
Chapter 2

A Review of Basic Laws
for a Compressible Flow

2.1 Introduction

The operation of aero engines and rockets is governed by the laws of fluid

mechanics (or more specifically aerodynamics and gas dynamics) as well as

thermodynamics. Understanding and analyzing the performance of aero engines

and rocket motors requires a closed set of governing equations (conservation of

mass and energy, linear and angular momentums, entropy) as well as several

compressible flow relations that govern the isentropic flow, normal and oblique

shock waves, expansion waves, and finally Fanno and Rayleigh flow. For under-

standing the basic physical phenomena, gas will be modeled as a perfect gas, and
apart from the rotating elements (fans, compressors, and turbines), the flow will be

assumed one dimensional, where its properties are assumed constant across the flow

and vary only in the flow direction (axial direction). It is assumed that the students

have studied a first course in both fluid mechanics and thermodynamics. A review

of thermo-fluid physics and one-dimensional gas dynamics will be given in this

chapter. For more details, students are asked to refer to the following set of

textbooks: Shames and White [1, 2] for fluid mechanics and Shapiro, Zucrow and

Hoffman, and Zucker [3–5] for gas dynamics together with Keenan, Sonntag,

et al. as well as Cengel and Boles [6–8] for thermodynamics.

Macroscopic approach rather than microscopic one will be followed here. The

concepts of system and control volume are followed in specifying a definite

collection of material and a region in space that will be analyzed.
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2.2 System and Control Volume

A system is a collection of matter of fixed identity. It may be considered enclosed by

an invisible, massless, flexible surface through which may change shape, and

position, but must always entail the same matter. For example, one may choose

the steam in an engine cylinder (Fig. 2.1) as a system. As the piston moves, the

volume of the system changes, but there is no change in the quantity and identity of

mass. The terms system and control mass have identical meaning.

A control volume is a region of constant shape and size that is fixed in space

relative to the observer. The boundary of this volume is known as the control

surface. This control surface may be imagined as massless, invisible, and rigid

envelope which offers no resistance to the passage of mass. The amount and

identity of the matter in the control volume may change with the time, but the

shape of the control volume is fixed. For instance, to study flow through a variable

geometry duct, one could choose, as a control volume, the interior of the duct as

shown in Fig. 2.1. We note that the control volume and the system can be

infinitesimal.

2.3 Fundamental Equations

Four basic laws must be satisfied for the continuous medium (or continuum) inside

aero engines and rocket motors, namely:

1. Conservation of matter (continuity equation)

2. Newton’s second law (momentum and moment-of-momentum equations)

3. Conservation of energy (first law of thermodynamics)

4. Second law of thermodynamics

In addition to these general laws, there are numerous subsidiary laws, sometimes

called constitutive relations, that apply to specific types of media, like the equation

of state for the prefect gas and Newton’s viscosity law for certain viscous fluids.

Furthermore, for high-speed flows additional compressible flow features have to be

Fig. 2.1 System and control volume. (a) System. (b) Control volume
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governed by isentropic, Rayleigh and Fanno flow relations together with normal
and oblique shock relations if encountered. In thermodynamics we have two kinds

of properties of a substance. These whose measure depends on the amount of mass

of the substance are called extensive properties, and those whose measure is

independent of the amount of mass of the substance present are called intensive
properties. Temperature and pressure are two famous examples for intensive

properties. Examples of extensive properties are weight, momentum, volume, and

energy. Each extensive variable such as enthalpy (H ) and energy (E), we have H

¼
ððð

hρdv and E ¼
ððð

eρdv:, has its intensive properties: (h) and (e).

Consider next an arbitrary flow field V (x,y,z,t) as seen from some frame of

reference xyz wherein we observe a system of fluid of finite mass at times “t” and “

tþ Δt” as shown in Fig. 2.2. The streamlines correspond to those at time “t.” In

addition to this system, we will consider that the volume in space occupied by the

system at time “t” is the control volume fixed in position and shape in xyz. Hence, at

time “t” our system is identical to the fluid inside our control volume. Let us now

consider some arbitrary extensive property “N” of the fluid. The distribution of “N”

per unit mass will be given as “η” such that N¼
ððð

ηρdv with dv representing an

element of volume.

We have divided up the overlapping systems at time “tþ Δt” and at time “t” into

three regions, as shown in Fig. 2.2. The region II is common to the system at both

times “t” and “tþ Δt.” Let us compute the rate of change of N with respect to time

for the system by the following limiting process:

dN

dt

� �
system ¼ DN

Dt

Fig. 2.2 Simplified view of moving system
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DN

Dt
¼ lim

Δt!0

ððð
III

ηρdvþ
ððð
II

ηρdv

0
@
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ððð
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ηρdvþ
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ηρdv

0
@
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A

t

Δt

2
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3
7777775

ð2:1Þ

Equation (2.1) can be rearranged to the form

DN

Dt
¼ lim

Δt!0

1

Δt

ððð
II

ηρdv

0
@

1
A

tþΔt

�
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ηρdv

0
@

1
A

t

8<
:

9=
;

2
4

3
5
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;

2
4

3
5

ð2:2Þ

After some manipulation, with the net efflux rate equal to the outlet rates efflux

minus the rate influx through the control surface, we arrive at the relation

DN

Dt
¼ ∂

∂t

ððð
C:V

ηρdvþ ∯
C: S:

η ρV � dAð Þ ð2:3Þ

Equation (2.3) is called Reynolds transport equation. This equation permits us to

change from a system approach to a control–volume approach.

2.3.1 Conservation of Mass (Continuity Equation)

Now, let us apply Reynolds transport Eq. (2.3) to reach the continuity rquation. In

this case:

1. The extensive property “N” is the mass of a fluid system “M.”

2. The quantity “η” is unity, since M ¼
ððð
C:V:

ρdv.

Then Reynolds transport equation will have the form

DM

Dt
¼ ∂

∂t

ððð
C:V:

ρdvþ ∯
C: S:

�
ρ V :dA

� ¼ 0 ð2:4aÞ

Since we can choose a system of any shape at time “t,” the relation above is then

valid for any control volume at time “t” as follows:
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∯
C:S:

ρ V :dA
� � ¼ � ∂

∂t

ððð
C:V:

ρ dv ð2:4bÞ

That is, the net efflux rate of mass through the control surface equals the rate of

decrease of mass inside the control volume. Equation (2.4) and its simplified forms

are called equation of continuity.

If the flow is steady relative to a reference fixed to the control volume, all fluid

properties, including the density at any fixed position in the reference, must remain

invariant with time. The right side of Eq. (2.4) can be written in the formððð
∂ρ=∂tð Þdv;, and this integral is zero. Hence, we can state that any steady flow

∯
C:S:

ρ V :dA
� � ¼ 0 ð2:5aÞ

Next, consider the case of incompressible flow, in this case, ρ is constant at all

positions in the domain and for all even if the velocity field is unsteady. The right

side of Eq. (2.4) vanishes then, and on the left side of this equation, we can extract ρ
from under the integral sign. We then arrive at the relation:

∯
C:S:

V � dA� � ¼ 0 ð2:5bÞ

Thus, for any incompressible flow, conservation of mass reduces to conservation of

volume. Let us consider the very common situation in which fluid enters some

device through a pipe and leaves the device through a second pipe, as shown

diagrammatically in Fig. 2.3. A dashed line indicates the chosen control surface.

We assume that the flow is steady relative to the control volume and that the inlet

and outlet flows are one dimensional. Applying Eq. (2.5a) for this case, we get

Control volume

Control surface

ρ1, V1, A1

ρ2, V2, A2

Fig. 2.3 Control volume for device with 1-D inlet and outlet
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∯
CS

ρV � dA� � ¼ ðð
A1

ρV � dA� �þ ðð
A2

ρV � dA� �

where A1 and A2 are, respectively, the entrance and exit areas

∯
CS

ρV � dA� � ¼ �
ðð
A1

ρVdAþ
ðð
A2

ρVdA

With ρ and V constant at inlet and outlet sections, we obtain the following equation:

�ρ1V1

ðð
A1

dAþ ρ2V2

ðð
A2

dA ¼ 0

Integrating, we get

ρ1V1A1 ¼ ρ2V2A2 ð2:6Þ

2.3.2 Linear Momentum (Newton’s Second Law)

Newton’s second law states that

FR ¼ d

dt

� �
system

ððð
M

Vdm

2
4

3
5 ¼ dP

dt

� �
system

ð2:7Þ

where

FR is the resultant external force and P is the linear momentum vector.

FR is classified as the surface force and body force distributions. The surface

force is denoted as T (x, y, z, t) and given as force per unit area on the boundary

surfaces. The body force distribution is denoted as B (x,y,z,t) and given as force per
unit mass. For example, gravity is the most common body force distribution, and

thus, B ¼ – g K. We can rewrite Eq. (2.7) as follows:

∯
C:S

TdAþ
ððð
C:V

Bρdv ¼DP

Dt
ð2:8aÞ

The linear momentum P is the extensive property to be considered in the Reynolds

transport Eq. (2.3). The quantity η becomes momentum per unit mass, which is “V.”
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Thus

DP

Dt
¼ ∯

C:S:

Vρ V:dA
� �þ ∂

∂t

ððð
C:V:

V ρ dv ð2:8bÞ

We then have from Eq. (2.8) the linear momentum equation expressed as

∯
C:S:

TdAþ
ððð
C:V:

Bρ dv ¼ ∯
C:S:

Vρ V:dA
� �þ ∂

∂t

ððð
C:V:

V ρ dv ð2:9Þ

This equation then equates the sum of these force distributions with the rate of

efflux of linear momentum across the control surface plus the rate of increase of

linear momentum inside the control volume. For steady flow and negligible body

forces, as is often the case in propulsion applications, the equation above becomes

∯
C:S:

TdA ¼ ∯
C:S

V ρ V:dA
� � ð2:10Þ

Since the momentum Eq. (2.9) is a vector equation, then the scalar component

equations in the orthogonal x, y, and z directions may then be written as

∯
C:S:

TxdAþ
ððð
C:V:

Bxρ dv ¼ ∯
C:S:

Vxρ V:dA
� �þ ∂

∂t

ððð
C:V:

Vxρ dv ∯
C:S:

TydAþ
ððð
C:V:

Byρ dv

¼ ∯
C:S:

Vyρ V:dA
� �þ ∂

∂t

ððð
C:V:

Vyρ dv ∯
C:S:

TzdAþ
ððð
C:V:

Bzρ dv

¼ ∯
C:S:

Vzρ V:dA
� �þ ∂

∂t

ððð
C:V:

Vzρ dv

ð2:11Þ

In using Eq. (2.11), one selects directions for the positive directions of the inertial

reference axes x, y, and z. Then the positive directions of the velocities Vx, Vy, and

Vz, as well as the surface and body force Tx and Bx, and so on, are established.

Example 2.1 A turbojet engine is powering an aircraft flying at a speed of (u) as

shown in Fig. 2.4. Air flows into the engine at the rate of (m
�
a) through the inlet area

(Ai). Fuel is injected into the combustors at the rate of (m
�
f ). The exhaust gases are

leaving the propelling nozzle at the rate of (m
�
e) and speed of (ue) via an exit area

(Ae). The ambient and exit pressures are (Pa and Pe). Prove that the generated thrust

force is expressed as

τ ¼ m
�
a 1þ fð Þue � u½ � þ Pe � Pað ÞAe
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Figure 2.4, illustrates a turbojet engine with a part of its pod installation (which

is a structural support for hanging the engine to the wing). It also defines a control

volume which control surface passes through the engine outlet (exhaust) plane

(2) and extends far upstream at (1). The two side faces of the control volume are

parallel to the flight velocity u. The upper surface cuts the structural support, while
the lower one is far below the engine. The surface area at planes (1) and (2) is equal

and denoted A. The stream tube of air entering the engine has an area Ai at plane (1),

while the exhaust area for gases leaving the engine is Ae. Over plane (1), the

velocity and pressure are u (which is the flight speed) and Pa (ambient pressure at

this altitude). The velocity and pressure over plane (2) are still u and Pa except over

the exhaust area of the engine Aewhich values are ue and Pe. The x- and y-directions
employed here are chosen parallel and normal to the centerline of the engine.

The following assumptions are assumed:

1. The flow is steady within the control volume; thus, all the properties within the

control do not change with time.

2. The external flow is reversible; thus, the pressures and velocities are constants

over the control surface except over the exhaust area Pe of the engine.

Conservation of mass across the engine gives

m
�
a þ m

�
f ¼ m

�
e

Fig. 2.4 Control volume around a turbojet engine
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where m
�
a and m

�
e are expressed as

m
�
a ¼ ρuAi, m

�
e ¼ ρeuePe

The fuel flow rate is thus expressed as

m
�
f ¼ ρeueAe � ρuAi Að Þ

The fuel-to-air ratio is defined here as

f ¼ m
�
f

m
�
a

m
�
e ¼ m

�
a 1þ fð Þ Bð Þ

Apply the continuity equation over the control volume

∂
∂t

ððð
CV

ρdvþ∯
CS

ρu � dA ¼ 0

For a steady flow, ∂
∂t

ððð
CV

ρdv¼ 0, then ∯
CS

ρu � dA ¼ 0

or m
�
e þ m

�
s þ ρu A� Aeð Þ � m

�
a � m

�
f � ρu A� Aið Þ ¼ 0

where (m
�
s) is the side air leaving the control volume.

Rearranging and applying Eq. (A), we get the side mass flow rate as

m
�
s ¼ ρu Ae � Aið Þ Cð Þ

According to the momentum equation

X
~F ¼ ∂

∂t

ððð
CV

ρ~udvþ∯
CS

u
�
ρu � dA� ¼ 0

where
X

F is the vector sum of all forces acting on the material within the control

volume which are surface forces (pressure force as well as the reaction to thrust

force through the structural support denoted by τ) and the body force (which is the

gravitational force here).

For steady flow

X
F ¼ ∯

CS

u ρu � dA� �
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The x-component of the momentum equation

X
Fx ¼ Pa � Peð ÞAe þ τ ¼ ∯

CS

ux ρu � dA� �
Dð Þ

If the sides of the control volume are assumed sufficient distant from the engine,

then the side mass flow rate leaves the control volume nearly in the x-direction.

Thus,

∯ux ρu � dA� � ¼ m
�
eue þ u ρu A� Aeð Þ½ � þ m

�
su� m

�
au� u ρu A� Aið Þ½ �

∴∯ux ρu � dA� � ¼ m
�
eue � m

�
au� ρu2 Ae � Aið Þ þ m

�
su

From Eq. (C)

∴∯ux ρu � dA� � ¼ m
�
eue � m

�
au Eð Þ

From Eqs. (D) and (E) then

τ � Pe � Pað ÞAe ¼ m
�
eue � m

�
au

From Eq. (B)

∴τ ¼ m
�
a 1þ fð Þue � u½ � þ Pe � Pað ÞAe

The following terminology is always used:

Net thrust¼ τ

Gross thrust¼m
�
a 1þ fð Þue½ � þ Pe � Pað ÞAe

Momentum thrust¼m
�
a 1þ fð Þue½ �

Pressure thrust¼ Pe � Pað ÞAe

Momentum drag¼m
�
au

Thus: Net thrust¼Gross thrust – Momentum drag

Or in other words:

Net thrust¼Momentum thrust + Pressure thrust – Momentum drag

Example 2.2 A fighter airplane is being refueled in flight using the hose-and-

drogue system as shown in Fig. 2.5 at the rate of 300 gal/min of fuel having a

specific gravity of 0.7. The inside diameter of hose is 0.12 m. The fluid pressure at

the entrance of the fighter plane is 30 kPa gage. What additional thrust does the

plane need to develop to maintain the constant velocity it had before the hookup?
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Solution

At first, it is worthy defining aerial refueling (which is also identified as air
refueling, in-flight refueling (IFR), air-to-air refueling (AAR), or tanking) as the

process of transferring fuel from one aircraft (the tanker) to another (the receiver)

during flight. When applied to helicopters, it is known as HAR for helicopter aerial

refueling. A series of air refueling can give range limited only by crew fatigue and

engineering factors such as engine oil consumption.

Now, back to our problem, consider a control volume starting from the probe to

the fuel tank. This is an inertial control volume with the positive x-direction parallel
to aircraft flight direction.

Thus the linear momentum equation in the x-direction is

Fx ¼ ∯
C:S:

Vxρ V:dA
� �þ ∂

∂t

ððð
C:V:

Vx ρ dv

where Fx is the force in the x-direction. Since a steady flow is assumed in refueling

process, then

Fx ¼ ∯
C:S:

Vxρ V:dA
� �

which is rewritten as: Tx � pA ¼ � Vx � �ρVxAð Þ½ � ¼ ρV2
xA

Fig. 2.5 Aerial refueling using the hose-and-drogue system
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where Tx is the needed additional thrust and the velocity of fuel flow into the probe

is Vx. Since

Vx ¼ Q

A
¼ 300� 3:785� 10�3=60
� �

π � 0:12ð Þ2=4
h i ¼ 0:018925

0:01131
¼ 1:6733 m=s

ρ ¼ 0:7� 1000 ¼ 700 kg=m3

The additional thrust is then

Tx ¼ pþ ρV2
x

� �
A ¼ 30� 103 þ 700� 1:6733ð Þ2

h i
� 0:01131 ¼ 364N

Example 2.3 The idling turbojet engines of a landing airplane produce forward

thrust when operating in a normal manner, but they can produce reverse thrust if the

jet is properly deflected. Suppose that, while the aircraft rolls down the runway at

180 km/h, the idling engine consumes air at 40 kg/s and produces an exhaust

velocity of 150 m/s.

(a) What is the forward thrust of the engine?

(b) What is the magnitude and direction (forward or reverse) if the exhaust is

deflected 90� and the mass flow is kept constant?

Solution

Forward thrust has positive values and reverse thrust has negative values.

(a) The flight speed is U¼ 180/3.6¼ 50 m/s.

The thrust force represents the horizontal or the x-component of the momentum

equation.

T ¼ _m a ue � uð Þ

T¼ 40*(150–50)¼ 4000 N

(b) Since the exhaust velocity is now vertical due to thrust reverse application, then

it has a zero horizontal component; thus, the thrust equation is

T ¼ _m a ue � uð Þ
T ¼ 40* 0� 50ð Þ ¼ � 2000 N

T ¼ � 2000 N reverseð Þ
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2.3.3 Angular Momentum Equation (Moment
of Momentum)

Consider a finite system of fluid as shown in Fig. 2.6. An element dm of the system

is acted on by a forcedFand has a linear momentum (mdV). From Newton’s law, we
can write

dF ¼ D

Dt
Vdm
� � ð2:12Þ

Now take the cross product of each side using the position vector r. Thus,

r � dF ¼ r � D

Dt
Vdm
� �

Consider next the following operation:

D

Dt
r � dmV
� � ¼ Dr

Dt
� dmV þ r � D

Dt
dmV
� �

Note that Dr=Dt ¼ V, so that the first expression on the right side is zero, since

V � V ¼ 0.
Thus, we arrive at the relation:

r � dF ¼ D

Dt
r � dmV
� � ð2:13aÞ

Next, we integrate Eq. (2.13a) over the entire system to getð
r � dF ¼

ððð
M

D

Dt
r � V
� �

dm ð2:13bÞ

dmV

dF

A

r

X

Y

Z

O

System
ρ

Fig. 2.6 Mass (dm) in a

finite system
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Since the mass of the system is fixed so that the limits of the integration on the right

side of Eq. (2.13b) are fixed, thus we can write

ð
r � dF ¼ D

Dt

ððð
M

r � Vdm

0
@

1
A ¼ DH

Dt

where H is the moment about a fixed point (a) in inertial space of the linear

momentum of the system. The integral on the left side of the equation represents

the total moment about point (a) of the external forces acting on the system and may

be given as ð
r � dF ¼ ∯

C:S

r � TdAþ
ððð
C:V

r � Bρdv ð2:14Þ

We may now give the moment-of-momentum equation for a finite system as

follows:

∯
C:S

r � TdAþ
ððð
C:V

r � Bρdv ¼ DH

Dt

Next, since (H	∰ r � V
� �

ρdv) is the extensive property, then its intensive property

(η) is (r � V). Thus applying Reynolds transport equation, one gets

DH

Dt
¼ ∯

CS

r � V
� �

ρV � dA� �þ ∂
∂t

ððð
CV

r � V
� �

ρdvð Þ

We then have the desired moment-of-momentum equation for an inertial control

volume:

∯
CS

r � TdAþ
ððð
CV

r � Bρdv ¼ ∯
CS

r � V
� �

ρV � dA� �

þ ∂
∂t

ððð
CV

r � V
� �

ρdvð Þ ð2:15Þ

The terms on the right side represent the efflux of moment of momentum through

the control surface plus the rate of increase of moment of momentum inside the

control volume where both quantities are observed from the control volume.
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Example 2.4 An impulse turbine blade row is illustrated in Fig. 2.7a. The rotor has

an average radius r of 0.6m and rotates at a constant angular speed ω. What is the

transverse torque on the turbine if the air mass flow rate is 100 kg/s?

Solution
Choosing the shown control volume described in Fig. 2.7a, and assuming the flow is

steady, then Eq. (2.14) is reduced to

∯
CS

r � TdA ¼ ∯
CS

r � V
� �

ρV � dA� �

Or the torque τ is expressed by the relation

τ ¼ ∯
CS

r � V
� �

ρV � dA� �

The flow is fast enough to assume a constant density; thus, the x-component of the

torque which is responsible for turbine rotation is expressed by the relation:

τx ¼ m
� � rz � Voutð Þy � Vinð Þy

h i
τx ¼ 100 � 0:6 � 0� 180� sin 60ð Þ½ � ¼ �9, 353 N:m

The negative sign indicates that the turbine rotor rotates in a counterclockwise

direction as shown in figure.

Another Solution

The above problem can also be solved using the linear momentum Eq. (2.11). The

tangential force (Ty) is expressed by the relation:

V2

V2

ω

60° 

60° wr

wr

w
V1=180 m/s

V1=180 m/s control
volume

x

y

z

a b

Fig. 2.7 Impulse turbine. (a) Layout. (b) Control volume
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∯
C:S:

TydAþ
ððð
C:V:

Byρ dv ¼ ∯
C:S:

Vyρ V:dA
� �þ ∂

∂t

ððð
C:V:

Vy ρ dv

Again for the same assumptions of steady constant density flow, then Ty is

expressed as

Ty ¼ ∯
C:S:

Vyρ V:dA
� � ¼ m

� � Voutð Þy � Vinð Þy
h i

Ty ¼ 100� 0� 180� sin 60ð Þ ¼ �15, 588 N

τx ¼ rz � Ty ¼ 0:6� �15, 588ð Þ ¼ �9, 353 N:m ¼ �9:353 kN:m

2.3.4 Energy Equation (First Law of Thermodynamics)

The first law of thermodynamics is a statement of macroscopic experience which

states that energy must at all times be conserved. It will be convenient to classify

energy under two main categories: stored energy and energy in transition. The types

of stored energy of an element of mass are:

1. Kinetic energy Ek: energy associated with the motion of the mass

2. Potential energy EP: energy associated with the position of the mass in conser-

vative external fields

3. Internal energy U: molecular and atomic energy associated with the internal

fields of the mass

The types of energy in transition are heat and work. Heat is the energy in

transition from one mass to another as a result of a temperature difference. On

the other hand, work, as learned in mechanics, is the energy in transition to or from

a system which occurs when external forces, acting on the system, move through a

distance.

For an arbitrary system (shown in Fig. 2.8), the net heat added to the system and

the net work done by the system on the surroundings during the time interval Δt are
designated as Q and Wk, respectively.

System

Q

Wk

Fig. 2.8 Heat and work on

system
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If E represents the total stored energy of a system at any time t and its property as
a point function is employed, conservation of energy demands that for a process

occurring during a time interval between t1 and t2, then

Q�Wk ¼ ΔE ¼ E2 � E1 ¼ Ek þ Ep þ U
� �

2
� Ek þ Ep þ U
� �

1
ð2:16Þ

The differential form of Eq. (2.16) may be written in the following manner:

dE ¼ dQ� dWk

Accordingly, we can employ the usual derivative notation dQ/dt and dWk/dt for
time derivative. However, E is a point function and expressible in terms of spatial

variables and time. Thus, we have for the time variations of stored energy and

energy in transition for a system.

DE

Dt
¼ dQ

d t
� dWK

d t
ð2:17Þ

To develop the control–volume approach, we will consider E being the extensive

property to be used in the Reynolds transport equation. The term (e) will then
represent stored energy per unit mass. We can then say using the Reynolds transport

equation

DE

Dt
¼ ∯

C:S:

e ρV :dA
� �þ ∂

∂t

ððð
C:V:

eρ dv ð2:18Þ

Using Eq. (2.17) in the left side of Eq. (2.18), we get

dQ

dt
� dWk

dt
¼ ∯

C:S:

e ρV :dA
� �þ ∂

∂t

ððð
C:V:

eρ dv ð2:19Þ

Equation (2.19) then states that the net rate of energy transferred into the control

volume by heat and work equals the rate of efflux of stored energy from control

volume plus the rate of increase of stored energy inside the control volume.

Where (e) is expressed as

e ¼ V2

2
þ gzþ u ð2:20Þ

Next let us discuss the term dWk/dt in Eq. (2.19) which is classified into three

groups:

1. Net work done on the surroundings as a result of traction force T.
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2. Any other work transferred by direct contact between inside and outside

non-fluid elements, like shafts or by electric currents. We call this work shaft

work and denote it as WS.

3. Work transferred by body forces. Since the effects of gravity have already been

taken into account as the potential energy (in Eq. 2.20), so the body forceBmust

not include gravity; it may include, for instance, contributions from magnetic

and electric force distributions.

Referring to Fig. 2.9, the time rate of the work leaving the control volume—the

total rate of flow work—is given as

Total rate of flow work¼�∯
CS

T:VdA

Also, the total rate of body force work leaving the control volume is given by:

Total rate of body force work¼�
ððð
CV

B � Vρdv

A general form of the first law can now be given as

dQ

d t
� dWs

d t
þ∯

CS

T � V dAþ
ððð
CV

B:Vρdv

¼ ∯
CS

V2

2
þ gzþ u

� � �
ρV � dA�þ ∂

∂t

ððð
CV

V2

2
þ gzþ u

� �
ρd v

ð2:21Þ

Fig. 2.9 Flow work and

control surface
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Figure 2.10 illustrates a simple example for a steady flow device having

one-dimensional inlet and outlet flows. This may represent, for instance, a gas
turbine having inlet and outlet at sections AA and BB. The traction force power

occurs at sections AA and BB and is given asþp1V1A1 and�p2V2A2, respectively.

Furthermore, ρV � dA at these sections becomes �ρ1V1A1 and þρ2V2A2;, respec-
tively. The equation becomes

dQ

d t
� dWs

d t
þ p1V1A1 � p2V2A2 ¼ � V2

1

2
þ gz1 þ u1

� �
ρ1V1A1

þ V2
2

2
þ gz2 þ u2

� �
ρ2V2A2 ð2:22Þ

Since the products ρ1v1 and ρ2v2 (where v1 and v2 are the specific volumes) equal

unity, the following form of the first law:

dQ

d t
þ V2

1

2
þ gz1 þ u1 þ p1v1

� �
ρ1V1A1

¼ dWs

dt
þ V2

2

2
þ gz2 þ u2 þ p2v2

� �
ρ2V2A2 ð2:23aÞ

Since the enthalpy h is defined as h ¼ uþ pv, and ρ1V1A1 ¼ ρ2V2A2 ¼ dm=dt, then
Eq. (2.23a) can be written as:

dQ

d t
þ V2

1

2
þ gz1 þ h1

� �
dm

dt
¼ dWs

dt
þ V2

2

2
þ gz2 þ h2

� �
dm

dt
ð2:23bÞ

Control volume

Control surface

A

B

Z1

Z2

Z

B

A

1

2
dQ/dt

dWs/dt

Fig. 2.10 Control volume for idealized machine
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If the following assumptions are satisfied:

1. The flow is steady.

2. Air is an ideal gas with constant specific heats.

3. Potential energy changes are negligible (gz1¼ gz2¼ 0).

4. There are no work interactions (dWs

dt ¼ 0).

5. The diffuser is adiabatic (dQd t ¼ 0).

then Eq. (2.23b) is reduced to

V2
1

2 1
þ h1 ¼ V2

2

2
þ h2 ð2:24Þ

Finally, if V1 ¼ 0, then the total or stagnation enthalpy (h1) is defined as

h1 ¼ V2
2

2
þ h2 ð2:25Þ

Example 2.5 Air is decelerated in an adiabatic diffuser. The inlet conditions are

pressure¼ 100 kPa, temperature¼ 50 �C, and velocity ¼500 m/s. The outlet

conditions are pressure¼ 150 kPa and temperature¼ 50 �C. The specific heat at

constant pressure is 1.007 kJ/kg. K. Calculate the velocity at outlet to diffuser.

Solution
Since the above-listed assumptions hold (steady flow with negligible changes in

height, no work or heat exchanges, and the fluid is an ideal gas with constant

specific heats), then Eq. (2.25) may be applied. Thus,

V2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 h1 � h2ð Þ þ V2

1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cp T1 � T2ð Þ þ V2

1

q
V2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1007� 20� 50ð Þ þ 500ð Þ2

q
¼ 435:4 m=s

2.3.5 The Second Law of Thermodynamics and the Entropy
Equation

The second law of thermodynamics states that: it is impossible for a system to
perform a cyclic process that produces work (say raising of a weight) and
exchanges heat with a single reservoir of uniform temperature. The second law

permits the definition of the property entropy (s). For a system,

ds ¼ dQ

T

� �
reversible

ð2:26Þ
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where ds is the change of entropy during a reversible heat exchange. Irreversible

processes are processes which involve one of these features: friction, heat transfer

with finite temperature gradient, mass transfer with finite concentration gradient, or

unrestrained expansion. For any process,

ds 
 dQ

T
ð2:27Þ

where equality holds only for reversible process. If the process is reversible and

adiabatic (dQ ¼ 0), it must be isentropic (ds ¼ 0).

For a small system composed of pure substance in the absence of gravity motion,

then if the properties are uniform throughout the system, then the first law for

incremental changes is

dq ¼ duþ dw

where q and w are the heat and work per unit mass. If the system experiences a

reversible process for which the incremental work dw ¼ pdv, then from Eq. (2.28),

we can write

Tds ¼ duþ pdv ð2:28Þ

2.3.6 Equation of State

In compressible gases, it is necessary to define the thermodynamic state of the gas

with state variables, e. g., the static pressure p, the static density ρ, and the static

temperature T. Their interdependence is described by the thermal equation of state.

If the law given by Boyle, Mariotte, and Gay-Lussac is used, then

p ¼ ρRT ð2:29Þ

The gas is called thermally perfect. For thermally non-perfect gases, other

relations must be used, as, for example, the Van der Waals law. The specific gas

constant R depends on the molecular weight of the gas. For air it is R¼ 287 J/kg K.

The gas constant is related to the universal gas constant (Ru) and the molecular

weight of gas (M ) by the relation

R ¼ R u

M

The value of universal gas constant is Ru ¼ 8:31434 kJ= kmol:Kð Þ
Internal energy is a state variable, which is defined by two thermodynamic

quantities, namely, the temperature T and the specific volume (v¼ 1/ρ):
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u ¼ u v;Tð Þ ð2:30Þ

This relation is known as the caloric equation of state. The total derivative is

du ¼ ∂u
∂v

� �
T

dvþ ∂u
∂T

� �
v

dT ð2:31Þ

The internal energy of thermally perfect gases depends on the temperature only. It

then follows that

du ¼ du

dT

� �
v

dT

where

Cv ¼ du

dT

� �
v

ð2:32Þ

The quantity du
dT

� �
v
is called specific heat at constant volume (Cv). If Cv is constant,

the gas is called calorically perfect, and the internal energy is given by

u ¼ CvT þ ur ð2:33Þ

The quantity ur is a reference value.
The enthalpy h was defined earlier and repeated here is defined as

h ¼ u þ p v ð2:34Þ

Similar to the internal energy, the enthalpy of thermally perfect gases depends on

the temperature only, or

dh ¼ Cp dT ð2:35aÞ

The quantity Cp is the specific heat at constant pressure, or

CP ¼ dh

dT

� �
p

ð2:36aÞ

It follows from the relation for the specific heats Cv and CP

Cp ¼ Cv þ R ð2:36bÞ

for calorically perfect gases, that Cp is constant. Hence,
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h ¼ CpT þ hr ð2:35bÞ

where hr is again a reference value.

The ratio of the specific heats Cp=Cv ¼ γ, where γ, according to the gas kinetic

theory, is given by the number n of degrees of freedom

γ ¼ n þ 2

n

For monatomic gases (n¼ 3) γ¼ 1.667, and for diatomic gases (n¼ 5) γ¼ 1.4. At

high temperatures additional degrees of freedom are excited, and the ratio Cp/Cv

decreases. For air at a temperature of 300 K, then γ¼ 1.4, while at temperature

3000 K, then γ¼ 1.292.

From Eqs. (2.28) and (2.33) and since P
T ¼ R

v

then

ds ¼ Cv
dT

T
þ R

dv

v
ð2:37Þ

Similarly, from Eqs. (2.28) and (2.34)

Tds ¼ dh� vdP

From Eq. (2.34) and ideal gas relation, v
T ¼ R

P, then

ds ¼ Cp
dT

T
- R

dP

P
ð2:38Þ

Example 2.6 The constant volume-specific heat of an ideal gas varies according to

the equationCv ¼ aT2, where a ¼ 2:32� 10� 5kJ=kg:K3. If the gas is heated from

50 to 80 �C at constant volume, find the change in entropy.

Solution
From Eq. (2.40), the change in entropy is expressed as

Δs ¼
ðT2

T1

Cv
dT

T
¼ a

ðT2

T1

T2 dT

T
¼ a

ðT2

T1

TdT ¼ a
T2
� �
2

T2

T1

T1 ¼ 50þ 273 ¼ 323 K

T2 ¼ 80þ 273 ¼ 353 K

Δs ¼ 2:32� 10�5 3532 � 3232
� �

=2 ¼ 0:235 kJ=kg:K
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2.4 Steady One-Dimensional Compressible Flow

One-dimensional flow refers to flow involving uniform distributions of fluid prop-

erties over any flow cross section area. It provides accurately the stream-wise

variation of average fluid properties. The flow in diffusers, combustors, and nozzles

exhibits the major characteristics of one-dimensional flow. Though

one-dimensional analysis for the flow in rotating elements (fans, compressors,

and turbines) provides also the mean flow features, it is more appropriate to extend

the analysis of flow within them to either two dimensional (2-D) or three dimen-

sional (3-D). This is attributed to the large variations normal to streamlines, which

are no longer limited to the thin layer adjacent to the surface and known as

boundary layer.

2.4.1 Isentropic Relations

It follows from the conservation equations for one-dimensional, steady, compress-

ible flow that the sum of the kinetic energy (u2/2) and the static enthalpy (h) remains

constant. The value of this constant is given by the stagnation (or total) enthalpy,

and Eq. (2.25) may be rewritten as

h0 ¼ h þ u2=2 ð2:25Þ

Generally, the stagnation state is a theoretical state in which the flow is brought into

a complete motionless condition in isentropic process without other forces (e.g.,

gravity force).

Several properties can be represented by this theoretical process which includes

temperature, pressure, density, etc. and denoted by the subscript “0.”

For calorically perfect gases, the enthalpy can be replaced by the product of

static temperature and the specific heat at constant pressure (CpT ), thus,

CpT0 ¼ CpT þ u2=2

or

T0 ¼ T þ u2

2Cp
ð2:39Þ

Introducing the thermal equation of state there in (2.39) results

γ

γ � 1

p0
ρ0

¼ γ

γ � 1

p

ρ
þ u2

2
ð2:40Þ

and with the definition of the speed of sound (a) as
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a2 ¼ γp

ρ
¼ γRT

Equation (2.40) will be reduced to

a20
γ � 1

¼ a2

γ � 1
þ u2

2
ð2:41Þ

The speed of sound depends on the gas constant (R) and temperature (T ); thus, the
sonic speed for air and helium (Rair ¼ 287 J=kg:K,RHelium ¼ 2077 J=kg:K ) at

different temperatures are given in the Table 2.1.

Rewriting Eq. (2.39), the following important set of equations can be derived:

T0 ¼ T þ u2

2Cp
¼ T þ γ � 1ð Þu2

2γR
ð2:42Þ

T0

T
¼ 1þ γ � 1

2

u2

γRT

Introducing the Mach number as the ratio of velocity to speed of sound

M ¼ u

a
ð2:43Þ

It very useful to convert Eq. (2.42) into a dimensionless form and denote

T0

T
¼ 1þ γ � 1

2
M2 ð2:44aÞ

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

γ � 1

T0

T
� 1

� �s
ð2:44bÞ

a0
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ � 1

2
M2

r
ð2:44cÞ

P0

P
¼ 1þ γ � 1

2
M2

� � γ
γ�1

ð2:44dÞ

ρ0
ρ
¼ 1þ γ � 1

2
M2

� � 1
γ�1

ð2:44eÞ

The mass flow per unit area is

Table 2.1 Sonic speeds at

different temperatures for air

and helium

Temperature (K) 200 300 1000

Air Sonic speed [m/s] 284 347 634

Helium Sonic speed [m/s] 832 1019 1861
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_m

A
¼ ρu

Using Eqs. (2.43) and (2.44), the velocity may be expressed as

u ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γRT0

1þ γ�1
2
M2

s

From the density relation, the mass flow rate parameter is expressed as

_m

A
¼ P0

ffiffiffi
γ

pffiffiffiffiffiffi
RT

p
0

M
1

1þ γ�1
2
M2

 ! γþ1

2 γ�1ð Þ

ð2:45aÞ

For a given fluid (γ,R) and inlet state (P0,T0), it can be readily shown that the mass

flow rate per unit area is maximum atM ¼ 1. Denoting the properties of the flow at

M¼ 1 with an asterisk, the maximum flow per unit area is

_m

A*
¼ P0

ffiffiffi
γ

pffiffiffiffiffiffi
RT

p
0

2

γ þ 1

� � γþ1

2 γ�1ð Þ
ð2:45bÞ

From the above two Eqs. (2.45a) and (2.45b), we get

A

A*
¼ 1

M

2

γ þ 1
1þ γ � 1

2
M2

� �	 
 γþ1

2 γ�1ð Þ
ð2:46Þ

Gas dynamics books ([4, 5] as examples) include in its appendices a set of tables for

isentropic flow parameters defined by Eqs. (2.44) and (2.46) for specific heat (γ
¼ 1:4). Table 2.2 illustrates few lines of such tables.

For a given isentropic flow and known (γ,R, P0,T0, _m: ), it is clear that A* is a

constant, so we can use these relations to plot the fluid properties versus Mach

number (Fig. 2.11).

2.4.2 Sonic Conditions

If the local flow velocity is equal to the speed of sound (M ¼ 1), then such sonic

condition is referred to as the critical state and is designated by an asterisk (*). The

temperature, pressure, and density attain the following values, which solely depend

on the stagnation conditions of the gas. From Eq. (2.44), we get
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Fig. 2.11 One-dimensional isentropic flow of a perfect gas

Table 2.2 Isentropic flow

parameters (γ ¼ 1:4)
M P/P0 T/T0 A/A * PA/P0A *

O 1.0 1.0 1 1
0.5 0.84302 0.95238 1.33984 1.12951

1.0 0.52828 0.83333 1.0 0.52828

5.0 0.00189 0.16667 25.0 0.04725
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T0

T*
¼ γ þ 1

2
a0
a*

¼
ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1

2

r
P0

P*
¼ γ þ 1

2

� � γ
γ�1

ρ0
ρ
¼ γ þ 1

2

� � 1
γ�1

ð2:47Þ

For air with γ¼ 1.4, the critical values are as follows (Table 2.3):

T0

T*
¼ 1:2,

P0

P*
¼ 1:8929,

ρ0
ρ*

¼ 1:5774,
a0
a*

¼ 1:095 ð2:48Þ

Instead of the local speed of sound (a), the critical speed of sound can be used to

define a Mach number, which is called the critical Mach number:

M* ¼ u=a* ð2:49Þ

The relation between the local Mach number (M ¼ u=a) and the critical Mach

number (M*) is derived from the relations (2.47) and (2.49), as

M*2 ¼ γ þ 1

γ � 1þ 2
M2

ð2:50Þ

ForM ! 1, the critical Mach numberM* approaches the following limiting value:

lim
M!1

M* ¼
ffiffiffiffiffiffiffiffiffiffiffi
γ þ 1

γ � 1

s
ð2:51Þ

With these relations the ratios of the temperature, pressure, density, and speed of

sound, referred to their stagnation values, can be expressed by the critical Mach

number:

Table 2.3 Critical ratios for

different values of (γ)
γ T0

T*
P0

P*
ρ0
ρ*

a0
a*

1.135 1.0675 1.7318 1.6223 1.0332

1.3 1.15 1.8324 1.5934 1.0723

1.4 1.2 1.8929 1.5774 1.095

1.667 1.335 2.0534 1.5429 1.155
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T0

T
¼ 1� γ � 1

γ þ 1
M*2

� ��1

a0
a
¼ 1� γ � 1

γ þ 1
M*2

� ��1
2

P0

P
¼ 1� γ � 1

γ þ 1
M*2

� � �γ
γ�1

ð2:52Þ

ρ0
ρ
¼ 1� γ � 1

γ þ 1
M*2

� ��1
γ�1

2.4.3 Classification of Mach Regimes

Aerodynamicists often classify airflow regimes using Mach number values. Six

flight regimes may be identified, namely, subsonic, transonic, supersonic, hyper-

sonic, high hypersonic, and re-entry ones. Subsonic and supersonic speeds are

associated with values of Mach number less or greater than unity, respectively.

An in-between region defined as “transonic regime” where Mach number is around

unity (from say 0.8 to 1.2). Mach values associated with supersonic regime vary

from 1.2 to 5. For hypersonic regime Mach number ranges from 5 to 10. NASA

defines “high” hypersonic when Mach number ranges from 10 to 25 and re-entry

speeds as anything greater thanMach 25 (Space Shuttle as an application). Table 2.4

illustrates such a classification.

Table 2.4 Classification of flow regimes

Regime Mach General plane characteristics

Subsonic <0.8 Propeller-driven and commercial turbofan aircrafts

Transonic 0.8–1.3 All present airliners (B777, 767,747 Airbus A320, A330, and A340)

fly at the lowest transonic speeds (typical speeds are greater than

250 mph but less than 760 mph)

Supersonic 1.3–5.0 Modern combat aircrafts including Ilyushin IL-76TD, MIG31, F117

Night Hawk, F 22 Raptor

Hypersonic 5.0–10.0 Aircrafts have cooled nickel–titanium skin, highly integrated, small

wings (X-51A WaveRider as an example)

High

hypersonic

10.0–25.0 Vehicles are thermally controlled; its structure is protected by special

silicate tiles or similar. They have blunt nose configurations to resist

aerodynamic heating

Re-entry >25.0 Vehicles have an ablative heat shield, no wings, blunt capsule shape
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2.4.4 Diffusers and Nozzles

Diffusers and nozzles are commonly utilized in jet engines, rockets, and spacecrafts.

A diffuser is a device that increases the pressure of a fluid by slowing it down, while a

nozzle is a device that increases the velocity of a fluid at the expense of pressure. That

is, diffusers and nozzles perform opposite tasks. Diffusers and nozzles involve no

work (W
� � 0) and negligible changes in potential energy (ΔPE � 0). Moreover, the

rate of heat transfer between the fluid flowing through a diffuser or a nozzle and the

surroundings is usually very small (Q
� � 0). This is due to the very short time air

(or gas) spends in either duct (few or fraction of milliseconds) which is insufficient

for a significant heat transfer to take place. However, fluid passing through diffusers

and nozzles experiences large changes in velocity. Therefore, the kinetic energy

changes must be accounted for (ΔKE 6¼ 0). The shape of both diffuser and nozzle

may be convergent or divergent depending on the velocity of flowing fluid. Rockets

and military high supersonic aircrafts normally have convergent–divergent or CD
nozzles. In a CD rocket nozzle, the hot exhaust leaves the combustion chamber and

converges down to the minimum area, or throat, of the nozzle. The throat size is

chosen to choke the flow and set the mass flow rate through the system. The flow in

the throat is sonic which means the Mach number is equal to one in the throat.

Downstream of the throat, the geometry diverges, and the flow is isentropically

expanded to a supersonic Mach number that depends on the area ratio of the exit to

the throat. The expansion of a supersonic flow causes the static pressure and temper-

ature to decrease from the throat to the exit, so the amount of the expansion also

determines the exit pressure and temperature. The exit temperature determines the

exit speed of sound, which determines the exit velocity. The exit velocity, pressure,

and mass flow through the nozzle determine the amount of thrust produced by the

nozzle.

2.4.4.1 Variation of Fluid Velocity with Flow Area

We begin with the conservation of mass equation:

_m ¼ ρVA ¼ constant

where _m: is the mass flow rate, ρ is the gas density,V is the gas velocity, andA is the

cross-sectional flow area. If we differentiate this equation, we obtain

VAdρþ ρAdV þ ρVdA ¼ 0

Divide by (ρVA) to get
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dρ

ρ
þ dV

V
þ dA

A
¼ 0

Now we use the conservation of momentum equation:

ρVdV ¼ �dP

and an isentropic flow relation: Tds ¼ dh� vdP

dP

P
¼ γ

dρ

ρ

where γ is the ratio of specific heats. Rewrite the above equation to obtain

dP ¼ γ
P

ρ
dρ

and use the equation of state (Pρ ¼ RT) to get

dP ¼ γRTdρ

Since (γRT) is the square of the speed of sound (a), then

dP ¼ a2dρ

Combining this equation for the change in pressure with the momentum equation,

we obtain

ρVdV ¼ � a2dρ

V

a2
dV ¼ � dρ

ρ

using the definition of the Mach number M ¼ V=a, then

�M2 dV

V
¼ dρ

ρ
ð2:53Þ

Now we substitute this value of (dρ/ρ) into the mass flow equation to get

�M2 dV

V
þ dV

V
þ dA

A
¼ 0

1�M2
� � dV

V
¼ � dA

A
ð2:54Þ

Equation (2.59) tells us how the velocity (V ) changes when the area (A) changes
and the results depend on the Mach number (M ) of the flow.
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If the flow is subsonic then (M < 1:0)—the term multiplying the velocity change

is positive [ 1�M2
� �

> 0 ]—then an increase in the area (dA > 0 ) produces a

decrease in the velocity (dV < 0), which is the case of a diffuser. On the contrary a

decrease in the area produces an increase in velocity, which is the case of a nozzle.

For a supersonic flow (M > 1:0 ), the term multiplying velocity change is

negative [ 1�M2
� �

< 0 ]. Then an increase in the area ( dA > 0 ) produces an

increase in the velocity (dV > 0) or a nozzle. The decrease in the area leads to a

decrease in velocity or a diffuser.

Table 2.5 summarizes this behavior.

Figure 2.12 illustrates the geometry of diffusers and nozzles in subsonic and

supersonic speeds.

For the case of CD nozzle, if the flow in the throat is subsonic, the flow

downstream of the throat will decelerate and stay subsonic. So if the converging

section is too large and does not choke the flow in the throat, the exit velocity is very

slow and does not produce much thrust. On the other hand, if the converging section

is small enough so that the flow chokes in the throat, then a slight increase in area

causes the flow to go supersonic. This is exactly the opposite of what happens

subsonically.

Table 2.5 Variation of duct area with inlet Mach number

Accelerated flow (nozzle) Decelerated flow (diffuser)

Constant velocitydV > 0 dV < 0

M < 1:0 dA < 0 dA > 0 dA ¼ 0

M > 1:0 dA > 0 dA < 0 dA ¼ 0

Fig. 2.12 Variation of flow properties in subsonic and supersonic nozzles and diffusers
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Example 2.7 Air at 5 �C and 80 kPa enters the diffuser of a jet engine steadily with

a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m2. The air leaves the

diffuser with a velocity that is very small compared with the inlet velocity.

Determine (a) the mass flow rate of the air and (b) the temperature of the air leaving

the diffuser.

Solution

We take the diffuser as the system (Fig. 2.13). This is a control volume since mass

crosses the system boundary during the process. We observe that there is only one

inlet and one exit and thus _m 1 ¼ _m 2 ¼ _m: .

(a) To determine the mass flow rate, we need to find the density of the air first.

This is determined from the ideal gas relation at the inlet conditions:

ρ1 ¼
P1

RT1

¼ 80� 103

287� 273þ 5ð Þ ¼ 1:0027 kg=m3

_m ¼ ρ1V1A1 ¼ 1:0027� 200� 0:4 ¼ 79:8 kg=s

(b) From the energy equation

dQ

d t
þ V2

1

2
þ gz1 þ h1

� �
_m ¼ dWs

dt
þ V2

2

2
þ gz2 þ h2

� �
_m:

With small exit velocity (V2 � 0), negligible potential energy variation as well as

heat and work exchange (z1 � z2, dQ=dt ¼ dWs=dt ¼ 0), then, energy equation is

reduced to

h2 ¼ h1 þ V2
1

2

Fig. 2.13 Diffuser and

control volume
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T2 ¼ T1 þ V2
1

2Cp
¼ 278þ 2002

2� 1005
¼ 297:9 K

Example 2.8 Gas flows through a converging–diverging nozzle. Points G and H lie

between the inlet and outlet of the nozzle. At a point “G,” the cross-sectional area is

500 cm2 and the Mach number was measured to be 0.4. At point “H” in the nozzle,

the cross-sectional area is 400 cm2. Find the Mach number at point H. Assume that

the flow is isentropic and the gas-specific heat ratio is 1:3.

Solution

To obtain the Mach number at point G, apply Eq. (2.46) to find the ratio between the

area (AG) to the critical one (A*)

AG

A*
¼ 1

MG

2

γ þ 1
1þ γ � 1

2
MG

2

� �	 
 γþ1

2 γ�1ð Þ

AG

A*
¼ 1

0:4

� �
2

1:3þ 1

� �
1þ 1:3� 1

2
0:4ð Þ2

� �	 
 2:3
2 0:3ð Þ

¼ 1:6023

At point H, the area ratio is evaluated from the relation:

AH

A*
¼ AH

AG

AG

A*
¼ 400

500
� 1:6023 ¼ 1:2818

Again from Eq. (2.46)

AH

A*
¼ 1

MH

2

γ þ 1
1þ γ � 1

2
MH

2

� �	 
 γþ1

2 γ�1ð Þ

Rearranging to solve for the Mach number MH,

MH
AH

A*

� �2 γ�1ð Þ
γþ1

� γ � 1

γ þ 1
MH

2 ¼ 2

γ þ 1

MH
AH

A*

� �2 γ�1ð Þ
γþ1

� γ � 1

γ þ 1
MH

2 ¼ 2

γ þ 1

1:0669MH
0:2609 � 0:1304MH

2 ¼ 0:8696

Solving the above equation by trial and error, we get either

MH ¼ 0:5374 or MH ¼ 1:612
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Both solutions are possible, the first is still a subsonic Mach number which may

be located in the convergent section, while the second one is supersonic which may

be located in the divergent section if the speed at throat is sonic: Mthroat ¼ 1:0.

2.4.5 Shocks

A shock is an irreversible flow discontinuity in a (partly) supersonic flow fluid. It

may be also defined as a pressure front which travels at speed through a gas. Upon

crossing the shock waves, pressure, temperature, density, and entropy rise while the

normal velocity decreases. There are two types of shocks, namely, normal and

oblique.

2.4.5.1 Normal Shock Waves

Consider a plane supersonic flow with a normal compression shock in a channel

with constant cross-sectional area (Fig. 2.14). The conditions upstream and down-

stream the shock are denoted by subscripts (1) and (2), respectively. Under the

following assumptions—steady, one dimensional, adiabatic (δq ¼ 0), no shaft work

(δw ¼ 0), negligible potential (δz ¼ 0), constant area (A1 ¼ A2) and negligible wall

shear—then equations of state and integral forms of conservation equations will

have the following forms:

Fig. 2.14 One-dimensional shock waves
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Continuityequation
_m

A
¼ ρ1 u1 ¼ ρ2 u2

Momentumequation p1 þ ρ1 u1
2 ¼ p2 þ ρ2 u2

2

Energy equation h01	h1 þ u1
2=2 ¼ h2 þ u2

2=2 ¼ h02

Equationof state
p1

ρ1T1

¼ p2
ρ2T2

ð2:55Þ

From the continuity equation, equation of state for perfect gas, and the velocity

relation

u ¼ M
ffiffiffiffiffiffiffiffi
γRT

p
we arrive at the relation

p1M1ffiffiffiffiffi
T1

p ¼ p2M2ffiffiffiffiffi
T2

p

Moreover, the energy equation together with the perfect gas relation (2.44a)

T0 ¼ T 1þ γ � 1

2
M2

� �

yields the following relation:

T1 1þ γ � 1

2
M1

2

� �
¼ T2 1þ γ � 1

2
M2

2

� �

The momentum equation together with the equation of state provides the following

relation:

p1 1þ γM1
2

� � ¼ p2 1þ γM2
2

� �
The following relations give the downstream Mach number, static temperature,

pressure, and density ratios as well as the total pressure and temperature ratios

across the shock:

M2
2 ¼ γ � 1ð ÞM1

2 þ 2

2γM1
2 � γ � 1ð Þ ð2:56Þ

T2

T1

¼ 2γM1
2 � γ � 1ð Þ� �

γ � 1ð ÞM1
2 þ 2

� �
γ þ 1ð Þ2M1

2
ð2:57Þ
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P2

P1

¼ 2γM1
2 � γ � 1ð Þ
γ þ 1

	 

ð2:58Þ

ρ2
ρ1

¼ γ þ 1ð ÞM1
2

2þ γ � 1ð ÞM1
2

	 

¼ u1

u2
ð2:59Þ

P02

P01

¼ γ þ 1ð ÞM1
2

2þ γ � 1ð ÞM1
2

	 
 γ
γ�1 γ þ 1ð Þ

2γM1
2 � γ � 1ð Þ

	 
 1
γ�1

ð2:60Þ

T02

T01

¼ 1

u1u2 ¼ a*
2

This means that u1 > a* > u2. The critical sonic speed is expressed as

a*
2 ¼ 2γRT0

γ þ 1ð Þ ¼
2 γ � 1ð Þ
γ þ 1ð Þ CpT0

From the entropy relation, the total pressure ratio can be also expressed as

p02
p01

¼ e�
s2�s1

Rð Þ

Equations (2.56), (2.57), (2.58), (2.59), and (2.60) are plotted in Fig. 2.15.

We can state two simple rules of thumb:

1. A normal shock wave always forms between supersonic and subsonic flow.

2. The flow behind a normal shock wave is always subsonic.

Normal shock waves are encountered in the flow in intakes and nozzles as well

as over aircraft wings. Figure 2.16 illustrates normal shock waves formed on the

suction or both suction and pressure surfaces of wing sections.

It is obvious that a very useful table for fluid flow changes across a normal shock

can be constructed using the above equations. This kind of table is available in all

gas dynamics or compressible flow texts [4, 5]. Table 2.6 illustrates these relations.

You are encouraged to complete missing data in Table 2.6.

Example 2.9 Air is flowing through normal shock. Flow conditions upstream of the

shock are u1 ¼ 600 m=s , T01 ¼ 500 K, P01 ¼ 700 kPa It is required to calcu-

late the downstream conditions M2, u2, T2, P2, Po2 and s2 � s1ð Þ.Assume: calori-

cally perfect ideal gas.
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Solution

The upstream conditions (static temperature, pressure, and density as well as sonic

speed and Mach numbers) can be calculated from the following relations:

T1 ¼ T01 � u1
2

2Cp
¼ 500� 600ð Þ2

2� 1005
¼ 320:89 K

Fig. 2.15 Normal shock functions (γ ¼ 1:4)
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P1 ¼ P01= 1þ γ � 1

2
M1

2

� � γ
γ�1

¼ 700=4:7249 ¼ 148:15 kPa

ρ1 ¼ P1=RT1 ¼ 148:15

0:287� 320:9
¼ 1:609 kg=m3

a1 ¼
ffiffiffiffiffiffiffiffiffiffi
γRT1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 320:89

p
¼ 359:0 m=s

M1 ¼ u1=a1 ¼ 600=359 ¼ 1:671

Fig. 2.16 Normal shock waves over either suction or suction/pressure sides of wing section

Table 2.6 Normal shock

parameters (γ ¼ 1:4)
M1 M2 P2/P1 T2/T1 P02/P01

3.0 0.47519 10.3333 2.6790 0.32834

2.5 ? ? ? ?

2.0 0.57735 4.5000 1.6875 0.72089

1.5 ? ? ? ?

1.00 1.00 1.00 1.00 1.00
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Mach number downstream the shock wave (M2) is evaluated from the relation:

M2
2 ¼ γ � 1ð ÞM1

2 þ 2

2γM1
2 � γ � 1ð Þ ¼

0:4� 1:671ð Þ2 þ 2

2� 1:4� 1:671ð Þ2 � 0:4
¼ 3:1169

7:418
¼ 0:34489

M2 ¼ 0:648

From knownMach number (M2), the air properties downstream of the normal shock

can be evaluated as follows:

T2

T1

¼ 2γM1
2 � γ � 1ð Þ� �

γ � 1ð ÞM1
2 þ 2

� �
γ þ 1ð Þ2M1

2

¼
2� 1:4� 1:671ð Þ2 � 0:4
h i

0:4� 1:671ð Þ2 þ 2
h i

2:4� 1:671ð Þ2
T2

T1

¼ 7:4183� 3:1169

16:0833
¼ 1:4376

T2 ¼ 461:34 K

u2 ¼ M2 � c2 ¼ M2 �
ffiffiffiffiffiffiffiffiffiffi
γRT2

p
¼ 0:648�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 461:34

p
¼ 278:9m=s

ρ2 ¼ ρ1 u1=u2 ¼ 1:609� 600=278:9 ¼ 3:4614 kg=m3

p2 ¼ p1 þ ρ1 u
2
1 � ρ2 u

2
2

P2 ¼ 148:15� 103 þ 1:609� 600ð Þ2 � 3:4614� 278:9ð Þ2
P2 ¼ 458, 144 Pa ¼ 458:14 kPa

Since
P02

P01

¼ γ þ 1ð ÞM1
2

2þ γ � 1ð ÞM1
2

	 
 γ
γ�1 γ þ 1ð Þ

2γM1
2 � γ � 1ð Þ

	 
 1
γ�1

Then
P02

P01

¼ 2:4� 1:671ð Þ2
2þ 0:4 1:671ð Þ2
" #3:5

2:4

2:8� 1:671ð Þ2 � 0:4

" #2:5
¼ 0:86759

P02 ¼ 607:32 kPa

As a check, calculate the value of (T02):

T02 ¼ T2 1þ γ � 1

2
M2

2

� �
¼ 461:34� 1þ 0:2� 0:648ð Þ2

h i
¼ 500 K

This confirms the total temperature (or enthalpy) equality, T02 ¼ T01, as stated

above.
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Since
P02

P01

¼ e�
s2�s1

Rð Þ

Then s2 � s1 ¼ �Rln
P02

P01

� �
¼ 40:764 J=kg K

The temperature–entropy diagram is illustrated by Fig. 2.17, which shows the static

and total conditions upstream and downstream of the shock. Note the entropy

increased despite not including any entropy-generating mechanisms in this

model. Why? First, the differential equations themselves required the assumption

of continuous differentiable functions. Our shock violates this.

When one returns to the more fundamental control volume forms, it can be

shown that the entropy-generating mechanism returns. From a continuum point of

view, one can also show that the neglected terms, that momentum and energy

diffusion, actually give rise to a smeared shock. These mechanisms generate just

enough entropy to satisfy the entropy jump which was just calculated.

Another interpretation may be also given as follows: the assumption that the

compression shock represents a discontinuity is only an approximation. In reality

the shock has a thickness (δ) of the order of magnitude of several free mean paths. If

the gas flowing through the shock can be assumed to be a continuum, the Navier–

Stokes equations can be employed for the description of the flow between the

upstream and downstream edge of the compression shock. The flow quantities do

not change discontinuously in the form of a jump but in a continuous transition from

the free-stream conditions to the flow conditions downstream from the shock. The

increase of the entropy can now be explained as an action of the frictional forces

and the heat conduction within the shock region of finite thickness.

Fig. 2.17 Static and total

conditions
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2.4.5.2 Off Design and Normal Shock Waves in Nozzles

The objective of CD nozzle is to obtain supersonic flow. Thus, the design operating

condition is to have a subsonic flow in the convergent section, a sonic condition at

throat, and a supersonic flow in the divergent part. For off-design conditions, many

possibilities for the speed at the nozzle exit may be encountered depending on the

back pressure Pb. The fluid may find itself decelerating in the diverging section

instead of accelerating. A detailed description is given with the aid of Fig. 2.18.

When a fluid enters the nozzle with a low velocity at stagnation pressure P0, the

state of the nozzle flow is determined by the overall pressure ratio Pb/P0. When the

back pressure Pb ¼ P0 (case A), there will be no flow through the nozzle. This is

expected since the flow in a nozzle is driven by the pressure difference between the

nozzle inlet and the exit. Now let us examine what happens as the back pressure is

lowered.

1. When P0 > Pb > PC (critical pressure), the flow remains subsonic throughout

the nozzle, and the mass flow is less than that for choked flow. The fluid velocity

increases in the converging section and reaches a maximum at the throat (but

still subsonic; M < 1 ). However, most of the gain in velocity is lost in the

diverging section of the nozzle, which acts as a diffuser. The pressure decreases

in the converging section, reaches a minimum at the throat, and increases at the

expense of velocity in the diverging section.

2. When Pb ¼ PC, the throat pressure becomes P* and the fluid achieves sonic

velocity at the throat. But the diverging section of the nozzle still acts as a

diffuser, slowing the fluid to subsonic velocities. The mass flow rate that was

increasing with decreasing Pb also reaches its maximum value. Recall that P* is
the lowest pressure that can be obtained at the throat, and the sonic velocity is the

highest velocity that can be achieved with a converging nozzle. Thus, lowering

Pb further has no influence on the fluid flow in the converging part of the nozzle

or the mass flow rate through the nozzle. However, it does influence the

character of the flow in the diverging section. This mode of operation is

frequently called the first critical [5].
3. When PC > Pb > PE, the fluid that achieved a sonic velocity at the throat

continues accelerating to supersonic velocities in the diverging section as the

pressure decreases. This acceleration comes to a sudden stop, however, as a

normal shock develops at a section between the throat and the exit plane, which

causes a sudden drop in velocity to subsonic levels and a sudden increase in

pressure. This mode of operation is frequently called the second critical [5]. The
fluid then continues to decelerate further in the remaining part of the

converging–diverging nozzle. Flow through the shock is highly irreversible,

and thus it cannot be approximated as isentropic. The normal shock moves

downstream away from the throat as Pb is decreased, and it approaches the

nozzle exit plane as Pb approaches PE. When Pb ¼ PE, the normal shock forms

at the exit plane of the nozzle. The flow is supersonic through the entire

diverging section in this case, and it can be approximated as isentropic.
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Fig. 2.18 The effects of back pressure on the flow through a converging–diverging nozzle
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However, the fluid velocity drops to subsonic levels just before leaving the

nozzle as it crosses the normal shock.

4. When PE > Pb > 0, the flow in the diverging section is supersonic, and the fluid

expands to PF at the nozzle exit with no normal shock forming within the nozzle.

Thus, the flow through the nozzle can be approximated as isentropic. When

Pb ¼ PF, no shocks occur within or outside the nozzle. This mode of operation is

frequently called the third critical [5]. When Pb < PF (underexpanded case),
irreversible mixing and expansion waves occur downstream of the exit plane of

the nozzle. When Pb > PF (overexpanded case), however, the pressure of the

fluid increases from PF to Pb irreversibly in the wake of the nozzle exit, creating

what are called oblique shocks.

Example 2.10 A large tank with compressed air is attached into a converging–

diverging nozzle (Fig. 2.19) with pressure 8 bar and temperature of 327 �C. Nozzle
throat area is 30 cm2 and the exit area is 90 cm2. The shock occurs in a location

where the cross section area is 60 cm2. Calculate the back pressure and the

temperature of the flow. Also determine the critical subsonic and supersonic points

for the back pressure (point “a” and point “b”).

Solution
The stagnation temperature and pressure at the nozzle inlet are equal to the specified

values in the tank.

P01 ¼ 8 bar , T01 ¼ 327þ 273 ¼ 600 K

Since the star area (the throat area), A*, and the area upstream of the shock are

known, then this ratio is given as

A x

A*
¼ 60

30
¼ 2

Fig. 2.19 Convergent-divergent nozzle
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To evaluate the conditions upstream of the normal shock (state x), Eq. (2.46) is
employed. It may be reduced to

Mx
Ax

A*

� �2 γ�1ð Þ
γþ1

� γ � 1

γ þ 1
Mx

2 ¼ 2

γ þ 1

with γ ¼ 1:4, then it is further simplified to

1:25992Mx
0:3333 � 0:16667Mx

2 ¼ 0:8333

Solve the above equation by trial and error to get Mx ¼ 2:1972
From isentropic relations (2.44)

T0

Tx
¼ 1þ γ � 1

2
Mx

2 ¼ 1:96554

Tx ¼ 305:3 K

P0x

Px
¼ 1þ γ � 1

2
Mx

2

� � γ
γ�1

¼ 10:64596

Px ¼ 0:7515 bar

From normal shock relations (2.56), (2.57), (2.58), (2.59), and (2.60)

My
2 ¼ γ � 1ð ÞMx

2 þ 2

2γMx
2 � γ � 1ð Þ ¼

3:931075

13:11752

My ¼ 0:54743

Ty

Tx
¼ 2γMx

2 � γ � 1ð Þ� �
γ � 1ð ÞMx

2 þ 2
� �

γ þ 1ð Þ2Mx
2

¼ 13:117523� 3:931

27:8074

Ty

Tx
¼ 1:8543

Ty ¼ 566:1 K

Py

Px
¼ 2γM1

2 � γ � 1ð Þ
γ þ 1

	 

¼ 5:46564

Py ¼ 4:1 bar
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P0y

P0x
¼ γ þ 1ð ÞMx

2

2þ γ � 1ð ÞMx
2

	 
 γ
γ�1 γ þ 1ð Þ

2γMx
2 � γ � 1ð Þ

	 
 γ
γ�1

P0y

P0x
¼ 2:4� 2:1972ð Þ2

2þ 0:4� 2:1972ð Þ2
" #3:5

2:4

2:8� 2:1972ð Þ2 � 0:4

" #2:5

P0y

P0x
¼ 43:95788� 0:014318 ¼ 0:62941

P0y ¼ 4:11 bar

Again utilizing the isentropic relationship, the exit conditions can be evaluated.

With known Mach number the new star area ratio (A y=A
∗) can be calculated from

the relation:

Ay

A*
¼ 1

My

2

γ þ 1
1þ γ � 1

2
My

2

� �	 
 γþ1

2 γ�1ð Þ

Ay

A*
¼ 1

0:54743

2

2:4
1þ 0:2 0:54743ð Þ2
� �	 
3

¼ 1:25883

From known exit area, then

A e

A∗ ¼ A e

Ay

A y

A∗ ¼ 90

60
� 1:25883 ¼ 1:88824

From this area ratio, then (Me) can be calculated by trial and error using the relation

Me
Ae

A*

� �2 γ�1ð Þ
γþ1

� γ � 1

γ þ 1
Me

2 ¼ 2

γ þ 1

1:236Mx
0:3333 � 0:16667Mx

2 ¼ 0:8333

Me ¼ 0:327

From isentropic relations (2.44)

T0

Te
¼ 1þ γ � 1

2
Me

2 ¼ 1:02138

P0e

Pe
¼ P0y

Pe
¼ 1þ γ � 1

2
Me

2

� � γ
γ�1

¼ 1:07687

Pe ¼ Pe

P0y

P0y

P0x
P0x ¼ 1

1:07687
� 0:62941� 8 ¼ 4:6758 bar
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Te ¼ Te

T0

T0 ¼ 1

1:02138
� 600 ¼ 587:4 K

A summary of the above results is given here in Table 2.7.

The “critical” points “a” and “b” at nozzle exit resemble the subsonic and

supersonic limits if no shock waves exist and the flow achieves a Mach equal of

unity at the throat. The area ratio for both cases is calculated from the relation:

Ae

A*
¼ 1

Me

2

γ þ 1
1þ γ � 1

2
Me

2

� �	 
 γþ1

2 γ�1ð Þ

Since Ae

A* ¼ 90
30
¼ 3:0, then the exit Mach number may be calculated by trial and error

from the relation:

Me
Ae

A*

� �2 γ�1ð Þ
γþ1

� γ � 1

γ þ 1
Me

2 ¼ 2

γ þ 1

1:4422Me
0:3333 � 0:16667Me

2 ¼ 0:8333

Two solutions are obtained, namely,Me¼ 0.19745 andMe¼ 2.6374. Both solutions

are illustrated by points (a) and (b) in Fig. 2.20.

For point “a,” Ma¼ 0.19745:

The exit pressure and temperature are determined as follows:

T0

Ta
¼ 1þ γ � 1

2
Ma

2 ¼ 1:00779

Ta ¼ 600=1:00779 ¼ 595:3 K

P0

Pa
¼ 1þ γ � 1

2
Ma

2

� � γ
γ�1

¼ 1:027557

Pa ¼ 8=1:027557 ¼ 7:785 bar

For point “b,” Mb¼ 2.6374.

Table 2.7 Properties of air inside the nozzle

Inlet Upstream normal shock Downstream normal shock Exit

M 0 2.1972 0.54743 0.327

P0 (bar) 8 8 4.11 4.11

P (bar) – 0.7515 4.1 4.6758

T (K) – 305.3 566.1 587.4
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The exit pressure and temperature are determined as follows:

T0

Tb
¼ 1þ γ � 1

2
Mb

2 ¼ 2:39117

Tb ¼ 600=2:39117 ¼ 250:92 K

P0

Pb
¼ 1þ γ � 1

2
Mb

2

� � γ
γ�1

¼ 21:14172

Pb ¼ 0:3784 bar

A summary of these results are given in Table 2.8.

Fig. 2.20 Subsonic and supersonic solutions

Table 2.8 Subsonic and supersonic solutions

Mach number Static temperature (K) Static pressure (bar)

Point (a) (subsonic solution) 0.19745 595.3 7.785

Point (b) (supersonic solution) 2.6374 250.92 0.3784
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2.4.5.3 Oblique Shock Wave Relations

Normal shock was examined in Sect. 2.4.4.2. Normal shock is a special case of the

general inclined one. When shock is inclined to the flow direction, it is identified as

an oblique shock. When a wedge-shaped object is placed in a two-dimensional

supersonic flow, a plane-attached shock wave may emanate from the nose of the

body at an angle (β) as long as shown in Fig. 2.21. The flow Mach number and the

wedge angle (δ) together define the resulting attached or detached shock configu-

ration. Similarly, when a supersonic flow encounters a concave corner with an angle

(δ), two possibilities of attached or detached shock waves exist. Figure 2.22 illus-

trates the abovementioned four cases. There is a maximum deflection angle (δmax)

associated with any given Mach number. When the deflection angle exceeds δmax, a

detached shock forms which has a curved wave front. Behind this curved (or -

bow-like) wave, we find all possible shock solutions associated with the initial

Mach numberM1. At the center a normal shock exists, with subsonic flow resulting.

As the wave front curves around, the shock angle decreases continually, with a

resultant decrease in shock strength. Eventually, we reach a point where supersonic

flow exists after the shock front.

Oblique shock waves are preferred predominantly in engineering applications

compared with normal shock waves. This can be attributed to the fact that using one

or a combination of oblique shock waves results in more favorable post-shock

conditions (lower post-shock temperature and pressure) when compared to utilizing

a single normal shock. An example of this technique can be seen in the design of

supersonic aircraft engine inlets, which are wedge shaped to compress airflow into

the combustion chamber while minimizing thermodynamic losses. Early supersonic

aircraft jet engine inlets were designed using compression from a single normal

Fig. 2.21 Oblique shock wave applications
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shock, but this approach caps the maximum achievable Mach number to roughly

1.6. The wedge-shaped inlets are clearly visible on the sides of the F-14 Tomcat,

which has a maximum speed of Mach 2.34.

For analyzing oblique shock, consider Fig. 2.23 where the flow is deflected angle

δ, and a shock generated inclined an angle β to the flow direction. The flow

approaches the shock wave with a velocity V1 and Mach number M1 at an angle β
with respect to the shock. It is turned through an angle δ as it passes through the

shock, leaving with a velocity V2 and a Mach number M2 at an angle (β � δ) with
respect to the shock. The inlet and exit velocities can be separated into tangential

and normal components. The tangential velocity components upstream and down-

stream the shocks are equal. The normal velocity component may be treated as flow

through a normal shock. This means that V1n is supersonic and V2n is subsonic, but

still the downstream velocity V2 is supersonic. The following relations define the

normal and tangential velocity components and Mach number for both upstream

and downstream conditions:

V1t ¼ V2t

Fig. 2.22 Oblique shock wave applications
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V1t ¼ V1 cos β V2t ¼ V2 cos β � δð Þ
V1n ¼ V1 sin β V2n ¼ V2 sin β � δð Þ

M1n ¼ M1 sin β > 1:0 M2n ¼ M2 sin β � δð Þ < 1:0

M1t ¼ M1 cos β M2t ¼ M2 cos β � δð Þ
M1 > 1:0, M2 > 1:0

Since the oblique shock can be treated as a normal shock having an upstream Mach

number M1n ¼ M1 sin β and a tangential component M1t ¼ M1 cos β, then using

Eqs. (2.56), (2.57), (2.58), (2.59), and (2.60), the relations (2.62–2.66) can be

deduced; [9] and [10]. The relation between (δ, β,M1) is given by Eq. (2.61).

tan δ ¼ 2 cot β M2
1 sin

2β � 1
� �

γ þ 1ð ÞM2
1 � 2 M2

1 sin
2β � 1

� � ð2:61aÞ

For γ ¼ 7=4, then

tan δ ¼ 5
M2

1 sin 2β � 2 cot β

10þM2
1 7þ 5 cos 2βð Þ ð2:61bÞ

Fig. 2.23 Nomenclature of oblique shock wave
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M2n
2 ¼ γ � 1ð ÞM1n

2 þ 2

2γM1n
2 � γ � 1ð Þ ð2:62aÞ

M2
2 sin 2 β � δð Þ ¼ γ � 1ð ÞM1

2 sin 2β þ 2

2γM1
2 sin 2β � γ � 1ð Þ ð2:62bÞ

For γ ¼ 7=4, then

M2
2 ¼ 36M1

4 sin 2β � 5 M1
2 sin 2β � 1

� �
7M1

2 sin 2β þ 5
� �

7M1
2 sin 2β � 1

� �
M1

2 sin 2β þ 5
� � ð2:62cÞ

P2

P1

¼ 2γM1
2 sin 2β � γ � 1ð Þ

γ þ 1

	 

ð2:63aÞ

For γ ¼ 7=4, then

P2

P1

¼ 7M1
2 sin 2β � 1

6

� �
ð2:63bÞ

T2

T1

¼ 2γM1
2 sin 2β � γ � 1ð Þ� �

γ � 1ð ÞM1
2 sin 2β þ 2

� �
γ þ 1ð Þ2M1

2 sin 2β
ð2:64aÞ

For γ ¼ 7=4, then

T2

T1

¼ 7M1
2 sin 2β � 1

� �
M1

2 sin 2β þ 5
� �

36M1
2 sin 2β

ð2:64bÞ

ρ2
ρ1

¼ γ þ 1ð ÞM1
2 sin 2β

2þ γ � 1ð ÞM1
2 sin 2β

	 

ð2:65aÞ

For γ ¼ 7=4, then

ρ2
ρ1

¼ 6M1
2 sin 2β

M1
2 sin 2β þ 5

	 

ð2:65bÞ

P02

P01

¼ γ þ 1ð ÞM1
2 sin 2β

γ � 1ð ÞM1
2 sin 2β þ 2

	 
 γ
γ�1 γ þ 1

2γM1
2 sin 2β � γ � 1ð Þ

	 
 1
γ�1ð Þ

ð2:66aÞ

For γ ¼ 7=4, then the relation for total pressure ratio will be

P02

P01

¼ 6M1
2 sin 2β

M1
2 sin 2β þ 5

	 
7
2 6

7M1
2 sin 2β � 1

	 
 5
2ð Þ

ð2:66bÞ

Figure 2.24 illustrates the relation between M1, β and δ for oblique shock wave for

the case of γ ¼ 1:4. Figure 2.25 illustrates the downstream Mach number M2 for

oblique shock wave also for γ ¼ 1:4.
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Example 2.11 An oblique shock wave has the following upstream static conditions

and Mach number: P1 ¼ 150 kPa, T1 ¼ 500 K, M1 ¼ 1:605 and a shock angle

β ¼ 600. It is required to calculate:

1. Upstream velocity (V1), deflection angle (δ)
2. Downstream Mach number (M2)

Fig. 2.24 Relation between M1, β and δ for oblique shock wave γ ¼ 1:4
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3. Static and total temperatures (T2,T01, T02)
4. Normal and tangential velocity components upstream and downstream of the

oblique shock (V1n,V1t,V2n,V2t)

5. Static and total pressures (P2,P01,P02)

Solution

V1 ¼ M1a1 ¼ M1

ffiffiffiffiffiffiffiffiffiffi
γRT1

p
¼ 1:609�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 500

p

V1 ¼ 719:4 m=s

The deflection angle is calculated from Eq. (2.61a):

tan δ ¼
2 cot 60 1:605 sin 60ð Þ2 � 1

h i
2:4ð Þ 1:605ð Þ2 � 2 1:605 sin 60ð Þ2 � 1

h i ¼ 0:24916

δ ¼ 14�

From Eq. (2.62b)

Fig. 2.25 Downstream Mach number M2 for oblique shock wave γ ¼ 1:4
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M2
2 sin 2 60� 14ð Þ ¼ 0:4� 1:604 sin 60ð Þ2 þ 2

2:8� 1:604 sin 60ð Þ2 � 0:4

M2
2 ¼ 1:06968

M2 ¼ 1:042

From Eq. (2.64a)

T2

T1

¼ 2:8� 1:932� 0:4½ � 0:4� 1:932þ 2½ �
2:4ð Þ2 � 1:932

¼ 1:2482

T2 ¼ 624:1 K

Isentropic relation at inlet gives

T01 ¼ T1 1þ γ � 1

2
M1

2

� �
¼ 500� 1:5152 ¼ 757:6 K ¼ T02

V1n ¼ V1 sin β ¼ 719:4� sin 60 ¼ 623 m=s

V1t ¼ V1 cos β ¼ 359:7 m=s

V2 ¼ M2a2 ¼ M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γRT2 ¼

p
1:034�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 624

p
¼ 517:8 m=s

V2 ¼ 517:8 m=s

V2n ¼ V2 sin β � δð Þ ¼ 372:5 m=s

V2t ¼ V2 cos β � δð Þ ¼ 359:7	V1t

From Eqs. (2.63a) and (2.63b),

P2

P1

¼ 2γM1
2 sin 2β � γ � 1ð Þ

γ þ 1

	 

¼ 7M1

2 sin 2β � 1

6

� �

P2

P1

¼ 7� 1:605� sin 60ð Þ2 � 1

6
¼ 2:0874

P2 ¼ 313:1 kPa

P01 ¼ P1 1þ γ � 1

2
M1

2

� � γ
γ�1

¼ 150� 1þ 0:2� 1:605ð Þ2
h i3:5

¼ 642:3 kPa

From Eqs. (2.66a) and (2.65b),

P02

P01

¼ 6M1
2 sin 2β

M1
2 sin 2β þ 5

	 
7
2 6

7M1
2 sin 2β � 1

	 
 5
2ð Þ
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P02

P01

¼ 6� 1:932

1:932þ 5

	 
7
2 6

7� 1:932� 1

	 
 5
2ð Þ
¼ 0:96

P02 ¼ 0:96P01 ¼ 616:6 kPa

As a comment here, oblique shock wave has the following features:

• Downstream flow is maintained supersonic.

• Both downstream static pressure and temperature are increased.

• Total temperature is kept constant while downstream total pressure is slightly

reduced.

2.5 Rayleigh Flow Equations

Rayleigh flow resembles the case of a steady one-dimensional flow with heat
transfer. Thus, it is appropriate to treat the flow in combustion chambers as a

Rayleigh flow case. Consider the fluid flow in Fig. 2.26. No work exchange while

heat is added (1Q2).

Fig. 2.26 Steady one-dimensional frictionless flow in a constant-area duct with heat transfer
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The governing equations are

Continuityequation
_m

A
¼ ρ1 u1 ¼ ρ2 u2

Momentumequation p1 þ ρ1 u1
2 ¼ p2 þ ρ2 u2

2

Energy equation h02	h2 þ V2
2

2
¼ h01 þ 1Q2 ¼ h1 þ V1

2

2
þ 1Q2

Equationof state
p1

ρ1T1

¼ p2
ρ2T2

For a perfect gas, the momentum equation can be rewritten as

p1 1þ ρ1 u
2
1

p1

� �
¼ p2 1þ ρ2 u

2
2

p2

� �

or

P2

P1

¼ 1þ γM1
2

1þ γM2
2

	 

ð2:67Þ

From continuity equation

ρ1 u1 ¼ ρ2 u2

P1M1ffiffiffiffiffi
T1

p ¼ P2M2ffiffiffiffiffi
T2

p

Thus

T2

T1

¼ 1þ γM1
2

1þ γM2
2

� �2
M2

2

M1
2

ð2:68Þ

Since the total and static temperatures are related by the relation:

T0

T
¼ 1þ γ � 1

2
M2

Then

T02

T01

¼ 1þ γM1
2

1þ γM2
2

� �2
M2

M1

� �2 1þ γ�1
2
M2

2

1þ γ�1
2
M1

2

 !
ð2:69Þ
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Similarly, the total pressure and static density ratios may be expressed as

P02

P01

¼ 1þ γM1
2

1þ γM2
2

1þ γ�1
2
M2

2

1þ γ�1
2
M1

2

 ! γ
γ�1

ð2:70Þ

ρ2
ρ1

¼ M1

M2

� �2
1þ γM2

2

1þ γM1
2

� �
ð2:71Þ

The downstream Mach number is expressed by the relation:

M2
2 ¼

γ � 1ð ÞM2
1 þ 2

2γM2
1 � γ � 1ð Þ ð2:72Þ

At critical conditions, these relations will be reduced to

P

P*
¼ γ þ 1

1þ γM2

	 

ð2:73Þ

T

T*
¼ M2 γ þ 1ð Þ2

1þ γM2
� �2 ð2:74Þ

T0

T*
0

¼ 2 1þ γð ÞM2

1þ γM2
� �2 1þ γ � 1

2
M2

� �
ð2:75Þ

P0

P*
0

¼ 1þ γð Þ
1þ γM2
� � 1þ γ�1

2
M2

γþ1
2

 ! γ
γ�1

ð2:76Þ

ρ

ρ*
¼ 1þ γM2

1þ γð ÞM2
ð2:77Þ

Example 2.12 The combustion chamber in a ramjet engine has the following

characteristics:

T01 ¼ 360 K, T02 ¼ 1440 K, M2 ¼ 0:9:

It is required to calculate:

• The inlet Mach number M1

• The amount of heat added

Assume that γ ¼ 1:3 and R ¼ 287 J=kg:K
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Solution

From Eq. (2.69)

M1
2 1þ γ � 1

2
M1

2

� �
¼ T01

T02

M2
2 1þ γ�1

2
M2

2
� �
1þ γM2

2
� �2 1þ γM1

2
� �2

M1
4 γ2A� γ � 1

2

� �
þM1

2 2γA� 1ð Þ þ A ¼ 0

Where A¼ T01

T02

M2
2 1þ γ�1

2
M2

2
� �
1þ γM2

2
� �2 ¼ 360

1440

0:9ð Þ2 1þ 0:15� 0:9ð Þ2
h i

1þ 1:3� 0:9ð Þ2
h i2 ¼ 0:0538823

M1
4 �0:0589389ð Þ þM1

2 �:0859906ð Þ þ 0:0538823 ¼ 0

M1
2 ¼ 0:0623939

Thus M1 ¼ 0:24979

Since

Cp ¼ γR

γ � 1
¼ 1:3� 287

0:3
¼ 1243:67 J=kg:K

The heat added is then from energy equation:

Q ¼ h02 � h01 ¼ Cp T02 � T01ð Þ ¼ 1243:67 1440� 360ð Þ ¼ 1, 343, 160 J=kg:K

Q ¼ 1343:16kJ=kg:K

Example 2.13 The combustion chamber in a turbojet engine has the following inlet

conditions:

T01 ¼ 500 K, P01 ¼ 15 bar, M1 ¼ 0:15, _m 1 ¼ 200 kg=s, the exit tempera-

ture is T02 ¼ 1500 K, and fuel-to-air ratio is f ¼ 0:0273. Calculate:

1. Inlet area of combustor (A1)

2. The total pressure ratio across the combustor

3. Mach number and area at combustor outlet (M2,A2)

Assume that γ ¼ 1:4 and R ¼ 287 J=kg:K

Solution

The static temperature and pressure at inlet are

T1 ¼ T01

1þ γ�1
2
M2

¼ 500

1þ 0:2� 0:15ð Þ2 ¼ 497:8 K
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P1 ¼ P01

1þ γ�1
2
M2

� � γ
γ�1

¼ 15

1þ 0:2� 0:15ð Þ2
� �3:5 ¼ 14:766 bar

V1 ¼ M1a1 ¼ M1

ffiffiffiffiffiffiffiffi
γRT

p
1 ¼ 0:15�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 500

p
¼ 67:23 m=s

ρ1 ¼
P1

RT1

¼ 10:335 kg=m3

A1 ¼ _m 1

ρ1V1

¼ 200

10:335� 67:23
¼ 0:288 m2

To evaluate Mach number at combustor outlet, we can use Eq. (2.69):

T02

T01

¼ 3 ¼ 1þ 1:4� 0:15½ �2
1þ 1:4�M2

2

 !2
M2

0:15

� �2
1þ 0:2M2

2

1þ 0:2� 0:15½ �2
 !

3 ¼ 47:08�M2
2 � 1þ 0:2M2

2
� �

1þ 1:4�M2
2

� �2
The above equation is solved by trial and error to obtain M2 ¼ 0:277

Now the total pressure ratio across the combustor is obtained from Eq. (2.70);

thus,

P02

P01

¼ 1þ 1:4� 0:15ð Þ2
1þ 1:4� :0:277ð Þ2

1þ 0:2� 0:277ð Þ2
1þ 0:2� 0:15ð Þ2

 !3:5

¼ 1:0315

1:1074
� 1:0383

P02

P01

¼ 0:9671

The static properties at the outlet of combustion chamber are obtained from

relations (2.67), (2.68), and (2.71).

P2

P1

¼ 1þ 1:4� 0:152

1þ 1:4� 0:2772

	 

¼ 0:93144

T2

T1

¼ 1þ 1:4� 0:152

1þ 1:4� 0:2772
� 0:277

0:15

� �2

¼ 2:9586

ρ2
ρ1

¼ 0:15

0:277

� �2
1þ 1:4� 0:2772

1þ 1:4� 0:152

� �
¼ 0:3148

ρ2 ¼ 3:2535 kg=m3, T2 ¼ 1472:8K

V2 ¼ M2

ffiffiffiffiffiffiffiffiffiffi
γRT2

p
¼ 213 m=s

The outlet mass flow rate is _m 2 ¼ _m 1 1þ fð Þ ¼ 200 1þ 0:0273ð Þ ¼ 205:46 kg=s
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The outlet area of combustor is then

A2 ¼ _m 2

ρ2V2

¼ 205:46

3:2535� 213
¼ 0:2965 m2

2.6 The Standard Atmosphere

For a fluid in rest without shearing stresses, any elementary fluid element will be

subjected to two types of forces, namely, surface forces due to the pressure and a

body force equal to the weight of the element. Force balance will yield the

following relation:

∇p ¼ �γk

where γ is the specific weight of fluid and k is the unit vector in the positive vertical
direction (opposite to the gravitational force) and

γ ¼ ρg

Thus,

∂p
∂x

¼ 0,
∂p
∂y

¼ 0,
∂p
∂z

¼ �γ ¼ �ρg ð2:78Þ

The first two derivatives in Eq. (2.78), show that the pressure does not depend on

x or y. Thus, as we move from one point to another in a horizontal plane (any plane

parallel to the x–y plane), the pressure does not change. Since p depends only on z,
the last of Eq. (2.78) can be written as the ordinary differential equation

dp

dz
¼ �γ ¼ �ρg ð2:79Þ

Equation (2.79) is the fundamental equation for fluids at rest and can be used to

determine how pressure changes with elevation. This equation indicates that the

pressure gradient in the vertical direction is negative; that is, the pressure decreases

as we move upward in a fluid at rest. For the Earth’s atmosphere where the

variations in heights are large, on the order of thousands of feet, attention must be

given to the variation in the specific weight (γ). Since air may be considered an ideal

(or perfect) gas, its equation of state (p ¼ ρRT) is used.
This relationship can be combined with Eq. (2.79) to give

dp

dz
¼ � gp

RT
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and by separating variables

ðp2
p1

dp

p
¼ ln

p2
p1

¼ �g

R

ðz2
z1

dz

T
ð2:80Þ

where g and R are assumed to be constant over the range of elevation involved.

Equation (2.80) relates to the variation in pressure in the Earth’s atmosphere.

Ideally, we would like to have measurements of pressure versus altitude over the

specific range of altitude. However, this type of information is usually not available.

Thus, a “standard atmosphere” has been determined that can be used in the design

of aircraft and rockets. The concept of a standard atmosphere was first developed in

the 1920s, and since that time many US and international committees and organi-

zations have pursued the development of such a standard. The currently accepted

standard atmosphere is based on a report published in 1962 and updated in 1976

[11, 12], defining the so-called US standard atmosphere, which is an idealized

representation of middle-latitude, year-round mean conditions of the Earth’s atmo-

sphere. Figure 2.27 shows the temperature profile for the US standard atmosphere.

Fig. 2.27 Variation of temperature with altitude in the US Standard Atmosphere
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As is shown in this figure, the temperature decreases with altitude in the region

nearest the Earth’s surface (troposphere), then becomes essentially constant in the

next layer (stratosphere), and subsequently starts to increase in the next layer. Since
the temperature variation is represented by a series of linear segments, it is possible

to integrate Eq. (2.80) to obtain the corresponding pressure variation. For example,

in the troposphere, which extends to an altitude of about 11 km ’ 36, 000 ftð Þ, the
temperature variation is of the form

T ¼ Ta � βz ð2:81aÞ

where Ta is the temperature at sea level (z ¼ 0) and β is the lapse rate (the rate of
change of temperature with elevation), 0.00356616 �F/ft, or 0.0019812 �C/ft. For
the standard atmosphere in the troposphere, and if (z) represents altitude in feet,

then Eq. (2.81a) may be further expressed as

T ¼ 518:67� 0:00356616 z �R ð2:81bÞ
T ¼ 288:15� 0:0019812 z �K ð2:81cÞ
t ¼ 59� 0:00356616 z �F ð2:81dÞ
t ¼ 15� 0:0019812 z �C ð2:81eÞ

Equation (2.81a) together with Eq. (2.80) yields

p ¼ pa 1� βz

Ta

� � g
βR

ð2:82Þ

where ( pa) is the absolute pressure at z¼ 0. With pa¼ 101.33 kPa, Ta¼ 288.15 K

and g¼ 9.807 m/s2, and with the gas constant R ¼ 286:9J=kg:K. The pressure

variation throughout the troposphere can be determined from Eq. (2.82). This

calculation shows that at the outer edge of the troposphere, where the temperature

is �56.5 �C, the absolute pressure is about 23 kPa. It is to be noted that modern

jetliners cruise at approximately this altitude.

For the stratosphere atmospheric layer (between 11.0 and 20.1 km), the temper-

ature has a constant value (isothermal conditions) which is �56.5 �C (or �69.7 �F,
389.97 �R, 216.65�K).

It then follows from Eq. (2.80), the pressure-elevation relationship expressed as

p ¼ p0exp � g z� z0ð Þ
RT0

	 

ð2:83Þ

where p0, T0, and z0 are the pressure, temperature, and altitude of the lower edge of

the stratosphere (23 kPa, �56.5 �C, 36,000 ft).

Figure 2.28 illustrates the variation of temperature with altitude. Figure 2.29

illustrates flight altitudes appropriate to different aircrafts. Table 2.9 defines the

properties of the Earth standard atmosphere [12].
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Fig. 2.28 The ISA: variation of temperature with altitude
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Problems

2.1 Calculate the Mach number for a flight vehicle flying at a speed of

10,000 km/h at the following altitudes:

sea level – 10,000 m �25,000 m – 50,000 m – 100,000 m – 200,000 m –

400,000 m – 1,000,000 m.

2.2 Describe probe-and-drogue air-to-air refueling system.

2.3 What are the advantages of refueling a military aircraft?

2.4 Tornado GR4 refueling from the drogue of an RAF VC10 tanker as shown in

figure Problem 2.4 at the rate of 600 gal/min of fuel having a specific gravity

of 0.75. The inside diameter of hose is 0.14 m. The fluid pressure at the

entrance of the fighter plane is 40 kPa gage. What additional thrust does the

plane need to develop to maintain the constant velocity it had before the

hookup?

Table 2.9 Properties of the Earth’s standard atmosphere (Ref. [12])

Altitude (m) Temperature (K) Pressure ratio

Density

(kg/m3)

0 (sea level) 288.150 1.0000 1.2250

1000 281.651 8.87� 10�1 1.11117

3000 268.650 6.6919� 10�1 0.90912

5000 255.65 5.3313� 10�1 0.76312

10,000 223.252 2.6151� 10�1 4.1351� 10�1

25,000 221.552 2.5158� 10�2 4.0084� 10�2

50,000 270.650 7.8735� 10�4 1.0269� 10�3

75,000 206.650 2.0408� 10�5 3.4861� 10�5

100,000 195.08 3.1593� 10�7 5.604� 10�7

130,000 469.27 1.2341� 10�8 8.152� 10�9

160,000 696.29 2.9997� 10�9 1.233� 10�9

200,000 845.56 8.3628� 10�10 2.541� 10�10

300,000 976.01 8.6557� 10�11 1.916� 10�11

400,000 995.83 1.4328� 10�11 2.803� 10�12

600,000 999.85 8.1056� 10�13 2.137� 10�13

1,000,000 1000.00 7.4155� 10�14 3.561� 10�15
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2.5 Fighter airplane is refueling from the DC-10 tanker as shown in figure

Problem 2.5 at the rate of 700 gal/min of fuel having a specific gravity of

0.72. The inside diameter of hose is 0.13 m. The fluid pressure at the entrance

of the fighter plane is 45 kPa gage. What additional thrust does the plane

need to develop to maintain the constant velocity it had before the hookup?

Figure (Problem 2.4)

Figure (Problem 2.5)
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2.6 A jet plane is on the runway after touching down. The pilot puts into play

movable vanes to achieve a reverse thrust from his two engines. Each engine

takes in 50 kg of air per second, The fuel-to-air ratio is 1–40. If the exit

velocity of the combustion products is 800 m/s relative to the plane, what is

the total reverse thrust of the airplane if it is moving at a speed of 180 km/h ?

The exit jets are close to atmospheric pressure.

2.7 A fighter plane is climbing at an angle θ of 60o at a constant speed of

900 Km/h. The plane takes in air at a rate of 450 kg/s. The fuel-to-air ratio

is 2 %. The exit speed of the combustion products is 1800 m/s relative to the

plane. If the plane changes to an inclination angle θ of 20o, what will be the

speed of the plane when it reaches uniform speed? The new engine settings

are such that the same amount of air taken in and the exhaust speed relative

to the plane are the same. The plane weights 150 kN. The drag force is

proportional to the speed squared of the plane.

2.8 If the fighter plane in problem (2.7) is climbing also at an angleθ ¼ 600 but at

a constant acceleration (a). The weight, thrust, and drag forces are 150, 715,

and 500 kN, respectively. Calculate the acceleration (a). Next, the plane

changes its angle to 200, while the air mass flow rate is 450 kg/s, exhaust

speed of gases is 1800 m/s, and fuel-to-air ratio is 2 %. For the same value of

acceleration calculated above and if the drag force is proportional to the

speed squared of the plane, what will be the aircraft velocity.

2.9 Figure Problem (2.9) illustrates supersonic jet fighter aircraft Mikoyan–

Gurevich MiG-21. One type of its armament is Nudelman–Rikhter NR-30,

twin-barrel 23 mm GSh-23 cannon. It had a muzzle velocity of 800 m/s. Each

bullet (cartridge) is 30� 155 mm and has a mass of 400 grams and a rate of

fire of 900 cycles per minute. What is the additional thrust needed to keep a

constant aircraft speed of 600 km/h? (Neglect the change of mass of aircraft.)

18°

Figure (Problem 2.6)
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2.10 If the specific heat at constant pressure is expressed by the relation

Cp

R
¼ 7

2
þ TR= 2Tð Þ

sinh TR= 2Tð Þf g
	 
2

where the reference temperature TR ¼ 3060K, plot Cp, Cv, γ and h of air as a
function of T/TR over the range 300 to 3800 K.

2.11 A rocket engine uses nitric acid as oxidizer. The oxidizer flow rate is 2.60 kg/s

and a fuel flow of 0.945 kg/s. Thus, the propellant flow rate is 3.545 kg/s. If the

flow leaves the nozzle at 1900 m/s through an area of 0.012 m2 with a pressure

of 110 kPa, what is the thrust of the rocket motor?

Figure (Problem 2.9)
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2.12 A rocket is designed to have four nozzles, each canted at 30o with respect to the

rocket’s centerline. The gases exit at 2200 m/s through the exit area of 1.2 m2.

The density of the exhaust gases is 0.3 kg/m3, and the exhaust pressure is

55 kPa. The atmospheric pressure is 12 kPa. Determine the thrust on the rocket.

Figure (Problem 2.11)

Figure (Problem 2.12)
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2.13 A convergent nozzle has an exit area of 500mm2. Air enters the nozzle with a

stagnation pressure of 1000 kPa and a stagnation temperature of 360 K.

Determine the mass rate of flow for back pressures of 850, 528, and

350 kPa, assuming isentropic flow.

2.14 A converging–diverging nozzle has an exit area to throat area ratio of 2. Air

enters this nozzle with a stagnation pressure of 1000 kPa and a stagnation

temperature of 460 K.

The throat area is 500mm2. Determine the mass rate of flow, exit pressure,

exit temperature, exit Mach number, and exit velocity for the following

conditions:

(a) Sonic velocity at the throat, diverging section acting as a nozzle (corre-

sponds to point G in Fig. 2.18)

(b) Sonic velocity at the throat, diverging section acting as a diffuser

(corresponding to point C in Fig. 2.18)

2.15 An oblique shock wave has the following data

M1 ¼ 3:0, P1 ¼ 1 atm, T1 ¼ 288 K, γ ¼ 1:4, δ ¼ 20�

(a) Compute shock wave angle (weak)

(b) Compute P02, T02,P2, T2, M2 behind shock
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