Chapter 2
A Review of Basic Laws
for a Compressible Flow

2.1 Introduction

The operation of aero engines and rockets is governed by the laws of fluid
mechanics (or more specifically aerodynamics and gas dynamics) as well as
thermodynamics. Understanding and analyzing the performance of aero engines
and rocket motors requires a closed set of governing equations (conservation of
mass and energy, linear and angular momentums, entropy) as well as several
compressible flow relations that govern the isentropic flow, normal and oblique
shock waves, expansion waves, and finally Fanno and Rayleigh flow. For under-
standing the basic physical phenomena, gas will be modeled as a perfect gas, and
apart from the rotating elements (fans, compressors, and turbines), the flow will be
assumed one dimensional, where its properties are assumed constant across the flow
and vary only in the flow direction (axial direction). It is assumed that the students
have studied a first course in both fluid mechanics and thermodynamics. A review
of thermo-fluid physics and one-dimensional gas dynamics will be given in this
chapter. For more details, students are asked to refer to the following set of
textbooks: Shames and White [1, 2] for fluid mechanics and Shapiro, Zucrow and
Hoffman, and Zucker [3-5] for gas dynamics together with Keenan, Sonntag,
et al. as well as Cengel and Boles [6-8] for thermodynamics.

Macroscopic approach rather than microscopic one will be followed here. The
concepts of system and control volume are followed in specifying a definite
collection of material and a region in space that will be analyzed.
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Control volume

Fig. 2.1 System and control volume. (a) System. (b) Control volume
2.2 System and Control Volume

A system is a collection of matter of fixed identity. It may be considered enclosed by
an invisible, massless, flexible surface through which may change shape, and
position, but must always entail the same matter. For example, one may choose
the steam in an engine cylinder (Fig. 2.1) as a system. As the piston moves, the
volume of the system changes, but there is no change in the quantity and identity of
mass. The terms system and control mass have identical meaning.

A control volume is a region of constant shape and size that is fixed in space
relative to the observer. The boundary of this volume is known as the control
surface. This control surface may be imagined as massless, invisible, and rigid
envelope which offers no resistance to the passage of mass. The amount and
identity of the matter in the control volume may change with the time, but the
shape of the control volume is fixed. For instance, to study flow through a variable
geometry duct, one could choose, as a control volume, the interior of the duct as
shown in Fig. 2.1. We note that the control volume and the system can be
infinitesimal.

2.3 Fundamental Equations

Four basic laws must be satisfied for the continuous medium (or continuum) inside
aero engines and rocket motors, namely:

. Conservation of matter (continuity equation)

. Newton’s second law (momentum and moment-of-momentum equations)
. Conservation of energy (first law of thermodynamics)

. Second law of thermodynamics

AW N =

In addition to these general laws, there are numerous subsidiary laws, sometimes
called constitutive relations, that apply to specific types of media, like the equation
of state for the prefect gas and Newton’s viscosity law for certain viscous fluids.
Furthermore, for high-speed flows additional compressible flow features have to be



2.3 Fundamental Equations 93

A Streamlines

System at time “t” System at time “t+At”

Fig. 2.2 Simplified view of moving system

governed by isentropic, Rayleigh and Fanno flow relations together with normal
and oblique shock relations if encountered. In thermodynamics we have two kinds
of properties of a substance. These whose measure depends on the amount of mass
of the substance are called extensive properties, and those whose measure is
independent of the amount of mass of the substance present are called intensive
properties. Temperature and pressure are two famous examples for intensive
properties. Examples of extensive properties are weight, momentum, volume, and
energy. Each extensive variable such as enthalpy (H) and energy (E), we have H

= ”J hpdv and E = ”J epdv., has its intensive properties: (%) and (e).

Consider next an arbitrary flow field V (x,y,z,f) as seen from some frame of
reference xyz wherein we observe a system of fluid of finite mass at times “t” and
t + At” as shown in Fig. 2.2. The streamlines correspond to those at time “t.” In
addition to this system, we will consider that the volume in space occupied by the
system at time “t” is the control volume fixed in position and shape in xyz. Hence, at
time “t” our system is identical to the fluid inside our control volume. Let us now
consider some arbitrary extensive property “N” of the fluid. The distribution of “N”

per unit mass will be given as “#” such that N = J” npdv with dv representing an

element of volume.

We have divided up the overlapping systems at time ‘¢ + A7’ and at time “t” into
three regions, as shown in Fig. 2.2. The region II is common to the system at both
times “t” and “¢ + At.” Let us compute the rate of change of N with respect to time
for the system by the following limiting process:

dN . DN
— | SySstem = —
dt y Dt
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After some manipulation, with the net efflux rate equal to the outlet rates efflux
minus the rate influx through the control surface, we arrive at the relation

DN 0

o= —tm npdv + Cﬁ;&n(pV o dA) (2.3)

cv

Equation (2.3) is called Reynolds transport equation. This equation permits us to
change from a system approach to a control-volume approach.

2.3.1 Conservation of Mass (Continuity Equation)

Now, let us apply Reynolds transport Eq. (2.3) to reach the continuity rquation. In
this case:

1. The extensive property “N” is the mass of a fluid system “M.”
2. The quantity “n” is unity, since M = J” pdv.
cv.
Then Reynolds transport equation will have the form
DM 0 - —
= pdv+ $§ (pV.dA) =0 (2.42)

Dt~ 0t c.s.
C.V.

Since we can choose a system of any shape at time “t,” the relation above is then
valid for any control volume at time “t” as follows:
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o7 a0 =g [ o 240

That is, the net efflux rate of mass through the control surface equals the rate of
decrease of mass inside the control volume. Equation (2.4) and its simplified forms
are called equation of continuity.

If the flow is steady relative to a reference fixed to the control volume, all fluid
properties, including the density at any fixed position in the reference, must remain
invariant with time. The right side of Eq. (2.4) can be written in the form

”J (0p/0t)dv,, and this integral is zero. Hence, we can state that any steady flow
% p (V.dA) =0 (2.5a)
cs.

Next, consider the case of incompressible flow, in this case, p is constant at all
positions in the domain and for all even if the velocity field is unsteady. The right
side of Eq. (2.4) vanishes then, and on the left side of this equation, we can extract p
from under the integral sign. We then arrive at the relation:

§ (VedA)=0 (2.5b)

Thus, for any incompressible flow, conservation of mass reduces to conservation of
volume. Let us consider the very common situation in which fluid enters some
device through a pipe and leaves the device through a second pipe, as shown
diagrammatically in Fig. 2.3. A dashed line indicates the chosen control surface.
We assume that the flow is steady relative to the control volume and that the inlet
and outlet flows are one dimensional. Applying Eq. (2.5a) for this case, we get

Control surface

/

—_— W
PLVLAINY —

Control volume
P2, Vo, Ay

B
>

Fig. 2.3 Control volume for device with 1-D inlet and outlet
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§ (oV 0 7A) — ” (oV o dA) +” (oV o dA)
CcS

A A,

where A and A, are, respectively, the entrance and exit areas

igg (pV o dA) = —” pVdA + JJ pVdA

A Az

With p and V constant at inlet and outlet sections, we obtain the following equation:

—prlﬂdA +p2V2JJ dA =0
Ay Ay

Integrating, we get

[)1V1A1 = p2V2A2 (26)

2.3.2 Linear Momentum (Newton’s Second Law)

Newton’s second law states that
_ d _ dP
@)@ e
dt system b dr system

Fr is the resultant external force and P is the linear momentum vector.

F is classified as the surface force and body force distributions. The surface
force is denoted as T (x, y, z, t) and given as force per unit area on the boundary
surfaces. The body force distribution is denoted as B (x,y,z,t) and given as force per
unit mass. For example, gravity is the most common body force distribution, and
thus, B =—g K. We can rewrite Eq. (2.7) as follows:

where

éﬁi TdA + m Bpdv = (2.8a)

cv

The linear momentum P is the extensive property to be considered in the Reynolds
transport Eq. (2.3). The quantity 7 becomes momentum per unit mass, which is “V.”
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Thus

DD_F; = $Vp(v.aa) + %m Vpdv (2.8b)

CS.

We then have from Eq. (2.8) the linear momentum equation expressed as
_ 0
§ Tda+ ||| Bpav = gﬁf Vp(V.dA) + S ||| Voar (2.9)
CsS.
cv. cv.

This equation then equates the sum of these force distributions with the rate of
efflux of linear momentum across the control surface plus the rate of increase of
linear momentum inside the control volume. For steady flow and negligible body
forces, as is often the case in propulsion applications, the equation above becomes

b Tda = ﬁlvp (V.dA) (2.10)
C.S.

Since the momentum Eq. (2.9) is a vector equation, then the scalar component
equations in the orthogonal x, y, and z directions may then be written as

§§ T.dA + m B.p dv g§3§ Vp(V.dA) + gtm Vpdv ﬁ T,dA + m Byp dv

C.V. C.V. C.V.

(2.11)

In using Eq. (2.11), one selects directions for the positive directions of the inertial
reference axes X, y, and z. Then the positive directions of the velocities V., V,, and
V., as well as the surface and body force T, and B,, and so on, are established.

Example 2.1 A turbojet engine is powering an aircraft flying at a speed of (1) as
shown in Fig. 2.4. Air flows into the engine at the rate of (My) through the inlet area
(A;). Fuel is injected into the combustors at the rate of (I;’lf). The exhaust gases are

leaving the propelling nozzle at the rate of (171,) and speed of (u,) via an exit area
(A,). The ambient and exit pressures are (P, and P,). Prove that the generated thrust
force is expressed as

7 =mg[(1 +)ue —u] + (P, — P,)A,
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Fig. 2.4 Control volume around a turbojet engine

Figure 2.4, illustrates a turbojet engine with a part of its pod installation (which
is a structural support for hanging the engine to the wing). It also defines a control
volume which control surface passes through the engine outlet (exhaust) plane
(2) and extends far upstream at (1). The two side faces of the control volume are
parallel to the flight velocity u. The upper surface cuts the structural support, while
the lower one is far below the engine. The surface area at planes (1) and (2) is equal
and denoted A. The stream tube of air entering the engine has an area A; at plane (1),
while the exhaust area for gases leaving the engine is A.. Over plane (1), the
velocity and pressure are u (which is the flight speed) and P, (ambient pressure at
this altitude). The velocity and pressure over plane (2) are still # and P, except over
the exhaust area of the engine A, which values are u, and P,. The x- and y-directions
employed here are chosen parallel and normal to the centerline of the engine.

The following assumptions are assumed:

1. The flow is steady within the control volume; thus, all the properties within the
control do not change with time.

2. The external flow is reversible; thus, the pressures and velocities are constants
over the control surface except over the exhaust area P, of the engine.

Conservation of mass across the engine gives

Fra iy = i,
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where 71, and m , are expressed as

Ma = puAi, M = pyucP,
The fuel flow rate is thus expressed as

’hf = pucA, — puA;  (A)

The fuel-to-air ratio is defined here as

Apply the continuity equation over the control volume

EJ” pdv + ﬁ;pﬁ-dZZO
ot s

cv

For a steady flow, %JH pdv =0, then ﬁpﬁ dA=0
cs
cv

or 1;1g+r;zs+pu(Ang)fﬁq,afrhffpu(AfAi) =0

where (/71,) is the side air leaving the control volume.
Rearranging and applying Eq. (A), we get the side mass flow rate as

ms = pu(A, —A;) (C)
According to the momentum equation

S F —%Jﬂpﬁdv+§ﬁ(pﬁ'dA) =0

Ccv

where Z F is the vector sum of all forces acting on the material within the control
volume which are surface forces (pressure force as well as the reaction to thrust
force through the structural support denoted by 7) and the body force (which is the
gravitational force here).

For steady flow

S F = §a(pa- da)

CcS
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The x-component of the momentum equation

S Fo= P)A, +7=$u (pu-dA) (D)

CS

If the sides of the control volume are assumed sufficient distant from the engine,
then the side mass flow rate leaves the control volume nearly in the x-direction.
Thus,
ﬁux(pﬁ ~dA) = meue + ulpu(A — A,)] + mgu — mau — ulpu(A — A;)]
ﬁ;m (pﬁ . dZ) = Melte — Matt — pu* (A, — A;) + Migu

From Eq. (C)
.'.ﬁux(pﬁ . dK) = mett, —mau  (E)

From Egs. (D) and (E) then

T — (P, — Py)A, = Moty — Mgt
From Eq. (B)

ial(1+f)ue = u] + (Pe — Py)Ac

The following terminology is always used:

Net thrust =7

Gross thrust = m,[(1 + f)ue] + (P, — Py)A,
Momentum thrust = 1, [(1 + f)u,]

Pressure thrust = (P —P,)A,

Momentum drag = m,u

Thus: Net thrust = Gross thrust — Momentum drag
Or in other words:

Net thrust = Momentum thrust + Pressure thrust — Momentum drag

Example 2.2 A fighter airplane is being refueled in flight using the hose-and-
drogue system as shown in Fig. 2.5 at the rate of 300 gal/min of fuel having a
specific gravity of 0.7. The inside diameter of hose is 0.12 m. The fluid pressure at
the entrance of the fighter plane is 30 kPa gage. What additional thrust does the
plane need to develop to maintain the constant velocity it had before the hookup?
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Fig. 2.5 Aerial refueling using the hose-and-drogue system

Solution

At first, it is worthy defining aerial refueling (which is also identified as air
refueling, in-flight refueling (IFR), air-to-air refueling (AAR), or tanking) as the
process of transferring fuel from one aircraft (the tanker) to another (the receiver)
during flight. When applied to helicopters, it is known as HAR for helicopter aerial
refueling. A series of air refueling can give range limited only by crew fatigue and
engineering factors such as engine oil consumption.

Now, back to our problem, consider a control volume starting from the probe to
the fuel tank. This is an inertial control volume with the positive x-direction parallel
to aircraft flight direction.

Thus the linear momentum equation in the x-direction is

F, = fﬁ’ Vp (Vﬂ)—i—iﬂj Vep dv
o8 atcv

where F, is the force in the x-direction. Since a steady flow is assumed in refueling
process, then

F,= ﬁ; Vip (V.dA)
Cs.

which is rewritten as: T, — pA = —[V, x (—pV,A)] = pV2A


http://en.wikipedia.org/wiki/Fuel#Fuel
http://www.airports-worldwide.com/articles/article0036.php#Aircraft
http://www.airports-worldwide.com/articles/article0170.php#Helicopter
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where T is the needed additional thrust and the velocity of fuel flow into the probe
is V.. Since

v _2_ (300 x 3.785 x 107°/60)  0.018925

p=0.7 x 1000 =700 kg/m’

=1.6733 m/s

The additional thrust is then

Ti=(p+pVi)A = [30 x 10% +700 x (1.6733)*| x 0.01131 = 364N

Example 2.3 The idling turbojet engines of a landing airplane produce forward
thrust when operating in a normal manner, but they can produce reverse thrust if the
jet is properly deflected. Suppose that, while the aircraft rolls down the runway at
180 km/h, the idling engine consumes air at 40 kg/s and produces an exhaust
velocity of 150 m/s.

(a) What is the forward thrust of the engine?
(b) What is the magnitude and direction (forward or reverse) if the exhaust is
deflected 90° and the mass flow is kept constant?

Solution
Forward thrust has positive values and reverse thrust has negative values.

(a) The flight speed is U =180/3.6 =50 m/s.

The thrust force represents the horizontal or the x-component of the momentum
equation.

T =m,(u, — u)

T =40%(150-50) =4000 N

(b) Since the exhaust velocity is now vertical due to thrust reverse application, then
it has a zero horizontal component; thus, the thrust equation is

T =g (u, — u)
T = 40%(0 —50) = — 2000 N
T = —2000 N(reverse)
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2.3.3 Angular Momentum Equation (Moment
of Momentum)

Consider a finite system of fluid as shown in Fig. 2.6. An element dm of the system
is acted on by a force dF and has a linear momentum (mdV). From Newton’s law, we
can write

- D _
dF = (Vdm) (2.12)

Now take the cross product of each side using the position vector 7. Thus,

= - _D
r®a’F:r®D—t(Vdm)

Consider next the following operation:

D . — Dr — __D —
E(r@di)—E®di+r®E(di)

Note that D7 /Dt = V, so that the first expression on the right side is zero, since
VxV=0
Thus, we arrive at the relation:

(F@dmV) (2.13a)

Next, we integrate Eq. (2.13a) over the entire system to get

Jf@dfz m[%(f@ﬁ)dm (2.13b)

Fig. 2.6 Mass (dm) in a dmV
finite system

dF

System
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Since the mass of the system is fixed so that the limits of the integration on the right
side of Eq. (2.13b) are fixed, thus we can write

_ D — DH
JT@dF J” FRVdn | =—
Dt

where H is the moment about a fixed point (a) in inertial space of the linear
momentum of the system. The integral on the left side of the equation represents
the total moment about point (a) of the external forces acting on the system and may
be given as

Jf@d’:ﬁf@ﬁdmrﬂ 7@ Bpdv (2.14)
C

We may now give the moment-of-momentum equation for a finite system as
follows:

Next, since (H Ej{i_ﬁ; (F ® V) pdv) is the extensive property, then its intensive property
() is (F ® V). Thus applying Reynolds transport equation, one gets

—=f(FaV)(pVedA) + aatm (F @ V) (pdv)

CcS
(4%

We then have the desired moment-of-momentum equation for an inertial control
volume:

§§;7®TdA+J”7®dev:ﬁﬁ@V)(pVod_A)

+% J” (F @ V)(pdv) (2.15)

cv

The terms on the right side represent the efflux of moment of momentum through
the control surface plus the rate of increase of moment of momentum inside the
control volume where both quantities are observed from the control volume.
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Fig. 2.7 Impulse turbine. (a) Layout. (b) Control volume

Example 2.4 An impulse turbine blade row is illustrated in Fig. 2.7a. The rotor has
an average radius r of 0.6 m and rotates at a constant angular speed . What is the
transverse torque on the turbine if the air mass flow rate is 100 kg/s?

Solution
Choosing the shown control volume described in Fig. 2.7a, and assuming the flow is
steady, then Eq. (2.14) is reduced to

$7@Tda =4 (F@ V) (pV o dA)
cs cs
Or the torque 7 is expressed by the relation

%:ﬁ(f@V)(pV.ﬂ)

The flow is fast enough to assume a constant density; thus, the x-component of the
torque which is responsible for turbine rotation is expressed by the relation:

wo=m x r: X |(Vou)y— (Via),
7, =100 x 0.6 x [0— (180 x sin60)] = —9,353 N.m
The negative sign indicates that the turbine rotor rotates in a counterclockwise
direction as shown in figure.

Another Solution
The above problem can also be solved using the linear momentum Eq. (2.11). The
tangential force (T,) is expressed by the relation:
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§b T,aA+ ” Bypdv=§ vy (V.ﬁ)+%m Vypdv
C.S. v C.S. oy

Again for the same assumptions of steady constant density flow, then T, is
expressed as

T, = § Vip (VdA) =i x [Vou), — (V)
C.S.

T, =100 x (0 — 180 x sin60) = —15,588 N
t,=r.x Ty = 0.6 x (—15,588) = —9,353 N.m = —9.353 kN.m

2.3.4 Energy Equation (First Law of Thermodynamics)

The first law of thermodynamics is a statement of macroscopic experience which
states that energy must at all times be conserved. It will be convenient to classify
energy under two main categories: stored energy and energy in transition. The types
of stored energy of an element of mass are:

1. Kinetic energy E;: energy associated with the motion of the mass

2. Potential energy Ep: energy associated with the position of the mass in conser-
vative external fields

3. Internal energy U: molecular and atomic energy associated with the internal
fields of the mass

The types of energy in transition are heat and work. Heat is the energy in
transition from one mass to another as a result of a temperature difference. On
the other hand, work, as learned in mechanics, is the energy in transition to or from
a system which occurs when external forces, acting on the system, move through a
distance.

For an arbitrary system (shown in Fig. 2.8), the net heat added to the system and
the net work done by the system on the surroundings during the time interval At are
designated as Q and W, respectively.

Fig. 2.8 Heat and work on

system
Wi
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If E represents the total stored energy of a system at any time ¢ and its property as
a point function is employed, conservation of energy demands that for a process
occurring during a time interval between ¢, and f,, then

Q-Wi=AE=E,—E = (Ex+E,+U),— (Ex+E, + U), (2.16)
The differential form of Eq. (2.16) may be written in the following manner:
dE =dQ — dW;

Accordingly, we can employ the usual derivative notation dQ/dt and dW,/dt for
time derivative. However, E is a point function and expressible in terms of spatial
variables and time. Thus, we have for the time variations of stored energy and
energy in transition for a system.

DE dQ dWg
—_— 2.17
Dt dt dt ( )

To develop the control-volume approach, we will consider E being the extensive
property to be used in the Reynolds transport equation. The term (e) will then
represent stored energy per unit mass. We can then say using the Reynolds transport

equation
”J epdv (2.18)

cV.

Q)|Q)

§3€e V.aA) +
C.S.

Using Eq. (2.17) in the left side of Eq. (2.18), we get

dQ aw,

”J epdv (2.19)

C.V.

S’I@

Equation (2.19) then states that the net rate of energy transferred into the control
volume by heat and work equals the rate of efflux of stored energy from control
volume plus the rate of increase of stored energy inside the control volume.
Where (e) is expressed as
VZ

e:7+gz+u (2.20)

Next let us discuss the term dW,/dt in Eq. (2.19) which is classified into three
groups:

1. Net work done on the surroundings as a result of traction force T.
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Fig. 2.9 Flow work and
control surface

Control system

2. Any other work transferred by direct contact between inside and outside
non-fluid elements, like shafts or by electric currents. We call this work shaft
work and denote it as W.

3. Work transferred by body forces. Since the effects of gravity have already been
taken into account as the potential energy (in Eq. 2.20), so the body force B must
not include gravity; it may include, for instance, contributions from magnetic
and electric force distributions.

Referring to Fig. 2.9, the time rate of the work leaving the control volume—the
total rate of flow work—is given as

Total rate of flow work = —§} T.VdA
cs

Also, the total rate of body force work leaving the control volume is given by:

Total rate of body force work = —J” B - Vpdv
cv

A general form of the first law can now be given as

dQ dw, _ _
— — T -VdA B.Vpd
dt dt +i§; +Jﬂ pav

v N (2.21)

2
Zi(%ﬁ-gz—i—u) (pVﬂ)—&-%”J (V?—kgz-i-u)pdv
cv
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Fig. 2.10 Control volume for idealized machine

Figure 2.10 illustrates a simple example for a steady flow device having
one-dimensional inlet and outlet flows. This may represent, for instance, a gas
turbine having inlet and outlet at sections AA and BB. The traction force power
occurs at sections AA and BB and is given as +p,V A and —p,V»A,, respectively.
Furthermore, pV e dA at these sections becomes —p,VA; and +p,V>A,,, respec-
tively. The equation becomes

2

o dw %
i dtx +p ViA1= p,VaAr = — (71 + 871 + Ml)/thAl
Vi
+ 7 + 8z +up P2V2A2 (222)

Since the products pv; and p,v, (where v; and v, are the specific volumes) equal
unity, the following form of the first law:

a (V3
dt 2

—+ |5 t+8tu +P1V1>P1V1A1

aw, (V2
= + (72 + gz 4+ up +p2vz>p2V2A2 (2.23a)

Since the enthalpy 4 is defined ash = u + pv, and p, V1A = p,V2A; = dm/dt, then
Eq. (2.23a) can be written as:

a (v3 dm _dW, (V3 dm
E—f—(?—l—gZ]"‘hl ar dr + 7+g22+h2 ar (2.23b)
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If the following assumptions are satisfied:

. The flow is steady.

. Air is an ideal gas with constant specific heats.

. Potential energy changes are negligible (gz; = gz, =0).
. There are no work interactions (dgtlf =0).

. The diffuser is adiabatic (4¢=0).

| R O S R

then Eq. (2.23b) is reduced to

%6 %
L 4m=22+4h 2.24
5, Th=75+h (2.24)

Finally, if V| = 0, then the total or stagnation enthalpy (/;) is defined as

V2
hy :72+h2 (2.25)

Example 2.5 Air is decelerated in an adiabatic diffuser. The inlet conditions are
pressure = 100 kPa, temperature =50 °C, and velocity =500 m/s. The outlet
conditions are pressure = 150 kPa and temperature =50 °C. The specific heat at
constant pressure is 1.007 kJ/kg. K. Calculate the velocity at outlet to diffuser.

Solution

Since the above-listed assumptions hold (steady flow with negligible changes in
height, no work or heat exchanges, and the fluid is an ideal gas with constant
specific heats), then Eq. (2.25) may be applied. Thus,

V) = \/2(hl —h)+ V3= \/20,,(T1 —-T))+ V3

Vy= \/2 x 1007 x (20 — 50) + (500)> = 435.4 m/s

2.3.5 The Second Law of Thermodynamics and the Entropy
Equation

The second law of thermodynamics states that: it is impossible for a system to
perform a cyclic process that produces work (say raising of a weight) and
exchanges heat with a single reservoir of uniform temperature. The second law
permits the definition of the property entropy (s). For a system,

ds = <@> (2.26)
T reversible
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where ds is the change of entropy during a reversible heat exchange. Irreversible
processes are processes which involve one of these features: friction, heat transfer
with finite temperature gradient, mass transfer with finite concentration gradient, or
unrestrained expansion. For any process,

ds > == (2.27)

where equality holds only for reversible process. If the process is reversible and
adiabatic (dQ = 0), it must be isentropic (ds = 0).

For a small system composed of pure substance in the absence of gravity motion,
then if the properties are uniform throughout the system, then the first law for
incremental changes is

dq = du + dw

where ¢ and w are the heat and work per unit mass. If the system experiences a
reversible process for which the incremental work dw = pdv, then from Eq. (2.28),
we can write

Tds = du + pdv (2.28)

2.3.6 Equation of State

In compressible gases, it is necessary to define the thermodynamic state of the gas
with state variables, e. g., the static pressure p, the static density p, and the static
temperature 7. Their interdependence is described by the thermal equation of state.
If the law given by Boyle, Mariotte, and Gay-Lussac is used, then

p = pRT (2.29)

The gas is called thermally perfect. For thermally non-perfect gases, other
relations must be used, as, for example, the Van der Waals law. The specific gas
constant R depends on the molecular weight of the gas. For air it is R =287 J/kg K.
The gas constant is related to the universal gas constant (R,) and the molecular
weight of gas (M) by the relation

R =

M

The value of universal gas constant is R, = 8.31434 kJ/(kmol.K)
Internal energy is a state variable, which is defined by two thermodynamic
quantities, namely, the temperature T and the specific volume (v =1/p):
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u = uv,T) (2.30)

This relation is known as the caloric equation of state. The total derivative is

Ou Ou
du = (E)war (ﬁ> ar (2.31)

The internal energy of thermally perfect gases depends on the temperature only. It
then follows that

where

du
= —= 2.32
C‘ (dT>V ( 3 )
du

The quantity (ﬁ) , is called specific heat at constant volume (C,). If C, is constant,
the gas is called calorically perfect, and the internal energy is given by

u=CT+u, (2.33)

The quantity u, is a reference value.
The enthalpy / was defined earlier and repeated here is defined as

h=u-+pv (2.34)

Similar to the internal energy, the enthalpy of thermally perfect gases depends on
the temperature only, or

dh = C,dT (2.35a)

The quantity Cp is the specific heat at constant pressure, or

dh
Cp = (ﬁ) (2.36a)
p
It follows from the relation for the specific heats C,, and Cp
¢, =C +R (2.36b)

for calorically perfect gases, that C, is constant. Hence,
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h=C,T + h, (2.35b)

where £, is again a reference value.
The ratio of the specific heats C,,/C, = y, where y, according to the gas kinetic
theory, is given by the number n of degrees of freedom

_n+2
T oon

For monatomic gases (n=3) y = 1.667, and for diatomic gases (n=15) y =1.4. At
high temperatures additional degrees of freedom are excited, and the ratio C,/C,
decreases. For air at a temperature of 300 K, then y = 1.4, while at temperature
3000 K, then y =1.292.

From Egs. (2.28) and (2.33) and since £ = &

T v
then
dar dv
ds = C, —+ R — 2.37
s TR~ (2.37)
Similarly, from Egs. (2.28) and (2.34)
Tds = dh — vdP

From Eq. (2.34) and ideal gas relation, 7 = %, then

dr _ dP

ds = Cp —-R — 2.38
§ p T P ( )
Example 2.6 The constant volume-specific heat of an ideal gas varies according to

the equation C, = aT?, where a = 2.32 x 10~ °kJ /kg.K>. If the gas is heated from
50 to 80 °C at constant volume, find the change in entropy.

Solution
From Eq. (2.40), the change in entropy is expressed as

T, AT T, AT T, [Tz} T
As= | Cy—==a|T*—==a|TdT =a
T T 2
T, T, T, T,

Ty =50+273=323 K
T, =80+ 273 =353 K
As =2.32 x 107°[353% — 323%] /2 =0.235 KkJ/kgK
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2.4 Steady One-Dimensional Compressible Flow

One-dimensional flow refers to flow involving uniform distributions of fluid prop-
erties over any flow cross section area. It provides accurately the stream-wise
variation of average fluid properties. The flow in diffusers, combustors, and nozzles
exhibits the major characteristics of one-dimensional flow. Though
one-dimensional analysis for the flow in rotating elements (fans, compressors,
and turbines) provides also the mean flow features, it is more appropriate to extend
the analysis of flow within them to either two dimensional (2-D) or three dimen-
sional (3-D). This is attributed to the large variations normal to streamlines, which
are no longer limited to the thin layer adjacent to the surface and known as
boundary layer.

2.4.1 Isentropic Relations

It follows from the conservation equations for one-dimensional, steady, compress-
ible flow that the sum of the kinetic energy (#/2) and the static enthalpy (/) remains
constant. The value of this constant is given by the stagnation (or total) enthalpy,
and Eq. (2.25) may be rewritten as

ho = h + u*/2 (2.25)

Generally, the stagnation state is a theoretical state in which the flow is brought into
a complete motionless condition in isentropic process without other forces (e.g.,
gravity force).

Several properties can be represented by this theoretical process which includes
temperature, pressure, density, etc. and denoted by the subscript “0.”

For calorically perfect gases, the enthalpy can be replaced by the product of
static temperature and the specific heat at constant pressure (C,T'), thus,

CpyTo = CpT + u*/2

or

2

u
To=T+ — 2.39
0 +2Cp ( )

Introducing the thermal equation of state there in (2.39) results

2

Y Po_ ¥ p U
Po_ v P W 2.40
y—1po }’—1/)+2 (240)

and with the definition of the speed of sound (a) as
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dTﬁ;Ple 2.1 Sonic SPW}S at Temperature (K) 200 300 1000
iHerent temperatures forair = Sonic speed [m/s] | 284 347 634
and helium
Helium Sonic speed [m/s] 832 1019 1861
=" = yRr
p
Equation (2.40) will be reduced to
2 2 2
a a
0_— — (2.41)

The speed of sound depends on the gas constant (R) and temperature (7'); thus, the
sonic speed for air and helium (R, = 287 J/kg.K, Ryelium = 2077 J/kg.K) at

different temperatures are given in the Table 2.1.

Rewriting Eq. (2.39), the following important set of equations can be derived:

To=T 4l gy o
LR ToN 2/R
T —1
To_  r=1@

T 2 JRT

Introducing the Mach number as the ratio of velocity to speed of sound

mM="
a

It very useful to convert Eq. (2.42) into a dimensionless form and denote

T, ~l.p
T 2
2 (T
y—1\T

J——

.
1

>|
L oy

The mass flow per unit area is

(2.42)

(2.43)

(2.44a)

(2.44b)

(2.44¢)

(2.44d)

(2.44e)
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m_
A

Using Egs. (2.43) and (2.44), the velocity may be expressed as

RT
u=M PNy y7710M2
V1+5

From the density relation, the mass flow rate parameter is expressed as

r+1

. P 1 26-1)
m_Povty, (2.45a)
A VRT, \1+5'M>

For a given fluid (y, R) and inlet state (P, Ty), it can be readily shown that the mass
flow rate per unit area is maximum at M = 1. Denoting the properties of the flow at
M =1 with an asterisk, the maximum flow per unit area is

r+l1
P 2 \2D
m_Povy (—) (2.45b)
A VRTy \y +1
From the above two Egs. (2.45a) and (2.45b), we get
A_112 (1 7y o (2.46)
A" Mly+1 2 '

Gas dynamics books ([4, 5] as examples) include in its appendices a set of tables for
isentropic flow parameters defined by Eqgs. (2.44) and (2.46) for specific heat (y
= 1.4). Table 2.2 illustrates few lines of such tables.

For a given isentropic flow and known (y, R, Py, Ty, nt), it is clear that Aisa
constant, so we can use these relations to plot the fluid properties versus Mach
number (Fig. 2.11).

2.4.2 Sonic Conditions

If the local flow velocity is equal to the speed of sound (M = 1), then such sonic
condition is referred to as the crifical state and is designated by an asterisk (*). The
temperature, pressure, and density attain the following values, which solely depend
on the stagnation conditions of the gas. From Eq. (2.44), we get
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Table 2.2 Isentropic flow M P/P, T/To AJA* PA/P,A *
parameters (y = 1.4) o 10 10 - -
0.5 0.84302 0.95238 1.33984 1.12951
1.0 0.52828 0.83333 1.0 0.52828
5.0 0.00189 0.16667 25.0 0.04725

0.08
0.04

0.02

1 |

0.01 1 1 L

0.01 002 0.04 0.1

02 04
M

Fig. 2.11 One-dimensional isentropic flow of a perfect gas
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Table 2.3 Critical ratios for T Py 2 a
different values of (y) Y i P il a
1.135 1.0675 1.7318 1.6223 1.0332
1.3 1.15 1.8324 1.5934 1.0723
1.4 1.2 1.8929 1.5774 1.095
1.667 1.335 2.0534 1.5429 1.155
To y+1
2
a  Jr+1
a2
Po v+ 1 “ (2.47)
P (T)

po (Y +1\7
P 2
For air with y = 1.4, the critical values are as follows (Table 2.3):

T P
012, 08929, 015774, Y- 1095 (2.48)
P P a

Instead of the local speed of sound (a), the critical speed of sound can be used to
define a Mach number, which is called the critical Mach number:

M =u/d (2.49)

The relation between the local Mach number (M = u/a) and the critical Mach
number (M*) is derived from the relations (2.47) and (2.49), as

" 1
r— 145

ForM — oo, the critical Mach number M* approaches the following limiting value:

lim M = ,/t— 2.51
wm, - (251)

With these relations the ratios of the temperature, pressure, density, and speed of
sound, referred to their stagnation values, can be expressed by the critical Mach
number:
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(2.52)

2.4.3 Classification of Mach Regimes

Aerodynamicists often classify airflow regimes using Mach number values. Six
flight regimes may be identified, namely, subsonic, transonic, supersonic, hyper-
sonic, high hypersonic, and re-entry ones. Subsonic and supersonic speeds are
associated with values of Mach number less or greater than unity, respectively.
An in-between region defined as “transonic regime” where Mach number is around
unity (from say 0.8 to 1.2). Mach values associated with supersonic regime vary
from 1.2 to 5. For hypersonic regime Mach number ranges from 5 to 10. NASA
defines “high” hypersonic when Mach number ranges from 10 to 25 and re-entry
speeds as anything greater than Mach 25 (Space Shuttle as an application). Table 2.4
illustrates such a classification.

Table 2.4 Classification of flow regimes

Regime Mach General plane characteristics

Subsonic <0.8 Propeller-driven and commercial turbofan aircrafts

Transonic 0.8-1.3 All present airliners (B777, 767,747 Airbus A320, A330, and A340)
fly at the lowest transonic speeds (typical speeds are greater than
250 mph but less than 760 mph)

Supersonic | 1.3-5.0 Modern combat aircrafts including Ilyushin IL-76TD, MIG31, F117
Night Hawk, F 22 Raptor

Hypersonic | 5.0-10.0 | Aircrafts have cooled nickel-titanium skin, highly integrated, small
wings (X-51A WaveRider as an example)

High 10.0-25.0 | Vehicles are thermally controlled; its structure is protected by special

hypersonic silicate tiles or similar. They have blunt nose configurations to resist
aerodynamic heating

Re-entry >25.0 Vehicles have an ablative heat shield, no wings, blunt capsule shape



http://en.wikipedia.org/wiki/NASA
http://en.wikipedia.org/wiki/Space_Shuttle
http://en.wikipedia.org/wiki/Turbofan
http://en.wikipedia.org/wiki/Combat_aircraft#Combat%20aircraft
http://en.wikipedia.org/wiki/Nickel
http://en.wikipedia.org/wiki/Titanium
http://en.wikipedia.org/wiki/Boeing_X-51#Boeing%20X-51
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2.4.4 Diffusers and Nozzles

Diffusers and nozzles are commonly utilized in jet engines, rockets, and spacecrafts.
A diffuser is a device that increases the pressure of a fluid by slowing it down, while a
nozzle is a device that increases the velocity of a fluid at the expense of pressure. That
is, diffusers and nozzles perform opposite tasks. Diffusers and nozzles involve no

work (V.V ~ 0) and negligible changes in potential energy (APE = 0). Moreover, the
rate of heat transfer between the fluid flowing through a diffuser or a nozzle and the

surroundings is usually very small (é ~ 0). This is due to the very short time air
(or gas) spends in either duct (few or fraction of milliseconds) which is insufficient
for a significant heat transfer to take place. However, fluid passing through diffusers
and nozzles experiences large changes in velocity. Therefore, the kinetic energy
changes must be accounted for (AKE # 0). The shape of both diffuser and nozzle
may be convergent or divergent depending on the velocity of flowing fluid. Rockets
and military high supersonic aircrafts normally have convergent—divergent or CD
nozzles. In a CD rocket nozzle, the hot exhaust leaves the combustion chamber and
converges down to the minimum area, or throat, of the nozzle. The throat size is
chosen to choke the flow and set the mass flow rate through the system. The flow in
the throat is sonic which means the Mach number is equal to one in the throat.
Downstream of the throat, the geometry diverges, and the flow is isentropically
expanded to a supersonic Mach number that depends on the area ratio of the exit to
the throat. The expansion of a supersonic flow causes the static pressure and temper-
ature to decrease from the throat to the exit, so the amount of the expansion also
determines the exit pressure and temperature. The exit temperature determines the
exit speed of sound, which determines the exit velocity. The exit velocity, pressure,
and mass flow through the nozzle determine the amount of thrust produced by the
nozzle.

2.4.4.1 Variation of Fluid Velocity with Flow Area
We begin with the conservation of mass equation:
m = pVA = constant

where mi- is the mass flow rate, p is the gas density, V is the gas velocity, and A is the
cross-sectional flow area. If we differentiate this equation, we obtain

VAdp + pAdV + pVdA =0

Divide by (pVA) to get


http://exploration.grc.nasa.gov/education/rocket/mflchk.html
http://exploration.grc.nasa.gov/education/rocket/mach.html
http://exploration.grc.nasa.gov/education/rocket/isentrop.html
http://exploration.grc.nasa.gov/education/rocket/astar.html
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http://exploration.grc.nasa.gov/education/rocket/fluden.html
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R Wl o\
p+V+A

Now we use the conservation of momentum equation:
pVdV = —dP

and an isentropic flow relation: Tds = dh — vdP

where y is the ratio of specific heats. Rewrite the above equation to obtain
P
dP =y—dp
p
and use the equation of state (5 = RT) to get
dP = yRTdp

Since (yRT) is the square of the speed of sound (), then

dP = a*dp

121

Combining this equation for the change in pressure with the momentum equation,

we obtain

pVdv = — a*dp

\Y% d
a

p
using the definition of the Mach number M = V/a, then

_MZd_Vfd_p
Viop

Now we substitute this value of (dp/p) into the mass flow equation to get

_pdVdv dA

v +7+X:O
(1 _Mz)d_v:_@
% A

(2.53)

(2.54)

Equation (2.59) tells us how the velocity (V) changes when the area (A) changes

and the results depend on the Mach number (M) of the flow.
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http://exploration.grc.nasa.gov/education/rocket/sound.html
http://exploration.grc.nasa.gov/education/rocket/mach.html
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If the flow is subsonic then (M < 1.0)—the term multiplying the velocity change
is positive [(1 — Mz) > 0]—then an increase in the area (dA > 0) produces a
decrease in the velocity (dV < 0), which is the case of a diffuser. On the contrary a
decrease in the area produces an increase in velocity, which is the case of a nozzle.

For a supersonic flow (M > 1.0), the term multiplying velocity change is
negative [(1 —M2) < 0]. Then an increase in the area (dA > 0) produces an
increase in the velocity (dV > 0) or a nozzle. The decrease in the area leads to a
decrease in velocity or a diffuser.

Table 2.5 summarizes this behavior.

Figure 2.12 illustrates the geometry of diffusers and nozzles in subsonic and
supersonic speeds.

For the case of CD nozzle, if the flow in the throat is subsonic, the flow
downstream of the throat will decelerate and stay subsonic. So if the converging
section is too large and does not choke the flow in the throat, the exit velocity is very
slow and does not produce much thrust. On the other hand, if the converging section
is small enough so that the flow chokes in the throat, then a slight increase in area
causes the flow to go supersonic. This is exactly the opposite of what happens
subsonically.

Table 2.5 Variation of duct area with inlet Mach number

Accelerated flow (nozzle) Decelerated flow (diffuser)

dav >0 dv <0 Constant velocity
M<10 dA <0 dA >0 dA =0
M>1.0 dA >0 dA <0 dA =0

‘1 P decreases 3 P increases
M <1 1 V' increases M <1 ‘~L V decreases
:M Imncreases | M decreases
I :
: T decreases | T increases
/ .
!I £ decreases ) increases
Subsonic nozzle Subsonic diffuser
; P decreases Imcreases
- | :
M >1 V increases M >1 1 V' decreases

I'M  decreases

\
| 5

| M INCcreases
I i

/ I' decreases
o)

mcreases

decreases mcreases

Supersonic nozzle Supersonic diffuser

Fig. 2.12 Variation of flow properties in subsonic and supersonic nozzles and diffusers
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Fig. 2.13 Diffuser and
control volume

Example 2.7 Air at 5 °C and 80 kPa enters the diffuser of a jet engine steadily with
a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m?. The air leaves the
diffuser with a velocity that is very small compared with the inlet velocity.
Determine (a) the mass flow rate of the air and () the temperature of the air leaving
the diffuser.

Solution
We take the diffuser as the system (Fig. 2.13). This is a control volume since mass
crosses the system boundary during the process. We observe that there is only one
inlet and one exit and thus vy = w1, = ni-.
(a) To determine the mass flow rate, we need to find the density of the air first.
This is determined from the ideal gas relation at the inlet conditions:

P, 80 x 10° 3
it T 10027 kg/m’
PL=RT, T 287 % (273 + 5) g/m

m = p,ViA; = 1.0027 x 200 x 0.4 = 79.8 kg/s

(b) From the energy equation

g dw, (V3 .
dt+( +gzl+h1) = <7+822+h2>m

With small exit velocity (V, = 0), negligible potential energy variation as well as
heat and work exchange (z; & z;, dQ/dt = dW/dt = 0), then, energy equation is
reduced to

VZ
hy = hy Jr?
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V2 200?
T,=T+—-=2784+—"__=2979 K
2=Ntoe, + 251005

Example 2.8 Gas flows through a converging—diverging nozzle. Points G and H lie
between the inlet and outlet of the nozzle. At a point “G,” the cross-sectional area is
500 cm? and the Mach number was measured to be 0.4. At point “H” in the nozzle,
the cross-sectional area is 400 cm”. Find the Mach number at point H. Assume that
the flow is isentropic and the gas-specific heat ratio is 1:3.

Solution
To obtain the Mach number at point G, apply Eq. (2.46) to find the ratio between the
area (Ag) to the critical one (A”)

r+1

A 1T 2 y—1_ ,\]%D
= | (1+5——M
A MGL/+1( 2 ¢

2.3
Ag _ (1 2 13-1 5\]%7
AT <0.4) [(1.3+ 1> <1 +—5—(04) )] = 1.6023

At point H, the area ratio is evaluated from the relation:

Ay ApAg 400
_Anle T 6003 = 1.2818
A AcAT 500"

Again from Eq. (2.46)

7+l
Ay 1 [ 2 y—1_ ,\]%D
e = (1+——M
A My[y+1< 2 A

Rearranging to solve for the Mach number My,

2r=1)

A\ -1 2
MH—I: _V_Msz_
A y+1 y+1

2(r—1)

AT y—1 2
<MH1;<1) L my = ——
A y+1 y+1

1.0669M ;%290 — (0.1304M;,> = 0.8696

Solving the above equation by trial and error, we get either

Mpy =0.5374 or My =1.612
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Both solutions are possible, the first is still a subsonic Mach number which may
be located in the convergent section, while the second one is supersonic which may
be located in the divergent section if the speed at throat is sonic: Mproar = 1.0.

2.4.5 Shocks

A shock is an irreversible flow discontinuity in a (partly) supersonic flow fluid. It
may be also defined as a pressure front which travels at speed through a gas. Upon
crossing the shock waves, pressure, temperature, density, and entropy rise while the
normal velocity decreases. There are two types of shocks, namely, normal and
oblique.

2.4.5.1 Normal Shock Waves

Consider a plane supersonic flow with a normal compression shock in a channel
with constant cross-sectional area (Fig. 2.14). The conditions upstream and down-
stream the shock are denoted by subscripts (1) and (2), respectively. Under the
following assumptions—steady, one dimensional, adiabatic (6¢ = 0), no shaft work
(6w = 0), negligible potential (6z = 0), constant area (A; = A;) and negligible wall
shear—then equations of state and integral forms of conservation equations will
have the following forms:

Uizzziizzzizizzizzzzizizzzzzz;izi:c

R P,
M >1 y2) 2, M<1
0, i,

h h,

Aiiti?dddcidccecc
Compression shock

Fig. 2.14 One-dimensional shock waves
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Continuity equation APt =py 0

Momentumequation p; + p, u? = P2+ po u?

) (2.53)
Energy equation ho1=hy + 11?2 = hy + 12> /2 = hyp
Equation of state P _ P2
Ty paTa

From the continuity equation, equation of state for perfect gas, and the velocity
relation

u = M-+/yRT
we arrive at the relation

1M, _ P2M>

VI VT

Moreover, the energy equation together with the perfect gas relation (2.44a)
—1
To=T (1 + 7TM2>

yields the following relation:

-1 -1
T, <1 +y2M12) = Tz(l erzMzz)

The momentum equation together with the equation of state provides the following
relation:

pr(1+7yMi?) = p, (14 yM>?)

The following relations give the downstream Mach number, static temperature,
pressure, and density ratios as well as the total pressure and temperature ratios
across the shock:

_ (7’ - 1)M12 +2
M’ TayMI—(—1) (2.56)
T _ [2rM® = (v = D] = DM +2]

T, (y +1)°M;?

(2.57)
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Py [2yM? —(y -1
P1 ]/+1
1)M,?
&:{—(H )M z]zﬂ (2.59)
P1 24 (y — )M, Uy
P M2 17T NG
ﬁz[ (v + )M, 2} [ v+ 1) ] (2.60)
Py, 24 (y — 1)M; 2yM* — (y — 1)
E:l
Ty
%2
urur = da

This means that u; > a” > u,. The critical sonic speed is expressed as

.2 2yRT, 2(y—1
4= rtio (r >CpT0
r+1)  (r+1)

From the entropy relation, the total pressure ratio can be also expressed as

P2 _ (%)

Po1

Equations (2.56), (2.57), (2.58), (2.59), and (2.60) are plotted in Fig. 2.15.
We can state two simple rules of thumb:

1. A normal shock wave always forms between supersonic and subsonic flow.
2. The flow behind a normal shock wave is always subsonic.

Normal shock waves are encountered in the flow in intakes and nozzles as well
as over aircraft wings. Figure 2.16 illustrates normal shock waves formed on the
suction or both suction and pressure surfaces of wing sections.

It is obvious that a very useful table for fluid flow changes across a normal shock
can be constructed using the above equations. This kind of table is available in all
gas dynamics or compressible flow texts [4, 5]. Table 2.6 illustrates these relations.
You are encouraged to complete missing data in Table 2.6.

Example 2.9 Air is flowing through normal shock. Flow conditions upstream of the
shock are uy = 600m/s, Top; = 500K, Py; = 700 kPa It is required to calcu-
late the downstream conditions M, uy, T, P2, P, and (s, — s1).Assume: calori-
cally perfect ideal gas.
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Fig. 2.15 Normal shock functions (y = 1.4)

Solution
The upstream conditions (static temperature, pressure, and density as well as sonic
speed and Mach numbers) can be calculated from the following relations:

2 2
0 (600)
Ty =To — =500 — ———_=32089 K
BTN 2 x 1005 ?
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Maximum Local Velocity

“Less Than Sonic”

M=0.72 (Critical Mach Number)

/ Normal Shock Wave

Supersonic

Flow ™

Possible

7 Separation

M=0.77

Supersonic
Flow

Normal Shock Wave

Separation

M=0.82

k Normal Shock Wave

Fig. 2.16 Normal shock waves over either suction or suction/pressure sides of wing section

Table 2.6 Norm1al4$hock Ml M2 PQ/P] Tz/T] POQ/POI
parameters (y = 1.4) 3.0 0.47519 10.3333 2.6790 0.32834
25 ? ? ? ?
2.0 0.57735 4.5000 1.6875 0.72089
15 ? ? ? ?
1.00 1.00 1.00 1.00 1.00

—1
Py _P01/<1 I 3 M12>

_r_
71

=700/4.7249 = 148.15 kPa

148.15
0.287 x 320.9

a, = \/yRT, = V1.4 x 287 x 320.89 = 359.0 m/s
M, = uy/a; = 600/359 = 1.671

p1 = P1/RT, = =1.609 kg/m’
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Mach number downstream the shock wave (M>) is evaluated from the relation:

— M2 42 0.4 x (1.671)* +2 3.1169
por-MTF2 X671 +2 = 0.34489
yM" —(y—1) 2x1.4x(1.671)°—04 7418
M, = 0.648

From known Mach number (M,), the air properties downstream of the normal shock
can be evaluated as follows:

T, [2M? = (= D] [y — )M +2]

I (r +1)°M?

[2 x 1.4 x (1.671)% — 0.4} {0.4 % (1.671)% + 2}
(2.4 x 1.671)*

T, 74183 x3.1169
T/, 16.0833
T,=46134 K
Uy = My X ¢ = My x \/yRT = 0.648 x /1.4 x 287 x 461.34 = 278.9m/s

Py = py u1/uy = 1.609 x 600/278.9 = 3.4614 kg/m’

pr=p1 + pii; —py i

P, = 148.15 x 10° + 1.609 x (600)> — 3.4614 x (278.9)°
P, =458,144 Pa=458.14 kPa

= 1.4376

P M2 17 1 =
Since “02 { (r+ DM, 2] { (;/+ ) }
P01 2+(}’—1)M1 2]/M1 —(]/—1)
P 24 % (167172177 2.4 29
Then Loz | 24X (6T = — 0.86759
Por |24 0.4(1.671) 2.8 x (1.671)* — 0.4

Py =607.32 kPa

As a check, calculate the value of (T,):
—1
Tor = T (1 + YTMZZ) = 461.34 x |1+ 0.2 x (0.648)%] = 500 K

This confirms the total temperature (or enthalpy) equality, T, = T, as stated
above.
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. Py (2
Since — = =)
Py
Py
Then s» —s; = —RIn P )= 40.764 J/kgK
o1

The temperature—entropy diagram is illustrated by Fig. 2.17, which shows the static
and total conditions upstream and downstream of the shock. Note the entropy
increased despite not including any entropy-generating mechanisms in this
model. Why? First, the differential equations themselves required the assumption
of continuous differentiable functions. Our shock violates this.

When one returns to the more fundamental control volume forms, it can be
shown that the entropy-generating mechanism returns. From a continuum point of
view, one can also show that the neglected terms, that momentum and energy
diffusion, actually give rise to a smeared shock. These mechanisms generate just
enough entropy to satisfy the entropy jump which was just calculated.

Another interpretation may be also given as follows: the assumption that the
compression shock represents a discontinuity is only an approximation. In reality
the shock has a thickness (6) of the order of magnitude of several free mean paths. If
the gas flowing through the shock can be assumed to be a continuum, the Navier—
Stokes equations can be employed for the description of the flow between the
upstream and downstream edge of the compression shock. The flow quantities do
not change discontinuously in the form of a jump but in a continuous transition from
the free-stream conditions to the flow conditions downstream from the shock. The
increase of the entropy can now be explained as an action of the frictional forces
and the heat conduction within the shock region of finite thickness.

Fig. 2.17 Static and total
conditions T
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2.4.5.2 Off Design and Normal Shock Waves in Nozzles

The objective of CD nozzle is to obtain supersonic flow. Thus, the design operating
condition is to have a subsonic flow in the convergent section, a sonic condition at
throat, and a supersonic flow in the divergent part. For off-design conditions, many
possibilities for the speed at the nozzle exit may be encountered depending on the
back pressure P,. The fluid may find itself decelerating in the diverging section
instead of accelerating. A detailed description is given with the aid of Fig. 2.18.
When a fluid enters the nozzle with a low velocity at stagnation pressure Py, the
state of the nozzle flow is determined by the overall pressure ratio P,/P,. When the
back pressure P, = Py (case A), there will be no flow through the nozzle. This is
expected since the flow in a nozzle is driven by the pressure difference between the
nozzle inlet and the exit. Now let us examine what happens as the back pressure is
lowered.

1. When Py > P, > P (critical pressure), the flow remains subsonic throughout
the nozzle, and the mass flow is less than that for choked flow. The fluid velocity
increases in the converging section and reaches a maximum at the throat (but
still subsonic; M < 1). However, most of the gain in velocity is lost in the
diverging section of the nozzle, which acts as a diffuser. The pressure decreases
in the converging section, reaches a minimum at the throat, and increases at the
expense of velocity in the diverging section.

2. When Pj, = P, the throat pressure becomes P* and the fluid achieves sonic
velocity at the throat. But the diverging section of the nozzle still acts as a
diffuser, slowing the fluid to subsonic velocities. The mass flow rate that was
increasing with decreasing P, also reaches its maximum value. Recall that P* is
the lowest pressure that can be obtained at the throat, and the sonic velocity is the
highest velocity that can be achieved with a converging nozzle. Thus, lowering
P, further has no influence on the fluid flow in the converging part of the nozzle
or the mass flow rate through the nozzle. However, it does influence the
character of the flow in the diverging section. This mode of operation is
frequently called the first critical [5].

3. When Pc > P, > Pg, the fluid that achieved a sonic velocity at the throat
continues accelerating to supersonic velocities in the diverging section as the
pressure decreases. This acceleration comes to a sudden stop, however, as a
normal shock develops at a section between the throat and the exit plane, which
causes a sudden drop in velocity to subsonic levels and a sudden increase in
pressure. This mode of operation is frequently called the second critical [5]. The
fluid then continues to decelerate further in the remaining part of the
converging—diverging nozzle. Flow through the shock is highly irreversible,
and thus it cannot be approximated as isentropic. The normal shock moves
downstream away from the throat as P, is decreased, and it approaches the
nozzle exit plane as P, approaches Pr. When P, = P, the normal shock forms
at the exit plane of the nozzle. The flow is supersonic through the entire
diverging section in this case, and it can be approximated as isentropic.
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Fig. 2.18 The effects of back pressure on the flow through a converging—diverging nozzle
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However, the fluid velocity drops to subsonic levels just before leaving the
nozzle as it crosses the normal shock.

4. When Pr > Pj, > 0, the flow in the diverging section is supersonic, and the fluid
expands to P at the nozzle exit with no normal shock forming within the nozzle.
Thus, the flow through the nozzle can be approximated as isentropic. When
P, = Pr,no shocks occur within or outside the nozzle. This mode of operation is
frequently called the third critical [5]. When P, < Pp (underexpanded case),
irreversible mixing and expansion waves occur downstream of the exit plane of
the nozzle. When P, > Pr (overexpanded case), however, the pressure of the
fluid increases from P to P, irreversibly in the wake of the nozzle exit, creating
what are called oblique shocks.

Example 2.10 A large tank with compressed air is attached into a converging—
diverging nozzle (Fig. 2.19) with pressure 8 bar and temperature of 327 °C. Nozzle
throat area is 30 cm?” and the exit area is 90 cm?. The shock occurs in a location
where the cross section area is 60 cm?®. Calculate the back pressure and the
temperature of the flow. Also determine the critical subsonic and supersonic points
for the back pressure (point “a” and point “b”).

Solution
The stagnation temperature and pressure at the nozzle inlet are equal to the specified
values in the tank.

P0| = 8 bar 5 T()] = 327+273 =600 K

Since the star area (the throat area), A*, and the area upstream of the shock are
known, then this ratio is given as

A, 60
==
AY 30
mlet throat exit

|
|
| >y
P =8 bar A" =30 cm? ! 90 cm”
T, =600 K A, =60 cm®

Fig. 2.19 Convergent-divergent nozzle
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To evaluate the conditions upstream of the normal shock (state x), Eq. (2.46) is
employed. It may be reduced to

2(r=1)

A\ T -1 2
M) m =
y+1 y+1

with y = 1.4, then it is further simplified to
1.25992M 93333 — 0.16667M,> = 0.8333

Solve the above equation by trial and error to get M, = 2.1972
From isentropic relations (2.44)

Ty 1,
— 14+ M2 =1.96554
7. T2

T,=3053 K

Y
POx }’—1 2 1
=(14+—M, = 10.64596
P, ( A )

P, =0.7515 bar
From normal shock relations (2.56), (2.57), (2.58), (2.59), and (2.60)
»  (y=DMZ+2 3931075
YoyM2 — (y— 1) 13.11752
M, = 0.54743

Ty [2rM—(y—1)][(r — )M +2]  13.117523 x 3.931
T, (y + 1)°M,2 - 27.8074

T
—2 = 1.8543
T

X

T,=566.1 K

|:2}/M1 —
y+1
=4.1 bar

P, —1)

2 = 5.46564
: |

P
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1;_2 - [2 YJ 1)[;;;12]_ {zm(yj (ly)— f

2.5
Poy | 2.4x(2.1972) 2.4
Po.  |240.4 % (2.1972)*| [2.8 x (2.1972)* — 0.4
POV

P—' =43.95788 x 0.014318 = 0.62941
Ox

Poy, = 4.11 bar

Again utilizing the isentropic relationship, the exit conditions can be evaluated.
With known Mach number the new star area ratio (A /A*) can be calculated from
the relation:

r+1

f-3fh (ot

) 3
—4 1+ 0.2(0.54743) )} = 1.25883

*|<

3>

*

1
~o. 54743 [

From known exit area, then

A, AA, 90
A* A, AF 60"

x 1.25883 = 1.88824

From this area ratio, then (M,) can be calculated by trial and error using the relation

2(r—1)
71 _
MeA—i _ qu = L
A y+1 y+1
1.236M,%3333 — 0.16667M,> = 0.8333
M, = 0.327

From isentropic relations (2.44)

To 1
=1 —M =1.02138
7=l M
Po. Py, y—1. 5 I
oo o (147 2) T = 107687
P, P, < T
Pe POy 1

P, = % 0.62941 x 8 =4.6758 bar

PoyPo, ™ 1.07687
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Table 2.7 Properties of air inside the nozzle

Inlet Upstream normal shock Downstream normal shock Exit
M 0 2.1972 0.54743 0.327
P, (bar) 8 8 4.11 4.11
P (bar) — 0.7515 4.1 4.6758
T (K) - 305.3 566.1 587.4
T, = &TO ! x 600 =587.4 K

To °~ 1.02138

A summary of the above results is given here in Table 2.7.

The “critical” points “a” and “b” at nozzle exit resemble the subsonic and
supersonic limits if no shock waves exist and the flow achieves a Mach equal of
unity at the throat. The area ratio for both cases is calculated from the relation:

y+1
A, 1 2 y—1 AV EE
S = (145 —m,
A M, [7+1( 2 )}
e 90

Since % = 35 = 3.0, then the exit Mach number may be calculated by trial and error

from the relation:

2(r=1)

MeA—: " _uMe2 :L
A y+1 y+1

1.4422M,%33%3 — 0.16667M,%> = 0.8333

Two solutions are obtained, namely, M, = 0.19745 and M, = 2.6374. Both solutions
are illustrated by points (a) and (b) in Fig. 2.20.

For point “a,” M,=0.19745:

The exit pressure and temperature are determined as follows:

T() }/—1 2
—=14"—M,=1.00779
T, + 2 e

T, =600/1.00779 = 595.3K

v
P() Y — 1 2 =1
—=(14+—M, = 1.027557
P, < + 2

P, = 8/1.027557 = 7.785 bar

For point “b,” M, =2.6374.
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SV |~

Subsonic flow
after a Shock

M>1
b

Distance, X

Fig. 2.20 Subsonic and supersonic solutions

Table 2.8 Subsonic and supersonic solutions

Mach number | Static temperature (K) | Static pressure (bar)
Point (a) (subsonic solution) 0.19745 595.3 7.785
Point (b) (supersonic solution) |2.6374 250.92 0.3784

The exit pressure and temperature are determined as follows:

T() Y — 1 2
—=14+—M," =2.39117
T, T M

T, = 600/2.39117 = 25092 K

v

P _ 1 =
—°:<1 yTM,,Z) —21.14172

P, = 0.3784 bar

A summary of these results are given in Table 2.8.
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2.4.5.3 Oblique Shock Wave Relations

Normal shock was examined in Sect. 2.4.4.2. Normal shock is a special case of the
general inclined one. When shock is inclined to the flow direction, it is identified as
an oblique shock. When a wedge-shaped object is placed in a two-dimensional
supersonic flow, a plane-attached shock wave may emanate from the nose of the
body at an angle (f) as long as shown in Fig. 2.21. The flow Mach number and the
wedge angle (0) together define the resulting attached or detached shock configu-
ration. Similarly, when a supersonic flow encounters a concave corner with an angle
(8), two possibilities of attached or detached shock waves exist. Figure 2.22 illus-
trates the abovementioned four cases. There is a maximum deflection angle (6,.x)
associated with any given Mach number. When the deflection angle exceeds d,.x, @
detached shock forms which has a curved wave front. Behind this curved (or -
bow-like) wave, we find all possible shock solutions associated with the initial
Mach number M. At the center a normal shock exists, with subsonic flow resulting.
As the wave front curves around, the shock angle decreases continually, with a
resultant decrease in shock strength. Eventually, we reach a point where supersonic
flow exists after the shock front.

Oblique shock waves are preferred predominantly in engineering applications
compared with normal shock waves. This can be attributed to the fact that using one
or a combination of oblique shock waves results in more favorable post-shock
conditions (lower post-shock temperature and pressure) when compared to utilizing
a single normal shock. An example of this technique can be seen in the design of
supersonic aircraft engine inlets, which are wedge shaped to compress airflow into
the combustion chamber while minimizing thermodynamic losses. Early supersonic
aircraft jet engine inlets were designed using compression from a single normal

Fig. 2.21 Oblique shock wave applications
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Fig. 2.22 Oblique shock wave applications

shock, but this approach caps the maximum achievable Mach number to roughly
1.6. The wedge-shaped inlets are clearly visible on the sides of the F-14 Tomcat,
which has a maximum speed of Mach 2.34.

For analyzing oblique shock, consider Fig. 2.23 where the flow is deflected angle
0, and a shock generated inclined an angle # to the flow direction. The flow
approaches the shock wave with a velocity V; and Mach number M, at an angle
with respect to the shock. It is turned through an angle 6 as it passes through the
shock, leaving with a velocity V, and a Mach number M, at an angle (f — §) with
respect to the shock. The inlet and exit velocities can be separated into tangential
and normal components. The tangential velocity components upstream and down-
stream the shocks are equal. The normal velocity component may be treated as flow
through a normal shock. This means that V,, is supersonic and V,,, is subsonic, but
still the downstream velocity V, is supersonic. The following relations define the
normal and tangential velocity components and Mach number for both upstream
and downstream conditions:

Vii=Vay


http://www.thefullwiki.org/F-14_Tomcat#F-14%20Tomcat
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In

N

Fig. 2.23 Nomenclature of oblique shock wave

Vi,=Vicosp Vo = Vycos (B — 6)
Vip = Vysing Vou = Vasin (B — 6)
My, =M;sin > 1.0 My, = Mysin (f —6) < 1.0
My, = M cosp My = M, cos (B — 6)
M, > 1.0, M, > 1.0

Since the oblique shock can be treated as a normal shock having an upstream Mach
number M, = M, sinf and a tangential component M, = M, cos f, then using
Egs. (2.56), (2.57), (2.58), (2.59), and (2.60), the relations (2.62-2.66) can be
deduced; [9] and [10]. The relation between (8, #, M) is given by Eq. (2.61).

2cotp(M7sin?p — 1)
(y + )M} — 2(M7sin2p — 1)

tand = (2.61a)

For y = 7/4, then

M3 sin23 — 2 cot 8

tand =5 5
10 + M7(7 + Scos 2p3)

(2.61b)
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—1)M,* +2
M2 = (7/2)—“+ (2.62a)
2yM1,” — (y — 1)

(y — )M *sin?g +2

My?sin?( — 8) = 2.62b
27 sin*(f - 6) M 2sin 2 — (7 — 1) ( )
For y = 7/4, then
M2 — 36M,*sin?f — 5(M,*sin?f — 1) (TM,* sin*f + 5) (2.620)
(TM?sin2p — 1) (M,*sin23 + 5)
Py  [2yM*sin’g — (y — 1)}
- 2.63a
P, |: y+1 ( )
For y = 7/4, then
P, TM % sin?B — 1
—=— 2.63b
o (2 (2.63)
Ty _ [2rMy?sin?p — (y — D] [(y — )M, sin*f + 2] (2.64a)
T, (y + 1)°M,*sin2p .
For y = 7/4, then
T,  (TM*sin?g —1)(M,*sin?f +5)
i —— (2.64b)
T, 36M,~ sin?p
Py _ [ (y + 1)M,*sin’p } (2.65)
pi 12+ (y—1)M,*sin2p '
For y = 7/4, then
p 6M,? sin2f
P2 _ [ﬁ (2.65b)
P1 M“sin?f+5
P [ (r+DMsin’p 177 y+1 () (2.6
Poi  [(y— DM *>sin2p+2] [2yM*sin2f — (y — 1) '
For y = 7/4, then the relation for total pressure ratio will be
P02 6M12 sin zﬂ % 6 (%)
—02 — e (2.66b)
Py M “sin?f+ 5] [TM~sin?f — 1

Figure 2.24 illustrates the relation between M, # and 6 for oblique shock wave for
the case of y = 1.4. Figure 2.25 illustrates the downstream Mach number M, for
oblique shock wave also for y = 1.4.
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Fig. 2.24 Relation between M, and 6 for oblique shock wave y = 1.4

Example 2.11 An oblique shock wave has the following upstream static conditions
and Mach number: P; = 150 kPa, T; =500 K, M; = 1.605 and a shock angle

p = 60°. 1t is required to calculate:

1. Upstream velocity (V), deflection angle (5)
2. Downstream Mach number (M)
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Fig. 2.25 Downstream Mach number M, for oblique shock wave y = 1.4

3. Static and total temperatures (15, To1, To2)

4. Normal and tangential velocity components upstream and downstream of the
oblique shock (Vy,, Vi Vo, Vay)
5. Static and total pressures (P, P, Pg2)

Solution

V] :M1a1 :M1\/7RT1 =1.609 x V1.4 x 287 x 500
Vi=17194 m/s

The deflection angle is calculated from Eq. (2.61a):

2 cot 60 [(1.605 $in60)> — 1}

tané = =0.24916

(2.4)(1.605)> — 2 [(1.605 5in 60)% — 1}
5=14°

From Eq. (2.62b)
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4 x (1.604 si 242
My sin2(60 — 14) — 0.4 x (1.60 's1n603 +
2.8 x (1.604 sin 60)” — 0.4
M>? = 1.06968
M, = 1.042

From Eq. (2.64a)

T, [28x1.932-04]0.4 x 1.932 +2]
T (2.4)* x 1.932
T, = 624.1 K

= 1.2482

Isentropic relation at inlet gives

-1
Toi =T (1 + %Mﬂ) =500 x 1.5152 =757.6 K = Tn

Vip =Vising =719.4 x sin60 = 623 m/s
Vii=Vicosf =359.7 m/s
Vy = Maay = Ma\/yRT, =1.034 x /1.4 x 287 x 624 = 517.8 m/s
V,=517.8 m/s
Von = Vasin(f — 8) = 372.5 m/s
Vo = Vycos (f —6) = 359.7=Vy,

From Egs. (2.63a) and (2.63b),

Py [2yM*sin?B—(y—1)]  (IM,*sin?f — 1
Pl_ }’+1 N 6

. 2
Py _Tx (1.605 x sin60)” — 1 0874
P, 6

P, =313.1 kPa

y—1_ 4 5135
Por =Py (147 5=m2 ) =150 x [1 +0.2 % (1.605) } — 6423 kPa

From Egs. (2.66a) and (2.65b),

Po { 6M,2 sin 2 ﬂ 6 }@

Py |M%sin2f+5] |[TM,*sin2f — 1
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Py [6x 1.932]} 6 )
Py |1.932+5| |[7x1932—1
P02 = 0.96P01 = 616.6 kPa

=0.96

As a comment here, oblique shock wave has the following features:

e Downstream flow is maintained supersonic.

* Both downstream static pressure and temperature are increased.

» Total temperature is kept constant while downstream total pressure is slightly
reduced.

2.5 Rayleigh Flow Equations

Rayleigh flow resembles the case of a steady one-dimensional flow with heat
transfer. Thus, it is appropriate to treat the flow in combustion chambers as a
Rayleigh flow case. Consider the fluid flow in Fig. 2.26. No work exchange while
heat is added (;Q,).

1 2
Tzzzzzzzz; Dizzzziz

A o~
U | !
h1: ihz

LIPSO, .
Wi tt)t00¢, eiiiizzzz/z2zzz

le

Fig. 2.26 Steady one-dimensional frictionless flow in a constant-area duct with heat transfer
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The governing equations are

Continuity equation 0 =p1 UL =py Uy

Momentumequation p, + p; u1> = p, + p, uy?
2 2

. Vv 1%
Energy equation  hgp=h; + 72 = hoy 4,0, = hy + _21 +.,0,
Equation of state P P
Ty poTo

For a perfect gas, the momentum equation can be rewritten as

2 2
p1(1+ P1 ”1) _p2(1+ Pz”z)
D1 2]

or

P [1 a yM‘T (2.67)

P (1 +yM2
From continuity equation

prur = pyua
P\M,  PM,
vIi VT

Thus

T 1+ yM,2\ > M2
—2—<—+y 1) 2 (2.68)

Ty \1+yMy?) M,
Since the total and static temperatures are related by the relation:

Ty y—1 2
—=14+—M
T + 2

Then

Tox (1 +7M12>2<M2>2 1 +%M22 (2.69)
To 1+yMy?) \M, 1+51M,? '
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Similarly, the total pressure and static density ratios may be expressed as

Py 1+yM? (145 M7\ (270)

Por  1+yMa> \1 4+ 5 M,? '
pr_ (My ’ L+yM5? (2.71)
P \Ma) \1+yM,? '

The downstream Mach number is expressed by the relation:

2 (r — 1)M% +2
1 4

At critical conditions, these relations will be reduced to

P y+1
e {m] (2.73)
T  M(y+1)°
= (2.74)
(1+yM?)
To 2(1 M? -1
To _2(1+7) 2(1 4 M2> (2.75)
Ty (1+yM?) 2
v
Py (1+y) [1+5 M\
-0 a 2 (2.76)
P, (1+yM?) 1
ﬁ:ﬂ (2.77)
Pt (L+y)M? '

Example 2.12 The combustion chamber in a ramjet engine has the following
characteristics:

Toi = 360 K, To» = 1440 K, M, = 0.9.

It is required to calculate:

¢ The inlet Mach number M,
¢ The amount of heat added

Assume that y = 1.3 and R = 287 J /kg.K
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Solution
From Eq. (2.69)

_ 2 y=1las2
M12<1+y 1M12> T M (145 M ) (1+yM2)?
2 T (1+yM3?)

-1
M14(y2A —yz) +M22yA—1)+A=0

TOI M22(1 _’_%MZZ) B 360 (09)2 |:1 +015 X (09)2:|

Where A= = =0.0538823
T (1+yM%)° 1440 (1413 (0.97]
M;*(—0.0589389) + M;*(—.0859906) + 0.0538823 = 0

M;? = 0.0623939
Thus M, = 0.24979
Since

YR 13 %287
Cp = - — 1243.67 J/kg.K
P=y 0.3 /ke

The heat added is then from energy equation:

Q = h02 — h()] = Cp(T02 — T()l) = 124367(1440 — 360) = 1,343, 160 J/kgK
0 = 1343.16kJ /kg. K

Example 2.13 The combustion chamber in a turbojet engine has the following inlet
conditions:

Tor =500 K, Py =15 bar, My =0.15,m =200 kg/s, the exit tempera-
ture is Top = 1500 K, and fuel-to-air ratio is f = 0.0273. Calculate:

1. Inlet area of combustor (A;)
2. The total pressure ratio across the combustor
3. Mach number and area at combustor outlet (M», A,)

Assume that y = 1.4 and R = 287 J /kg K
Solution

The static temperature and pressure at inlet are

To1 500

= e 5 =497.8 K
< +0.2 x (0.15)

T,
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P 15
P, = % = = = 14.766 bar

(1+ 51 M2 (1 +0.2 % (0.15)2)
Vi=May =M;\/yRT, =0.15 x V1.4 x 287 x 500 = 67.23 m/s

P, 3
=—=10.335 k :
P1 RT, g/m

; 200
A =

— — =0.288 m’
piV1 10335 x 67.23 o

To evaluate Mach number at combustor outlet, we can use Eq. (2.69):

2
Tp _,_ (1+14x 0.15) (M2 )2 1+ 0.2M>
Tor 1+ 1.4 x My? 0.15) \1+0.2 x [0.15?
My?* x (1+0.2M57)

3 =47.08 x -
(1+ 1.4 x My?)

The above equation is solved by trial and error to obtain M, = 0.277
Now the total pressure ratio across the combustor is obtained from Eq. (2.70);

thus,

35
Py 1+14x(015)° (1+02x(0277)7\ 10315 10383
Poi 1+ 1.4x(.0.277)> \ 1+0.2 x (0.15) 1.1074 =
Po
—2 —0.9671
Poy

The static properties at the outlet of combustion chamber are obtained from
relations (2.67), (2.68), and (2.71).

P, [1+14x0.15
P11+ 1.4x0.277

T (1+14x015° 0277
T, \1+14x0277>" 0.15

0.15\% /1 + 1.4 x 0.2772
@:< ) ( rlax 2>:0.3148
p \0.277 14+1.4x0.15

pr = 3.2535 kg/m?, T, = 1472.8K
V2 = Mz\/]/RTz =213 m/s

The outlet mass flow rate is i, = m (1 +f) = 200(1 + 0.0273) = 205.46 kg/s

] =0.93144

2
) =2.9586
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The outlet area of combustor is then

' 205.4
dp= M2 20546 o065 2
pVa  3.2535 x 213

2.6 The Standard Atmosphere

For a fluid in rest without shearing stresses, any elementary fluid element will be
subjected to two types of forces, namely, surface forces due to the pressure and a
body force equal to the weight of the element. Force balance will yield the
following relation:

Vp = —yk

where y is the specific weight of fluid and & is the unit vector in the positive vertical
direction (opposite to the gravitational force) and

y=p8
Thus,

op op op

5. =0 R 0, = =-7=-p8 (2.78)

The first two derivatives in Eq. (2.78), show that the pressure does not depend on
x or y. Thus, as we move from one point to another in a horizontal plane (any plane
parallel to the x—y plane), the pressure does not change. Since p depends only on z,
the last of Eq. (2.78) can be written as the ordinary differential equation

z—i =-y=-—pg (2.79)
Equation (2.79) is the fundamental equation for fluids at rest and can be used to
determine how pressure changes with elevation. This equation indicates that the
pressure gradient in the vertical direction is negative; that is, the pressure decreases
as we move upward in a fluid at rest. For the Earth’s atmosphere where the
variations in heights are large, on the order of thousands of feet, attention must be
given to the variation in the specific weight (y). Since air may be considered an ideal
(or perfect) gas, its equation of state (p = pRT) is used.
This relationship can be combined with Eq. (2.79) to give

dp _ g
dz RT
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and by separating variables

P> 2

d d

J dp P> _ _EJ dz (2.80)
p P R) T

P 21

where g and R are assumed to be constant over the range of elevation involved.
Equation (2.80) relates to the variation in pressure in the Earth’s atmosphere.
Ideally, we would like to have measurements of pressure versus altitude over the
specific range of altitude. However, this type of information is usually not available.
Thus, a “standard atmosphere” has been determined that can be used in the design
of aircraft and rockets. The concept of a standard atmosphere was first developed in
the 1920s, and since that time many US and international committees and organi-
zations have pursued the development of such a standard. The currently accepted
standard atmosphere is based on a report published in 1962 and updated in 1976
[11, 12], defining the so-called US standard atmosphere, which is an idealized
representation of middle-latitude, year-round mean conditions of the Earth’s atmo-
sphere. Figure 2.27 shows the temperature profile for the US standard atmosphere.

5
[Te]
50 ~
47.3 km
(p=0.1 kPa)
[&]
40 A
qZ
e
32.2 km (p = 0.9 kPa)
£ a0
2
=
< 20
£ 1 20.1 km (p=5.5kPa)
Stratosphere e
8
o l I 11.0 km (p = 22.6 kPa)
p =101.3 kPa (abs)
Troposphere 13 ¢
0
-100 -80 -60 -40 -20 0 +20

Temperature, °C

Fig. 2.27 Variation of temperature with altitude in the US Standard Atmosphere
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As is shown in this figure, the temperature decreases with altitude in the region
nearest the Earth’s surface (troposphere), then becomes essentially constant in the
next layer (stratosphere), and subsequently starts to increase in the next layer. Since
the temperature variation is represented by a series of linear segments, it is possible
to integrate Eq. (2.80) to obtain the corresponding pressure variation. For example,
in the troposphere, which extends to an altitude of about 11 km (~ 36,000 f7), the
temperature variation is of the form

T=T,—pz (2.81a)

where T, is the temperature at sea level (z = 0) and f is the lapse rate (the rate of
change of temperature with elevation), 0.00356616 °F/ft, or 0.0019812 °C/ft. For
the standard atmosphere in the troposphere, and if (z) represents altitude in feet,
then Eq. (2.81a) may be further expressed as

T = 518.67 — 0.00356616 z°R (2.81b)
T = 288.15 — 0.0019812 z°K (2.81c)
t =59 — 0.00356616 z°F (2.81d)
t=15—0.0019812 z °C (2.81e)

Equation (2.81a) together with Eq. (2.80) yields

p —pu<1 —&)/}_R (2.82)

T,

where (p,) is the absolute pressure at z=0. With p,=101.33 kPa, T,=288.15 K
and g =9.807 m/s%, and with the gas constant R = 286.9] /kg K. The pressure
variation throughout the troposphere can be determined from Eq. (2.82). This
calculation shows that at the outer edge of the troposphere, where the temperature
is —56.5 °C, the absolute pressure is about 23 kPa. It is to be noted that modern
jetliners cruise at approximately this altitude.

For the stratosphere atmospheric layer (between 11.0 and 20.1 km), the temper-
ature has a constant value (isothermal conditions) which is —56.5 °C (or —69.7 °F,
389.97 °R, 216.65°K).

It then follows from Eq. (2.80), the pressure-elevation relationship expressed as

7= mevg] =] s

where pg, T, and z are the pressure, temperature, and altitude of the lower edge of
the stratosphere (23 kPa, —56.5 °C, 36,000 ft).

Figure 2.28 illustrates the variation of temperature with altitude. Figure 2.29
illustrates flight altitudes appropriate to different aircrafts. Table 2.9 defines the
properties of the Earth standard atmosphere [12].
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Fig. 2.28 The ISA: variation of temperature with altitude
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Fig. 2.29 Flight envelopes of aircraft with different engine types
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Table 2.9 Properties of the Earth’s standard atmosphere (Ref. [12])
Density

Altitude (m) Temperature (K) Pressure ratio (kg/mS)

0 (sea level) 288.150 1.0000 1.2250

1000 281.651 8.87 x 107! 1.11117
3000 268.650 6.6919 x 10~ 0.90912

5000 255.65 5.3313 x 10~ 0.76312
10,000 223.252 2.6151 x 107! 41351 x 107!
25,000 221.552 25158 x 1072 4.0084 x 1072
50,000 270.650 7.8735 x 107 1.0269 x 1073
75,000 206.650 2.0408 x 1073 3.4861 x 107>
100,000 195.08 3.1593 x 1077 5.604 x 1077
130,000 469.27 1.2341 x 1078 8.152x 107°
160,000 696.29 2.9997 x 10~° 1.233 x 1077
200,000 845.56 8.3628 x 10710 2.541 x 10710
300,000 976.01 8.6557 x 10711 1.916 x 107!
400,000 995.83 1.4328 x 10711 2.803 x 10712
600,000 999.85 8.1056 x 10713 2.137 x 10713
1,000,000 1000.00 7.4155 x 10714 3.561 x 1071
Problems

2.1 Calculate the Mach number for a flight vehicle flying at a speed of

10,000 km/h at the following altitudes:
sea level — 10,000 m —25,000 m — 50,000 m — 100,000 m — 200,000 m —
400,000 m — 1,000,000 m.

2.2 Describe probe-and-drogue air-to-air refueling system.

2.3 What are the advantages of refueling a military aircraft?

2.4 Tornado GR4 refueling from the drogue of an RAF VC10 tanker as shown in
figure Problem 2.4 at the rate of 600 gal/min of fuel having a specific gravity
of 0.75. The inside diameter of hose is 0.14 m. The fluid pressure at the
entrance of the fighter plane is 40 kPa gage. What additional thrust does the
plane need to develop to maintain the constant velocity it had before the
hookup?


http://en.wikivisual.com/index.php/Tornado_GR4#Tornado%20GR4
http://en.wikivisual.com/index.php/VC10#VC10
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Figure (Problem 2.4)

2.5 Fighter airplane is refueling from the DC-10 tanker as shown in figure
Problem 2.5 at the rate of 700 gal/min of fuel having a specific gravity of
0.72. The inside diameter of hose is 0.13 m. The fluid pressure at the entrance
of the fighter plane is 45 kPa gage. What additional thrust does the plane
need to develop to maintain the constant velocity it had before the hookup?

I, WL A

Figure (Problem 2.5)
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2.6

A jet plane is on the runway after touching down. The pilot puts into play
movable vanes to achieve a reverse thrust from his two engines. Each engine
takes in 50 kg of air per second, The fuel-to-air ratio is 1-40. If the exit
velocity of the combustion products is 800 m/s relative to the plane, what is
the total reverse thrust of the airplane if it is moving at a speed of 180 km/h ?
The exit jets are close to atmospheric pressure.

_@\

N

Figure (Problem 2.6)

2.7

2.8

29

A fighter plane is climbing at an angle 0 of 60° at a constant speed of
900 Km/h. The plane takes in air at a rate of 450 kg/s. The fuel-to-air ratio
is 2 %. The exit speed of the combustion products is 1800 m/s relative to the
plane. If the plane changes to an inclination angle 6 of 20°, what will be the
speed of the plane when it reaches uniform speed? The new engine settings
are such that the same amount of air taken in and the exhaust speed relative
to the plane are the same. The plane weights 150 kN. The drag force is
proportional to the speed squared of the plane.

If the fighter plane in problem (2.7) is climbing also at an angle @ = 60° but at
a constant acceleration (a). The weight, thrust, and drag forces are 150, 715,
and 500 kN, respectively. Calculate the acceleration (a). Next, the plane
changes its angle to 20°, while the air mass flow rate is 450 kg/s, exhaust
speed of gases is 1800 m/s, and fuel-to-air ratio is 2 %. For the same value of
acceleration calculated above and if the drag force is proportional to the
speed squared of the plane, what will be the aircraft velocity.

Figure Problem (2.9) illustrates supersonic jet fighter aircraft Mikoyan—
Gurevich MiG-21. One type of its armament is Nudelman—Rikhter NR-30,
twin-barrel 23 mm GSh-23 cannon. It had a muzzle velocity of 800 m/s. Each
bullet (cartridge) is 30 x 155 mm and has a mass of 400 grams and a rate of
fire of 900 cycles per minute. What is the additional thrust needed to keep a
constant aircraft speed of 600 km/h? (Neglect the change of mass of aircraft.)


http://en.wikipedia.org/wiki/Supersonic#Supersonic
http://en.wikipedia.org/wiki/Jet_aircraft#Jet%20aircraft
http://en.wikipedia.org/wiki/Fighter_aircraft#Fighter%20aircraft
http://en.wikipedia.org/wiki/Gram#Gram
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Cannon

Control voulme

Figure (Problem 2.9)

2.10 If the specific heat at constant pressure is expressed by the relation

C, 7 Tr/(2T)

R 2" Linh{TR / (2T)}}
where the reference temperature T = 3060K, plot C,,, C,, y and h of air as a
function of 7/Tx over the range 300 to 3800 K.

2.11 A rocket engine uses nitric acid as oxidizer. The oxidizer flow rate is 2.60 kg/s
and a fuel flow of 0.945 kg/s. Thus, the propellant flow rate is 3.545 kg/s. If the
flow leaves the nozzle at 1900 m/s through an area of 0.012 m? with a pressure
of 110 kPa, what is the thrust of the rocket motor?
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Oxidizer Fuel
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| c.C
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Figure (Problem 2.11)

2.12 A rocket is designed to have four nozzles, each canted at 30° with respect to the
rocket’s centerline. The gases exit at 2200 m/s through the exit area of 1.2 m*
The density of the exhaust gases is 0.3 kg/m’, and the exhaust pressure is
55 kPa. The atmospheric pressure is 12 kPa. Determine the thrust on the rocket.

=12 kPa

P
A= 1.2 m’
P. = 55 kPa

\, =2200 m/s ™ 3¢0°

Figure (Problem 2.12)
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2.13 A convergent nozzle has an exit area of 500 mm?. Air enters the nozzle with a

stagnation pressure of 1000 kPa and a stagnation temperature of 360 K.
Determine the mass rate of flow for back pressures of 850, 528, and
350 kPa, assuming isentropic flow.

2.14 A converging—diverging nozzle has an exit area to throat area ratio of 2. Air

enters this nozzle with a stagnation pressure of 1000 kPa and a stagnation
temperature of 460 K.

The throat area is 500 mm?. Determine the mass rate of flow, exit pressure,
exit temperature, exit Mach number, and exit velocity for the following
conditions:

(a) Sonic velocity at the throat, diverging section acting as a nozzle (corre-
sponds to point G in Fig. 2.18)

(b) Sonic velocity at the throat, diverging section acting as a diffuser
(corresponding to point C in Fig. 2.18)

2.15 An oblique shock wave has the following data

M, =30, Py=1atm, T, =288 K, y=14, §=20°

(a) Compute shock wave angle (weak)
(b) Compute Py, Tgz, P2, T, M5 behind shock
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