
Chapter 2
Basics of Electricity and Magnetism

“My direct path to the special theory of relativity was mainly
determined by the conviction that the electromotive force
induced in a conductor moving in a magnetic field is nothing
more than an electric field.”

—Albert Einstein, message to the centennial of Albert
Michelson’s birth, December 19, 1952.

2.1 Introduction

This chapter provides a succinct review of the essential physics of electricity and
magnetism that forms the basis for understanding how electric power systems work.
Later chapters will use this foundational material to build models of power system
components and systems. Electric fields, magnetic fields, and Maxwell’s equations
are the topics of the three sections of this chapter. Examples are given that illustrate the
basic characteristics of core electrical components and electromechanical devices.

2.2 The Electric Field

Coulomb showed that two like point charges repel each other.1 In fact, the force
between two stationary particles of charge q1 and q2 a distance r apart in free space
is given by the formula

F = k
q1q2

r2
(2.1)

This is Coulomb’s law. A positive F is repulsion and a negative F is attraction. In
SI units, the unit of charge is the coulomb, the unit of distance is the meter, and the

1Material in this section can be found more fully discussed in any book on theoretical physics,
Example [162].
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unit of force is the newton. In this case, k = 1
/

4πε0, where ε0 is the permittivity of
free space, ε0 = 8.85 × 10−12 C2/N · m2.

A region in space contains an electrical field if a charge fixed in it experiences a
force. The electric intensity E at a point in the region is the force exerted on a unit
positive charge. Thus, the force F on a particle of charge q at a point of electrical
intensity E is

F = qE

Since the force between two stationary charges depends only on the distance between
them, it follows that the electrical intensity is derivable from a potential function;
i.e., it is the gradient of a scalar potential function ϕ(x, y, z). The work done in
moving a unit charge against the field by an amount dr is the increase in potential
dϕ, dϕ = E · dr, or

E = −∇ϕ

Example 2.1 We will compute the potential V produced by a point charge q. At any
distance r from q, from (2.1), we have

E = k
q

r2

r
r

so that

dV = −k
q

r3
r · dr = −k

q dr

r2

Integrating, we obtain

V (r) = V0 + k
q

r

If we impose the boundary condition V (0) = 0, then V0 = 0.

We will be interested in material media that can be classified as conductors or
dielectrics. Conductors contain free electrons which are under the influence of an
electric field can flow freely through conductors. So, conductors admit the flow of
current. A dielectric is an electrical insulator in that it is highly resistant to current
flow. An electrical field applied to a dielectric does cause motion of charges within
it. The resultant motion or current is composed of two parts, a negligible conduction
current and a displacement current. The neutrally charged atoms or molecules that
make up the dielectric typically have the center of positive charge and the center of
negative charge displaced. Such an arrangement constitutes an electrical dipole. Even
if the charge centers are not displaced, the application of an electric field generally
induces a displacement. If the dipole consists of a charge −q and a charge q separated
by a distance l, then we associate it with a dipole moment p, a vector of magnitude
ql (coulomb meter2) and direction pointing from −q to q. An applied electric field
imposes a force and a torque on the dipole. If the imposed field is constant over the
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domain of the dipole (which is ordinarily the case at the microscopic scale), then the
net force acting on a dipole is negligible and the torque is given by

τ = p × E

At the microscopic level, the stretching and twisting of the dipoles that occurs under
the influence of the applied electric field alters the potential function defining the
electric field within the dielectric, thereby modifying the field. The change in the
field is denoted P, called the polarization and the modified field is denoted D, called
the (displacement) electric flux density, so we have

D = E + P (2.2)

In isotropic media, the polarization is proportional to the electric field intensity,
P = χE and as a consequence D = εE. χ is known as the electric susceptibility and
ε as the permittivity of the dielectric. In free space P = 0.

2.3 The Magnetic Field

The movement of electrical charge gives rise to a force field known as a magnetic
field. The magnetic field is characterized by a vector field B known as the magnetic
flux density which has SI units weber/meter2, equivalently, volt-second/meter2. Such
fields arise on a macroscopic level, as when current flows through a wire, or on an
atomic scale, as electron spin in an atom. Consider that a current I flows along a
differential element dl, then the differential magnetic field produced is given by the
Biot–Savart law

dB = μ0

4π

I dl × (r/r)

r2
(2.3)

where μ0 is the permeability of free space, I is the current, r is the displacement
vector from the current element to the field point.

Example 2.2 Current in a Thin Wire. We can use the Biot–Savart law to compute the
field produced by a constant current i flowing in a long thin straight wire as shown
in Figure 2.1.

In accordance with Figure 2.1, the Biot–Savart law (2.3) can be written

B = μ0i

4π

∮
dz × r/r

r2

We can express dz and r in terms of ρ and α: dz = ρ sec2 α, r = ρ sec α, to obtain

B = μ0i

4π

∫ π/2

−π/2

cos αdα

ρ
uϕ = μ0

2π

i

ρ
uϕ
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Fig. 2.1 An infinite wire
carrying constant current
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Some materials have an atomic structure in which the electron spins are aligned,
thereby giving rise to a permanent magnet. The bar magnet is a familiar example
of a magnetic dipole. Magnetic dipoles on atomic or molecular scale are the basic
building blocks of all magnetic materials. We associate with a magnetic dipole its
magnetic dipole moment m, with units ampere-meter2. When a magnetic dipole is
placed in a magnetic field, it experiences a moment

τ = m × B

When a magnetic field is applied, the atomic scale magnetic dipoles in the mate-
rial tend to align with it. Materials can be classified in accordance with degree of
alignment produced by the field. Diamagnetic and paramagnetic materials have rel-
atively small alignment, whereas ferromagnetic materials have virtually complete
alignment. The dipole alignment in a material gives rise to a macroscopic dipole
moment per unit volume, M, called the magnetization of the material. So, for exam-
ple, if each atom in a material has a dipole moment m and there are N atoms per unit
volume, then M = Nm. M = 0 in free space.

The magnetic field intensity, H, is defined by the relation

1

μ0
B = H + M (2.4)

Notice the similarity of (2.4) with (2.2). For linear materials, the relationship between
H and M is

M = χmH,
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where χm is the magnetic susceptibility of the material. For paramagnetic materials,
χm is positive and for diamagnetic materials it is negative. Ferromagnetic materials
are generally not linear. For linear materials, we have

B = μ0 (H + M) = μ0 (1 + χm)H = μH,

where μ = μ0 (1 + χm) is the permeability of the material. The ratio μ/μ0, μr =
(1 + χm), is called the relative permeability.

2.4 Maxwell’s Equations

We will summarize some basic concepts about magnetic and electric fields.
Table 2.1 defines the symbols used in the following discussion.
Four basic equations, called Maxwell’s equations, describe the behavior of elec-

tromagnetic fields. These include the following:

1. Gauss law describes how charge produces an electrical field,

∇ · D = ρ or
∫

S
D · ds =

∫

V
ρdv

This implies that the integral of the electrical flux density over a surface S that
encloses a volume V must equal the total charge contained in V ,

Table 2.1 Electromagnetic Fields Nomenclature

Symbol Quantity Units

E electric field intensity volt per meter

D electric flux density coulomb per meter2

H magnetic field intensity ampere per meter

B magnetic flux density weber per meter2

Φ magnetic flux weber

ρ electric charge density coulomb per meter3

J current density ampere per meter2

ds differential vector element of
surface area with direction
perpendicular to surface S

meter2

dv differential element of volume
enclosed by surface S

meter3

dl differential vector element of
path length tangential to
contour C enclosing surface S

meter
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∫

S
D · ds = Qenclosed

2. Gauss law for magnetism asserts the absence of magnetic sources

∇ · B = 0 or
∫

S
B · ds = 0,

where the surface S again encloses a volume V . The magnetic flux density B is
a vector field defined in three-dimensional space. The integral curves of B are
the “magnetic flux lines” or “magnetic field lines.” The integral of magnetic flux
density over any closed surface must be zero implies that these lines are closed
loops.
The magnetic flux through area S bounded by a closed curve C , Φ, is defined as

Φ =
∫

S
B · ds

3. The Maxwell–Faraday equation describes how changing magnetic fields produce
electrical fields

∇ × E = −∂B
∂t

or
∮

C

E · dl = − d

dt

∫

S
B · ds,

where S is a surface bounded by the closed curve C . The equation shows how an
electric field is produced by varying the magnetic flux passing through a given
cross-sectional area. As will be seen, this is the fundamental principle underlying
the operation of electric motors and generators.

4. The Ampère–Maxwell law describes how the magnetic fields are produced by
currents and changing electrical fields

∇ × H = J + ∂D
∂t

or
∮

C

H · dl =
∫

S
J·ds + d

dt

∫

S
D · ds,

where C denotes the closed edge (or boundary) of an open surface S. Define the
encircled current

Iencircled =
∫

S
J·ds

If D is very slowly varying, then the Ampère–Maxwell law reduces to Ampère’s
law ∮

C

H · dl = Iencircled
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Another important result is the Lorentz force equation which describes the force
F acting on a particle of charge q moving through an electromagnetic field with
velocity v

F = q (E + v × B)

In addition, Ohm’s Law states that the current density in a conductor is proportional
to the electric field:

J = σE

where σ is the conductivity with units ohms per meter.

Remark 2.3 (Scalar and Vector Potentials) Gauss law for magnetism states that the
divergence of the magnetic field vanishes, thereby implying that B can be expressed

B = ∇ × A, (2.5)

where A is some magnetic vector potential. Then, Faraday’s law can be written

∇ ×
[
E + ∂A

∂t

]
= 0

But the fact that the curl of a vector vanishes implies that the vector can be expressed
as the gradient of a scalar potential, ϕ. Hence,

E = −∇ϕ − ∂A
∂t

(2.6)

Further substitutions in Maxwell’s equations and some algebra lead to partial differ-
ential equations for A and ϕ [167]:

με
∂2A
∂t2

− ∇2A = μJ

με
∂2ϕ

∂t2
− ∇2ϕ = ρ

ε

The implication of this is that the scalar potential ϕdepends on the charge distribution,
whereas the vector potential A depends on the current density.

Remark 2.4 (Electromotive Force) The electromotive force (EMF), E , produced by
some generating mechanism is the energy per unit charge, i.e., the voltage change,
made available by the generating mechanism. The energy required to move a unit
charge along a path from point a to point b through an electric field E is

E =
∫ b

a
F · d l =

∫ b

a
(E + v × B) · d l
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Remark 2.5 (Magnetomotive Force) The magnetomotive force (MMF), F , plays a
role in magnetic circuits similar to that of E in electrical circuits. F is defined by

F =
∫ b

a
H · d l

In a magnetic circuit comprised of a loop of uniform magnetic material of length l
and cross-sectional area A, it is useful to define the reluctance, R:

R = l

μ0μr A

Then

F =
∮

H · d l = R Φ

This formula is similar to Ohm’s law governing the flow of current through a resistor.

Remark 2.6 (Continuity of Charge) Note that the taking the divergence of the
Ampère–Maxwell law yields

∇ · J = −∂∇ · D
∂t

and using Gauss electric field law gives

∇ · J = −∂ρ

∂t
or

∫

S
J · ds = −

∫

V
ρdV

This of course asserts the principle of continuity (or conservation) of charge.

Example 2.7 Capacitor. A capacitor is a device that stores charge. A typical capac-
itor consists of two conductors separated by a dielectric. The simplest example is the
parallel plate capacitor shown in Figure 2.2.

In its uncharged state, both plates have zero charge. The capacitor can be charged
using a battery or other means to a charge level Q, in which case one plate becomes
positively charged with charge +Q and the other negatively charged with charge −Q.
The potential difference, ΔV , across the two plates can be obtained by integrating the
electric field along a path through the dielectric from the positively to the negatively
charged plate. Then, capacitance, C , of the device is the ratio of the charge to the
potential difference, C = Q

/
ΔV . The SI unit of capacitance is the farad (F). Thus,

one farad is one coulomb per volt.
To compute the capacitance of the capacitor in Figure 2.2, first compute the electric

field in the dielectric between the plates. Apply Gauss law

∫

S
εE · ds =

∫

V
ρdv
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Fig. 2.2 A two-plate
capacitor with very large
plate area

Q+

Q−

Area A

d

Gaussian box
cross-section area bA

path of integration

to the box shown in the figure to find

εE Ab = σAb,

where σ is the charge per unit area, Q/A, and ε is the permittivity of the dielectric.
Thus, E = σ/ε. Now integrate from the positive plate to the negative plate along the
integration path shown to get the potential difference:

ΔV = −
∫ −

+
E · dl = E d

Thus, the capacitance is

C = Q

ΔV
= εA

d

Example 2.8 Wire Revisited. From Example 2.2, we know that

H = i

2πρ
uϕ

Let us verify Ampère’s law. Choose for C a circular path of radius ρ in a plane with
z constant. ∮

C

H · dl =
∫ 2π

0

i

2πρ
ρdϕ = i

Example 2.9 Infinite Solenoid. Consider an infinite solenoid composed of a tightly
wound, thin wire coil with a core as shown in Figure 2.3. The solenoid has n turns per
unit length, cross-sectional area, A, length, l and a constant current i passes through
it. The core has permeability μ = μ0μr .

By symmetry, the induced magnetic field is horizontal, and in view of the winding
direction and current flow the field vectors point to the right. We can use Ampère’s
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Fig. 2.3 Solenoid

law to compute its magnitude. Choose a rectangular contour with horizontal lines
outside the coil, one on each side — above and below the coil. Since the net encircled
current is zero, the field outside of the coil is zero. To determine the field inside the
coil, choose a contour C as shown. Application of Ampère’s law yields Hl = nil.
Consequently, we have

H =
{

0 outside the coil
niuz inside the coil

Inside the coil, the magnetic flux density is B = μ0μr ni uz and the magnetic flux
through a cross section is Φ = μ0μr i A. The number of loops in a section of length l
i nl so the effective area through which B passes is nl A. Consequently, the effective
flux within the coil section is λ = μ0μr nli A. λ is called the flux linkage.

Example 2.10 Inductive Loop. A single, perfectly conducting wire loop encircles a
core of permeable magnetic material in Figure 2.4.

As in the previous example, application of Ampère’s law enables computation of
the magnetic flux density in the core, |B| = μ i (t). It follows that the induced back
EMF is

E = −dλ

dt
, λ = μAi (t)

and so the applied voltage is related to the current in the wire loop by

v (t) = μA
d i (t)

dt

Fig. 2.4 A single-wire loop
surrounds a magnetic core

v (t)

i (t)

B
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Fig. 2.5 A transformer
formed of two coupled coils
with a common core

2v

2i

2lΦ1lΦ

mΦ

1v

1i

1N 2N

For a tightly wound coil of N loops, the voltage–current relationship is

v (t) = d λ (t)

dt
= μN A

d i (t)

dt
= L

d i (t)

dt
,

where L is the inductance.

Example 2.11 Transformer. The transformer in Figure 2.5 has a primary coil with
N1 turns and a secondary coil with N2 turns.

Consider the ideal case, in which the transformer has the following characteristics:

1. no losses
2. zero leakage flux, i.e., Φl,1 = Φl,2 = 0
3. zero reluctance.

Faraday’s law yields

v1 = N1
dΦm

dt
, v2 = N2

dΦm

dt

which implies
v2

v1
= N2

N1

In addition, zero reluctance implies that the magnetomotive force around a closed
loop in the core sums to zero, so that

N1ii + N2i2 = 0

Thus,

i2 = − N1

N2
i1

Notice that v2i2 = −v1i1 which implies that the instantaneous power entering on the
left is the same as that exiting on the right, as expected for this lossless transformer.
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