Chapter 2
Linear Spectral Mixture Analysis

Abstract Linear Spectral Mixture Analysis (LSMA) is a widely used theory in
hyperspectral data exploration. It first assumes that for a given finite set of basic
material substances a data sample can be modeled as a linear admixture of these
substances from which the data sample can be unmixed into their corresponding
abundance fractions. In this case, analysis of the data sample can simply be per-
formed on these abundance fractions rather than the sample itself. The commonly
used Linear Spectral Unmixing (LSU) is such a technique that realizes LSMA. In
other words, it assumes that a data sample is linearly mixed by a finite set of
so-called image endmembers. It then unmixes this data sample via finding its
abundance fractions of these endmembers for data analysis. So, technically
speaking, LSU is a means of implementing LSMA as a data unmixing technique.

2.1 Introduction

Linear Mixture Analysis (LMA) has found numerous applications in data analysis.
It describes a data sample in a linear model which can be formed and parameterized
and determined by a finite set of basic constituents. By means of this linear model
the data sample can be either restored or represented by finding the weighting
coefficients on these constituents via solving a linear inverse problem. As a simple
illustrative example, consider a real value a between 0 and 1. Suppose that we are
only allowed to use 8 bits to restore this value. The first eight binary coefficients of
a represented by 27 with 1< Jj<8, aj,ay,...,ag, are the best way to restore the
value of a. In other words, instead of representing the true value of a we make use
of an eight-dimensional vector & = (ay,as, . ..,ag) to represent a = a'mg where

T . . . . j .

mg = (271,272,...,27%)" is an eight-dimensional vector and {2’/}?:1 in mg are
. . . . 8 . . . L

the eight basic constituents with {aj}j:l being their corresponding weighting

. . . . 8
coefficients which can be considered as abundance fractions of {27/}, to represent
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best the value a in the sense that the value of a is best linearly mixed by the eight
basic constituents {27/ }jS:1 with weighting coefficients {aj}le.
Depending upon what constituents are used in the linear model, various LMA
can be developed. For example, when these constituents are training data the linear
regression model can be viewed as LMA. On the other hand, if these constituents
are feature vectors, LMA can be interpreted as a linear discriminant model such as
Fisher’s Linear Discriminant Analysis (FLDA). Furthermore, if these constituents
are specified by eigenvectors and independent projection vectors, the resulting
LMA is then called Principal Components Analysis (PCA) and Independent
Component Analysis (ICA), respectively. In particular, when LMA is applied to
spectral data such as remotely sensed data acquired by a range of wavelengths,
these constituents are generally represented by so-called endmembers. As a result,
LMA becomes the well-known LSMA which is the main focus in this chapter.
Suppose that L is the number of spectral bands and r is an L-dimensional image
pixel vector. Assume that there are p material substances, t, t, ..., t,, present in
an image scene. Let m;, my, ..., m, denote their corresponding substance sig-
natures, generally referred to as digital numbers (DN) which are digital represen-
tations of quantized radiance values measured by sensors. Such radiances generally
correspond to mixed spectral signatures rather than to “pure material substances
signatures.” A linear mixture model of r models the spectral signature of r as a
linear combination of m;, my, ..., m, with appropriate abundance fractions
specified by oy, a0, ..., o,. More precisely, r is an L x 1 column vector and M an
L x p substance spectral signature matrix, denoted by [ml m, ... ,m,,] , where m;
is an L x 1 column vector represented by the spectral signature of the jth substance

t; resident in the pixel vector r. Let o = (ocl,ocz, s oc,,)T be a p x 1 abundance
column vector associated with r where a; denotes the abundance fraction of the jth
substance signature m; present in the pixel vector r. To restore the pixel vector r,
we assume that the spectral signature of the pixel vector r is linearly mixed by
m;, my, ..., m,, the spectral signatures of the p substances, t, t, ..., t, being
as follows:

r=Mo+n (2.1)

where n is noise or can be interpreted as a measurement or model error.

By inspecting (2.1), the linear model used by LSMA is similar to a linear model
used by Wiener filter except that (2.1) explores correlation among p substance
signatures compared to the latter which uses a linear model to account for the p past
observed data samples to perform prediction. Furthermore, by means of (2.1), a
hyperspectral image viewed as an image cube can be restored by a set of p abun-
dance fraction maps.
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2.2 Solving LSMA Problems

In general there are two approaches to solving (2.1), least squares error (LSE)-based
estimation and signal to noise ratio (SNR)-based detection, each of which is
described in the following two subsections.

2.2.1 Least Squares Error (LSE)
The LSE problem resulting from (2.1) can be formed by
minu{(r — M) (r — Ma)}. (2.2)
A classical approach to solving (2.2) is given by
&S (r) = (M™) 'M"r (2.3)

where &"5(r) = (&I;S (r),a55(r), ..., &[];s(r)) and &}“s (r) is the abundance fraction

of the jth substance signature m; estimated from the data sample vector r. Here the
data sample vector is included to emphasize that the abundance estimate is deter-
mined by r.

2.2.2 Signal to Noise Ratio (SNR)

With a completely different approach, Harsanyi and Chang (1994) developed an
SNR approach to solving (2.1). It represents (2.1) as a standard signal detection
model where Ma is a desired signal vector to be detected and n is a corrupted noise.
Since we are interested in detecting one substance at a time, we can divide the set of
the p substances, t,ty,...,t,, into a desired substance, say t,, and a class of
undesired substances, ti, t5, ..., t,_;. In this case, a logical approach is to eliminate
the effects caused by the undesired substances t;,t,,...,t,_; which are considered
as interferers to t, before the detection of t, takes place. With annihilation of the
undesired substance signatures, the detectability of t, can be enhanced. In doing so,
we first separate m,, from m;, my,...,m, in M and rewrite (2.1) as the so-called
OSP model, r = «,d + yU +n, where d = m,, is the desired spectral signature of t,
and U = [mlmz, s mp,l] is the undesired substance spectral signature matrix
made up of m;,my, ..., m,_; which are the spectral signatures of the remaining
p — 1 undesired substances, t;,t,...,t, 1. Here, without loss of generality, we
assume that the desired substance is a single substance t,. According to the
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derivation in Harsanyi and Chang (1994) also provided in Chang (2003, 2013) the
solution can be obtained from

0% (r) = d"Pyr (2.4)

where

P =1-UU# =1-U(U"U)"

U’ (2.5)
and U* is the pseudo inverse of U given by (UTU)flUT. It has been shown in Settle
(1996), Tu et al. (1997), and Chang et al. (1998a, b) that

&S (r) = 45505 (r) = (d"Pgd) a0 (r). (2.6)

According to (2.4), 455 (r) and 405 (r) only differ by a constant (dTPédY1 but the
implication is quite different because &"5(r) is an estimator compared to &II;S (r)

which is a detector. In addition, &Ls(r) estimates all abundance fractions of
p substance signatures, m;, my, ..., m, all together at the same time, while &[ES (r)
detects the presence of the substance signature m,, via its detected abundance
fraction, in which case it can be performed one substance signature at a time.

To restore faithfully the spectral information contained in data sample vectors
via LSMA, three issues need to be addressed. The first is determination of the value
of p, i.e., number of substance signatures. The second is to find a desired set of
p substance signatures, m;, my, ..., m,, in an unsupervised manner. The third is
to impose two physical constraints on model (2.1), which are abundance
sum-to-one constraint (ASC), Zle o; = 1 and abundance non-negativity constraint

(ANC), a; >0 for all 1 <j<p. In what follows we will address these three issues
and provide solutions for each of them.

2.3 Abundance-Constrained LSMA

For mathematical tractability, the solutions given by (2.3) and (2.4) are
abundance-unconstrained in the sense that no physical constraints are imposed on
the model (2.1). However, to restore data integrity to satisfy reality, abundance
constraints must be imposed on the substance signatures in (2.1) by either ASC or
ANC or both on the abundance vector a in (2.1). In this section, three
abundance-constrained LSE problems can be derived from (2.1), referred to as
abundance-constrained LSMA (AC-LSMA), and formulated as outlined below.
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2.3.1 Abundance Sum-to-One Constrained LSMA

A simple way to impose a constraint on (2.1) is ASC on the solution aLS( r). In
other words, a sum-to-one constrained least squares (SCLS) problem can be cast by

P
mina{(r —Ma)" (r — Ma)} subject to Z = 1. (2.7)

j=1
To solve (2.7) we use the Lagrange multiplier A, to constrain the ASC, 17a = 1 by

J(ot, A1) == Mo —r)" (Mot — 1) + 4, (1Tt — 1) (2.8)

N —

where 1 is the unity vector given by 1 = (1,1,..., l)T. Differentiating (2.8) with
——

P
respect to @ and A yields

—w(a“’ 2 = (M™)&*™(r) —-M'r+2]1=0
oL ASCLS(r) (2 9)
= &5 (r) = (M™) " 'MTr — 21 (M™) 1 '
= a5 (r) = a5 (r) — AI(MTM) "1
and
WL h)|_ymyisiy 1 (2.10)
8/L] ;'T

It should be noted that (2.9) and (2.10) must be solved simultaneously in such a
way that both the optimal solutions, &°°*(r) and /], appear in (2.8). Using (2.10)
further implies that

17655 (r) — 21T (M™) "1 =1

_ 2.11
== =[] (- 1) H
Substituting (2.11) into (2.10) yields
&55(r) = &S (r) + (M™™) 1 [17(M"™M) 1 - 178 ()
(2.12)

1

= Py, 855 (0) + (M™) 1[1T(MTM)*11}_1



42 2 Linear Spectral Mixture Analysis

where

_ —1
Piy =T— (M™) ll[lT(MTM)‘ll 1" (2.13)

2.3.2 Abundance Non-negativity Constrained LSMA

Because there is no physical constraint imposed on the solution &"5(r) their gen-
erated abundance fractions &% (r),a5°(r), ..., %;°(r) may be negative. To avoid

this situation the ANC must be imposed on (2.1). A general approach to solving
such an ANC-constrained problem is to introduce an LSE-based objective function
imposed by the ANC for j € {1,2,...,p} defined as

J = %(Ma —1) (Mo — 1)+ Ao —¢) (2.14)

N - .
where A = (/117 A2y ey Ap) is a Lagrange multiplier vector and a constraint vector

c= (cl, €y ey c,,)T with ¢; > 0 for 1 <j<p. In analogy with (2.10) we obtain

aJ (e, A)
Oa. &NCLS<r)

= (M™)&"(r) —M'r+4 =0

- - 2.15
= &S (r) = (M™™) " 'MTr — (M™™M) %, (2.15)
= &S (r) = &M (r) — (M™) 2
which implies
(MTM)*IX* _ &LS (I‘) _ aNCLS (I‘)
=1 = (M'M)a"(r) — (M™™M)a "5 (r)
(2.16)

= = (M™™) {(MTM)_IMTr} — (M™M)ENS (1)
= 1" =M"r — MTMBNS(r)

For &"5(r) to satisfy ANC further, the following Kuhn-Tucker conditions must
be implemented:

4i=0, i€P

. (2.17)
)vi<0, i€R

where P and R represent passive and active sets that contain indices representing
negative or positive abundances, respectively. By means of (2.15)—(2.17), a
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numerical algorithm, referred to as NCLS, can be designed to start off with the
initial estimate given by &Ls(r) in (2.3). If all abundance fractions are positive, the
NCLS stops. Otherwise, all indices corresponding to negative and zero abundance
fractions are moved to passive set P and all positive abundance indices are moved
to R. According to Kuhn—Tucker conditions (2.17), any A; with index i € P is set to
zero, and other indices are calculated based on (2.16). If all A;s are negative, the
NCLS stops. If not, the corresponding most negative index is moved from R to P. A
new vector A is then recalculated based on the modified index sets and a new
Lagrange multiplier vector is further implemented to find a new set of abundance
fractions. By comparing with index set S, any negative abundance indices are
shuffled from P to R. By iteratively implementing (2.15) and (2.16) using &Ls(r) in
(2.3) as an initial abundance vector, the NCLS can be derived to find an optimal
solution, aNCLS( r) (Chang and Heinz 2000). A detailed step-by-step algorithmic
implementation of NCLS is given in the following.

NCLS Algorithm

1. Initialization: Set the passive set P©) = {1,2,...,p} and R®) = {) and k = 0.

2. Compute &-5(r) by (2.3) and let &NCLS ®)(r) = oS ().

3. At the kth iteration, if all components in & "S®) (r)

algorithm is terminated. Otherwise, continue.

are non-negative, the

4. Let k =k+1.
5. Move all indices in P*" that correspond to negative components of
GNCLS (k=1 (r) to R*™ respectively. Create a new index S© and set it equal to

R(k)
6. Let Gz denote the vector consisting of all components of GNCLS (k=) (r) in R,
7. Form a matrix ®{) by deleting all rows and columns in the matrix (MTM)_l

that are specified by P®.

8. Calculate A*¥) = ((Dc(,k)) _1&R<k>. If all components in A%’ are negative, go to step
13. Otherwise, continue.

9. Calculate 2V = arg{maxj i](-k)} and move the index in R® that corresponds to

max

A0 to P,

max
10. Form another matrix \Pik) by deleting every column of (MTM)7l specified by
P(k)
11. Set digy = aNS® g0,
12. If any components of &g in S® are negative, then move these components
from P® to R®. Go to step 6.
13. Form another matrix ‘P(f)
P(k)

14. Set aNES ) — gLS _ ‘l’gk)k(k). Go to step 3.

by deleting every column of (MTM)71 specified by
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2.3.3 Abundance Fully Constrained LSMA

Because NCLS does not impose the ASC, its generated abundance fractions do not
necessarily add up to one. It must solve the following constrained optimization
problem:

acA

P
min{(r — Ma)" (r — Moc)} subjectto A = {occxj >0 for Vj, Z o = 1}. (2.18)
=1

The optimal solution to (2.18) first takes advantage of the LS solution, &5 (r), as an
initial estimate to derive

" (1) = Py, &S (r) + (M™) 11" (M ™M) 1] (2.19)
and
Piis = L — (MTM) ™ 1T (MTM)L 1T, (220)

It then uses SCLS together with ANC by introducing a new signature matrix N and
an observation vector s into the NCLS specified by

N = {"II\T/I} and's = [’ﬂ (2.21)

where 1 is a parameter to control the effect of ASC on the NCLS and defined as the
reciprocal of the maximal element in the matrix M = [m;], i.e., n = 1/ max,-j{m,-j}.
The utilization of # in (2.21) controls the impact of ASC. Using (2.21), an FCLS
algorithm can be derived directly from the NCLS algorithm described in the pre-

vious section by replacing M, r, and &Ls(r) used in the NCLS algorithm with N, s,

and 655 ().

2.3.4 Modified FCLS

For mathematical tractability, the solutions given by (2.3) and (2.4) are
abundance-unconstrained in the sense that no physical constraints are imposed on
the model (2.1). Because there is no physical constraint imposed on the solution
&"5(r), their generated abundance fractions &%(r),a5(r),...,355(r) may be
negative. The main difficulty with solving abundance non-negativity problems is
that the Lagrange multiplier method cannot be used to find solutions analytically. In
this section, we propose an alternative approach to modify this constraint. Instead of

directly dealing with the inequalities, ;>0 for each 1<j<p as abundance
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non-negativity-constrained least squares (NCLS) does numerically in Sect. 2.3.2,
here we replace ANC with an absolute abundance sum-to-one constraint (AASC),
> 71 leyl = 1, an idea which was originally envisioned in Ren and Chang (1999)
and has been overlooked in the past. The advantage of AASC is that the Lagrange
multiplier method is now applicable and can be used to derive an analytical solution
that leads to a desired optimal non-negativity constrained least squares (NCLS)
solution. With this in mind, a modified LS linear mixing problem using AASC,
> i1 |o] = 1 can be cast as follows:

minaEA{(r —Ma) " (r — Ma)} (2.22)

subject to

A= {a 3 Iyl = 1} (223)
=

As mentioned previously, the main difficulty with solving constrained linear
mixing problems is the constraint of abundance non-negativity that prohibits us
from using the Lagrange multiplier method to find solutions analytically. In this
section, we propose an alternative approach to modify this constraint. Instead of
directly dealing with ANC, which imposes the inequalities, o; >0 for each
1 <j<p, we replace ANC with an absolute AASC, Z]p: ! |ocj| = 1. The advantage
of AASC is that the Lagrange multiplier method is now applicable and can be used
to derive an iterative algorithm that leads to a desired optimal constrained LS
solution. Additionally, AASC also allows us to exclude negative abundances from
solutions. In other words, the only possibility to satisfy both constraints, sum-to-one
(O o5 =1) and AASC (377, |oy| = 1) is that all the abundances {oc,-}j.’: | must
satisfy both ASC and ANC. So, a modified LS linear mixing problem with con-
straints, ASC, > 3% o; = 1 and AASC, 377 oy = 1 can be cast as follows:

minaEA{(r — Ma)" (r — Moz)} (2.24)

subject to

A= {a| zp:aj =1 and i |oj| = 1} (2.25)
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Using a similar argument that derived the SCLS solution, we write

J(a) = (1/2)(r — Ma)" (r — Mat) — 4, (zp: o — 1) — s (Zp: || — 1)
: o

j=1
(2.26)
Differentiating (2.26) with respect to @ and setting to zero yields
oJ
@ _,
Oat GMFCLS
(2.27)

= GMFCLS — (MTM)71 [MTI’ - A1- ,‘tzsign(d)]
— GMFCLS — ULS _ (MTM)_1 [/111 + ;LZSign(aLS)}

where &5 = (MTM)_IMTr is the unconstrained LS estimate of a given by (2.3).
We then substitute & for a in the following constraints:

P
dy=1"a=1 (2.28)
=1
P
Z || = sign(at) e = 1 (2.29)
=1

to compute Ay and A, where sign(et) is a vector given by the sign function of a with

the jth component being the sign of «;, namely, sign(at) = (ﬁl,ﬁz, e ﬁp)T where
B; is defined by

o . .
B; = ?j; if o; #0and0; if o; =0 (2.30)

o]

The solutions to (2.25) and (2.26) can then be obtained by iteratively computing 4,
J2, and @S using (2.28)—(2.30). The details of implementing this algorithm are
given below.

MFCLS Iterative Algorithm

Initialization: Set g™ = &S using (2.12)

Compute 1, 1, using (2.27)-(2.29)

Compute @VFCs = g5 — (MTM)_l [211+ 2p8ign(65¢s )]

If there exists one component in aMCLS | which s negative, go to step 2.
Otherwise, stop.

Wb
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It should be noted that in step 1 the algorithm is initialized by taking advantage
of the SCLS solution &°“* obtained by (2.12). The stopping criterion described in
step 4 provides a rule of when the algorithm will be terminated, in which case all
components must be non-negative. In general, it requires a fair amount of com-
putation time to reach this requirement. So, in real implementation, we suggest a
simpler rule by checking Z;’: | loj] — 1< for a preselected threshold ¢ which will
guarantee a quick termination.

The main difference between FCLS and MFCLS is their initial constraint con-
dition. FCLS are constrained with ASC and non-negativity constraint by NCLS.
Hence, FCLS can be constructed by modifying the desired signature and signature
matrix by (2.21) and then by using NCLS algorithm to obtain FCLS results. On the
other hand, MFCLS uses the absolute value for the constraint of non-negativity. As
a result, the algorithm can be seen as follows:

MFCLS Algorithm

1. Initialization: Set N = {HII\T/I} ands = ['711‘} where 0 ~ 1/max(max(M)).

2. Compute & using (2.12) with N and s. Set afcL$© = g5cs,

3. At the kth iteration. If all components in &™'® are positive, the algorithm is
terminated. Otherwise, continue.

4. Letk=k+ 1.

5. Move all indices in P*" that correspond to negative components of &1 to
R*™ and the resulting index sets are denoted by P® and R, respectively.

6. Let &z denote the vector consisting of all components 6% in R®.

7. Form a steering matrix CD&") by deleting all rows and columns in the matrix

. AT
(MTM) " that are specified by P*. Then append ((MTM) R(i)) 1 after the last

column, ((MTM) - 1) o after the last row, and 1" (M™™) 1 to the left-most

corner to ®X),
8. Append a zero to the last row of dg(). Calculate k(k):((l)gk>)71&,g(k).
9. If all components suggest the last row in A is negative, go to step 11.
Otherwise, continue.
10. Find /11(1’2)( = max; i;k) and move the index in R® that corresponds to /lg:gx to

P®._ Go to step 7.
11. Form another matrix ‘I’Em by deleting every column of (MTM)_l specified by

12. Let A =20 (1) and 2 = A®[1 : 71— 1], where I equals the last row of A%,
13, Set gt =g — (M™M) 1) 299, Go 1o step 3.
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2.4 Weighted LSMA

According to (2.2), the LSE is equally weighted for all bands which are assumed to
have their uniform effects on LSE. In general, this may not be necessarily true. To
generalize this concept, we consider a weighted LSE approach to (2.2) by intro-
ducing a weighting matrix A into (2.2) so that the LSE is weighted by A via

(r —Ma) A(r — Ma). (2.31)

which is reduced to (2.2) if A =1, identity matrix. The key to success in using (2.31)
is to find an appropriate weighting matrix A that accounts for individual bands. As
inspired by the three signal processing perspectives studied in Chang (2005) for OSP,
this section investigates constrained LSMA with three different ways to select the
weighting matrix A for (2.31), which are also derived from the same three per-
spectives. One is based on the parameter estimation perspective that is derived from
the well-known Mahalanobis distance (MD) or Gaussian maximum likelihood esti-
mator (GMLE). If the weighting matrix A in (2.31) is selected to be the inverse of the
data sample covariance matrix K, K, (2.31) becomes the MD or GMLE. The
resulting constrained AC-LSMA is called MD-weighted AC-LSMA. As an alter-
native, if the weighting matrix A in (2.31) is replaced with R™" (i.e., the inverse of
data sample correlation matrix R), (2.31) is then reduced to a form of the linearly
constrained minimum variance (LCMV) classifier developed in Chang (2002a, b)
which is referred to as LCMV-weighted AC-LSMA (Chang 2003). Another selection
of the weighting matrix is based on pattern classification perspective which is derived
from FLDA (Duda and Hart 1973). It has been shown in Chang and Ji (20064, b) that
with constraining Fisher’s feature vectors to mutual orthogonal directions, maxi-
mizing Fisher’s ratio is reduced to minimizing the within-class scatter matrix Sy,. As
a result, selecting the S;V1 for the weighting matrix A in (2.31) yields abundance-
constrained Fisher’s LSMA (AC-FLSMA) (Chang and Ji 2006a, b; Chang 2013),
referred to as S;Vl -weighted AC-LSMA. A third way to select the weighting matrix
is based on orthogonal subspace projection (OSP) (Harsanyi and Chang 1994)
which is derived from signal detection perspectives. It is shown in Chang et al.
(1998a, b) and Chang (2003) that the undesired signature rejection matrix, Pg used
in the OSP can be approximated by R™" if the prior knowledge of the undesired
signatures in U is not available. Using this interpretation we can select PILj for the
weighting matrix A in (2.31), which results in OSP-weighted AC-LSMA. An
interesting finding in Chang and Ji (2006a, b) is that if the weighting matrix A is
selected by the signature subspace projection (SSP) matrix that is formed by the
signature matrix M in (2.1), the resulting SSP-weighted AC-LSMA can be shown
in Chang and Ji (2006a, b) to be identical to the unweighted AC-LSMA in (2.2), in
which case the A becomes the identity matrix. This is because both the SSP
approach and LSMA are LS-based methods. As a consequence, the weighted
matrix specified by the SSP does not provide any additional advantage.
Nevertheless, as demonstrated by experiments, all these three types of weighted
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AC-LSMA specified by appropriate selections for the weight matrix A in (2.31)
generally perform better than unweighted AC-LSMA described by (2.2).

As noted, the LSE specified by (2.2) does not include any weighting matrix to
account for significance of each band. In other words, this implies that the LSE
caused by every band is equally significant. However, in reality this is not neces-
sarily true. To address this issue, (2.31) includes a weighting matrix A to account
for the LSEs resulting from different bands (i.e., replacing the I in (2.2) with A).
Consequently, we are required to solve the following A-weighted LSE problem
resulting from (2.31):

mina{(r — M) A(r — Ma)}. (2.32)

Suppose that A is a positive-definite and symmetric matrix. We can use A2, the
square-root form of A, to whiten the LSE in (2.32) as follows:

(r— Ma)” (A‘/Z)TA‘/Z(r ~ Ma) = (Al/zr - Al/chx)T(Al/zr - Al/chx).
(2.33)

Using a linear transformation &, defined by

r=¢&,(r) = AY’randM = &, (M) = A'/?M, (2.34)

an A-whitened LSE can be further simplified by £, and given by

min { (i Ma) (r - M) | 2.35)

which is reduced to minimization of (2.2), except that both the image pixel vector
r and the matrix M have been whitened by the weighting matrix A via the trans-
formation £,. As a result, a new set of three types of A-weighted AC-LSMA that
are similar to (2.7), (2.14), and (2.18) can also be derived by replacing M in (2.7),

(2.14), and (2.18) with M via Ea in (2.34) and they are referred to as MD-weighted
SCLS, MD-weighted NCLS, and MD-weighted FCLS problems, respectively.

As shown in Chang (2005), LSMA can be interpreted from three different signal
processing perspectives, signal detection which results in the OSP approach,
parameter estimation which results in MD or GMLE, and pattern classification
which results in FLDA. Following the same treatment, these three signal processing
perspectives can also be used to develop in parallel various versions of A-weighted
AC LSMA by appropriately selecting a weighted matrix A in (2.31).
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2.4.1 Weighting Matrix Derived from Parameter
Estimation Perspective

Two ways to select the weighting matrix A in (2.31) which accounts for spectral
correlation used in the parameter estimation are the use of the covariance spectral
matrix K and the correlation spectral matrix R.

24.1.1 MD-Weighted AC-LSMA

One well-known example of weight mean squared error is MD, also known as

GMLE, which uses the data covariance matrix K ' as a weighting matrix.
Substituting the K™' for the A in (2.31) yields

mina{(r ~ Ma)"K ! (r — Ma)}. (2.36)

Replacing the A in (2.34) with K™ yields a new linear transformation k-1 given
by

f=¢i(r) =K "r and M=¢§ (M)=K'’M.  (2.37)
Then the resulting K™ '-whitened LSE is found by,
mina{ (r— Ma)T(f' - Ma)} (2.38)

which is similar to (2.35). By means of (2.38), another new set of three types of
A-weighted AC-LSMA can be derived by replacing M in (2.7), (2.14) and (2.18)
with M via Ek-1 in (2.37) and they are referred to as MD-weighted SCLS,
MD-weighted NCLS, and MD-weighted FCLS problems, respectively.

2.4.1.2 LCMV-Weighted AC-LSMA
The LSE in (2.36) was derived from the MD or Gaussian maximum likelihood
estimation. If the data covariance matrix K in (2.36) is replaced with the data

correlation matrix R, a LCMYV -based abundance-constrained LSE problems can be
derived by

mina{(r —Ma)' R} (r — Ma)} (2.39)

which uses the data correlation matrix R as a weighting matrix. Using a linear
transformation {g-1 similar to k-1 defined in (2.37) by mapping r and M into
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F=C(pi(r) =R V2randM = & (M) = R7/2M, (2.40)

we can also obtain an R™'-whitened LSE problem given by
mina{(f' —Ma)" (F — Mcz)} (2.41)

which is a correlation-based LSE problem. Three types of LCMV-weighted
AC-LSMA can be derived by replacing M in (2.7), (2.14), and (2.18) with M via
Er-1 in (2.40) and they are referred to as LCMV-weighted SCLS, LCMV-weighted
NCLS, and LCMV-weighted FCLS problems, respectively.

2.4.2 Weighting Matrix Derived from Fisher’s Linear
Discriminant Analysis Perspective

FLDA is one of the most widely used pattern classification techniques in pattern
recognition. An application of the FLDA to hyperspectral image classification was
also explored in Chang and Ji (20064, b). Its strength in pattern classification lies in
the criterion used for optimality, which is called Fisher’s ratio, defined as the ratio
of between-class scatter matrix to within-class scatter matrix. More specifically,
assume that there are n training sample vectors given by {r;}/_, for p-class clas-
sification, Cy, C», . .., C, with n; being the number of training sample vectors in jth
class C;. Let p be the global mean of the entire training sample vectors, denoted by
p=(1/n)>" " r; and p; be the mean of the training sample vectors in the jth class
Cj, denoted by p; = (1/n;) 3=, ;- Now we can define the within-class scatter

matrix, Sy and between-class scatter matrix Sg as

P
Sw=>_8
=1
where

8= (r—w)(r-mw) (2.42)

rec;

Sp=> mil—m) -’ (2.43)
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Using (2.42) and (2.43), Fisher’s ratio (also known as Raleigh’s quotient) is then
defined by

xTSpx

XTSyx for any vector x. (2.44)

Fisher linear discriminant analysis (FLDA) can be used to find a set of feature
vectors that maximize Fisher’s ratio specified by (2.44). The number of feature
vectors found by Fisher’s ratio is determined by the number of classes, p, to be
classified, which is p — 1.

It has been shown in Chang and Ji (2006a, b) that a Fisher’s ratio-based LSE
problem, referred to as Fisher linear spectral mixture analysis (FLSMA) could be
formulated as

minu{(r —Ma)"S; (r — Ma)} (2.45)

with S;VI being used as a weighting matrix to replace the weighting matrix A in
(2.31). So, using a transformation éS;Vl defined by

=

= &6 (r) = Sy Prand M = &6 (M) = S3'/°M, (2.46)

(2.45) can be whitened by S‘;,l and becomes
. - T
mma{ (f —Ma) (F— Ma) } (2.47)

Therefore, three types of S;VI-weighted AC-LSMA can be derived by replacing
M in (2.7), (2.14), and (2.18) with M via és;vl in (2.46) and are referred to as S‘},l—

weighted SCLS, S‘;,l—weighted NCLS, and S;VI—weighted FCLS problems,
respectively.

2.4.3 Weighting Matrix Derived from Orthogonal Subspace
Projection Perspective

As we have seen in Sects. 2.4.1 and 2.4.2, the weighting matrix A was selected by
sample spectral correlation matrices and Fisher’s ratio which resulted from the
maximum likelihood estimator and FLDA. In this section, we investigate the
selection of the weighting matrix A based on various OSP criteria.
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2.4.3.1 OSP-Weighted AC-LSMA

According to the signal-decomposed interference-annihilated (SDIA) model in Du and
Chang (2004a, b), the signal sources can be decomposed into signal sources which are
assumed to be in the signature matrix M and unwanted signal sources which are
assumed to be interferers to the signal sources in the M. If we let U be the unwanted
signature matrix made up of such interferers, we can project all image pixels onto the
space <U > * that is orthogonal to the space linearly spanned by the signal sources
in U and then perform the LSE problem specified by (2.2) in <U > *. Inspired by
this approach, the weighting matrix A in (2.31) can be selected by the unwanted
signature rejector, Py, defined in Harsanyi and Chang (1994) by (2.5). The resulting
LSE problem from replacing A in (2.31) with Pg in (2.5) is

mina{(r — Ma) P (r — Ma)}. (2.48)
Since P{ is idempotent, Py = (Pﬁ)2 and (PIJJ)T: Pg;. This implies that

(r — Ma) Py (r — Ma) = (r — Mar)" (PILJ)TPé(r — Mo)

T (2.49)

= (Pgr — P{Ma)  (Pyr — PyMa).

Using a linear transformation fpé defined by mapping r and M into
F = & (r) = Pirand M = & (M) = PgM, (2.50)

U

we can also obtain a form similar to (2.35) given by

mina{ (F - Ma)T (F - 1\7[a> } (2.51)

which is referred to as the OSP-weighted abundance-constrained LSE problem.
Consequently, three types of OSP-weighted AC LSMA can be derived by replacing
M in (2.7), (2.14), and (2.18) with M via épé in (2.50) and they are referred to as
OSP-weighted SCLS, OSP-weighted NCLS, and OSP-weighted FCLS problems,
respectively. A key to success in the OSP-weighted ACLSMA is to find the
unknown signal sources used in the matrix U in an unsupervised manner. The one
of particular interest is called the Automatic Target Detection and Classification
Algorithm (ATDCA) that was developed in Ren and Chang (2003) and can be used
for this purpose.
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2.4.3.2 SSP-Weighted AC-LSMA

As an alternative to (2.48), we can also formulate an LSE problem based on
performing abundance estimation in the space that is linearly spanned by the signal
sources in the signature matrix M exclusively. Such an LSE problem resulting from
replacing Pﬁ in (2.5) with a signature subspace projector, Py, defined in Chang
et al. (1998a, b) and Chang (2003) by

Py =MM'™M) 'M” (2.52)

is referred to as SSP-weighted AC-LSMA which can be used to find the solution to
the following optimization problem:

mind{(r — Ma) Py (r — Ma)}. (2.53)

Once again, Py is idempotent and (PM)2: Py and (PM)Tz Pyp. Using a linear
transformation {p,, defined by mapping r and M into

¥ = &py(r) = Pyrand M = & (M) = PyM = M, (2.54)

(2.54) becomes
minu{(i" ~ M) (F — Ma)}. (2.55)
Interestingly, the solution to (2.55) is

a(f) = M'M) 'M"F = (M"™™M) 'M"Pyr
= M™M)"'M™MMM)"'MTr = M'M) 'Mr=4a"(r) (2.56)

which is identical to the unconstrained LS LSMA solution given by (2.3). As a
result, the three types of SSP-weighted AC-LSMA obtained by the linear trans-
formation &p, in (2.54) turn out to be the same unweighted ASC-LSMA,
ANC-LSMA, and AFC-LSMA described by (2.7), (2.14), and (2.18), respectively.
This is because the weighted matrix specified by SSP does not provide any addi-
tional advantage as shown by (2.56) because PyyM = M.

2.5 Kernel-Based WAC-LSMA

Kernel-based approaches have found potentials in various applications in remote
sensing target detection and image classification, specifically LSMA. Recently,
kernel-based LSMA (KLSMA) has also been developed to improve LSMA
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unmixing performance (Liu et al. 2011). This section extends the LSMA techniques
OSP, LSOSP, NCLS, and FCLS to their kernel counterparts. Despite the fact that a
kernel-based OSP and a kernel-based FCLS have been derived in Kwon and
Nasrabadi (2005b) and Broadwater et al. (2007), respectively, this section presents
a unified theory of KLSMA by first developing the kernel-based OSP (KOSP) and
LSOSP (KLSOSP) and then using the KLSOSP to derive the kernel-based NCLS
(KNCLS) which further leads to the derivation of the KFCLS.

In a high dimensional feature space, all the data sample vectors are mapped into
feature space F with a nonlinear function ¢ : RY — F by x— ¢(x). The goal of
kernel WAC-LSMA is to find a solution to solve

ming { ((r) — pM))" A (4(F) — p(M)a) }. (2.57)
Because A is a non-negative definite and symmetric matrix in the feature space,
we can de-weight the LSE in (2.31) via A}/ as follows:
1/20T 4 1/2
(¢(r) — (M=) (A)*) A/ (b(r) — $(M)a)

= (A o) - A;/zqs(M)a)T(A;%(r) ~ Ap(M)a). (2.58)

Using the following transformation ¢, defined by

B(r) =&x, (3(1) =AY 2p(r)  $M) = &y, (6(M) =AY p(M),  (2.59)
A -de-weighted LSE can be further simplified as

A T /.

min,{ (916) — 601)" () - G . (2.60)

Three types of kernel-based WAC-LSMA problems, referred to as kernel-based
MD-WACSCLS, kernel-based MD-WACNCLS, and kernel-based MD-WACFCLS,
are described as follows.

The SCLS solution to (2.60) in the feature space using ¢(M) and ¢(r) is given by

A8 S — i S O(r) -+ (M) (M) (1) [S(1)T V)T (M)~ (1))
(2.61)

where

a5 (r) = ($(M)" (M) ™' (M) " $(r) (2.62)
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Pyi1, = $(1) — (M) M) ' d(1)[D(1)" ($(M) (M)~ d(1)] ' (1)".
(2.63)

As for KNCLS and KFCLS, the following two equations will be used to iterate
the process:

&’ = (M) IM)) ' M) — (M) HM) R (2.64)
b= M) d(r) — M) H(M)a? (2.65)

NCLS, ¢

where &% is either & or 675 1t is easy to see that only two terms are of

interest in the kernelization process, ¢p(M)"¢(M) and ¢ (M) p(r), which can be
obtained from

M) M) = [A) (M)A $(M)] = p(M) Ay (M) (2.66)
dM) p(r) = A2 )] "A 2 p(r)] = pM) Ayd(r).  (2.67)

In order to kernelize ¢(M)TA¢¢(M) and ¢(M)TA¢¢(1'), we first expand both
equations by the following matrix forms:

$(m)"
. ¢(my)"
dM) A,p(M) = : Aplp(my)  ¢(my) $(my,) ]
_¢(mp)T
[¢(my) Agp(m;)  p(my) Ayd(my) - P(my) Ayp(m,)
| ¢(ma) Ay p(my) ’ :
[ p(my)" Ay (m) o p(my) Agp(m,)
(2.68)
and
$(m)! d(mi) Ay (r)
a0 = | M g = [P AOD N o6
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As a matter of fact, each entry in the matrix (2.68) as well as the vector (2.70) can
be calculated individually by the following simple kernelization problem:

¢(a)"Ayp(b) where a,b € {(m;,m,,...,m,)Ur} (2.70)

where four different approaches to selection of weighting matrix A to kernelize A
(1) covariance matrix K used by MD, (2) correlation matrix R used by CEM or
LCMV (Frost 1972), (3) within-class covariance matrix Sy used by FLDA, and
(4) unwanted and desired signature subspaces resulting from OSP.

2.5.1 A = Inverse of Covariance Matrix, K’

In this case, set Ay = K;l where Ky is a kernelized covariance matrix K in a high

dimensional feature space. The K4 can be rewritten as Ky = VAVT where A and V
are formed by eigenvalues, along with their corresponding eigenvectors of Ky,
respectively. As a result, (2.70) can be re-expressed as

$(a)' Ay (b) = P(a) K, p(b)

(2.71)
= $(a) (VAV) ' (b) = (4(a) V)A (VI (b)).
According to the derivation of KPCA (Scholkopf et al. 1999a, b), a kernel gram
matrix K = (¢(x;) - ¢(x;)), for i, j =1, ..., N can be derived similarly, as follows.
Let 441 >4,>--- >y denote the normalized eigenvalues of K, with
V1, Va,...,Vy as their corresponding eigenvectors. Let v,, be the eigenvector of the
first non-positive eigenvalue 4,,. Then for k = 1, 2, ..., m we can further expand v
by a set of coefficients {f3,, 5, ..., By} via the kernelized training sample vectors,

{p(x1), ¢(x2),...,d(xn)} as follows:

N

d@) v = @) Y Bd(x) =D Bu(d@)-dp(x)) =D Bk x) (272)
i=1 i=1

i=1

N N

Vig(b) = Bro(x) p(b) =D B(d(x:)- (b)) = (O BK(x:,b)) (2.73)
i=1

i=1 i=1
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and
0 .. 07!
A= |0 R (2.74)
T
0 -+ 0 Ay

Consequently, solutions of KWAV-SCLS in (2.61) and of KWAC-NCLS and
KWAC-FCLS in (2.64) and (2.65) can be found by calculating (2.66) and (2.67) via
(2.70) through (2.72)-(2.74).

2.5.2 A = Inverse of Covariance Matrix, R’

In this case, Ay = R;l. Following the same treatment carried out in Sect. 2.5.1,

qS(a)TR;I(]S(b) can be calculated using (2.72)—(2.74). The only difference is that the
kernel gram matrix R needs no normalization before eigen-decomposition as it is
applied to K.

2.5.3 A = Inverse of Within-Class Matrix, Sy,

-1
In this case, Ay = (S{,/’V) . Based on the work in Chang and Ji (2006a, b) we

assume that there are n training sample vectors, {r;}._,, for p-class classification,
1, €2, ..., Cp, with n; being the number of training sample vectors in the jth class
c;. Let p be the global mean of the entire training sample vectors, denoted by
n= %Z?:l r; and p; be the mean of the training sample vectors in the jth class c;,
denoted by n = n%_zri o 2 Then the within-class scatter matrix, Sy, between-class
scatter matrix, Sg, and total scatter matrix can be defined as Sy = Zle S; with
Sj =2, (r—m)(r— pj)T and Sg = 7 n;(w; — 1) (; — u)T. In addition, let
I denote the sample mean of a particular class ¢. In a high dimensional feature
space, the input data are mapped into a high dimensional feature space F with a
nonlinear function @ : RY — F by x+ ®(x). The kernel-based feature vector

constrained-FLSMA (KFVC-FLSMA) can be derived from the FCV-FLSMA in
Chang and Ji (2006b) and presented by

a(r) = WKEVC-FLSMAL — (M) Td(S,,) ' d(M)) ' d(M) D(S,,) ' D(r).
(2.75)



2.5 Kernel-Based WAC-LSMA 59

To simplify the derivation, we only focus on one signature vector d at a time instead
of signature matrix M. So the equation can be simplified to

aa(r) = (2.76)

where

N,

O(Sy) =) | (D(x,) — () (P(x,) — Dk,)) " (2.77)
=1

c=1j

s

We rewrite ®(S,,) = VAV' with V formed by the eigenvectors of ®(S,,) and A is
an eigenvector matrix found by their associated eigenvalues:

d(S,) ' = VATV (2.78)
Substituting (2.78) into (2.76), we have

ra(r) = ®(d)" (VA'V)®(r) _ (®(d)'V)A™ (VID(r)) (2.79)
d o(d)" (VA'VHD(d)  (0(d)"V)AH(VTD®)) '

Now we have to find eigenvalues >0 and their corresponding eigenvectors
V satisfying

IV = ®(Sy,)V. (2.80)
Consider the set of equations
AMO(xg) - V) = (O(x¢) - D(Sy,)V) forallk=1,...,N. (2.81)

According to the theory of reproducing kernel, and following the same treatment
deriving (2.72)—(2.74), the V must lie in the space spanned by ®(x1), ..., O(xy):

V=> Bdx). (2.82)

i=1

Substituting (2.77) and (2.82) into (2.81) yields

A <<1>(Xk) > ﬂﬂ’(?ﬁ)) = (®(xt) - ©(Sw)) <Z ﬂ@(’ﬁ)) : (2.83)

i=1 i=1
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The left and right sides of (2.83) can be further presented by

N
iz Bi(®@(xk) - @(x;)) (2.84)
and
¢(Xk) < Z (dj(xtj) @(uc)) (¢(ch) - @(uc))> (Z ﬁl@(xl)>
c=1 j=1 i=1

(2.85)

respectively, where (2.85) can be expressed as a special matrix K, as follows:

P
Ky =K ') (KK! - KK} — K, K +K,K] ) (2.86)
c=1
where
K= (9(x;) - ®(x;)) fori,j=1,...,N (2.87)
K, = (®(x;) - P(x,)) fori=1,...N forj=1,... N (2.88)
K. = (¢(xi) - ¢(x)) fori=1,....N forj=1,...,N; (2.89)

Equations (2.88) and (2.89) are then used to compute the sample spectral infor-
mation between pixel x; and training samples in each class c. Once K, is obtained,
the eigenvalues and eigenvectors obtained from eigen-decomposition of K, are
further used to compute (2.70) by (2.83). More details of the above derivations can
be found in Liu (2011).

2.5.4 A = Unwanted Signature Projection Matrix, Pﬁm

In this case, Uy = [¢p(mi)¢p(my)...¢(m, )] and we set Ay = Py,. Since

Py, =1p — Ua(UpUgp) UL, we can express (2.70) as
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$(a)" Py, d(b) = d(a) p(b) — p(a) Uy(UsUs) U (b). (2.90)
Then the kernel trick is applied to (2.90) to obtain
$(a)' Py, d(b) = K(a,b) — K(a, U)K(U,U)"'K(U,b). (2.91)

which is the same as that used to derive KLSMA (Liu et al. 2012).

2.5.5 A = Signature Projection Matrix, Py,

Analogous to Sect. 3.4, the same derivation used there can also be applied to the
case of Ay =Py, where My = [¢p(m)p(my)...d(m,)]. Since Py, =My

(M£M¢)71M¢, (2.70) can be re-expressed by

$(a)" P, (b) = ©(a) My(MEM,) "My h(b) (2.92)
which can be further simplified by the kernel trick to obtain

¢(a) Py, d(b) = K(a, M)K(M,M) 'K (M,b) (2.93)

However, it was shown in Chang and Ji (2006a, b) that signature subspace-
weighted LSMA was essentially identical to unweighted LSMA. Its results are
actually the same as WAC-LSMA with A = 1.

2.5.6 Note on Kernelization

The key idea of kernelization is the use of the kernel trick which has not been really
clarified in many reported efforts when it is used. As a consequence, confusion
always occurs. As an example, Support Vector Machine (SVM) was originally
developed as a binary classifier to find a hyperplane maximizing the distance
between support vectors in two separate classes and has nothing to do with ker-
nelization. The introduction of kernelization into SVM allows SVM to make non-
linear boundary decisions in a feature space to resolve linear non-separability
problems. Unfortunately, SVM has been somewhat over-used in the literature where
the used SVM is indeed kernel-based SVM (KSVM), not SVM without using kernel.
In general, there are three ways to use the kernel trick to perform kernelization. One
is to kernelize a transformation to map all data samples in a high dimensional feature
space. Examples of this type include kernel-based PCA (Scholkopf et al. 1999a, b)
and kernel-based RX detection (Kwon and Nasrabadi 2005b), both of which require
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all data samples for kernelization of the sample covariance matrix. The advantage of
this approach is that no prior knowledge is needed because all data sample vectors
are involved for kernelization. However, its major disadvantage is computational
complexity which is exceedingly expensive. Unfortunately, most reported research
efforts along this line have avoided addressing this issue. To mitigate this dilemma,
an alternative approach is to use specifically selected data sample vectors, referred to
as training sample vectors, to perform kernelization such as kernel-based FLDA and
KSVM. Consequently, the computation complexity is reduced to that required to
perform kernelization only on these selected sample vectors. However, this also
comes at the cost of judiciously selecting data sample vectors for kernelization. This
is a very challenging issue. A third approach is that proposed in this chapter which
kernelizes a classifier/detector instead of training samples such as kernel OSP (Kwon
and Nasrabadi 2005b). More specifically, the KLSMA only kernelizes the signatures
used by OSP, LSOSP, NCLS, and FCLS as a mixed pixel detector/classifier to
perform spectral unmixing where these signatures are provided a priori, not neces-
sarily training sample vectors. This is quite different from existing kernel-based
techniques as described above, which operate data sample vectors or training sam-
ple vectors to be mapped into a high dimensional feature space. More importantly,
the computational saving is tremendous because the number of signatures kernelized
by KLSMA is generally very small compared to other kernel-based methods, which
require a large number of training sample vectors such as SVM or FLDA or the
entire data samples such as PCA.

2.6 Unsupervised LSMA

So far, the techniques developed for LSMA are managed in the sense that the
knowledge about the signature matrix M in (2.1) is assumed to be known and
provided a priori. In practical applications, obtaining such prior knowledge may be
either very costly or impossible because many unknown material substances can be
uncovered by very high spectral resolution via hundreds of contiguous spectral
bands but cannot be identified by ground truth or visual inspection. Under such
circumstance, one best way to perform LSMA is to obtain such knowledge directly
from the data to be processed. However, this is easier said than done because two
challenging issues need to be addressed. One is determining the number of sig-
natures used in the signature matrix M, p. Once the value of p is determined, a
follow-up task is how to find a set of desired p signatures to perform LSMA.
Regarding the first issue, an approach recently proposed is the use of Virtual
Dimensionality (VD) to estimate the value of p. As for the second issue, two
approaches, LS-based (Chang 2003) and component analysis-based (Chang et al.
2011a) were developed, each of which is described below.
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2.6.1 Least Squares-Based Approaches
Jor Finding Signatures

In this section, we present three LS-based algorithms for finding spectral targets of
interest using a posteriori knowledge which can be obtained directly from the data.

As noted above, two main issues are investigated. One is what are material
substances of interest? Once targets of interest are defined, the next issue is how to
find these targets directly from the data in an unsupervised manner without prior
knowledge. To address the first issue, we first explore a new concept of so-called
“spectral” targets which is developed to differentiate targets commonly addressed
in traditional image processing. With no spectral bands used in traditional image
processing, the targets of interest are generally identified by their spatial properties
such as size, shape, and texture. In this case, targets to be recognized based on their
spatial properties can be considered as “spatial” targets and the techniques devel-
oped to recognize such spatial targets are referred to as spatial domain-based image
processing techniques. On the other hand, because of the use of spectral bands
specified by a range of wavelengths, a multispectral or hyperspectral image pixel is
actually a column vector, of which a pixel of one spectral band is produced by a
particular wavelength. As a consequence, a single image pixel vector of a hyper-
spectral image already contains abundant spectral information provided by hun-
dreds of contiguous spectral bands which can be used for data exploitation. Such
spectral information within a single image pixel vector is referred to as intra-pixel
spectral information. A target analyzed based on its spectral properties character-
ized by the intra-pixel spectral information on a single image pixel vector basis is
called a “spectral target” as opposed to a “spatial target’ analyzed by inter-pixel
spatial information provided by spatial correlation among sample pixels. More
specifically, three major types of spectral targets are of particular interest here. One
type is endmembers, whose spectral signatures are idealistically pure
(Schowengerdt 1997). Endmembers do not usually appear in multispectral images
because of low spatial and spectral resolution, but have become increasingly
important in hyperspectral imaging because an endmember can be used to identify a
spectral class. Another type is subpixel targets which do not fully occupy a pixel but
rather are completely embedded in a single image pixel vector. This type of target
cannot be visualized spatially and can only be recognized by their spectral prop-
erties. Subpixel targets occur when their spatial extent is smaller than pixel reso-
Iution. A third type of targets is mixed targets whose spectral signatures are linearly
or nonlinearly mixed by a number of target spectral signatures with appropriate
portions of fractions present in a single image pixel vector. The occurrence of a
mixed target is a result of low spatial and spectral resolution and it may partially
occupy more than one pixel vector. Apparently, none of these three types of spectral
targets can be effectively analyzed by spatial domain-based techniques.
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With a spectral target defined as above, what we are particularly interested in
here from an aspect of statistical signal processing are two types of spectral targets,
one characterized by second-order sample intra-pixel Spectral Information Statistics
(SIS) and the other by sample intra-pixel SIS of order higher than 2, referred to as
high-order SIS. It should be noted that the term of sample intra-pixel SIS is defined
as correlation of intra-pixel SIS among sample vectors. In the context of sample
SIS, we assume that background (BKG) pixels are those spectral targets charac-
terized by second sample intra-pixel SIS while the target pixels of interest are those
high-order sample intra-pixel SIS. In hyperspectral image analysis this seems a
reasonable assumption since the spectral targets of interest in hyperspectral data
exploitation are those which either (1) occur with low probability or (2) have small
populations when they are present. In other words, these types of spectral target are
usually relatively small, appear in small population, and also occur with low
probabilities, e.g., special spices in agriculture and ecology, toxic wastes in envi-
ronmental monitoring, rare minerals in geology, drug/smuggler trafficking in law
enforcement, combat vehicles in the battlefield, landmines in war zones,
chemical/biological agents in bioterrorism, weapon concealment, and mass graves.
These spectral targets are generally considered as insignificant objects because of
their very limited spatial information, but they are actually critical and crucial for
defense and intelligence analysis because they are insignificant compared to targets
with large sample pools and generally hard to identify by visual inspection. From a
statistical point of view, the SIS of such special targets cannot be captured by
second-order sample intra-pixel SIS but rather by high-order sample intra-pixel SIS.

Once image pixel vectors are categorized into BKG and target classes according
to sample intra-pixel SIS, a follow-up task is how to find them, in which case two
issues need to be addressed. One is how many of them. The other is how to find
them. The first issue can be resolved by a new concept, VD which is recently
developed (Chang 2003; Chang and Du 2004). The idea of VD is based on the
assumption that if a signal source is presenting in the data, it will contribute energy to
first-order statistics. In doing so, both the eigenvalues of sample correlation matrix,

{il}, and the eigenvalues of covariance matrix, {4;}, are calculated. If 11 — A is

greater than zero resulting from the /th component sample mean, it implies that there
is a signal source; otherwise, no signal is present. To materialize this idea, a binary
composite hypothesis testing problem is formulated in such a way that the null and

alternative hypotheses, Hy and H|, represent two scenarios, H : ;11 — A4 =0 and

Hy:l— >0, respectively. The Neyman—Pearson detection theory (Poor 1994) is
then applied to find how many times the test fails run over all spectral bands for a
given false alarm probability, Pg. It is the number of test failures which indicates the
number of signal sources assumed to be in the data. The beauty of VD lies in the fact
that its value is completely determined by the Pg. By varying the value of Pg, the
number of spectrally distinct signatures estimated by the VD varies. For example, if
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Pris set low, fewer tests will fail and thus fewer targets are assumed to be in the data,
and vice versa. To address the second issue, an unsupervised spectral target finding
algorithm (USTFA) is developed which is based on three LS-based algorithms,
Automatic Target Generation Process (ATGP) (Ren and Chang 2003),
Unsupervised Non-negativity Constrained Least Squares (UNCLS) method (Chang
and Heinz 2000), and Unsupervised Fully Constrained Least Squares method
(UFCLS) (Heinz and Chang 2001). For these unsupervised methods to extract and
distinguish spectral targets of second-order sample intra-pixel SIS from high-order
sample intra-pixel SIS, it assumes that the BKG in a hyperspectral image is most
likely characterized by second-order sample intra-pixel SIS while hyperspectral
targets will be more likely to be captured by high-order sample intra-pixel SIS as
outliners because of their small spatial presence. In this case, high-order spectral
targets are referred to as desired targets to be used for image analysis, while
second-order spectral targets are considered as undesired targets for which we would
like to annihilate or suppress prior to data processing to improve image analysis.

To accomplish this task, a designed LS-based algorithm is first applied to the
original data to extract data sample vectors characterized by second-order SIS.
Then, the same algorithm is further applied to the data which is sphered by
removing the data sample mean and co-variances while making data variances ones
so that all second-order SIS-characterized data samples will be on the sphere and all
other data sample vectors that are characterized by high-order SIS are either inside
(sub-Gaussian samples) or outside the sphere (super-Gaussian samples). As a
consequence of such a sphering process, the resulting data has the first- and
second-order SIS removed from the original data because of zero mean and con-
stant variance one so that samples characterized by SIS of orders higher than second
can be extracted from inside or outside the sphere. Interestingly, despite the fact that
the idea of using the same algorithm in two passes—one pass for the original data
and another pass for the sphered data to extract two types of targets of interest,
second-order targets and high-order targets for data analysis—seems simple, it is by
no means a trivial matter because its novelty has never been explored in the open
literature. In what follows, we design and develop three LS-based algorithms for
this purpose.

2.6.1.1 Automatic Target Generation Process (ATGP)

The first LS-based algorithm is ATGP which can be considered as an unsupervised
and unconstrained OSP technique. It performs a succession of OSPs specified by
(2.5) to find a set of sequential data sample vectors that represents targets of interest
as follows.
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OSP Target Generation Process

1. Initial condition:
Let ¢ be a prescribed error threshold and t, be a data sample vector with
maximal vector length, i.e., ty = arg{max ||r||} where r is a data sample vector
and ||r||* = rTr. Set k = 0 and use (2.5) to define P- =1 — to(t(T,to)iltE with
Uy = [to].

2. Let k— k+1 and apply P, =1— Ui (UL Us ;) 'UL, via (2.5) with
Ui_1 = [tot;. . .tx_1] to all image pixels r in the image and find the kth target t;
generated at the kth stage which has the maximum orthogonal projection as

follows:
T
_ il 1
t = arg{mrax {(P[Ukltk]r) (P[Ukltk]r)} } (2.94)

3. If mosp(ty) > € where mogp(+) is a well-defined OSP measure, then go to step 2.
Otherwise, the algorithm is terminated. At this point, all the generated target
pixels to, t, ..., t,_; are considered as the desired targets.

Although different criteria can be used to define mogp(+) in step 3, there are at
least two ways to do so. One is defined by Ren and Chang (2003) as Orthogonal
Projection Correlation Index (OPCI) given by

mosp(te) = OPCI(t) = tj Py to > &. (2.95)

The above OSP-based Target Generation Process is called ATDCA developed by
Ren and Chang (2003). Another is defined by the popular ATGP in Chang (2003) as

mosp(tk) = mATGP(tk) = tZP[ijiltk > & (296)

In this case, the resulting OSP-based Target Generation Process is called ATGP.

2.6.1.2 Unsupervised Non-negativity Least Squares (UNCLS) Method

A second LS-based algorithm is UNCLS which is an unsupervised version of the
abundance NCLS where the NCLS is a partially abundance-constrained least
squares-based technique that imposes the ANC with o> 0, i.e., a; > O for all on the
linear mixing model specified by (2.1). It can be implemented in the following.

UNCLS

1. Initial condition:
Select ¢ to be a prescribed error threshold and let ty = arg{max,[r'r]} where
r is run over all image pixel vectors, and set k = 0.
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© Vo) (r — & ;

2. Let LSE"(r) = (r— Ot (r)to) (r— Ot (r)t()) and check if
max, LSE(")(r) <e. If yes, the algorithm is terminated; otherwise continue.

3. Let k — k+1 and find t; = arg{max, [LSE*"V(r)] }.

4. Apply the NCLS method with the signature matrix M® = [tot;.. t; ] to

. . ~(k ~(k ok
estimate the abundance fraction of to,t;, ..., t;_, “(1 )(r), cx; )(r), e oc,i_)l (r).

5. Find the kth maximum LSE defined by

k=1 T k=1
m]gx{LSEU‘) (r)} = m;ax{ (r - Z &;k)tj) (r - Z &;k)tj> } (2.97)
=1 =1

6. If maerSE(k_l)(r) <e¢, the algorithm is terminated; otherwise go to step 3.

2.6.1.3 Unsupervised Fully Least Squares (UFCLS) Method

A third LS-based algorithm is UFCLS which is an unsupervised abundance Fully
Constrained Least Squares (FCLS) where the FCLS is a fully abundance-constrained
least squares-based technique that imposes both ASC, i.e., Zf:l o; =1 and
Abundance Non-negativity Constraint (ANC), a > 0, i.e., o; > 0 on the linear mixing
model (2.1). Its implementation is provided below.

UFCLS

1. Initial condition:
Select ¢ to be a prescribed error threshold and let ty) = arg{max,[r'r]} where
r is run over all image pixel vectors, and let k = 0.

T

2. Let LSEO(r) = (r - &E)l)(r)to) (r - &él)(r)to) and check if
max,; LSE(”)(r) <e. If yes, the algorithm is terminated; otherwise continue.

3. Let k — k+1 and find t; = arg{max, [LSE®~")(r)] }.

4. Apply the FCLS method with the signature matrix M%) = [tot;.. .t; ] to

estimate the abundance fraction of to, t;, ..., t;_, &gk)(r), &;k)(r), e 5‘1(:)1(1')-
5. Find the kth maximum LSE defined by

mflx{LSE(k)(r)} - mrax{ (r - i A;")tj) (r - ki A;k)tj) } (2.98)
f=n =
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If max,LSE*~(r) <e, the algorithm is terminated; otherwise go to step 3.

When the above-mentioned three unsupervised LS-based algorithms are
implemented, a prescribed error € which is determined by various applications is
required to terminate the algorithms. In general, it is done by visual inspection on a
trial-and-error basis and is not practical for our purpose. Therefore, instead of using
€ as a stopping rule, we use the VD as an alternative rule to determine how many
targets are required for our designed LS algorithms to generate.

For the proposed LS-based algorithms to be successful, we assume that the most
image BKG is characterized by a very large number of uninteresting data sample
vectors which can be characterized by second-order statistics as opposed to target
pixels which can be captured by high-order statistics because of a small number of
target pixels. By means of this assumption we can consider two sets of data for
processing. One is the original data and the other is the sphered data which has the
mean and covariance removed from the original data for consideration. We then
apply the three unsupervised LS-based algorithms to these two data sets to extract
second-order BKG pixels as well as high-order target pixels. However, if a sample
pixel shows strong signal statistics in both original and sphered data sets, it is
considered as a target pixel and can be removed from the BKG category.

A detailed implementation of an LS-based Unsupervised Spectral Target Finding
Algorithm (USTFA) can be briefly described as follows where the LS-based
unsupervised algorithm used in the USTFA can be one of the three LS unsupervised
algorithms described in Sect. 2.3.

LS-Based Unsupervised Spectral Target Finding Algorithm

1. Apply VD on the image data to determine the number of targets required to be
generated, nyp.
2. Apply an LS-based algorithm to the original image data and find nyp BKG

. BKG _ [ps |
pixels § = {b] }
3. Apply the LS-based algorithm to the sphered data and find nyp target pixels,

nvp
Starget — {tLS} .
7 j=1

4. Since there may be some pixels in SBKG whose spectra are very close to those
also showing up in S™*%, a spectral measure such as Spectral Angle Mapper

(Chang 2003) is applied to extract these pixels which will be removed from

SBKG et the resulting BKG sample set be denoted by §PRO {BLS} e

BKG
S

=1

b=t
where npkg is the total number of remaining BKG pixels in after the

pixels in $@etNSBKG are removed.
. . . BKG . o .
5. Form a signature matrix M by merging S and S“®%, i.e., finding pixels in

~1.S) ""BKG nvp . . .
{bi } 1 U{t}s}' R It should be noted that the number of pixels in M is
= =

between nyp and 2nvyp, i.e., nyp < nyp + npkg < 2nvp.
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Apply an LS method such as abundance-unconstrained classifier LSOSP,
abundance non-negativity constrained classifier NCLS and abundance fully con-
strained classifier FCLS to perform mixed pixel classification where only the target

pixels in $™€" are classified by their corresponding abundance fractions while the
NBKG

target pixels in §6 — {f)iLs} is used for BKG suppression. It should be noted

i=1
that for LSMA to perform pure-pixel classification we need a value to threshold the
LSMA-estimated abundance fractions of each of targets for making hard decisions.
In this case, finding an appropriate threshold value is generally very challenging. In
our experiments only LSMA is performed to produce abundance fraction estimates
for target pixels. So, when a specific LS algorithm is used in USTFA, the super-
script “LS” in the above algorithm will be replaced with this particular algorithm.
For example, if ATGP is used for the USTFA, it is then called ATGP-USTFA.

2.6.2 Component Analysis-Based Approaches for Finding
Signatures

Since all the three algorithms described in Sect. 2.6.1 are second order spectral
statistics-based techniques, they may not be effective in extracting signatures
characterized by the high order of statistics-IBSI(S™"). To solve this problem, the
data was sphered so that the signatures characterized by second-order-IBSI(S®*%)
can be removed prior to application of these algorithms. Interestingly, such an idea
can be materialized and implemented by component-based transformation without
appealing for any algorithm.

In Sect. 2.6.1, hyperspectral signatures are assumed to be categorized into BKG
signatures characterized by second-order-IBSI(S®*®) and target signatures char-
acterized by the high order of statistics-IBSI(S™***"). To realize this idea, we use
PCA to produce a set of PCs to represent the data where eigenvectors are projection
vectors to specify PCs with eigenvalues specified by data variances. In this case,
PCA can be used to extract BKG signatures characterized by second-order-IBSI
(SBKG) in the first few PCs. On the other hand, we also use ICA to find desired
target signatures characterized by the high order of statistics-IBSI(S"™**") in the first
few ICs. In both cases, the VD is used to estimate how many PCs and ICs are
required to used for signature extraction. Because PCs and ICs are obtained by
mapping all data samples onto the projection vectors, the projection values of data
samples are real values. So, an issue arises—“how many data samples should be
selected from each PC and each IC?” Two sample values in each IC are of major
interest, one with maximal projection value and the other with minimal projection
value. These two samples represent maximal projections in two opposite directions
of a projection vector that specifies an IC. Both indicate their importance in data
analysis. This idea was previously explored in development of pixel purity index in
Boardman (1994) where the most likely endmembers are those sample vectors with
either maximal or minimal projections on each randomly generated vector referred
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to as skewers. All such data sample vectors extracted from PCs and ICs are called
Virtual Signatures (VSs). However, it is worth noting that there is no similar
selection of sample vectors with minimal projections in PCs because PCA is a
transformation of second order statistics with variance representing signal
energy no less than zero. This is because the samples with minimal projections, i.e.,
variances, are supposed to be noisy sample vectors. Accordingly, selecting data
sample vectors with minimal projections in PCs is not appropriate. However, with
sphering performed by ICA, the noisy sample vectors with small variances have
been removed. As a result, it makes sense to select data samples with minimal
projections in ICs as desired samples.

Using VD to determine the numbers of PCs and ICs and selecting data sam-
ple vectors with maximal and minimal projections of ICs, a CA-based
Unsupervised Virtual Signature Finding Algorithm (CA-UVSFA) can be descri-
bed as follows.

CA-UVSFA

1. Find the VD, which determines the number of components required to generate, p.
2. Apply the PCA to the original image data to find p PCs and extract the brightest
pixels (i.e., data samples with maximal projections in PCs) as a VS from each of
BKG pca |”
p PCs to form § :{bj } :
j=
3. Apply the ICA to the sphered data to find p ICs and extract points with the

maximal and minimal projections from each of p ICs as VSs to form
2p

Starget — {t}CA} . Because some pixels with minimal projections may close to
A

certain pixels with maximal projections in other ICs, a spectral measure such as

SAM (Chang 2003) is applied to identify these pixels and eliminate them from

stareet 4o form §UE — {f;CA}. It should be noted that the ICA used here is the

one developed in Hyvarinen and Oja (2000), called FastICA, which is actually
based on a criterion derived from a combination of the third- and fourth-order
statistics (Hyvarinen et al. 2001, (5.35), p. 115).

. . larget ~ICA
4. Furthermore, there may be some target signatures extracted in S T {tj },

which also exhibit strong energies in the PCs where pixels corresponding to
these signatures may also be extracted in S®¥Y. In this case, the SAM is used to
extract these pixels and remove them from S$®XC. Let the remaining BKG

sample set be denoted by §PKC = {f)jl-)CA}.

5. Construct a set of VSs, §V5 = {f)fCA }U{E;CA}, by merging S° ¢ and
spectral unmixing. It should be noted that the number of VSs in §V5
p and 3p.

for

is between

A comment on why each PCA and ICA is required to generate p components is
noteworthy. It is often the case that target signatures may show up in either PCs or
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ICs, but not both. To ensure that it doesn’t matter which scenario will occur, using
p PCs and p ICs should be able to capture all these target signatures.
Determining the number of components and finding VSs are two key steps in
implementing the CA-UVSFA. With help of CA-UVSFA we can develop an
algorithm, referred to as CA-Unsupervised LSMA (CA-ULSMA), as follows.

CA-ULSMA

1. Use the HFC/NWHFC methods to determine the VD for the number of com-
ponents to be generated, p.

2. Apply the CA-UVSFA to produce a set of VSs, SV5.

3. Apply an SLSMA technique such as least squares OSP (unconstrained classi-
fier), non-negativity constrained least squares (NCLS) (partially abundance
constrained classifier), and FCLS (fully abundance-constrained classifier) to

perform LSU where only the target pixels in 5™ will be unmixed, while the

target pixels in s’ K6 will be used for BKG suppression.

In step 1 of CA-ULSMA, for the HFC/NWHFC method to work effectively, the
spectrally distinct signatures defined by the VD are those which do not have sig-
nificant contributions to data variances. Such signatures are generally characterized
by three unique features. First, the probabilities of their occurrence are usually low.
Second, when such signatures are present, there are not too many sample vectors.
Third, as a result, the variances of such signatures are generally very small and can
be considered to be negligible. So, when the HFC/NWHFC methods are used to
estimate the VD, which determines the number of VSs used by the LSMA, two
assumptions are made on the VSs. The first and foremost assumption is that all the
VSs in SVF are assumed to have the least inter-sample spectral correlation, more
specifically, least IBSI. This is a reasonable assumption since different VSs should
have the least spectral correlation among all the data sample vectors to allow VSs as
distinct as possible in terms of spectral characteristics via IBSI. Another is that the
number of data sample vectors specified by a VS must be relatively small because
they represent most spectrally distinctive signatures. With these two assumptions in
mind, a VS is only contributed to the sample mean but not the variance of each
spectral band. This is also the key idea used to develop the HFC/NWHFC methods.
It also explains why the HFC/NWHFC-estimated VD works very effectively for
HYperspectral Digital Imagery Collection Experiment (HYDICE) data in Fig. 1.9,
where the number of target panel pixels specified by each of five panel signatures is
very small. When these two assumptions are violated, the HFC/NWHFC-estimated
VD may not be accurate. So, when the HFC/NWHFC methods are used to estimate
the VD, users should be aware of these assumptions.
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2.7 Conclusions

LSMA has great potential in hyperspectral data exploitation. Its major application
in the literature has been LSU, to be discussed in Chap. 4. However, other appli-
cations have recently received considerable interest. For example, LSMA can be
used to find endmembers in Chaps. 9 and 13. It can also be used for data com-
pression (Du and Chang 20044, b). In addition, it can be shown that LSMA is very
closely related to OSP and Simplex Volume Analysis (SGA) in Chap. 4.
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