Chapter 2
Basics of Electricity and Magnetism

“My direct path to the special theory of relativity was mainly
determined by the conviction that the electromotive force
induced in a conductor moving in a magnetic field is nothing
more than an electric field.”

—Albert Einstein, message to the centennial of Albert
Michelson’s birth, December 19, 1952.

2.1 Introduction

This chapter provides a succinct review of the essential physics of electricity and
magnetism that forms the basis for understanding how electric power systems work.
Later chapters will use this foundational material to build models of power system
components and systems. Electric fields, magnetic fields, and Maxwell’s equations
are the topics of the three sections of this chapter. Examples are given that illustrate the
basic characteristics of core electrical components and electromechanical devices.

2.2 The Electric Field

Coulomb showed that two like point charges repel each other.! In fact, the force
between two stationary particles of charge g, and ¢, a distance r apart in free space

is given by the formula
q192

F = k2

2.1)

r

This is Coulomb’s law. A positive F is repulsion and a negative F is attraction. In
SI units, the unit of charge is the coulomb, the unit of distance is the meter, and the

"Material in this section can be found more fully discussed in any book on theoretical physics,
Example [162].
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unit of force is the newton. In this case, k = 1 / 4me(, where € is the permittivity of
free space, g9 = 8.85 x 10712 C2/N - m?.

A region in space contains an electrical field if a charge fixed in it experiences a
force. The electric intensity E at a point in the region is the force exerted on a unit
positive charge. Thus, the force F on a particle of charge ¢ at a point of electrical
intensity E is

F =gE

Since the force between two stationary charges depends only on the distance between
them, it follows that the electrical intensity is derivable from a potential function;
i.e., it is the gradient of a scalar potential function ¢(x, y, z). The work done in
moving a unit charge against the field by an amount dr is the increase in potential
do,dp =E -dr, or

E=-Vp

Example 2.1 We will compute the potential V produced by a point charge g. At any
distance r from g, from (2.1), we have

qgr
E:k——
r2r

so that

qgdr
72

dv = —kLy . gr = —k
r3

Integrating, we obtain
V)= Vo+kd
,

If we impose the boundary condition V (0) = 0, then V = 0.

We will be interested in material media that can be classified as conductors or
dielectrics. Conductors contain free electrons which are under the influence of an
electric field can flow freely through conductors. So, conductors admit the flow of
current. A dielectric is an electrical insulator in that it is highly resistant to current
flow. An electrical field applied to a dielectric does cause motion of charges within
it. The resultant motion or current is composed of two parts, a negligible conduction
current and a displacement current. The neutrally charged atoms or molecules that
make up the dielectric typically have the center of positive charge and the center of
negative charge displaced. Such an arrangement constitutes an electrical dipole. Even
if the charge centers are not displaced, the application of an electric field generally
induces a displacement. If the dipole consists of a charge —g and a charge ¢ separated
by a distance /, then we associate it with a dipole moment p, a vector of magnitude
gl (coulomb meter?) and direction pointing from —g to g. An applied electric field
imposes a force and a torque on the dipole. If the imposed field is constant over the
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domain of the dipole (which is ordinarily the case at the microscopic scale), then the
net force acting on a dipole is negligible and the torque is given by

T=pxE

At the microscopic level, the stretching and twisting of the dipoles that occurs under
the influence of the applied electric field alters the potential function defining the
electric field within the dielectric, thereby modifying the field. The change in the
field is denoted P, called the polarization and the modified field is denoted D, called
the (displacement) electric flux density, so we have

D=E+P (2.2)

In isotropic media, the polarization is proportional to the electric field intensity,
P = xE and as a consequence D = ¢E. x is known as the electric susceptibility and
€ as the permittivity of the dielectric. In free space P = 0.

2.3 The Magnetic Field

The movement of electrical charge gives rise to a force field known as a magnetic
field. The magnetic field is characterized by a vector field B known as the magnetic
flux density which has SI units weber/meter?, equivalently, volt-second/meter?. Such
fields arise on a macroscopic level, as when current flows through a wire, or on an
atomic scale, as electron spin in an atom. Consider that a current I flows along a
differential element dl, then the differential magnetic field produced is given by the

Biot-Savart law
o Idlx (x/r)

dB .

2.3

47 r 23)
where  is the permeability of free space, [ is the current, r is the displacement
vector from the current element to the field point.

Example 2.2 Current in a Thin Wire. We can use the Biot—Savart law to compute the
field produced by a constant current i flowing in a long thin straight wire as shown
in Figure 2.1.

In accordance with Figure 2.1, the Biot—Savart law (2.3) can be written

B:u_oij{dzxr/r
4 r2

2

We can express dz and r in terms of p and o: dz = psec” a, r = p sec «, to obtain

poi  [™? cosada Lo i
=0 ——u,=_-u,
T J—n/2 p ™ p
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Fig. 2.1 An infinite wire
carrying constant current

Some materials have an atomic structure in which the electron spins are aligned,
thereby giving rise to a permanent magnet. The bar magnet is a familiar example
of a magnetic dipole. Magnetic dipoles on atomic or molecular scale are the basic
building blocks of all magnetic materials. We associate with a magnetic dipole its
magnetic dipole moment m, with units ampere-meter>. When a magnetic dipole is
placed in a magnetic field, it experiences a moment

T=mxB

When a magnetic field is applied, the atomic scale magnetic dipoles in the mate-
rial tend to align with it. Materials can be classified in accordance with degree of
alignment produced by the field. Diamagnetic and paramagnetic materials have rel-
atively small alignment, whereas ferromagnetic materials have virtually complete
alignment. The dipole alignment in a material gives rise to a macroscopic dipole
moment per unit volume, M, called the magnetization of the material. So, for exam-
ple, if each atom in a material has a dipole moment m and there are N atoms per unit
volume, then M = Nm. M = 0 in free space.
The magnetic field intensity, H, is defined by the relation

1
—B=H+M 2.4)
Ho

Notice the similarity of (2.4) with (2.2). For linear materials, the relationship between
H and M is
M = x, H,
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where Y, is the magnetic susceptibility of the material. For paramagnetic materials,
Xm 18 positive and for diamagnetic materials it is negative. Ferromagnetic materials
are generally not linear. For linear materials, we have

B=p H+M) = po(l+ xn) H=pH,

where 1 = po (1 4 x,,) is the permeability of the material. The ratio p/po, pt, =
(1 + xm)., is called the relative permeability.

2.4 Maxwell’s Equations

We will summarize some basic concepts about magnetic and electric fields.

Table 2.1 defines the symbols used in the following discussion.

Four basic equations, called Maxwell’s equations, describe the behavior of elec-
tromagnetic fields. These include the following:

1. Gauss law describes how charge produces an electrical field,

V~D=por/D~ds=/pdv
s v

This implies that the integral of the electrical flux density over a surface S that
encloses a volume V must equal the total charge contained in V/,

Table 2.1 Electromagnetic Fields Nomenclature

Symbol Quantity Units

E electric field intensity volt per meter

D electric flux density coulomb per meter?
H magnetic field intensity ampere per meter
B magnetic flux density weber per meter?

[ magnetic flux weber

p electric charge density coulomb per meter?
J current density ampere per meter>
ds differential vector element of | meter?

surface area with direction
perpendicular to surface S
dv differential element of volume | meter’
enclosed by surface S
dl differential vector element of | meter
path length tangential to

contour C enclosing surface S
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/D -ds = Qenclosed
s
2. Gauss law for magnetism asserts the absence of magnetic sources
V-B:Oor/B~ds:O,
s

where the surface S again encloses a volume V. The magnetic flux density B is
a vector field defined in three-dimensional space. The integral curves of B are
the “magnetic flux lines” or “magnetic field lines.” The integral of magnetic flux
density over any closed surface must be zero implies that these lines are closed
loops.

The magnetic flux through area S bounded by a closed curve C, @, is defined as

<D=/B~ds
s

3. The Maxwell-Faraday equation describes how changing magnetic fields produce
electrical fields

VxE:—a—Bor%E-dl:—i/Bds,
ot dr Jg
c

where S is a surface bounded by the closed curve C. The equation shows how an
electric field is produced by varying the magnetic flux passing through a given
cross-sectional area. As will be seen, this is the fundamental principle underlying
the operation of electric motors and generators.

4. The Ampere—Maxwell law describes how the magnetic fields are produced by
currents and changing electrical fields

JdD d
VxH=J+—or ¢ H-dl= [ Jds+ — | D-ds,
ot s dt Jg
C
where C denotes the closed edge (or boundary) of an open surface S. Define the

encircled current
Iencirc]ed Z/st
S

If D is very slowly varying, then the Ampere-Maxwell law reduces to Ampere’s

law
fH ~dl = encircled
C
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Another important result is the Lorentz force equation which describes the force
F acting on a particle of charge ¢ moving through an electromagnetic field with
velocity v
F=¢qE+vxB)

Inaddition, Ohm’s Law states that the current density in a conductor is proportional
to the electric field:
J=0E

where o is the conductivity with units ohms per meter.
Remark 2.3 (Scalar and Vector Potentials) Gauss law for magnetism states that the
divergence of the magnetic field vanishes, thereby implying that B can be expressed

B=VxA, (2.5)

where A is some magnetic vector potential. Then, Faraday’s law can be written
OA
V x |:E + —i| =0
ot

But the fact that the curl of a vector vanishes implies that the vector can be expressed
as the gradient of a scalar potential, ¢. Hence,

0A

E=-Vp— —
ot

(2.6)
Further substitutions in Maxwell’s equations and some algebra lead to partial differ-
ential equations for A and ¢ [167]:

0 p
Zr _vipe==
Ko Y=z

The implication of this is that the scalar potential ¢ depends on the charge distribution,
whereas the vector potential A depends on the current density.

Remark 2.4 (Electromotive Force) The electromotive force (EMF), E, produced by
some generating mechanism is the energy per unit charge, i.e., the voltage change,
made available by the generating mechanism. The energy required to move a unit
charge along a path from point a to point b through an electric field E is

b b
E:/ F~dl=/ (E+v xB)-dl
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Remark 2.5 (Magnetomotive Force) The magnetomotive force (MMF), F, plays a
role in magnetic circuits similar to that of E in electrical circuits. F is defined by

b
F:/ H.dl

In a magnetic circuit comprised of a loop of uniform magnetic material of length /
and cross-sectional area A, it is useful to define the reluctance, R:
/

R =
,U;()/,L,,A

Then
F:}{H.dl:R@

This formula is similar to Ohm’s law governing the flow of current through a resistor.

Remark 2.6 (Continuity of Charge) Note that the taking the divergence of the
Ampere—Maxwell law yields

ov-D

Ved=- ot

and using Gauss electric field law gives

dp
V~J——Eor/SJ~ds——/VpdV

This of course asserts the principle of continuity (or conservation) of charge.

Example 2.7 Capacitor. A capacitor is a device that stores charge. A typical capac-
itor consists of two conductors separated by a dielectric. The simplest example is the
parallel plate capacitor shown in Figure 2.2.

In its uncharged state, both plates have zero charge. The capacitor can be charged
using a battery or other means to a charge level Q, in which case one plate becomes
positively charged with charge + Q and the other negatively charged with charge — Q.
The potential difference, AV, across the two plates can be obtained by integrating the
electric field along a path through the dielectric from the positively to the negatively
charged plate. Then, capacitance, C, of the device is the ratio of the charge to the
potential difference, C = Q / AV . The SI unit of capacitance is the farad (F). Thus,
one farad is one coulomb per volt.

To compute the capacitance of the capacitor in Figure 2.2, first compute the electric
field in the dielectric between the plates. Apply Gauss law

/eE-ds:/pdv
s 14
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Fig. 2.2 A two-plate Gaussian box
. . Area A ‘
capacitor with very large N +0 cross-section area A,

plate area [+++++++ bR

_» |

path of integration -0

to the box shown in the figure to find
eE Ab = O'Ab,

where o is the charge per unit area, Q/A, and ¢ is the permittivity of the dielectric.
Thus, E = o /<. Now integrate from the positive plate to the negative plate along the
integration path shown to get the potential difference:

AV:—/ E.-dl=Ed
+

Thus, the capacitance is

Example 2.8 Wire Revisited. From Example 2.2, we know that

i
H=—u
2mp

Let us verify Ampere’s law. Choose for C a circular path of radius p in a plane with
Z constant. )

%H.dlz/ ! pdp=i

J 0o 2mp

Example 2.9 Infinite Solenoid. Consider an infinite solenoid composed of a tightly
wound, thin wire coil with a core as shown in Figure 2.3. The solenoid has » turns per
unit length, cross-sectional area, A, length, / and a constant current i passes through
it. The core has permeability p = o, .

By symmetry, the induced magnetic field is horizontal, and in view of the winding
direction and current flow the field vectors point to the right. We can use Ampere’s
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Fig. 2.3 Solenoid i ! | &

W

law to compute its magnitude. Choose a rectangular contour with horizontal lines
outside the coil, one on each side — above and below the coil. Since the net encircled
current is zero, the field outside of the coil is zero. To determine the field inside the
coil, choose a contour C as shown. Application of Ampere’s law yields Hl = nil.
Consequently, we have

| 0 outside the coil
" | niu; inside the coil

Inside the coil, the magnetic flux density is B = pop,niu, and the magnetic flux
through a cross section is @ = pou,i A. The number of loops in a section of length /
i nl so the effective area through which B passes is nl/ A. Consequently, the effective
flux within the coil section is A = uou,nli A. X is called the flux linkage.

Example 2.10 Inductive Loop. A single, perfectly conducting wire loop encircles a
core of permeable magnetic material in Figure 2.4.

As in the previous example, application of Ampere’s law enables computation of
the magnetic flux density in the core, |B| = pi (¢). It follows that the induced back

EMF is
E=- )
= -, = l
dt a

and so the applied voltage is related to the current in the wire loop by

di(t)

t) = pA
v() =pA—r

Fig. 2.4 A single-wire loop
surrounds a magnetic core

—
v (I)T
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Fig. 2.5 A transformer
formed of two coupled coils
with a common core

Secondary Coil
N, turns

Primary Coil
N, turns

For a tightly wound coil of N loops, the voltage—current relationship is

_dA® :uNAdi(t) _ i

t
v (@) dt dt

3

where L is the inductance.

Example 2.11 Transformer. The transformer in Figure 2.5 has a primary coil with
N turns and a secondary coil with N, turns.
Consider the ideal case, in which the transformer has the following characteristics:

1. no losses
2. zero leakage flux,ie., @1 =P, =0
3. zero reluctance.

Faraday’s law yields

N o, N o,
v =Ni——, 1y =
1 " 2 27
which implies

1%) N N2

V1 - N1

In addition, zero reluctance implies that the magnetomotive force around a closed
loop in the core sums to zero, so that

Nii; + Noip, =0
Thus,
. Ny,
) = ——1
Ny
Notice that vyi, = —wv;i; which implies that the instantaneous power entering on the

left is the same as that exiting on the right, as expected for this lossless transformer.
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