Chapter 1 Section 1

1.

If quality of conformance has to do with small variation and one wishes to assure
it, it will be necessary to measure, monitor, find sources of and seek ways to
reduce variation. All of these require data (information on what is happening in a
system producing a product) and therefore the tool of statistics. Hence, quality
and statistical methods are directly related.

Mechanical devices whose features of interest vary substantially tend to be
noisy, prone to breakdown, difficult to service and inefficient. In the service
sector, variation from what is promised/expected is the principle source of
customer dissatisfaction. Customer dissatisfaction is undesirable because if a
customer is not satisfied, he will seek another vendor or source to meet his need.
If a good or service is designed properly that does not guarantee quality. Quality
of conformance may be an issue, i.e., variation of important features as
described in question 2 above can lead to serious customer dissatisfaction
therefore poor quality.

If a good or service conforms to design specifications, that does not guarantee
guality because the design may not produce a good or service that is fit for use
when no variation occurs, i.e., a poor design for the proposed performance.

Chapter 1 Section 2

1.

If processes can be made to work effectively, resulting products or services will
be good is the rationale behind a process orientation. Further, root causes of
problems will more likely be identified and removed. Material and time will be
saved as well as producing goods or services that are considered quality.

A customer focus relates to quality in two ways. Studying customer behavior and
desires can drive creation of a designed product that is fit for use. Receiving
feedback from customers and collecting data concerning a current product or
service gives insight as to variation in important features of a good or service.
High variation is directly connected with customer dissatisfaction and must be
addressed immediately, i.e., poor quality of conformance. Low variation with an
appropriately designed product or service results in positive customer feedback.
Motivations for a corporate continuous quality improvement emphasis are
survival and growth. Competitiveness in the marketplace will force companies
who aren’t continually improving quality of design and conformance from the
marketplace.

Effective measurement is a prerequisite to success in process improvement
because if one cannot reliably measure important characteristics of what is being



done to produce a good or service, there is no way to tell whether design
requirements are being met and customer needs are genuinely being met.

5. Control charts are the basic tools used for monitoring processes and issuing
warnings of apparent process instability.
6. If a process is stable or consistent, it is not necessarily producing high quality

goods. The feature(s) of interest could be taking values that are consistent but
far from the desired or designed value(s). Or, the feature(s) of interest could be
consistently of high variation, directly related to poor quality.

Chapter 1 Section 3

1. The top-to-bottom direction of a flowchart usually corresponds to a time
dimension.
2. Extra “columns” could be constructed that correspond to, say, different locations

or plants or different department spheres of responsibility, still maintaining the
top-to-bottom time dimension for each column.

3. A “cause and effect” or “fishbone” diagram are other names of the Ishikawa
chart.
4, One purpose of the Ishikawa chart is to provide a tool that organizes ideas from a

brainstorming session concerning some matter of interest, either a problem or
quality issue. Further, the Ishikawa chart is constructed in such a way that gives
clear direction for future action.

Chapter 1 Section 4

1. It is more desirable to have data that provide a true picture of process behavior
than to obtain “good numbers” or “favorable results” because effective decision-
making can be made only when the true picture of process behavior is
understood.

2. People who have seen data collected by themselves or others that were used to
harm them or their colleagues will most likely not be cooperative in a data
collection event. Further those who have made an honest and sincere effort at
data collection in the past only to see their efforts ignored will almost surely
guarantee that future data collection efforts produce nothing useful.

3. If operational definitions are not clear before the data collection effort begins, the
collected data may very well represent values for multiple unknown variables,
i.e., nothing useful can be obtained from an analysis of the collected data.
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A knowledge of who, how and when the data were collected is most likely not
known. Thus, an accurate understanding of how to proceed with an appropriate
analysis cannot be reliably made.

Through documentation of who, how and when the data were collected,
ambiguities can be eliminated that prohibit an appropriate analysis of the data
collected.

The X, y, symbol, color, time, symbol size could represent six variables.

A checksheet can be easily and quickly constructed with a simple interpretation.
A large sample is not necessarily optimal. Instead, one should think in terms of
(1) the size of variation that must be accounted for and (2) the size of an effect
that is of practical importance. If no variation, a sample of size n = 1 is sufficient.
If some variation exists and a small effect is of practical interest, more data may
be needed.

Chapter 1 Section 5

A simple histogram can portray “spread” of a process and “location”. Also, for a
stable process, shape or distribution of process data can be inferred.

Time trends of the process data cannot be portrayed by a simple histogram.

The run chart can depict trends in process data and where in time outliers occur.
This gives insight into possible special or assignable causes.

Beginning at time 1, data slowly trend upward to the mid time point where data
occur randomly around the center and then begin to trend up again after the %
time point. Or vice versa, at time 1, data slowly trend down from above the
center and after the % time point, continue to trend down.

The Pareto chart is particularly useful for getting people to prioritize their efforts
and focus first on the biggest quality problems an organization faces.

The rationale behind the Pareto chart is the most often occurring situation should
perhaps receive first attention and likewise the second most often occurring
situation the second attention. Most of anything is traceable to a few causes is
the underlying theory of the Pareto Chart.



Chapter 2 Section 1

1.

Comparing a measurement method or device to a standard one and, if
necessary, working out conversions that will allow the method to produce
“correct” (converted) values on average is calibration. Outputs from the
measurement device to a “known” or “standard” value permits the analyst to
compare what is being recorded to what really is, i.e., an assessment can be
made and using calibration, a correction made to the measured value so the
result is on average correct.

Measurand (X) is the true density (g/cc) of a selected pellet after firing at 1400°C
for a selected length of time. The symbol y is the recorded density (g/cc) of a
selected pellet after firing at 1400°C for a selected length of time. The term ¢ is
the error from a recorded y value and the measurand x for a selected pellet after
firing at 1400°C for a selected length of time. The term & is the bias or difference
in average recorded value from repeat observations of a single pellet fired for a
selected length of time at 1400°C.

Assuming constant bias, independent of original density and different length of
firing times, implies 5 X’s, 5 €’s, 5 y’s and one 6. If the constant bias is only for a
selected firing time with possibly different original densities, then 5 d'’s, one for
each of the different firing times.

No, should have recorded original density. Without original density, cannot get
the difference “ after minus before” which reflects firing effect.

1 measurand, 5y’s, 5 ¢’'s and one 0.

V3.4
a..797

— 2 2
b' Uy - \/Jx + Omeasurement
a. 5.7

b.u,+ 6

Chapter 2 Section 2

1.

a. x+ Us
b. O-g + agevice
c. Part (b) is more important because the square root of (b) is the oggr.

a xq;—xy = d;, -1,.9,-1,-1.1,-.9; d = —.44; estimates §; — &,

— : ; 2 2
b.s; = .847; estimates \/O_devicel + Olevicez

C. d= tyo554/V5; (-1.248, .368)



w

9.

a. (.733, 7.042). Since 95% C.I. for ? includes 1, implies no difference in
2

consistency.

b. (-1.441, .561) using df = 5 because Sattherwaite approx. df is 5.49, rounding
down gives 5. Could have used df = min ( (5-1), (5-1)) = 4. No difference in
bias, §; — 8, doesn’t depart from 0 since the confidence interval includes 0.

a. s; estimates ’09% + 0Fopicer
. 2 2
b. s, estimates /Gx + Ofevicez

c. 6; — &, (equipment 1 minus equipment 2).

The method in problem 3 is better because the variation in the estimate of
Ug = 6, — &, is smaller.

y, estimates § + x; and y, estimates § + x,, SO y; — ¥, estimates x; — x5.
a. The same as in problem 3(b), but this interval now estimates p,; — .

The 95% confidence interval using Satterthwaite df approximation of df = 5
becomes (-1.441, .561). The df truncated from 5.49. Could have used a more
conservative df = min ( (5-1), (5-1)) = 4.

b. The average density after firing using method 1 for a selected length of time
minus that for method 2, i.e., ty; — Uys.

c. No, only one device is considered, device 1, and its bias § cannot be split out,
i.e., ¥, estimates u,; + 6 and y, estimates iy, + 4.

J & ta.025 S/Nn becomes (4.711, 6.689) for u, + 6.
a. 95% C.1. f0r 0,pucurement (477, 2.290)

b. ¥ + t4.025 s/vn becomes (4.711, 6.689) for x + 4.

Chapter 2 Section 3

1.

a. s2=163333,n,=3;s?=3,n=4; 6,= max(0,16.3333 —3) = 3.6514
b. approximate df = 177.7769/(133.3883 + 3) = 1.3 so let approx. df = 1. 95%

confidence interval for o, becomes ( 3.6514 ,/1/5.024, 3.6514 ,/1/.001) or
(1.629, 115.469).



2. a. Vv6.66 = 2.5807 = Grepeatanitity: the confidence interval is

(V3.15, V22.22) or (1.7748, 4.7138).
b. v1.92 = 1.38564 = Greproaucinitity, the confidence interval is (0, 3.018)

c. Instrument quality should be addressed, variation operator to operator is less
than repeated measurements on same item.

3. a. V3.75 = 1.9365 = Gaepice; (1.3304,3.5355) is the 95% C.I. for g epice-
b. V1.96 = 1.4 = 6,; (1.9442, 2.773) is the 95% C.1. for o, .
C. NO’ 6'x < 6'device

Chapter 2 Section 4

1. a m=4,1=3,J=1.

b R11—4 R21—5 R31—3 R—4 __194‘26_0-devlce

d2(4) 2.059

C. _')_/i= u+ a; + E_i,|:3,J:1,m:4. SO,Var}_/iiSO'é‘FJT.

In the context, a2 is g2.

=325 _ 368512.

yi's are 20.5, 18, 21.25. (3) —

325 1 _
\/max(O (22) (Z)(1.9426)2])—1.6558.

2. No, only one operator.

3. a.I—lJ—3m—4

b. R ==,d,(4) = 2.059.50,—— = (4) = 2752 = Grepeatabitity-

c. y;'sare 20.5,21,17.5, A =3.5,d,(3) = 1.693,

A 5 \?
Breproducivitity = \/max(O, (=) - (1) (2.752)?]) = V23805 = 1.5428.

1.693
d. No, we only have data from one

4. a. 1=3,3=2,m=4.

b. Grepeatapisity = V-000005 = .0022361.

Greproducibility = \/max (0, [( 1)( 0000007) +( )( 0000053) — (1) (.000005)])
=0 =0.



ORrar = \/max (0, [( )( 0000007) +< )( 0000053) +( )( 000005)])

= .002181
c. (3)(2)(3) = 18 df for 95% C.1. of

.0022361 / 0022316’ = l [.001689,.0033067]

No confidence interval for ,¢proqucibitity -

Orepeatability becomes

df for confidence interval for gzg IS

(.002166)* _ ; .
L[(_OOOOOW)Z (00000557 | 3(_000005)2] = 18.737 or truncating gives 18 as the df.
16 9 ' 9 ' 6

The 95% confidence interval for ozgr becomes

’ 18 ’ 18
[.002181 31526 .002181 m] or [.001648,.0032253].

d = 6(.002181)

GCR = = .06543, 95% confidence limits for GCR become

[6(.001648) 6(.0032253) [.0494 .09676]

2 )

Chapter 2 Section 5

1. a. 9(x) = .00801 + 1.00104x
b. VMSE = v.00267054 = .051677

c. 051677 / L2 051677 /i] or [.037056, .085303 ] is the 95% CI for
23.337 4.404

Urepeatability .

6.11-.00801

2. a. X=——=06.09565
1.00104

b. 1.00104 + t;5. 0,5 (.00311) becomes 1.00104 + (2.179)(.00311) or 95%
C.lI. for the slope becomes [ .99426, 1.00781 ], yes, it includes 1.

3. y(8) = 8.0163, the 95% prediction interval is (7.8997,8.1329).
4, NoO, Vnew is Outside y’s in the data used to model the relationship.



Chapter 2 Section 6

1.

a.

p p(1-p) p(1-p)
0.656250 0.225586 0.224609
0.656250 0.225586 0.220703
0.500000 0.250000 0.24807
0.921875 0.072021 0.069336
0.765625 0.179443 0.174805
0.953125 0.044678 0.043945
0.796875 0.161865 0.155274
0.968750 0.030273 0.029297
0.890625 0.097412 0.094727
0.984375 0.015381 0.014649
2
Zreproducibility _ 0027235 _ 0209 or 2.09%; Note:.130225 is the average of

8Ber 130225

the p (1 — p) column and thus equals 64gz. AlSO, BZepeatability = -1275 =

the average of the  p(1 —p) column.
So, 6E?eproducibility = 6-\1%&R _6§epeatabi1ity = .130225 — .1275 = .0027245.

Oreproducibiticy = V-0027245 = .052196

Grepeatapiity = V-1275 = .35707

1—-1 +1.645 /%96)(1) or 0 + .1744 No, the p's are very close for each
part.

Pii— D3 =d;; d + tg,._gsj—%; sq = .0574; 90% C.I. (—.0458,.0209).

Chapter 3, Section 1

1.

Identifying when the effect of a special cause may have entered the

process and evaluate whether a process is stable with respect to

aim or variation are the purposes of control charting.

Standards given implies u and o are known. Retrospective implies u and o are
not known but must be estimated from process data.

Control charts are designed to detect special cause variation. Common cause
variation is variation caused by factors built-into or assumed to be part of the
process or system. Special cause variation is variation caused by factors not
built-in or assumed part of the process or system.

Control limits get closer to the center line as subgroup size increases.



If the multiple changes from 3 to 2, more frequent false alarms will result. But if a
change in the process occurs, the change will be detected sooner.

If the multiple increases above 3, less frequent false alarms will result. If a
change in the process occurs, the change will not be detected as soon.

No, a retrospective chart could be stable and centered around, say, 10, but the
target is 4. It is likely most items will be outside specs. Another scenario could
be the retrospective or standards given chart determines a stable process with
large variation. Thus, the specs may be tight enough that much of the stable
process occurs outside specs.

If a process is judged unstable or out-of-control, estimating or predicting the % of
items inside specs doesn’t make sense, in other words, the prediction is not
reliable. Moment to moment will produce different percentages of items inside
specs. If g is very small, it is possible a large % of items are inside specs, i.e.,
cycling or trending, thus unstable, yet all inside control limits, with a possible
small o if the R or s chart is stable but the chart for aim is not stable.

a. 10

b. 5

c. Analyst 2, eliminates known line to line variation.

Chapter 3 Section 2

1.

a. A set of 9 containers sampled in a selected hour is the subgroup.
Subgroup size is 9. 40 subgroups are selected.

b. 4 +£3 '—19 ; 4 +.1; (3.9, 41); LCLy =3.9; UCL; = 4.1

Subgroup ranges; D;0 = .546(.1) = .0546; D,0 =5.394(.1) = .5394.
d. In (b), it is Standards given, pand o known. In (c), itis

also standards given because pand o are known.
e. One decision rule implying stability is “all points within

control limits”. However, there is a small probability a subgroup

statistic falls outside the control limits even when the process is

stable.
a.x=39,R= .56,5= .48, LCLgz = .184(.56) = .10304,

UCLg = 1.816(.56) = 1.0169.
b. 3.9 +£.337(.56); 3.9 + .18872; LCL; = 3.7112, UCL; = 4.0887.

o

C. LCLg =.239(.48) =.1147; UCL, = 1.7611(.48) = .8453.
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d. LCL; = 3.9 —1.032(.48) = 3.4046;

UCLgz = 3.9+ 1.032(.48) = 4.3953.

e. R_ 56 _ .1885; S = 28 = 4952, ¥ = 3.9 is an estimate of the avg.
d, 2.97 Cy .9693

distance from bottom to handle.

3.  a LCLy=6-3==3.75;

1.5
4

va

UCL;=6+3 % = 8.25. No out of control points.

b. LCL; =0; UCLs = 2.088(1.5) = 3.132; pt. 3 is outside limits.
c. LCLy = 6.58 —1.628(1.72) = 3.779;
UCL; = 6.58 + 1.628(1.72) = 9.38.

LCLy=0; UCL, = 2.266(1.72) = 3.897; No instability.

d. CE: % = 1.867; E(R) = d,1.867 = 2.534(1.867) = 4.7307.
4 .
4, a. The subgroup is a single Series XX transmission housing.

The subgroup size is 1.
b. 34
c. .0001, .0003

d. Individuals retrospective. Subgroup size is 1.

_ .02472 — .000727; @: 000727 = .000645.
” d, 1.128

S

LCL, = 3.7805 — 3(.000645) = 3.77856;
UCL, = 3.7805 + 3(.000645) = 3.782435. All points inside limits.

Chapter 3 Section 3

1. a. Attributes because the variable values are counts.
b. Poisson (A = .05)
c. 30(.05) =1.5, Poisson (A = 1.5)



o

o oo

g.

11

V15 = 1.2247
E(X/30) = 1.5/30 = .05; Var(X/30) = 1.5/900 = .0016667;

c(:—o) — .0408233.

LCLy/30 = 0; UCLy/30 = .05+ 3(.0408233) = .17247.

No points outside limits.

u-chart
A 8

. Apooled == m = 03809

LCLx = .03809 — 3 /M= 0;
30 30

UCLx = .03809 + 3 /M = .14498
30 30

Attribute because the variable values are counts.
Binomial, n = 30; p = .05.

U, = 30(.05) = 1.5.

o, =+/30(.05).95) =1.19373.

LCL; = .05—3 /(05)—95) = .05-.11937 = 0.
30
UCLy = .05 +3 /% = .05 + .11937 = .16937.

f. LCL, =np —3np(1 —p) =15-13.5812 =0.

UCL, =np+3.np(1—p)=1.5+3.5812 = 5.0812.

LCL, =np — 3 np(1 — p) = 1.142857 — 3.14545 = 0.
UCL, =np + 3 /np(1 — p) = 1.142857 + 3.14545 = 4.288.

Chapter 3 Section 4

1.
2.

No patterns and all Q’s are within control limits.

If only “outside control limits” rule is applied, it is possible for

Q’s to trend up or down or cycle and all be inside control limits.
Using only the rule “outside limits” would incorrectly interpret these
scenarios as stable.

The frequency of false alarms will increase if the extra alarm rules
are used in addition to the “3 sigma” limits.
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Chapter 3 Section 5

1.

2.

3. a
b

4. a
b
C.

5.

6. a.
b.

ARL means average run length until the first “believed’out-
of-control point is identified. All OK ARL is the average run
length until the first “believed” out-of-control point is

identified, when, in fact, the process is stable or “All OK”.

A long or large ARL is desired when a process is stable. Under
non-stable situations, a short or small ARL is desired.

. 370
4
. UCLf—20+3ﬁ—26.
4
LCLy =203 == 14
p=Prob(z > 22 )+ Prob(z < ™= ) = 0064
% = 156.25. When u = 21, the ARL is about 156 or 157.
. UCL=4+3+v/4=10, LCL = 0. LettingA =4, p=1—P(X < 10).
p=1-.99716 = .00284. % = 352.1.ARL = 352 or 353.
. p=1-P(X<10). Ay, =8. p=1— .815886 = .184114. %z
5.43. ARL =5or6.
Let X = # items per 2 units.So,X - Poisson(8). UCL, =8+ 3+/8=
16.485, LCL, = 0. Letting Aper 2items = 8, AlLOKARL, p=1-P(X <
16).
p=1-.996282 = .003718. %= 268.96 .ALL OK ARL = 268 or 269.
Using UCL, = 16.485 and LCL, = 0,and
Letting X =  # items per 2 units and a new Aperitem =8 X -
Poisson(16). p=1—P(X <16). p=1— .56596 = .4340. % =
2.30. ARL = 2 or 3.
(b)
Control limits are a function of n.

Because the control limits are the same number of \%from U.
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Chapter 3 Section 6

1.

a.

T(t) = 4. When the process is hitting T(t ) = 4, the process is

considered optimal.
E(t=1)=2;E(t=2)=3;E(t=3)=4.AE2)=3-2=1.

AE(3) =4—-3=1.AE(3) =1—1=0. E(t)is departure of

the process from a targeted value. AE(t) is an indicator of how

the departure from the process is changing. A%E(t) indicates how

the changing departure from the process is changing.

AX(3) = .8AE(3) + 1.6E(3) + 1.9 A2E(3) = .8(1) + 1.6(4) + 1.9(0)

=7.2.

If no relationship exists between Y and X, most likely nothing

will happen. The process will be similar to a

random walk until deterioration of mechanics occur, then

trending strongly one way or the other or wildly oscillating. If Y is inversely
related to X and since the “first” AX(3) is positive with all positive K’s, the Y’s
will most likely be pushed down away from T(t), at least initially.

. Do an experiment. Choose, say, 3 sets of K’s, each for n time periods.

Calculate S1, S,, and S; where S; = % Y®E(t)% The smallest S; suggests
where to start with a potentially effective set of K’s.

Control charts monitor a process and do not provide a real time
adjustment to the process. Control charting can point to a
point in time (or earlier) where efforts need to be made to

find a cause for any unusual patterns on the chart.
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Chapter 4 Section 1

Normal Prob Plot for % Moisture Content

Qz
o

9.0 9.5 10.0 10.5 11.0 11.5
% Moisture Content

It appears normal distribution is a reasonable model for % moisture
content because the plot is approximately linear.

b. The above plot is Qz vs % Moisture content. 1.59614 = slope = i or
~ —— = 6265. £ ~ y — intercept = -16.4838. So, u = 16,4737 *
1.59614 o
6265 = 10.327.

Regressing %Moisture Content (y) vs. Qz (X) gives the estimated slope to
be .601 which estimates ¢ and vertical intercept of 10.327 which estimates

U.



Dotplot of % Moisture Content

: L3 [ [ : L3 [

3 3 —e* & o o & o : T

9.3 9.6 9.9 10.2 10.5 10.8 11.1 11.4

% Moisture Content
Frequency Histogram of % Moisture Content
7

7

6 -

5 4
>
2
g 41
=
o 3 3
ik 3

2
2 4
1 1
1
0 0
0
9.5 10.0 10.5 11.0

%o Moisture Content
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Box and Whisker Plot of % Moisture Content

9.0 9.5 10.0 10.5 11.0 11.5
% Moisture Content

Looking at column of (i - .5)/22, 10 is the 25" quantile, 10.45 is the 50"
quantile and 10.7 is the 75" quantile.

The IQRis 10.7-10=.7
The time order of measured lots must be recorded.
The % moisture content must be stable or consistent over time, no trends

or cycling over time.

Normal Prob Plot for Paint Thickness
2
1
-1 4
[ ]

-2 4

T T T T T T

0 2 4 6 8 10

Paint Thickness
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A straight line appears to match the plot, implying a normal distribution of

paint thickness is a reasonable assumption.

b.
Boxplot for Paint Thickness Data
0 2 4 6 8 10
Paint Thickness
No outliers are detected.
c.  25th quantile is 1.8, 50" quantile is 4.25 and 75" quantile is 6.2.
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4, a
Normal Prob Plot Small Grit %
2 -
14
N
N 0
5 0
-1_
-2_ T T T T T T
10 12 14 16 18 20
Small Grit %

No strong departures from linearity, so a normal distribution is a reasonable
assumption.

b. X = 14.818 and s = 2.299

c.  17.86is approx. 90" quantile. .9 is 40% of the distance
between .863636 and .954545. So, 17.86 is 40% of the
distance from 16.7 to 19.6.

Chapter 4 Section 2

1. a. Lower 95% confidence limit = (6)(.61) /21/;5%1;.975 =2.82
Upper 95% confidence limit = (6)(.61) /21/)(51;_025 =5.23

b. No, (2.82, 5.232) doesn’t set within (0, 3).

c. Estimated Cyk = min { (10.327 —9)/1.83 , (12-10.327)/1.83 }
=min {.7251, .9142 } = .7251. Since this is less than



—h

2. a
b.
3. a.
b
C.

. 95% C.I. for Cp; .7251 +1.96

W

2
Xlower

5. a.

19

1.0, we have more than 1% outside specs.

U-L 3

L —= = .82. Even if we could center the process, the

60 6(.610)
“pest” quality would be a Cy estimate of .82. Need to reduce
variation, even if we center the process.

(7251)

or .7251 + .25979;
Tos T a2

(.4653, .9849).

U-L Xzower Xmgher 10.283 35.479
\/ n-1 \] n-1 }becomes{ (61) 6(61) }

(.57357, 1.0654). 95% C.I. for Cp. Not centered. X =10.327 # 10.5.

. Widen spec limits.

Same as (a).

U-L |x? U-L X 3. 325 16.919
{ — /M Zhigher 3 hecomes { }
6s n-1 ' 6s N n-1 6(6 18) 6(6 18)

(.6556, 1.479) 90% C.I. for C,

. Estimated Cpyy =

= min{ (2291.3 — 2280)/(3)(6.18), (2320 — 2291.3)/(3)(6.18) }
=min {.609, 1.548 }
=.609.

90% C.I. for Cp

(609)
18

.609 + 1.645
(.3161, .9019).

or .609 + .2929;

If the process can be centered, the quality will improve but still not high
enough, the 90% C.I. for C, in a. is not completely above 1.

Xhlgher

= ,/45.722/16.047 = 1.688

Lower 90% confidence limit for 60 = (6)(3.35) 9/)(3;_95 =14.659
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Upper 90% confidence limit for 65 = (6)(3.35) [9/x5. 5 = 33.069

b. ¥ = 4.5 s=3.35 No, x *s falls completely outside specs.
6. a. Estimated C, = 3.6/6s = .261.

b. Estimated Cpy =
= min { (14.818 — 13)/3(2.299), (16.6 —14.818)/3(2.299) }
=min {.2636, .2584 } =.2584

c. 95% C.I. for Cp,

U-L |x? u-L |xh 3.247 20.483
— /M ,— | 2Z Jbecomes( }
6s n-1 6s n-— 6(2 299) 6(2 299)

(.1487,.3735) 95 % C.I. for C,

95% C.I. for Cp;

2584 +196/ % 2584 + 2272

(.0312, .4856).
d. Potential and present not good. Need both centering and reduce “s

[{ Pyl

Chapter 4 Section 3

1. a 10327 & ty1,975(61) |1+ toro75 = 2.080;

10.327 +1.2973; (9.0297, 11.6243)
b. p=.95;n=22; 1-p"—n(1-p)p"* =1 - .323533 - .37461 = .30.

30% confident that 95% of additional lots have between 9.3%
and 11.5% moisture content.

c. 95% sure the interval contains 95% of the moisture contents
10.327 +2.7(.61); (8.68, 11.974)



b

. n=10; n/(n+1) = 10/11

. 95% sure the interval contains 99% of the moisture contents

f

2291.3+4.437(6.18); (2263.879, 2318.72)

22913 * to,075(6.18) [1+—; to.o75 =2.262;

2291.3 + 14.6614; (2276.638 , 2305.96) contains length of
one item with 95% probability.

. 95% confidence to contain 99% of paint thicknesses.

4.5 +4.437(3.35); (0, 19.3639)
9/11 or 81.81%

p=.9;n=10; 1-p"—n(1-p)p"*=1-.34867 - .38742 = .2639.

26.39% confident that 90% of additional paint thicknesses
are between .2 and 9.7.

. 14.818 +t10,905(2299) |1+ tig005 = 3.169;

14.818 + 7.609; (7.209 , 22.4275) contains lot % of small
grit particles from the next lot with 99% prob.

99% confident the interval contains % of small grit particles
or 90% of lots.

14.818 +3.429(2.299); (6.935, 22.701)

c. (a) is a prediction interval; (b) is a tolerance interval

d. 95% confident 95% of all lots have % small grit particles that

exceed L. 14.818—2.815(2.299); L = 8.436

Chapter 4 Section 4

1. a. F=kW. up = w uyw = .3(10) = 3.

b

C.

o2 =~ 10%(.01)% + (.3%2)(.04) = .01 + .0036 = .0136.
or = .1166.
3+ 2(.1166); (2.7668, 3.2332)

21



a. X1+ X2+ ...+ Xo00; The thickness of each page is a random
variable.

b py + up + -+ paoo = 2.

C. o = Jot+ a2+ -+ dZ, = /(.0001)2(200) = .001414.

d. 1.960; = 1.96(.001414) = .00277. 2 + .00277inches.
95% of all books have thicknesses within .00277 inches of 2
inches.

a. g, = o + a2, =,/2(01)2 = .01414.

oD

b. D= JGE+w2+ v?; o= 2(52+10u+ u? + v?)” 2(10 + 2u)
Zi ~ (52 +10u + u? + v?) 2(2v).

(3—5)205 = .25(25+ 0)~1102(.0004)= .0004.

( 2202 = .25(25 + 0)71(.0004)(0) = 0.
op, = v.0004 + 0 = .02.
C. 5.0017 * t10,05(.0437) |1+ tiges = 1.729;

5.0017 + .07742; (4.9243 , 5.079) contains next distance with
90% probability.

22
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Chapter 5 Section 1

1. yij ~NQ;, 0%)
2. Sp estimates o .
3.  §°,=16.444. s, =4.055.
—22 .40, 24— 2(Ly LY. 5_ 2 (L 1) .
4. 3=2254=22; Tta=si(z+ ) i= [sB(+ )

_ _ 5 _ _
yi— Y2 iz(g) or y;— ¥, £5

5.  a.12=4(3)=df., s,=3, ¥+ tiz.75 % © tpg7s = 2.179;
A= (2.179)% = 3.2685

b. 1-4(1-95) <y
where v is the group or simultaneous confidence level. So, y = .80

because of Bonferroni. So, no, confidence is not 95% all include
the parameters of interest. Individually they are 95% confident but
simultaneous inclusion reduces the “family- wise” confidence
because the confidence must take into account the joint multiple
confidences all occurring at once.

6. a. s?, = 45.585; s, = 6.7516.

b. 35 + tg,975(6.7516/V3) ; tg.975 = 2.306;

35 + 8.988; (26.011 , 43.988); 95% confidence

C. ¥ya— ¥1 £ tgors /sg (nil+ n—t) becomes —15 + 12.712 or (-27.71, -2.288)

d. % (uy + W) — %( Uz + Hg) corresponds to Design X minus
Design Y.

e. Individual measurements for each design come from
different prototypes. This permits legitimate inference to

performance of new or old prototypes for the given designs.

7. a. -22.5 + 9.063 or (-31.563, -13.437); Design X minus Design Y.



b
c

. (§) =10.
. 1-101—a)=1-10(1-.99) = 90; y = .90. So, each
must be 99%.

Chapter 5 Section 2

number of levels. Perhaps one factor is Pressure and the other is Moisture.
Pressure could be at, say, hi, med or low and Moisture could be at 2%, 4%, 6%,
8%, 10%. So a total of 15 = 3 X 5 treatment combinations.

2. a.

=

}_’+a3+ b3+ ab33:10+_5+_1+_1:3

4

. Yes, some departure from parallelism because some
apf;j exceed 2.1326 in absolute value, i.e., significant
interaction exists.

= 2.1326; ty. g75=2.262.

. No, only A effect at a selected level of B. The simple effects of
A are different from level to level of B. It is possible both “simple”
effects of A are of the same “sign”, meaning one could average
both simple effects and make a general inference about an A
effect independent of level of B.

. Yes, we have an interaction effect so if there is an A effect it

changes for different levels of B.

No, we have interaction implying simple effects of A change for

different levels of B.

. No, the .0008 inch std. dev. is understandably smaller than the
Sp = .0017 because the .0008 value came from repeat
measurements on the same item, whereas the s, value came from
measurements on different copies of the same CAD drawing pooled across
different machine/enlargements.

. -.0018, .0042, .0012, -.0008, -.0028

Yes, both fit and assumed common variance can be evaluated.

24

Two-way factorial implies there are two factors, each having perhaps a different



d. ab13 =.00438, ab23 =-.00302, ab33 =-.00136, ab32 =.00104,
ab31 =.00032

4 — . —
€. A= t34.975(.0017) DEG .001029; t3s 975=2.03. Yes, the
absolute value of most estimated interaction effects exceed

.001029.

f. Estimated ¢; — a, = .00799. Estimated std. dev. Is
(.0017)(6/45) = .0006208. So, A = 2.03(.0006208) = .00126.
.00799 + .00126 or (.00673, .00925); Not credible to use for
every enlargement level because important interaction exists.

g. Plot not given here.

Chapter 5 Section 3

1. 2° = 32 treatments
2. a. fi = 118.125; &, = 11.375; B, = —14.625; aB,, = —6.875;
7, = 55.125; @y,, = —3.125; By,, = 1.375; aBy,,, = 4.625.

b. A= tseors (7.2) o |5 = E22CD = 18045 Al fitted effects

are significant except By,,.

c. Grand Avg. + Hi A (11.375) + Lo B (14.625) + Hi C (55.125) +
HiA/LoB(6. 875) = 118.125 + 88 = 206.125.

4, 5 cycles, divided by 32.

5. A=ty (sp) .| o = 2.064 (g)spx/i = 36485,
6. (a)(b)

7. (a)

8.

(@) () (c)
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Chapter 6 Section 1

1. a. 23=8

b. A= tyessy 5 /% +5 = (3.182)(.31868)s, = 1.014s,

C. 1 generator
d. I & ABCD is the defining relation and the generator is

D & ABC. So, from the problem, the following are judged detectable:

a, + Bydaz;
8, + afyaz
BY22 + ady;

Further, assuming all two-factor and higher interactions are negligible, the
A effect and D effect are what is driving differences in the responses.

2. Hi A, Hi B, Hi C and Low D are recommended. This combination is not
represented in the fractional factorial, 24~ where the generatorisD <
ABC. All hifor A, B, C and D occurs in the experimental setup.

3. a. 9 factors
b. 2° = 512 combinations
C. 2971 = 256 combinations
d. 16
e. 1/32
f. 5 generators

g. 31=20-1=25-1
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b. CDG, DH, BJ

C. Assuming all two-factor and higher interactions are not important implies
the following, Hi D and Hi H important influences on y.

—6.38 estimates 6, + all higher order aliases, and
—10.13 estimates ad,, + h, + all other two factor and higher aliases.

Since the two-factor and higher order interactions are all assumed
unimportant, —6.38 estimates §, and —10.13 estimates h,.

d. From c. we select Hi D, Hi H. As for the others, since all two-factor and
higher interactions are judged not important, -1.25 estimates j, so select
Hi level of J, -.75 estimates e, so select Hi level of E, .13 estimates f, so
select Lo F, .13 estimates g, so select Lo G, 3.75 estimates «,, select Lo
A and 1.25 estimates f3,, select Lo B. Finally select either Hi or Lo C.

$=92 —3.754+ —1.25+ 0+ —6.38 — .75 — .13 — .13 — 10.38 — 1.25
$ =92 —24.02 = 67.98

Chapter 6 Section 2

1 a.
164
60 — .
72 101
50 — * *
40 —
N 7 9 8

20 —

10 — . *
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YX1, Xo) = 21.2816 + .2798X; + .3912X,

Contour Plot of yvs x2, x1

60 <
100

50
80

40

30

x2

20 -
e

10 -

70

0
140 150 160 170 180 190 200 210 220
x1

It appears the smallest predicted density occurs for (X1, Xz) near their
simultaneous minimum values over the experimental region, i.e., X; = 155
and X, = 10. The largest predicted density appears to be where (X1, X»)
are simultaneously large within the experimental region, say, X; = 225, X;
= 50.
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Only a slight curvature is suggested. Negative, positive, negative trends of residuals vs
X1 orvs X, are seen.

e. 9(x1, Xo) = -206.63 + 2.8424X; + .256X; + .005714X1X; - .007233X,%-

.015842X,*
f.
Contour Plot of yvs x2, x1
60
/
80 100
50 -
40 -
N 304
20 -
90 ,/
10—60
70
0 T T T T T T T T
140 150 160 170 180 190 200 210 220
x1

The largest predicted density is for X; close to 225 and X; close to 50.
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N
‘N ‘
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*
-5 —
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(@ 0 — ¢ *
*
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-5 —
*
T T T T
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These residual plots do not show much improvement over those in (d). However, the R?
for the fitted model in (e) is much larger (94.2%) than the R? for the fitted model in (b)
(69.9%).

2. a. The "front" side of the cube looks like
(1,0,1)
@
1,-1,0) ® o (1,10
@
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The first ordinate is 1 = “out of the page”, 0 = “on page” and -1 =
“behind the page”. The 2" ordinate is “left to right”, i.e. -1, 0, 1. The 3
ordinate is “top to bottom”, i.e. 1, 0, -1.

Each of the 6 sides of the cube looks like the above sketch. The design
points are located in the same relative positions. The 13th design point is
the center of the cube at (0, 0, 0). The experimental region is the cube
with each corner “sawed” off.

The 13 design points do not constitute a central composite design. A 23
central composite requires design points at the eight (X1,X2,X3) distinct
points such that each X;, X5, and X3 must be 1 or -1. Further, the center
point (0, 0, 0) must be included and

(2)(3) = six "star" points

(a, 0,0), (-0, 0,0), (0,q,0), (0,-a,0), (0,0,a), (0,0, -a).

Yes, there was replication at the center point (0, 0, 0). Three runs were
taken at this point.

Y(X1, X2, X3) = 25.10 - 8.10X; - 15.08X, + 2.01X3

R? = 80.7%, residual plots suggest a model that contains squared terms
and cross product terms.

(X1, X2, X3) = 20.1233 - 8.095X; - 15.0763X, + 2.0062X3 + 8.275X:X>
+ .15X;X3 - 1.5675X,X3 - 1.0679X,2 + 8.2696X,° + 2.1196X32

R? = 99.6%, residual plots affirm this fit.
Confidence intervals (90% level) for the coefficients of X52, X32, XoX3 and
X1 Xz all contain values exclusive of zero. Thus, these terms were helpful

to add to the model fitted in (d). Further, the R? has increased significantly

s = 1.456 using the full quadratic model in (e).





