator
to column/operator. So in this gauge R&R context, this quantity functions as a
kind of part-i-specific operator bias. (More on the qualifier “part i specific” in a
bit.) According to model (2.26), the variance of βj + αβij is σ2

β + σ2
αβ , so an

appropriate measure of reproducibility variation in this model is

Reproducibility
Standard
Deviation in the
Two-Way
Model

σreproducibility =
√
σ2
β + σ2

αβ . (2.27)

According to the model, this is the standard deviation that would be experienced
by many operators making a single measurement on the same part assuming that
there is no repeatability component to the overall variation. Another way to say
the same thing is to recognize this quantity as the standard deviation that would be
experienced computing with long-run average measurements for many operators
on the same part. That is, the quantity (2.27) is a measure of variability in operator
bias for a fixed part in this model.

As long as one confines attention to a single row of a standard gauge R&R
study, the one-way random effects model and analysis of Sect. 2.3 are relevant.
The quantity σreproducibility here is exactly σδ from application of the one-way
model to a single-part gauge R&R study. (And the present σ is exactly σdevice.)
What is new and at first perhaps a bit puzzling is that in the present context of mul-
tiple parts and display (2.27), the reproducibility variation has two components,
σβ and σαβ . This is because for a given part i, the model says that bias for operator
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j has both components βj and αβij . The model terms αβij allow “operator bias”
to change part to part/measurand to measurand (an issue that simply doesn’t arise
in the context of a single-part study). As such, they are a measure of nonlinearity
(bias nonconstant in the measurand) in the overall measurement system. Two-way
data like those in Table 2.1 allow one to estimate all of σreproducibility, σβ and
σαβ , and all else being equal, cases where the σαβ component of σreproducibility

is small are preferable to those where it is large.
The quantity

Combined R&R
Standard
Deviation

σR&R =
√
σ2
β + σ2

αβ + σ2 =
√
σ2
reproducibility + σ2 (2.28)

is the standard deviation implied by the model (2.26) for many operators each
making a single measurement on the same part. That is, quantity (2.28) is a mea-
sure of the combined imprecision in measurement attributable to both repeatabil-
ity and reproducibility sources. And one might think of

σ2

σ2
R&R

=
σ2

σ2
β + σ2

αβ + σ2
and

σ2
reproducibility

σ2
R&R

=
σ2
β + σ2

αβ

σ2
β + σ2

αβ + σ2
(2.29)

as the fractions of total measurement variance due, respectively, to repeatability
and reproducibility. If one can produce estimates of σ and σreproducibility, esti-
mates of these quantities (2.28) and (2.29) follow in straightforward fashion.

It is common to treat some multiple of σR&R (often the multiplier is six, but
sometimes 5.15 is used) as a kind of uncertainty associated with a measurement
made using the gauge or measurement system in question. And when a gauge is
being used to check conformance of a part dimension or other measured charac-
teristics to engineering specifications (say, some lower specification L and some
upper specification U ), this multiple is compared to the spread in specifications.
Specifications U and L are numbers set by product design engineers that are sup-

Engineering
Specifications

posed to delineate what is required of a measured dimension in order that the item
in question be functional. The hope is that measurement uncertainty is at least an
order of magnitude smaller than the spread in specifications. Some organizations
go so far as to call the quantity

Gauge
Capability
Ratio

GCR =
6σR&R

U − L
(2.30)

a gauge capability (or precision-to-tolerance) ratio and require that it be no
larger than .1 (and preferably as small as .01) before using the gauge for checking
conformance to such specifications. (In practice, one will only have an estimate
of σR&R upon which to make an empirical approximation of a gauge capability
ratio.)

2.4.2 Range-Based Estimation

Because range-based estimation (similar to, but not exactly the same as, what
follows) is in common use for the analysis of gauge R&R studies and is easy to
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describe, we will treat it here. In the next subsection, better methods based on
ANOVA calculations (and REML methods) will be presented.

Consider first the estimation of σ. Restricting attention to any particular
part×operator combination, say part i and operator j, model (2.26) says that
observations obtained for that combination differ only by independent normal
random measurement error with mean 0 and variance σ2. That suggests that a
measure of variability for the ij sample might be used as the basis of an estimator
of σ. Historical precedent and ease of computation suggest measuring variability
using a range (instead of a sample standard deviation or variance).

So let Rij be the range of the m measurements on part i by operator j. The exp-
ected value of the range of a sample from a normal distribution is a constant (dep-
ending upon m) times the standard deviation of the distribution being sampled.
The constants are well known and called d2. (We will write d2(m) to emphasize
their dependence upon m and note that values of d2(m) are given in Table A.5.)
It then follows that

ERij = d2(m)σ,

which in turn suggests that the ratio

Rij

d2(m)

is a plausible estimator of σ. Better yet, one might average these over all I × J
part×operator combinations to produce the range-based estimator of σ:

Range-Based
Estimator for
Repeatability
Standard
Deviation

σ̂repeatability =
R

d2(m)
. (2.31)

Example 13 (Example 12 continued.) Subtracting the smallest measurement
for each part×operator combination in Table 2.1 from the largest for that com-
bination, one obtains the ranges in Table 2.3. These have mean R = 1.9. From
Table A.5, d2(3) = 1.693. So using expression (2.31), an estimate of σ, the re-
peatability standard deviation for the caliper used by the students, is

σ̂repeatability =
R

d2(3)
=

1.9

1.693
= 1.12× 10−3 in .

(Again, this is an estimate of the (long-run) standard deviation that would be ex-
perienced by any particular student measuring any particular punch many times.)

Consider now the standard deviation (2.27) representing the reproducibility
portion of the gauge imprecision. It will be convenient to have some additional
notation. Let

yij = the (sample) mean measurement made on part i by operator j (2.32)
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and

Δi = max
j

yij −min
j

yij

= the range of the mean measurements made on part i .

TABLE 2.3. Ranges of 30 part×operator samples of measured punch Heights
Punch Student 1 Student 2 Student 3
1 3 2 2
2 2 3 3
3 0 1 2
4 1 3 1
5 2 0 1
6 1 3 0
7 4 1 3
8 1 3 2
9 1 2 1
10 1 6 2

Notice that with the obvious notation for the sample average of the measurement
errors ε, according to model (2.26),

yij = μ+ αi + βj + αβij + εij .

Thus, for a fixed part i these means yij vary only according to independent normal
random variables βj+αβij+εij that have mean 0 and variance σ2

β+σ2
αβ+σ2/m.

Thus their range, Δi, has mean

EΔi = d2(J)
√
σ2
β + σ2

αβ + σ2/m .

This suggests Δi/d2(J) or, better yet, the average of these over all parts i,

Δ/d2(J), as an estimator of
√
σ2
β + σ2

αβ + σ2/m. This in turn suggests that

one can estimate σ2
β + σ2

αβ + σ2/m with (Δ/d2(J))
2. Then remembering that

R/d2(m) = σ̂repeatability is an estimator of σ, an obvious estimator of σ2
β + σ2

αβ

becomes (
Δ

d2(J)

)2

− 1

m

(
R

d2(m)

)2

. (2.33)

The quantity (2.33) is meant to approximate σ2
β + σ2

αβ , which is nonnegative.
But the estimator (2.33) can on occasion give negative values. When this happens,
it is sensible to replace the negative value by 0 and thus expression (2.33) by

max

(
0,

(
Δ

d2(J)

)2

− 1

m

(
R

d2(m)

)2
)
. (2.34)



68 Chapter 2. Statistics and Measurement

TABLE 2.4. Part×operator means and ranges of such means for the punch height data
Punch(i) yi1 yi2 yi3 Δi

1 497.00 497.67 497.00 .67
2 498.00 497.67 498.67 1.00
3 498.00 497.33 497.00 1.00
4 497.33 497.00 497.33 .33
5 500.00 499.00 499.33 1.00
6 498.67 498.67 498.00 .67
7 501.33 498.67 500.33 2.67
8 499.33 499.33 500.00 .67
9 499.33 499.33 499.67 .33
10 496.33 496.67 496.67 .33

So finally, an estimator of the reproducibility standard deviation can be had by
taking the square root of expression (2.34). That is, one may estimate the quantity
(2.27) with

Range-Based
Estimator for
Reproducibility
Standard
Deviation

σ̂reproducibility =

√√√√max

(
0,

(
Δ

d2(J)

)2

− 1

m

(
R

d2(m)

)2
)

. (2.35)

Example 14 (Examples 12 and 13 continued.) Table 2.4 organizes yij and Δi

values for the punch height measurements of Table 2.1. Then Δ = 8.67/10 =
.867, and since J = 3, d2(J) = d2(3) = 1.693. So using Eq. (2.35),

σ̂reproducibility =

√√√√max

(
0,

(
.867

1.693

)2

− 1

3

(
1.9

1.693

)2
)

,

=
√
max(0,−.158) ,

= 0 .

This calculation suggests that this is a problem where σ appears to be so large that
the reproducibility standard deviation cannot be seen above the intrinsic “noise”
in measurement conceptualized as the repeatability component of variation. Es-
timates of the ratios (2.29) based on σ̂repeatability and σ̂reproducibility would at-
tribute fractions 1 and 0 of the overall variance in measurement to, respectively,
repeatability and reproducibility.

2.4.3 ANOVA-Based Estimation

The formulas of the previous subsection are easy to discuss and use, but they are
not at all the best available. Ranges are not the most effective tools for estimating
normal standard deviations. And the range-based methods have no correspond-
ing way for making confidence intervals. More effective (and computationally
more demanding) statistical tools are available, and we proceed to discuss some
of them.
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TABLE 2.5. A generic gauge R&R two-way ANOVA table
Source SS df MS
Part SSA I − 1 MSA = SSA/ (I − 1)
Operator SSB J − 1 MSB = SSB/ (J − 1)
Part × Operator SSAB (I − 1) (J − 1) MSAB = SSAB/ (I − 1) (J − 1)
Error SSE IJ (m− 1) MSE = SSE/IJ (m− 1)

Total SSTot IJm− 1

An I × J × m data set of yijks like that produced in a typical gauge R&R
study is often summarized in a so-called two-way ANOVA table. Table 2.5 is a
generic version of such a summary. Any decent statistical package will process a
gauge R&R data set and produce such a summary table. As in a one-way ANOVA,
“mean squares” are essentially sample variances (squares of sample standard de-
viations). MSA is essentially a sample variance of part averages, MSB is essen-
tially a sample variance of operator averages, MSE is an average of within-cell
sample variances, and MSTot isn’t typically calculated, but is a grand sample
variance of all observations.

For purposes of being clear (and not because they are typically used for “hand
calculation”) we provide formulas for sums of squares. With cell means yij as in
display (2.32), define row and column averages and the grand average of these

yi. =
1

J

∑
j

yij and y.j =
1

I

∑
i

yij and y.. =
1

IJ

∑
ij

yij .

Then the sums of squares are

SSTot =
∑
ijk

(yijk − y..)
2
,

SSE =
∑
ijk

(
yijk − yij

)2
,

SSA = mJ
∑
i

(yi. − y..)
2
,

SSB = mI
∑
j

(
y.j − y..

)2
, and

SSAB = m
∑
ij

(
yij − yi. − y.j + y..

)2

= SSTot− SSE − SSA− SSB

TABLE 2.6. Data from a small in-class gauge R&R study
Part Operator 1 Operator 2 Operator 3
1 .52, .52 .54, .53 .55, .55
2 .56, .55 .54, .54 .55, .56
3 .57, .56 .55, .56 .57, .57
4 .55, .55 .54, .55 .56, .55
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Corresponding degrees of freedom and mean squares are

dfE = (m− 1) IJ and MSE = SSE/ (m− 1) IJ ,

dfA = I − 1 and MSA = SSA/ (I − 1) ,

dfB = J − 1 and MSB = SSB/ (J − 1) , and

dfAB = (I − 1) (J − 1) and MSAB = SSAB/ (I − 1) (J − 1) .

Example 15 In-Class Gauge R&R Study. The data in Table 2.6 on page 69 were
collected in an in-class gauge R&R exercise where I = 4 polystyrene packing
peanuts were measured for size (in in) by J = 3 students m = 2 times apiece
using the same inexpensive caliper. The JMP statistical package produces the
sums of squares

SSA = .00241250, SSB = .00080833, SSAB = .00072500,

SSE = .00035000, and SSTot = .00429583.

for these data that can be used as raw material for making important inferences
for the R&R study based on model (2.26). Corresponding mean squares are

MSE = .00035000/ (2− 1) (4) (3) = .00002917 ,

MSA = .00241250/ (4− 1) = .00080417 ,

MSB = .00080833/ (3− 1) = .00040417 , and

MSAB = .00072500/ (4− 1) (3− 1) = .00012083 .

High-quality statistical software (like JMP or R) will automatically produce
REML-based estimates and confidence intervals for the variance components
σ2
α, σ

2
β , σ

2
αβ , and σ2. As the quantities σ2

reproducibility and σ2
R&R are a bit spe-

cialized (being of interest in our R&R application of the two-way random effects
model, but not in other common applications), inferences for them are not auto-
matically available. It is possible, but usually not convenient, to use the output of
REML analyses to make inferences for these more specialized quantities. So here
we will provide formulas for ANOVA-based estimators of σ, σreproducibility, and
σR&R and appropriate Satterthwaite approximate degrees of freedom for making
confidence limits. (Where readers know how to obtain REML-based estimates
and intervals, our recommendation is to use them in preference to ANOVA-based
estimators that follow.)

Single-number estimators for the quantities of most interest in a gauge R&R
study are

ANOVA-Based
Estimator for
Repeatability
Standard
Deviation

σ̂repeatability = σ̂ =
√
MSE , (2.36)
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ANOVA-Based
Estimator for
Reproducibility
Standard
Deviation

σ̂reproducibility =

√
max

(
0,

MSB

mI
+

(I − 1)

mI
MSAB − 1

m
MSE

)
, (2.37)

and

ANOVA-Based
Estimator
for σR&R

σ̂R&R =

√
1

mI
MSB +

I − 1

mI
MSAB +

m− 1

m
MSE . (2.38)

Confidence limits based on any of these estimators are of the generic form (alr-
eady used several times in this chapter)

Generic
Confidence
Limits for a
Standard
Deviation

“σ̂”

√
“ν̂”
χ2

upper
and “σ̂”

√
“ν̂”
χ2

lower
(2.39)

where “σ̂” is one of the estimators, “ν̂” is a corresponding (exact or “Satterthwaite
approximate”) degrees of freedom, and the χ2 percentage points are based on
“ν̂.” So it only remains to record formulas for appropriate degrees of freedom.
These are

Degrees of
Freedom for
Use with
Formulas
(2.36) and
(2.39)

νrepeatability = IJ (m− 1) , (2.40)

Degrees of
Freedom for
Use with
Formulas
(2.37) and
(2.39)

ν̂ reproducibility =
σ̂4

reproducibility

(
MSB
mI

)2
J − 1

+

(
(I−1)MSAB

mI

)2

(I − 1) (J − 1)
+

(
MSE
m

)2
IJ (m− 1)

=
σ̂4

reproducibility

1

m2

(
MSB2

I2 (J − 1)
+

(I − 1)MSAB2

I2 (J − 1)
+

MSE2

IJ (m− 1)

) ,

(2.41)
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and

Degrees of
Freedom for
Use with
Formulas
(2.38) and
(2.39)

ν̂R&R =
σ̂4

R&R

(
MSB
mI

)2
J − 1

+

(
(I−1)MSAB

mI

)2

(I − 1) (J − 1)
+

(
(m−1)MSE

m

)2

IJ (m− 1)

=
σ̂4

R&R

1

m2

(
MSB2

I2 (J − 1)
+

(I − 1)MSAB2

I2 (J − 1)
+

(m− 1)MSE2

IJ

)

(2.42)

Formulas (2.37), (2.41), (2.38), and (2.42) are tedious (but hardly impossible) to
use with a pocket calculator. But a very small program, MathCAD worksheet, or
spreadsheet template can be written to evaluate the estimates of standard devia-
tions and approximate degrees of freedom from the sums of squares, m, I, and J .

Example 16 (Example 15 continued.) A two-way random effects analysis of the
data of Table 2.6 made using the JMP statistical package produces REML-based
confidence limits of

0 and
√
.0001359, i.e., 0 in and .012 in for σβ

and
0 and

√
.0001152, i.e., 0 in and .011 in for σαβ .

There is thus at least the suggestion that a substantial part of the reproducibility
variation in the data of Table 2.6 is a kind of nonconstant bias on the part of the
student operators measuring the peanuts.

Using formulas (2.36), (2.37), and (2.38) it is possible to verify that in this
problem

σ̂repeatability = σ̂ = .005401 in ,

σ̂reproducibility = .009014 in , and

σ̂R&R = .011 in .

Using formulas (2.40), (2.41), and (2.42), these have corresponding degrees of
freedom

νrepeatability = (4) (3) (2− 1) = 12 ,

ν̂reproducibility = 4.04 , and

ν̂R&R = 7.45 .
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So (rounding degrees of freedom down in the last two cases) using the limits
(2.39), 95% confidence limits for σrepeatability are

.005401

√
12

23.337
and .005401

√
12

4.404

i.e.,
.0039 in and .0089 in ,

approximate 95% confidence limits for σreproducibility are

.009014

√
4

11.143
and .009014

√
4

.484

i.e.,
.0054 in and .0259 in ,

and approximate 95% confidence limits for σR&R are

.011

√
7

16.013
and .011

√
7

1.690

i.e.,
.0073 in and .0224 in .

These intervals show that none of these standard deviations are terribly well de-
termined (degrees of freedom are small and intervals are wide). If better infor-
mation is needed, more data would have to be collected. But there is at least
some indication that σrepeatability and σreproducibility are roughly of the same order of
magnitude. The caliper used to make the measurements was a fairly crude one,
and there were detectable differences in the way the student operators used that
caliper.

Suppose, for the sake of example, that engineering requirements on these
polystyrene peanuts were that they be of size .50 in± .05 in. In such a context, the
gauge capability ratio (2.30) could be estimated to be between

6 (.0073)

.55− .45
= .44 and

6 (.0224)

.55− .45
= 1.34.

These values are not small. (See again the discussion on page 65.) This measure-
ment “system” is not really adequate to check conformance to even these crude
±.05 in product requirements.

Some observations regarding the planning of a gauge R&R study are in order
at this point. The precisions with which one can estimate σ, σreproducibility, and
σR&R obviously depend upon I, J , and m. Roughly speaking, precision of est-
imation of σ is governed by the product (m − 1)IJ, so increasing any of the
“dimensions” of the data array will improve estimation of repeatability. However,
it is primarily J that governs the precision with which σreproducibility and σR&R

can be estimated. Only by increasing the number of operators in a gauge R&R
study can one substantially improve the estimation of reproducibility variation.
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While this fact about the estimation of reproducibility is perfectly plausible, its
implications are not always fully appreciated (or at least not kept clearly in mind)
by quality assurance practitioners. For example, many standard gauge R&R data
collection forms allow for at most J = 3 operators. But 3 is a very small sample
size when it comes to estimating a variance or standard deviation. So although
the data in Table 2.1 are perhaps more or less typical of many R&R data sets, the
small (J = 3) number of operators evident there should not be thought of as in
any way ideal. To get a really good handle on the size of reproducibility variation,
many more operators would be needed.

Section 2.4 Exercises

1. Consider again the situation of problem 3 of the Sect. 2.3 exercises and
the data from the Fiber Angle case used there. (Operator 1 measured fiber
angle for three different specimens four times each.) Recast that scenario
into the two-way framework of this section.

(a) Give the values of I, J, and m.

(b) Find a range-based estimate of σdevice .

(c) Find a range-based estimate of σx.

2. Based only on the data of problem 3 of the Sect. 2.3 exercises, can
σreproducibility be estimated? Why or why not?

3. Consider again the situation of problems 2 and 1 of the Sect. 2.3 exercises
and the data from the Fiber Angle case used there. (Fiber angle for spec-
imen 1 was measured four times by each of operators 1, 2, and 3.) Recast
that scenario into the two-way framework of this section.

(a) Give the values of I, J, and m.

(b) Find a range-based estimate of σrepeatability.

(c) Find a range-based estimate of σreproducibility.

(d) Based only on the data considered here, can σx be estimated? Why or
why not?

4. Washer Assembly. Sudam, Heimer, and Mueller studied a clothes washer
base assembly. Two operators measured the distance from one edge of a
washer base assembly to an attachment. For a single base assembly, the
same distance was measured four times by each operator. This was repeated
on three different base assemblies. The target distance was 13.320 with an
upper specification of U = 13.42 and a lower specification of L = 13.22.
A standard gauge R&R study was conducted and data like those below were
obtained. (Units are 10−1 in.)
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Part Operator 1 Operator 2
1 13.285, 13.284, 13.283, 13.282 13.284, 13.288, 13.287, 13.283
2 13.298, 13.293, 13.291, 13.291 13.297, 13.292, 13.292, 13.293
3 13.357, 13.356, 13.354, 13.356 13.355, 13.354, 13.352, 13.357

(a) What were the values of I, J, and m in this study?

(b) Based on the ANOVA table for the data given below, find the estimates
for σrepeatability,σreproducibility, and σR&R.

(c) Give 95% confidence limits for σrepeatability , σreproducibility, and
σR&R.

(d) Find 95% confidence limits for the GCR. (Hint: Use the last of your
answers to (c).)

ANOVA table
Source SS df MS
Part .0236793 2 .0118396
Operator .0000007 1 .0000007
Part×Operator .0000106 2 .0000053
Error .0000895 18 .0000050

Total .0237800 23

2.5 Simple Linear Regression and Calibration
Studies

Calibration is an essential activity in the qualification and maintenance of mea-
surement devices. In a calibration study, one uses a measurement device to
produce measurements on “standard” specimens with (relatively well-) “known”
values of measurands and sees how the measurements compare to the known
values. If there are systematic discrepancies between what is known to be true
and what the device reads, a conversion scheme is created to (in future use of the
device) adjust what is read to something that is hopefully closer to the (future)
truth. A slight extension of “regression” analysis (curve fitting) as presented in an
elementary statistics course is the relevant statistical methodology in making this
conversion. (See, e.g., Section 9.1 of Vardeman and Jobe’s Basic Engineering
Data Collection and Analysis.) This section discusses exactly how regression
analysis is used in calibration.

Calibration studies employ true/gold-standard-measurement values of measur-
ands x and “local” measurements y. (Strictly speaking, y need not even be in
the same units as x.) Regression analysis can provide both “point conversions”
and measures of uncertainty (the latter through inversion of “prediction limits”).
The simplest version of this is where observed measurements are approximately
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linearly related to measurands, i.e.,

y ≈ β0 + β1x

This is “linear calibration.” The standard statistical model for such a circum-
stance is

Simple Linear
Regression
Model

y = β0 + β1x+ ε (2.43)

for a normal error ε with mean 0 and standard deviation σ. (σ describes how much
ys vary for a fixed x and in the present context typically amounts to a repeatability
standard deviation.) This model can be pictured as in Fig. 2.17.

FIGURE 2.17. A schematic of the usual simple linear regression model (2.43)

For n data pairs (xi, yi), simple linear regression methodology allows one to
make confidence intervals and tests associated with the model and prediction lim-
its for a new measurement ynew associated with a new measurand, xnew. These are
of the form

Prediction
Limits
for ynew in SLR

(b0 + b1xnew)±tsLF

√
1 +

1

n
+

(xnew − x̄)2∑
i(xi − x̄)2

(2.44)

where the least squares line is ŷ = b0 + b1x and sLF (a “line-fitting” sample
standard deviation) is an estimate of σ derived from the fit of the line to the data.
Any good statistical package will compute and plot these limits as functions of
xnew along with a least squares line through the data set.

Example 17 Measuring Cr6+ Concentration with a UV-Vis Spectrophotome-
ter. The data below were taken from a web page of the School of Chemistry at
the University of Witwatersrand developed and maintained by Dr. Dan Billing.
They are measured absorbance values, y, for n = 6 solutions with “known”
Cr6+ concentrations, x (in mg/ l), from an analytical lab.
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x 0 1 2 4 6 8
y .002 .078 .163 .297 .464 .600

Figure 2.18 is a plot of these data, the corresponding least squares line, and the
prediction limits (2.44).

0 2 4 6 8

0.
6

0.
4

0.
2

0.
0

x

y

FIGURE 2.18. Scatterplot of the Cr6+Concentration calibration data, least squares line,
and prediction limits for ynew

What is here of most interest about simple linear regression technology is what
it says about calibration and measurement in general. Some applications of infer-
ence methods based on the model (2.43) to metrology are the following.

1. From a simple linear regression output,

sLF =
√
MSE =

√√√√ 1

n− 2

n∑
i=1

(yi − ŷi)
2 = “root mean square error”

(2.45)

is an estimated repeatability standard deviation. One may make confidence
intervals for σ = σrepeatability based on the estimate (2.45) using ν = n − 2
degrees of freedom and limits

Confidence
Limits for σ in
Model (2.43)

sLF

√
n− 2

χ2
upper

and sLF

√
n− 2

χ2
lower

. (2.46)

2. The least squares equation ŷ = b0 + b1x can be solved for x, giving

Conversion
Formula for
a Future
Measurement,
ynew

x̂new =
ynew − b0

b1
(2.47)
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as a way of estimating a new “gold-standard” value (a new measurand,
xnew) from a measured local value, ynew.

3. One can take the prediction limits (2.44) for ynew and “turn them around” to
get confidence limits for the xnew corresponding to a measured local ynew.
This provides a defensible way to set “error bounds” on what ynew indicates
about xnew.

4. In cases (unlike Example 17) where y and x are in the same units, confi-
dence limits for the slope β1 of the simple linear regression model

Confidence
Limits for β1 in
Model (2.43)

b1 ± t
sLF√∑
(xi − x̄)

2
(2.48)

provide a way of investigating the constancy of bias (linearity of the mea-
surement device in the sense introduced on page 37). That is, when x and
y are in the same units, β1 = 1.0 is the case of constant bias. If confi-
dence limits for β1 fail to include 1.0, there is clear evidence of device
nonlinearity.

Example 18 (Example 17 continued.) The use of the JMP statistical package
with the data of Example 17 produces

y = .0048702+ .0749895x with sLF = .007855 .

We might expect a local (y) repeatability standard deviation of around .008 (in
the y absorbance units). In fact, 95% confidence limits for σ can be made (using
n− 2 = 4 degrees of freedom and formula (2.46)) as

.007855

√
4

11.143
and .007855

√
4

.484
,

i.e.,

.0047 and .0226 .

Making use of the slope and intercept of the least squares line, a conversion
formula for going from ynew to xnew is (as in display (2.47))

x̂new =
ynew − .0048702

.0749895
,

So, for example, a future measured absorbance of ynew = .20 suggests a concen-
tration of

x̂new =
.20− .0048702

.0749895
= 2.60mg/ l .

Finally, Fig. 2.19 on page 80 is a modification of Fig. 2.18 that illustrates
how the plotted prediction limits (2.44) provide both 95% predictions for a
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new measurement on a fixed/known measurand and 95% confidence limits on a
new measurand, having observed a particular measurement. Reading from the
figure, one is “95% sure” that a future observed absorbance of .20 comes from a
concentration between

2.28mg/ l and 2.903mg/ l .

Example 19 A Check on Device “Linearity.” A calibration data set due to John
Mandel compared n = 14 measured values y for a single laboratory to corre-
sponding consensus values x for the same specimens derived from multiple labs.
(The units are not available, but were the same for x and y values.) A simple
linear regression analysis of the data pairs produced

b1 = .882 and
sLF√∑
(xi − x̄)2

= .012

so that (using the upper 2.5% point of the t12 distribution, 2.179, and formula
(2.48)) 95% confidence limits for β1 are

.882± 2.179 (.012)

or
.882± .026 .

A 95% confidence interval for β1 clearly does not include 1.0. So bias for the
single laboratory was not constant. (The measurement “device” was not linear in
the sense discussed on page 37.)

Section 2.5 Exercises

1. n = 14 polymer specimens of known weights, x, were weighed and the
measured weights, y, recorded. The following table contains the data. (All
units are gs.)

x 1 1 3 3 5 5 7
y 1.10 .95 2.98 3.01 5.02 4.99 6.97

x 7 10 10 12 12 14 14
y 7.10 10.03 9.99 12.00 11.98 14.10 14.00

(a) Find the least squares line ŷ = b0 + b1x for these data.
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0

prediction limits for
ynew if xnew = 5

x

y

confidence limits for
xnew if ynew = .20
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FIGURE 2.19. Confidence limits for xnew based on an observed ynew (and prediction limits
(2.44))

(b) Find the estimated repeatability standard deviation corresponding to
your regression analysis.

(c) Find 95% confidence limits for the y repeatability standard deviation
based on your answer to (b).

2. In the context of problem 1, suppose a new specimen is measured as having
a weight of 6.10 g .

(a) Find the “calibrated weight,” x̂, corresponding to this new specimen
based on your regression analysis.

(b) Find 95% confidence limits for the slope of the relationship between
measured and actual weight (β1). Does the device used to produce the
y measurements have constant bias (is it “linear”)? Why or why not?

3. Based on your regression analysis in problem 1, find 95% prediction limits
for the next measured weight for a new specimen with standard known
weight of 8 g .

4. Would it be wise to use the above regression analyses to adjust a measured
specimen weight of ynew = .2 g? Why or why not?

2.6 R&R Considerations for Go/No-Go Inspection

Ideally, observation of a process results in quantitative measurements. But there
are some contexts in which all that is determined is whether an item or process
condition is of one of two types, which we will for the present call “conforming”
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and “nonconforming.” It is, for example, common to check the conformance of
machined metal parts to some engineering requirements via the use of a “go/no-
go gauge.” (A part is conforming if a critical dimension fits into the larger of two
check fixtures and does not fit into the smaller of the two.) And it is common
to task human beings with making visual inspections of manufactured items and
producing an “ok/not-ok” call on each.

Engineers are sometimes then called upon to apply the qualitative “repeatabil-
ity” and “reproducibility” concepts of metrology to such go/no-go or “0/1” con-
texts. One wants to separate some measure of overall inconsistency in 0/1 “calls”
on items into pieces that can be mentally charged to inherent inconsistency in
the equipment or method and the remainder that can be charged to differences
between how operators use it. Exactly how to do this is presently not well estab-
lished. The best available statistical methodology for this kind of problem is more
complicated than can be presented here (involving so-called generalized linear
models and random effects in these). What we can present is a rational way of
making point estimates of what might be termed repeatability and reproducibility
components of variation in 0/1 calls. (These are based on reasoning similar to that
employed in Sect. 2.4.2 to find correct range-based estimates in usual measure-
ment R&R contexts.) We then remind the reader of elementary methods of esti-
mating differences in population proportions and in mean differences and point
out their relevance in the present situation.

2.6.1 Some Simple Probability Modeling

To begin, think of coding a “nonconforming” call as “1” and a “conforming”
call as “0” and having J operators each make m calls on a fixed part. Suppose
that J operators have individual probabilities p1, p2, . . . , pJ of calling the part
“nonconforming” on any single viewing and that across m viewings

Xj = the number of nonconforming calls among the m made by operator j

is binomial (m, pj). We’ll assume that the pj are random draws from some popu-
lation with mean π and variance v.

The quantity

pj (1− pj)

is a kind of “per-call variance” associated with the declarations of operator j and
might serve as a kind of repeatability variance for that operator. (Given the value
of pj , elementary probability theory says that the variance of Xj is mpj (1− pj).)
The biggest problem here is that unlike what is true in the usual case of gauge
R&R for measurements, this variance is not constant across operators. But its
expected value, namely

E (pj (1− pj)) = π − Ep2j

= π − (
v + π2

)

= π (1− π)− v
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can be used as a sensible measure of variability in conforming/nonconforming
classifications chargeable to repeatability sources. The variance v serves as a mea-
sure of reproducibility variance. This ultimately points to

π (1− π)

as the “total R&R variance” here. That is, we make definitions for 0/1 contexts

R&R Variance
for One Part in
a 0/1 Context

σ2
R&R = π (1− π) (2.49)

and

Repeatability
Variance for
One Part in a
0/1 Context

σ2
repeatability = π (1− π)− v (2.50)

and

Reproducibility
Variance for
One Part in a
0/1 Context

σ2
reproducibility = v (2.51)

2.6.2 Simple R&R Point Estimates for 0/1 Contexts

Still thinking of a single fixed part, let

p̂j =
the number of “nonconforming” calls made by operator j

m
=

Xj

m

and define the (sample) average of these:

¯̂p =
1

J

J∑
j=1

p̂j .

It is possible to argue that

E ¯̂p = π

so that a plausible estimate of σ2
R&R is

Estimator of
R&R Variance
for a Single
Part in a 0/1
Context

σ̂2
R&R = ¯̂p

(
1− ¯̂p

)
(2.52)

Then, since p̂j (1− p̂j) is a plausible estimate of the “per-call variance”
associated with the declarations of operator j, pj (1− pj), an estimate of
σ2

repeatability is

Estimator of
Repeatability
Variance for a
Single Part in a
0/1 Context

σ̂2
repeatability = p̂ (1− p̂) (2.53)
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(the sample average of the p̂j (1− p̂j)). Finally, a simple estimate
of σ2

reproducibility = v is

Estimator of
Reproducibility
Variance for a
Single Part in a
0/1 Context

σ̂2
reproducibility = σ̂2

R&R − σ̂2
repeatability

= ¯̂p
(
1− ¯̂p

)− p̂ (1− p̂) (2.54)

Again, the estimators (2.52), (2.53), and (2.54) are based on a single part. Ex-
actly what to do based on multiple parts (say I of them) is not completely obvious.
But in order to produce a simple methodology, we will simply average estimates
made one part at a time across multiple parts, presuming that parts in hand are
sensibly thought of as a random sample of parts to be checked and that this aver-
aging is a reasonable way to combine information across parts.

TABLE 2.7. Hypothetical results of visual inspection of five parts by three operators
Operator 1 Operator 2 Operator 3

p̂ p̂ (1− p̂) p̂ p̂ (1− p̂) p̂ p̂ (1− p̂)
Part 1 .2 .16 .4 .24 .2 .16
Part 2 .6 .24 .6 .24 .7 .21
Part 3 1.0 0 .8 .16 .7 .21
Part 4 .1 .09 .1 .09 .1 .09
Part 5 .1 .09 .3 .21 .3 .21

In order for any of this to have a chance of working, m will need to be fairly
large. The usual gauge R&R “m = 2 or 3” just isn’t going to produce informative
results in the present context. And in order for this to work in practice (so that
an operator isn’t just repeatedly looking at the same few parts over and over and
remembering how he or she has called them in the past), a large value of I may
also be needed.

TABLE 2.8. R&R calculations for the hypothetical visual inspection data
¯̂p
(
1− ¯̂p

)−p̂ (1− p̂)

p̂ (1− p̂)= σ̂2
repeatability

¯̂p ¯̂p
(
1− ¯̂p

)
= σ̂2

R&R = σ̂2
reproducibility

Part 1 .187 .2667 .1956 .0090
Part 2 .230 .6333 .2322 .0022
Part 3 .123 .8333 .1389 .0156
Part 4 .090 .1 .0900 0
Part 5 .170 .2333 .1789 .0098
Average .160 .1671 .0071

Example 20 A Simple Numerical Example. For purposes of illustrating the for-
mulas of this section, we will use a small numerical example due to Prof. Max
Morris. Suppose that I = 5 parts are inspected by J = 3 operators, m = 10
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times apiece, and that in Table 2.7 are sample fractions of “nonconforming” calls
made by the operators and the corresponding estimates of per-call variance

Then the one-part-at-a-time and average-across-parts repeatability, R&R, and
reproducibility estimates of variance are collected in Table 2.8 on page 83.

Then, for example, a fraction of only

.0071

.1671
= 4.3%

of the inconsistency in conforming/nonconforming calls seen in the original data
seems to be attributable to clear differences in how the operators judge the parts
(differences in the binomial “nonconforming call probabilities” pj). Rather, the
bulk of the variance seems to be attributable to unavoidable binomial variation.
The ps are not close enough to either 0 or 1 to make the calls tend to be consis-
tent. So the variation seen in the p̂s in a given row is not clear evidence of large
operator differences.

Of course, we need to remember that the computations above are on the vari-
ance (and not standard deviation) scale. On the (more natural) standard devia-
tion scale, reproducibility variation

√
.0071 = .08

and repeatability variation
√
.160 = .40

are not quite so strikingly dissimilar.

2.6.3 Confidence Limits for Comparing Call Rates
for Two Operators

It’s possible to use elementary confidence interval methods to compare call rates
for two particular operators. This can be done for a particular fixed part or for “all”
parts (supposing that the ones included in a study are a random sample from the
universe of parts of interest). The first possibility can be viewed as the problem of
estimating the difference in two binomial parameters, say p1 and p2. The second
can be approached as estimation of a mean difference in part-specific call rates,
say μd.

A common elementary large-sample approximate confidence interval for p1 −
p2 has end points

p̂1 − p̂2 ± z

√
p̂1 (1− p̂1)

n1
+

p̂2 (1− p̂2)

n2
.
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But, as it turns out, this formula can fail badly if either p is extreme or n is small.
So we will use a slight modification that is more reliable, namely

Confidence
Limits for
p1 − p2p̂1 − p̂2 ± z

√
p̃1 (1− p̃1)

n1
+

p̃2 (1− p̃2)

n2
(2.55)

where

Values to Use
in Formula
(2.55)

p̃i =
nip̂i + 2

ni + 4
(2.56)

That is, under the square root of the usual formula, one essentially replaces the p̂
values with p̃ values derived by adding two “successes” in four “additional trials”
to the counts used to make up the p̂ values. (This has the effect of making the
standard large-sample interval a bit wider and correcting the problem that without
this modification for small sample sizes and extreme values of p, it can fail to hold
its nominal confidence level.)

Example 21 (Example 20 continued.) Consider again part 1 from Example 20,
and in particular consider the question of whether operator 1 and operator 2 have
clearly different probabilities of calling that part nonconforming on a single call.
With p̂1 = .2 and p̂2 = .4, formula (2.56) says that

p̃1 =
2 + 2

10 + 4
= .2857 and p̃2 =

4 + 2

10 + 4
= .4286

so that using formula (2.55) approximate 95% confidence limits for the difference
p1 − p2 are

.2− .4± 1.96

√
.2857 (1− .2857)

10
+

.4286 (1− .4286)

10

i.e.,

−.2± .49

These limits cover 0 and there thus is no clear evidence in the p̂1 = .2 and p̂2 = .4
values (from the relatively small samples of sizes m = 10) that operators 1 and 2
have different probabilities of calling part 1 nonconforming.

The so-called “paired t” confidence limits (2.10) for the mean of a difference
d = x1 − x2 (say μd) based on a random sample of normally distributed values
d1, d2, . . . , dn are presented in most elementary statistics courses. While a differ-
ence in observed call rates for operators 1 and 2 on a particular part (d = p̂1− p̂2)
will typically not be normally distributed, for rough purposes it is adequate to ap-
peal to the “robustness” of this inference method (the fact that it is widely believed
to be effective even when normality is not wholly appropriate as a modeling ass-
umption) and employ it to compare operator 1 and operator 2 in terms of average
part-specific call rates.
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Example 22 (Example 20 continued.) Consider again Example 20, and in par-
ticular the question of whether operator 1 and operator 2 have clearly different
average (across parts) probabilities of calling parts nonconforming on a single
call. The n = 5 differences in p̂s for the two operators are

.2− .4 = −.2, .6− .6 = 0, 1.0− .8 = .2, .1− .1 = 0, and .1− .3 = −.2.

These numbers have sample mean d̄ = −.04 and sample standard deviation
sd = .17. Then using the fact that the upper 5%, point of the t4 distribution is
2.132, rough 90% two-sided confidence limits for the mean difference in call
rates for the operators are

−.04± 2.132
.17√
4

that is, − .04± .18,

and there is not definitive evidence in Table 2.7 of a consistent difference in how
operators 1 and 2 call parts on average.

Section 2.6 Exercises

1. Suppose that ten parts are inspected by four operators 16 times apiece. Each
inspection determines whether or not the item is conforming. The counts in
the table below correspond to the numbers of “nonconforming” calls out of
16 inspections.

Part Operator 1 Operator 2 Operator 3 Operator 4
1 10 11 11 10
2 11 9 12 10
3 8 8 9 7
4 15 14 14 16
5 12 14 11 12
6 15 15 16 15
7 14 11 14 12
8 16 16 15 15
9 13 15 14 15
10 16 15 16 16

(a) Using the data above, fill in the table below.

Part p̂ p̂(1−p̂) p̂ (1− p̂)

1
2
...
10
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(b) What is the fraction of inconsistency in conforming/nonconforming
calls that can be attributed to clear differences in how the operators
judged the parts (differences in the binomial “nonconforming call
probabilities” pj)? (Make your answer on the variance scale.)

(c) What is the estimated reproducibility variation (on the standard devi-
ation scale)?

(d) What is the estimated repeatability variation (on the standard devia-
tion scale)?

(e) For part 10, give a 90% confidence interval for the difference (op-
erator 1 minus operator 3) in probabilities of a nonconforming call.
Does it appear the operators 1 and 3 have different probabilities of a
nonconforming call on any one of the parts? Why?

(f) Compare operator 1 and operator 3 average “nonconforming” call
rates using 90% two-sided confidence limits for a mean difference.

2.7 Chapter Summary

This chapter has been concerned with how measurement error impacts what can
be learned from empirical data. It presented some ideas from the probability mod-
eling of measurement variation and considered how the interpretation of elemen-
tary statistical inferences is affected by measurement error. Then a variety of more
advanced statistical tools were discussed, because of their usefulness in quantify-
ing, partitioning, and (in some cases) removing the effects of measurement varia-
tion in quality assurance and improvement projects.

2.8 Chapter 2 Exercises

1. Does a perfectly calibrated device return measurements of a measurand that
are completely free of error? Explain.

2. Is a standard (an item with corresponding “known” measurand) needed in
both device calibration and estimation of σdevice? If not, which requires a
standard? Explain.

3. A measurement device may have a bias as large as 1 unit (in absolute value)
and a device standard deviation as large as 1 unit. You measure x and ob-
serve y = 10. If you believe in the simple (normal) measurement model
and want to report an interval you are “at least 99% sure” contains x, you
should report what limits? (Hint: Before measurement, how far do you ex-
pect y to be from x with the indicated worst possible values of absolute
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bias and standard deviation? Interpret “99% sure” in “plus or minus three
standard deviations” terms.)

4. The same axel diameter is measured n1 = 25 times with device 1 and
n2 = 25 times with device 2, with resulting means and standard deviations
y1 = 2.001 in, y2 = 2.004 in, s1 = .003 in, and s2 = .004 in. The upper
2.5% point of the F24,24 distribution is about 2.27.

(a) Give 95% confidence limits for the difference in device biases.

(b) Give 95% confidence limits for the ratio of the two device standard
deviations.

(c) Is there a clear difference in device biases based on your interval in
(a)? Why or why not?

(d) Is there a clear difference in device standard deviations based on your
interval in (b)? Why or why not?

5. Two different (physically stable) production lines produce plastic pop bot-
tles. Suppose n1 = 25 bottles from line 1 and n2 = 25 bottles from line 2
are burst tested on a single tester, with resulting means and standard devia-
tions y1 = 201 psi, y2 = 202 psi, s1 = 3 psi, and s2 = 4 psi.

(a) Give a 95% confidence interval for the difference between the mean
burst strengths for lines 1 and 2 (line 1 minus line 2).

(b) Give a 95% confidence interval for the ratio of burst strength standard
deviations (line 1 divided by line 2). The upper 2.5% point of the
F24,24 distribution is about 2.27.

(c) Is there a clear difference between mean burst strengths? Why or why
not?

(d) Is there a clear difference between the consistencies of burst strengths?
Why or why not?

6. Using a single tester, a single metal specimen was tested for Brinell hard-
ness 20 times with resulting sample standard deviation of hardness 10HB.
Subsequently, 40 different specimens cut from the same ingot of steel have
sample standard deviation of measured hardness 20HB (using the same
tester):

(a) Give 95% confidence limits for a “test variability” standard deviation.

(b) Give approximate 95% confidence limits for a specimen-to-specimen
standard deviation of actual Brinell hardness.

7. An ANOVA analysis of a gauge R&R data set produced σ̂R&R = 53 (in
appropriate units) and ν̂R&R = 3. In these units, engineering specifications
on a critical dimension of a machined steel part are nominal ± 200. Give
approximate 95% confidence limits for a GCR (gauge capability ratio) for
checking conformance to these specifications.
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8. 95% confidence limits for a particular gauge capability ratio are 6 to 8.
What does this indicate about the usability of the gauge for checking con-
formance to the specifications under consideration?

9. Below is an analysis of variance table from a calibration study. The data
were light intensities, y (in unspecified analyzer units), for specimens of
known riboflavin concentration x (in μg/ml).

ANOVA table
Source SS df MS
Model 10946.445 1 10946.445
Error 27.155 8 3.4
Total 10973.6 9

Parameter estimates for the simple linear regression model were b0 =
6.4634 and b1 = 129.1768.

(a) Give a 95% confidence interval for a repeatability standard deviation
for this analyzer.

(b) Suppose a new specimen with unknown concentration is analyzed and
ynew = 75 is observed. Give a single-number estimate of the concen-
tration in that specimen.

10. The final step in the production of some glass vials is a visual inspection
presently carried out by human inspectors. A particular single vial (marked
in an “invisible” ink that can be seen only under ultraviolet light) known to
be defective is repeatedly run through the inspection process among a large
number of newly produced vials. In fact, each of five company inspectors
sees that vial ten times in a company study. Below are the rates at which
that vial was identified as defective by the various operators ( “1.0” means
100%).

.6, .9, .9, 1.0, 1.0

(a) In general, what two values of p̂ reflect perfect consistency of “defec-
tive/nondefective” calls made by a particular inspector?

(b) What distribution models the number of correct “defective” calls
(among ten calls) made by a particular inspector on the vial in ques-
tion?

(c) On the scale of (estimated) variances (not standard deviations), what
is the fraction of overall variation seen in the “defective/nondefective”
calls for this vial that should be attributed to operator-to-operator dif-
ferences?

(d) Give 95% confidence limits for the long run difference in proportions
of “defective” calls for the first operator (that made six out of ten “def-
ective” calls) and the last operator (who made all “defective” calls).
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11. Laser Metal Cutting. Davis, Martin and Popinga used a ytterbium argon
gas laser to make some cuts in 316 stainless steel. Using 95-MJ/pulse and
20-Hz settings on the laser and a 15.5-mm distance to the steel specimens
(set at a 45 ◦ angle to the laser beam), the students made cuts in specimens
using 100, 500, and 1000 pulses. The measured depths of four different
cuts (in machine units) at each pulse level are given below (assume the
same operator made all measurements and that repeatability variation is
negligible here).

100 Pulses 500 Pulses 1000 Pulses
7.4, 8.6, 5.6, 8.0 24.2, 29.5, 26.5, 23.8 33.4, 37.5, 35.9, 34.8

(a) What is the response variable in this problem?

(b) Give the sample average values for the 100, 500, and 1000 pulse lev-
els. Calculate the sample range for the data at each pulse level. Give
estimates of the standard deviation of cut depth for each level of pulse,
first based on the sample range and then using the sample standard de-
viation. (You will have two estimates for each of the three population
standard deviations.)

(c) Assuming variability is the same for all three pulse levels, give an
estimate of the common standard deviation based on the three sample
ranges.

(d) The concepts of measurement validity, precision, and accuracy are
discussed in Sect. 2.1. The analysts decided to report the average cut
depth for the different pulse levels. This averaging can be thought
of in terms of improving which of (1) validity, (2) precision, or (3)
accuracy (over the use of any single measurement)? The concept of
calibration is most closely associated with which of the three?

12. Fiber Angle. Grunig, Hamdorf, Herman, and Potthoff studied a carpet-
like product. They measured the angle at which fibers were glued to a
sheet of base material. A piece of finished product was obtained and cut
into five sections. Each of the four team members measured the fiber angle
eight times for each section. The results of their measuring are given in Ta-
ble 2.9 (in degrees above an undisclosed reference value). A corresponding
ANOVA is also given in Table 2.10.

(a) Say what each term in the equation yijk = μ+αi+βj +αβij + εijk
means in this problem (including the subscripts i, j, and k).

(b) Using ranges, estimate the repeatability and reproducibility standard
deviations for angle measurement. Based on this analysis, what as-
pect of the measuring procedure seems to need the most attention?
Explain.

(c) Using ANOVA-based formulas, estimate the repeatability and repro-
ducibility standard deviations for angle measurement. Is this analysis
in essential agreement with that in part (b)? Explain.
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TABLE 2.9. Data for problem 12

Angle Analyst 1 Analyst 2 Analyst 3 Analyst 4
1 19, 20, 20, 23 20, 25, 17, 22 20, 19, 15, 16 10, 10, 10, 5

20, 20, 20, 15 23, 15, 23, 20 20, 19, 12, 14 5, 5, 5, 5

2 15, 17, 20, 20 15, 13, 5, 10 15, 20, 14, 16 10, 10, 10, 10
10, 15, 15, 15 8, 8, 10, 12 13, 20, 15, 15 10, 15, 15, 10

3 23, 20, 22, 20 20, 23, 20, 20 15, 20, 22, 18 10, 10, 10, 15
25, 22, 20, 23 23, 23, 22, 20 15, 20, 16, 20 15, 10, 10, 10

4 15, 16, 22, 15 20, 22, 18, 23 13, 13, 15, 20 5, 10, 10, 10
15, 15, 22, 17 23, 23, 24, 20 11, 20, 13, 15 10, 10, 10, 10

5 20, 20, 22, 20 18, 20, 18, 23 10, 14, 17, 12 5, 10, 10, 10
27, 17, 20, 15 20, 20, 18, 15 11, 10, 15, 10 10, 10, 10, 10

TABLE 2.10. ANOVA for problem 12
Source SS df MS
Angle 390.913 4 97.728
Analyst 2217.15 3 739.05
Angle×Analyst 797.788 12 66.482
Error 971.75 140 6.941

Total 4377.6 159

(d) Using your answer to (c), give an estimate of the standard deviation
that would be experienced by many analysts making a single mea-
surement on the same angle (in the same section) assuming there is
no repeatability component to the overall variation.

(e) Specifications on the fiber angle are nominal ± 5 ◦. Estimate the
gauge capability ratio using first the ranges and then ANOVA-based
estimates. Does it appear this measurement method is adequate to
check conformance to the specifications? Why or why not?

13. Refer to the Fiber Angle case in problem 12.

(a) Is it preferable to have eight measurements on a given section by each
analyst as opposed to, say, two measurements on a given section by
each analyst? Why or why not?

(b) For a given number of angle measurements per analyst×section com-
bination, is it preferable to have four analysts instead of two, six, or
eight? Why or why not?
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(c) When making angle measurements for a given section, does it matter
if the angle at a fixed location on the piece is repeatedly measured,
or is it acceptable (or even preferable?) for each analyst to measure at
eight different locations on the section? Discuss.

(d) Continuing with (c), does it matter that the locations used on a given
section varied analyst to analyst? Why or why not?

14. Bolt Shanks. A 1- in micrometer is used by an aircraft engine manufacturer
to measure the diameter of a body-bound bolt shank. Specifications on this
dimension have been set with a spread of .002 in. Three operators and ten
body-bound bolt shanks were used in a gauge R&R study. Each bolt shank
was measured twice by each operator (starting with part 1 and proceeding
sequentially to part 10) to produce the data in Table 2.11 (in inches). A cor-
responding ANOVA is provided in Table 2.12 as well (SSs and MSs are in
10−6 in2).

(a) Plot the bolt shank diameter measurements versus part number using
a different plotting symbol for each operator. (You may wish to also
plot part×operator means and connect consecutive ones for a given
operator with line segments.) Discuss what your plot reveals about
the measurement system.

TABLE 2.11. Data for problem 14
Operator

Part A B C
1 .3473 .3467 .3472

.3473 .3465 .3471
2 .3471 .3465 .3471

.3471 .3464 .3471
3 .3472 .3467 .3471

.3472 .3464 .3471
4 .3474 .3470 .3473

.3475 .3470 .3474
5 .3474 .3470 .3473

.3474 .3470 .3473

Operator
Part A B C
6 .3472 .3463 .3471

.3472 .3464 .3471
7 .3473 .3465 .3472

.3473 .3469 .3471
8 .3474 .3470 .3473

.3473 .3470 .3473
9 .3472 .3465 .3472

.3472 .3466 .3471
10 .3474 .3470 .3474

.3474 .3470 .3473

(b) Find an ANOVA-based estimate of repeatability standard deviation.

(c) Find an ANOVA-based estimated standard deviation for reproducibil-
ity assuming there is no repeatability component of variation.

(d) Using your answers to (b) and (c), estimate the percent of total (R&R)
measurement variance due to repeatability.

(e) Using your answers to (b) and (c), estimate the percent of total mea-
surement (R&R) variance due to reproducibility.
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TABLE 2.12. ANOVA for problem 14
Source SS df MS
Part 1.3 9 .145
Operator 3.78 2 1.89
Part×Operator .321 18 .0178
Error .195 30 .0065

Total 5.601 59

(f) Discuss the relationship of your plot in (a) to your answers to (b)
through (e).

(g) Find an ANOVA-based estimate of the gauge capability ratio. Is the
measurement process acceptable for checking conformance to the
specifications? Why or why not?

15. Refer to the Bolt Shanks case in problem 14. The data in Table 2.13 are
from three new operators with a different set of ten body-bound bolt shanks
(numbered as part 11 through part 20). An appropriate ANOVA is also pro-
vided for these new data in Table 2.14 (units for the SS’s and MS’s are
10−6 in2).

TABLE 2.13. Data for problem 15
Operator

Part D E F
11 .3694 .3693 .3693

.3694 .3693 .3693
12 .3693 .3693 .3692

.3693 .3692 .3692
13 .3698 .3697 .3697

.3697 .3697 .3697
14 .3697 .3698 .3697

.3696 .3697 .3697
15 .3694 .3695 .3695

.3693 .3695 .3694

Operator
Part D E F
16 .3692 .3692 .3692

.3693 .3692 .3691
17 .3696 .3695 .3695

.3696 .3695 .3695
18 .3697 .3696 .3696

.3696 .3696 .3696
19 .3697 .3696 .3695

.3696 .3695 .3696
20 .3697 .3697 .3698

.3697 .3698 .3697

(a) Answer (a) through (g) from problem 14 for these new data.

(b) Are your answers to (a) qualitatively different than those for problem
14? If your answer is yes, in what ways do the results differ, and what
might be the sources of the differences?

(c) Do conclusions from this R&R study indicate a more consistent mea-
surement process for body-bound bolt shanks than those in problem
14? Why or why not?
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TABLE 2.14. ANOVA for problem 15
Source SS df MS
Part 2.08 9 .231
Operator .016 2 .008
Part×Operator .0873 18 .00485
Error .07 30 .00233

Total 2.254 59

16. Transmission Gear Measurement. Cummins, Rosario, and Vanek studied
two gauges used to measure ring gear height and bevel gear height in the
production of transmission differentials. (Ring gear height and bevel gear
height determine the milling points for the customized transmission hous-
ings, creating the horizontal location in the housing and the “tightness” of
the casing against the differential.) A test stand (hydraulically) puts a 1000
pound force on the differential. This force is used to keep the differential
from free spinning while allowing spin with some force applied. A 3- in Mi-
tutoyo digital depth micrometer and a 6- in Mitutoyo digital depth microm-
eter were used to make the measurements. Vanek used the 3- in micrometer
and took two ring gear height measurements on differential 8D4. Using
the same 3- in Mitutoyo micrometer, Cummins made two ring gear height
measurements on the same part. Vanek then took two bevel gear height
measurements with the 6- in Mitutoyo micrometer on the same differential.
Cummins followed with the same 6- in micrometer and took two bevel gear
height measurements on differential 8D4. This protocol was repeated two
more times for the differential 8D4. The whole procedure was then applied
to differential 31D4. The data are given in Table 2.15. ANOVAs are given
for both the ring gear data (SS and MS units are 10−4 in2) and the bevel
gear data (SS and MS units are 10−5 in2) in Tables 2.16 and 2.17, respec-
tively.

(a) Consider the ring gear heights measured with the 3- in Mitutoyo mic-
rometer. Give the values of m, I , and J .

(b) In the context of the ring gear height measurements, what do m, I ,
and J represent?

(c) Give an ANOVA-based estimated repeatability standard deviation
for ring gear height measuring. Find a range-based estimate of this
quantity.

(d) Give an ANOVA-based estimated reproducibility standard deviation
for ring gear height measuring.

(e) The upper and lower specifications for ring gear heights are, respec-
tively, 1.92 in and 1.88 in. If the company requires the gauge capabil-
ity ratio to be no larger than .05, does the 3- in Mitutoyo micrometer,
as currently used, seem to meet this requirement? Why or why not?
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TABLE 2.15. Data for problem 16
Ring gear heights (inches)

(3- in Mitutoyo micrometer)
Vanek Cummins

8D4 1.88515 1.88470
1.88515 1.88470
1.88540 1.88380
1.88530 1.88510
1.88485 1.88435
1.88490 1.88450

31D4 1.88365 1.88270
1.88370 1.88295
1.88330 1.88235
1.88325 1.88235
1.88270 1.88280
1.88265 1.88260

Bevel gear heights (inches)
(6- in Mitutoyo micrometer)

Vanek Cummins
8D4 5.49950 5.49850

5.49985 5.49945
5.49975 5.49945
5.50000 5.50005
5.49930 5.50070
5.49945 5.49945

31D4 5.49785 5.49700
5.49775 5.49710
5.49765 5.49615
5.49750 5.49615
5.49670 5.49595
5.49680 5.49620

TABLE 2.16. ANOVA for problem 16 ring gear data
Source SS df MS
Differential .219 1 .219
Operator .021 1 .021
Differential×Operator .0000042 1 .0000042
Error .0249 20 .00124

Total .2644 23

TABLE 2.17. ANOVA for problem 16 bevel gear data
Source SS df MS
Differential 4.44 1 4.44
Operator .148 1 .148
Differential×Operator .124 1 .124
Error .550 20 .02752

Total 5.262 23
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(f) Repeat (a) through (e) for bevel gear heights measured with the 6- in
Mitutoyo micrometer. Lower and upper specifications are, respec-
tively, 5.50 in and 5.53 in for the bevel gear heights.

17. Computer Locks. Cheng, Lourits, Hugraha, and Sarief decided to study
“tip diameter” for some computer safety locks produced by a campus mac-
hine shop. The team began its work with an evaluation of measurement pre-
cision for tip diameters. The data in Table 2.18 are in inches and represent
two diameter measurements for each of two analysts made on all 25 locks
machined on one day. An appropriate ANOVA is also given in Table 2.19.
(The units for the SSs and MSs are 10−4 in2.)

TABLE 2.18. Data for problem 17
Part Lourits Cheng
1 .375, .375 .374, .374
2 .375, .375 .377, .376
3 .375, .373 .374, .375
4 .375, .373 .375, .374
5 .374, .374 .374, .374
6 .374, .374 .374, .375
7 .374, .375 .375, .376
8 .374, .375 .374, .373
9 .374, .374 .375, .375
10 .374, .374 .374, .374
11 .375, .373 .374, .374
12 .375, .374 .376, .374
13 .376, .373 .373, .374

Part Lourits Cheng
14 .373, .373 .379, .374
15 .372, .373 .374, .373
16 .373, .373 .374, .374
17 .373, .373 .374, .373
18 .373, .373 .373, .373
19 .373, .373 .376, .373
20 .373, .373 .373, .373
21 .374, .374 .374, .375
22 .375, .375 .374, .377
23 .375, .375 .376, .377
24 .376, .375 .376, .374
25 .374, .374 .374, .375

TABLE 2.19. ANOVA for problem 17
Source SS df MS
Part .58 24 .0242
Operator .0625 1 .0625
Part×Operator .22 24 .00917
Error .445 50 .0089
Total 1.3075 99

(a) Organizations typically establish their own guidelines for interpret-
ing the results of gauge R&R studies. One set of guidelines is shown
below. (6σ̂repeatability ÷ (U − L) expressed as a percentage is some-
times called the “% gauge” for repeatability. 6σ̂reproducibility ÷ (U − L)
expressed as a percentage is sometimes called the “% gauge” for re-
producibility.)
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% gauge Rating
33% Unacceptable
20% Marginal
10% Acceptable
2% Good
1% Excellent

Suppose that specifications for the lock tip diameters are .375 ±
.002 in . According to the guidelines above and using ANOVA-based
estimates, how does the diameter measuring process “rate” (based
on “% gauge” for repeatability and “% gauge” for reproducibility)?
Why?

(b) Find expressions for yoperator1 and yoperator2 as functions of the
model terms used in the equation yijk = μ+ αi + βj + αβij + εijk .

(c) Continuing with (b) and applying logic consistent with that used to
develop Eq. (2.31), what does |yoperator1−yoperator2|/d2(2) estimate
in terms of σ2

α, σ
2
β , σ

2
αβ , and σ2?

18. Refer to the Computer Locks case in problem 17. Consider the mea-
surements made by Lourits. The sample average tip diameter for the ith
randomly selected lock measured by Lourits can be written (holding only
Lourits fixed) as

yiLourits = μ+ αi + βLourits + αβiLourits + εiLourits .

(a) What is the random portion of yiLourits?

(b) In terms of σ2, σ2
α, σ

2
β , and σ2

αβ , give the variance of your answer to
part (a).

(c) Letting Γ be the range of the 25 variables yiLourits, what does
Γ/d2(25) estimate?

(d) Give the observed numerical value for Γ/d2(25) considered in part
(c).

(e) In terms of σ2, σ2
α, σ

2
β , and σ2

αβ , what is the variance of (different)
lock tip diameters as measured by a single operator (say Lourits) as-
suming there is no repeatability variation?

(f) In terms of σ2, σ2
α, σ

2
β , and σ2

αβ , what is the variance of (single-) dia-
meter measurements made on (different) lock tips made by the same
operator (say Lourits)? (Hint: This is your answer to (e) plus the rep-
eatability variance, σ2.)

(g) Using the Lourits data, find a range-based estimate of the repeatability
variance.

(h) Using the Lourits data, find a range-based estimate of your answer to
(e). (Hint: Use your answers for (d) and (g) appropriately.)
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(i) Using the Lourits data, estimate your answer to (f). (Hint: Use your
answers for (h) and (g) appropriately.)

19. Implement Hardness. Olsen, Hegstrom, and Casterton worked with a
farm implement manufacturer on the hardness of a steel part. Before pro-
cess monitoring and experimental design methodology were considered,
the consistency of relevant hardness measurement was evaluated. Nine
parts were obtained from a production line, and three operators agreed to
participate in the measuring process evaluation. Each operator made two
readings on each of nine parts. The data in Table 2.20 are in mm . An
appropriate ANOVA is given in Table 2.21 (the units for the SSs and MSs
are mm2).

TABLE 2.20. Data for problem 19
Operator

Part A B C
1 3.30 3.25 3.30

3.30 3.30 3.30
2 3.20 3.20 3.15

3.25 3.30 3.30
3 3.20 3.20 3.25

3.30 3.20 3.20
4 3.25 3.20 3.20

3.30 3.25 3.20
5 3.25 3.10 3.20

3.30 3.10 3.15

Operator
Part A B C
6 3.30 3.30 3.25

3.30 3.20 3.20
7 3.15 3.10 3.15

3.20 3.20 3.20
8 3.25 3.20 3.20

3.20 3.20 3.25
9 3.25 3.20 3.30

3.30 3.30 3.40

TABLE 2.21. ANOVA for problem 19
Source SS df MS
Part .08833 8 .01104
Operator .01778 2 .00889
Part×Operator .04139 16 .00259
Error .0575 27 .002130

Total .205 59

(a) Say what each term in Eq. (2.26) means in the context of this problem.

(b) What are the values of I, J, and m in this study?

(c) Give an ANOVA-based estimate of the repeatability standard devia-
tion, σ.

(d) Give an ANOVA-based estimate of the reproducibility standard devi-
ation, σreproducibility.
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(e) Estimate the gauge capability ratio using the ANOVA-based calcu-
lation if specifications on the hardness of this part are nominal ±
10mm.

(f) Using the corporate gauge rating table given in problem 17, rate the
repeatability and the reproducibility of the hardness measurement
method.

(g) Does it appear the current measuring process is adequate to check
conformance to nominal ± 10mm hardness specifications? Why or
why not?

20. Refer to the Implement Hardness case in problem 19.

(a) Suppose each operator used a different gauge to measure hardness.
How would this affect the interpretation of your calculations in
problem 19?

(b) If it were known that measuring alters the part hardness in the vicinity
of the point tested, how should this be addressed in a gauge R&R
study?

(c) When an operator measures the same part two times in a row, it is
likely the second measurement is “influenced” by the first in the sense
that there is psychological pressure to produce a second measurement
like the initial one. How might this affect results in a gauge R&R
study? How could this problem be addressed/eliminated?

21. Is it important to include an evaluation of measuring processes early in a
quality improvement effort? Why or why not?

22. Management tells engineers involved in a quality improvement project “We
did a gauge R&R study last year and the estimated gauge capability ratio
was .005. You don’t need to redo the study.” How should the engineers
respond and why?

23. Paper Weight. Everingham, Hart, Hartong, Spears, and Jobe studied the
top loading balance used by the Paper Science Department at Miami Uni-
versity, Oxford, Ohio. Two 20 cm× 20 cm (400 cm2) pieces of 20 lb bond
paper were cut from several hundred feet of paper made in a departmen-
tal laboratory. Weights of the pieces obtained using the balance are given
below in grams. The numbers in parentheses specify the order in which
the measurements were made. (Piece 1 was measured 15 times, three times
by each operator. That is, piece 1 was measured first by Spears, second
by Spears, third by Hart,. . . ,14th by Hartong, and lastly by Jobe.) Differ-
ent orders were used for pieces 1 and 2, and both were determined using a
random number generator. Usually, the upper specification minus the lower
specification (U −L) is about 4 g/m2 for the density of this type of paper.
An appropriate ANOVA is given below (units for the SSs and MSs are g2).
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Piece Hartong Hart Spears Everingham Jobe
1 (14) 3.481 (3) 3.448 (1) 3.485 (13) 3.475 (10) 3.472

(12) 3.477 (9) 3.472 (2) 3.464 (4) 3.472 (5) 3.470
(7) 3.470 (6) 3.470 (11) 3.477 (8) 3.473 (15) 3.474

2 (1) 3.258 (13) 3.245 (7) 3.256 (6) 3.249 (11) 3.241
(2) 3.254 (12) 3.247 (5) 3.257 (15) 3.238 (8) 3.250
(3) 3.258 (9) 3.239 (10) 3.245 (14) 3.240 (4) 3.254

ANOVA table for weight
Source SS df MS
Piece .37386 1 .37386
Operator .00061 4 .000152
Piece×Operator .00013 4 .000032
Error .00095 20 .000047

Total .37555 29

(a) What purpose is potentially served by randomizing the order of mea-
surement as was done in this study?

(b) Give the table of operator×piece ranges, Rij .

(c) Give the table of operator×piece averages, yij .

(d) Give the ranges of the operator×piece means, Δi.

(e) Express the observed weight range determined by Spears for piece 2
in g/m2. (Note: 104 cm2 = 1m2.)

(f) Find a gauge repeatability rating based on ranges. (See part (a) of
problem 17.) Pay attention to units.

(g) Find a gauge reproducibility rating based on ranges. (Again see part
(a) of problem 17 and pay attention to units.)

(h) Calculate an estimated gauge capability ratio. Pay attention to units.

(i) What minimum value for (U−L) would guarantee an estimated gauge
capability ratio of at most .1?

(j) Using ANOVA-based estimates, answer (f)–(h).

(k) Using ANOVA-based estimates, give an exact 95% confidence inter-
val for σrepeatability. Your units should be g/m2.

(l) Using the ANOVA-based estimates, give 95% approximate confi-
dence limits for σreproducibility. Your units should be g/m2.

24. Paper Thickness. Everingham, Hart, Hartong, Spears, and Jobe contin-
ued their evaluation of the measuring equipment in the Paper Science
Laboratory at Miami University by investigating the repeatability and rep-
roducibility of the TMI automatic micrometer routinely used to measure



Chapter 2. Statistics and Measurement 101

paper thickness. The same two 20 cm × 20 cm pieces of 20 lb bond paper
referred to in problem 23 were used in this study. But unlike measuring
weight, measuring thickness alters the properties of the portion of the paper
tested (by compressing it and thus changing the thickness). So an 8 × 8
grid was marked on each piece of paper. The corresponding squares were
labeled 1, 2, . . . , 64 left to right, top to bottom. Ten squares from a given
piece were randomly allocated to each operator (50 squares from each piece
were measured). Because so many measurements were to be made, only
the “turn” for each analyst was determined randomly, and each operator
made all ten of his measurements on a given piece consecutively. A second
randomization and corresponding order of measurement was made for
piece 2. Hartong measured third on piece 1 and fifth on piece 2, Hart was
first on piece 1 and third on piece 2, Spears was fifth and fourth, Evering-
ham was second and second, and Jobe was fourth and first. The data are in
Table 2.22 (in mm). The numbers in parenthesis identify the squares (from
a given piece) measured. (Thus, for piece 1, Hart began the measurement
procedure by recording thicknesses for squares 51, 54, 18, 63, . . . , 7; then
Everingham measured squares 33, 38, . . . , 5, etc. After the data for piece
1 were obtained, measurement on piece 2 began. Jobe measured squares
9, 3, . . . , 22; then Everingham measured squares 43, 21, . . . , 57, etc.) An
appropriate ANOVA is also given in Table 2.23 (units for the SSs and MSs
are mm2).

(a) Say what each term in Eq. (2.26) means in the context of this problem.

(b) How is this study different from a “garden-variety” gauge R&R study?

(c) Will the nonstandard feature of this study tend to increase, decrease,
or have no effect on the estimate of the repeatability standard devia-
tion? Why?

(d) Will the nonstandard feature of this study tend to increase, decrease,
or have no effect on the estimated standard deviation of measurements
from a given piece across many operators? Why?

(e) Give the ANOVA-based estimated standard deviation of paper
thickness measurements for a fixed piece × operator combination,
i.e., approximate the repeatability standard deviation assuming that
square-to-square variation is negligible.

(f) Give the ANOVA-based estimated standard deviation of thicknesses
measured on a fixed piece across many operators. (The quantity
being estimated should include but not be limited to variability for a
fixed piece × operator combination.) That is, approximate the repro-
ducibility standard deviation assuming square-to-square variation is
negligible.

(g) What percent of the overall measurement variance is due to repeata-
bility? What part is due to reproducibility?
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TABLE 2.22. Data for problem 24

Piece Hartong Hart Spears Everingham Jobe
1 (14) .201 (51) .195 (48) .192 (33) .183 (43) .185

(25) .190 (54) .210 (58) .191 (38) .189 (40) .204
(17) .190 (18) .200 (15) .198 (36) .196 (49) .194
(21) .194 (63) .203 (55) .197 (3) .195 (12) .199
(53) .212 (20) .196 (44) .207 (59) .192 (29) .192
(16) .209 (50) .189 (23) .202 (45) .195 (13) .193
(47) .208 (31) .205 (64) .196 (41) .185 (56) .190
(42) .192 (37) .203 (57) .188 (9) .193 (2) .195
(22) .198 (34) .195 (26) .201 (62) .194 (8) .199
(35) .191 (7) .186 (1) .181 (5) .194 (6) .197

2 (5) .188 (14) .186 (55) .177 (43) .179 (9) .191
(16) .173 (24) .171 (51) .174 (21) .194 (3) .180
(11) .188 (62) .178 (36) .184 (18) .187 (42) .194
(47) .180 (34) .175 (12) .180 (39) .175 (50) .183
(25) .178 (29) .183 (38) .179 (6) .173 (53) .181
(15) .188 (10) .185 (41) .186 (7) .179 (17) .188
(56) .166 (30) .190 (63) .183 (64) .171 (33) .188
(26) .173 (40) .177 (45) .172 (54) .184 (23) .173

(8) .175 (58) .184 (31) .174 (59) .181 (60) .180
(52) .183 (13) .186 (2) .178 (57) .187 (22) .176

TABLE 2.23. ANOVA for problem 24
Source SS df MS
Piece .00557 1 .00557
Operator .00018 4 .000045
Piece×Operator .00028 4 .00007
Error .003986 90 .000044

Total .010013 99

25. Paper Burst Strength. An important property of finished paper is the force
( lb/ in2) required to burst or break through it. Everingham, Hart, Hartong,
Spears, and Jobe investigated the repeatability and reproducibility of exist-
ing measurement technology for this paper property. A Mullen tester in the
Miami University Paper Science Department was studied. Since the same
two 20 cm× 20 cm pieces of paper referred to in problems 23 and 24 were
available, the team used them in its gauge R&R study for burst strength
measurement. The burst test destroys the portion of paper tested, so repeat
measurement of exactly the same paper specimen is not possible. Hence, a
grid of 10 approximately equal-sized rectangles, 10 cm× 4 cm (each large
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enough for the burst tester), was marked on each large paper piece. Each
of the analysts was assigned to measure burst strength on two randomly
selected rectangles from each piece. The measurement order was also ran-
domized among the five operators for each paper piece. The data obtained
are shown below. The ordered pairs specify the rectangle measured and the
order of measurement. (For example, the ordered pair (2,9) in the top half
of the table indicates that 8.8 lb/ in2 was obtained from rectangle number
2, the ninth rectangle measured from piece 1.) An ANOVA table for this
study is also provided.

Piece Hartong Hart Spears Everingham Jobe
1 (9,2) 13.5 (6,6) 10.5 (4,8) 12.9 (2,9) 8.8 (3,10) 12.4

(7,5) 14.8 (5,1) 11.7 (1,4) 12.0 (8,3) 13.5 (10,7) 16.0

2 (3,9) 11.3 (1,8) 14.0 (5,6) 13.0 (6,7) 12.6 (2,1) 11.0
(8,10) 12.0 (7,5) 12.5 (9,3) 13.1 (4,2) 12.7 (10,4) 10.6

ANOVA table for burst strength
Source SS df MS
Piece .5445 1 .5445
Operator 2.692 4 .6730
Piece×Operator 24.498 4 6.1245
Error 20.955 10 2.0955

Total 48.6895 19

In the following, assume that specimen-to-specimen variation within a
given piece of paper is negligible.

(a) To what set of operators can the conclusions of this study be applied?

(b) To what set of paper pieces can the conclusions of this study correctly
be applied?

(c) What are the values of I , J , and m in this study?

(d) Give an ANOVA-based estimate of the repeatability standard devia-
tion, σ.

(e) Give another estimate of the repeatability standard deviation, σ, this
time based on ranges.

(f) Find an ANOVA-based estimate of σreproducibility.

(g) Find another estimate of σreproducibility, this one based on ranges

(h) Using the ANOVA, estimate the standard deviation of single burst
measurements on a fixed piece of paper made by many operators,
σR&R.
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26. Paper Tensile Strength. The final type of measurement method studied by
Everingham, Hart, Hartong, Spears, and Jobe in the Paper Science Labora-
tory at Miami University was that for paper tensile strength. Since the burst
tests discussed in problem 25 destroyed the 20 cm× 20 cm pieces of 20 lb
bond paper referred to there, two new 20 cm× 20 cm pieces of paper were
selected from the same run of paper. Ten 15 cm × 20 cm strips were cut
from each 20 cm× 20 cm piece. Each set of ten strips was randomly allo-
cated among the five operators (two strips per operator for each set of ten).
The order of testing was randomized for the ten strips from each piece, and
the same Thwing-Albert Intellect 500 tensile tester was used by each oper-
ator to measure the load required to pull apart the strips. The data appear
below in kg. (Consider, e.g., the data given for piece 1, Hartong, (9,2) 4.95.
A 4.95 - kg load was required to tear strip number 9 from piece 1 and the
measurement was taken second in order among the ten strips measured for
piece 1.) Since the testing destroyed the strip, the analysts had to assume
strip-to-strip variation for a given piece to be negligible. An appropriate
ANOVA is also given below (units for SSs and MSs are kg2).

Piece Everingham Hart Hartong Spears Jobe
1 (2,8) 4.34 (1,5) 4.34 (9,2) 4.95 (6,6) 4.03 (10,4) 4.51

(8,10) 4.71 (4,3) 4.61 (7,7) 4.53 (3,9) 3.62 (5,1) 4.56

2 (4,7) 5.65 (6,6) 4.80 (1,1) 4.38 (2,2) 4.65 (9,5) 4.30
(8,9) 4.51 (10,8) 4.75 (3,3) 3.89 (5,4) 5.06 (7,10) 3.87

ANOVA table for tensile strength
Source SS df MS
Piece .13778 1 .1378
Operator .69077 4 .17269
Piece×Operator 1.88967 4 .47242
Error 1.226 10 .1226

Total 3.9442 19

(a) Make a table of load averages, yij , for the ten operator×piece com-
binations.

(b) Plot the load averages yij versus piece number for each of the opera-
tors (connect the two yijs for each operator).

(c) Suppose the target tensile strength for strips of 20 lb bond paper is
4.8 kg . Typically, upper and lower specifications for paper properties
are set 5% above and below a target. Estimate the gauge capability
ratio under these conditions, using ANOVA-based calculations.
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(d) If upper and lower specifications for tensile strength of 20 lb bond
paper are equal distances above and below a target of 4.8 kg, find the
upper and lower limits such that the estimated gauge capability ratio
is .01.

(e) Redo part (d) for an estimated gauge capability ratio of .1.

(f) Is it easier to make a gauge capability ratio better (smaller) by increas-
ing its denominator or decreasing its numerator? Will your answer
lead to a more consistent final product? Why or why not?
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