Introduction to Neural Networks

(Artificial) neural networks are information processing systems, whose structure and
operation principles are inspired by the nervous system and the brain of animals and
humans. They consist of a large number of fairly simple units, the so-called neurons,
which are working in parallel. These neurons communicate by sending information
in the form of activation signals, along directed connections, to each other.

A commonly used synonym for “neural network™ is the term ‘“connectionist
model.” The research area that is devoted to the study of connectionist models is
called “connectionism.” Furthermore, the expression “parallel distributed process-
ing” can often be found in relation to (artificial) neural networks.

2.1 Motivation

(Artificial) neural networks are studied for various reasons: in (neuro-)biology and
(neuro-)physiology, but also in psychology, one is mainly interested in their similarity
to biological nervous systems. In these areas (artificial) neural networks are used as
computational models with which one tries to simulate and thus to understand the
mechanisms of nerve and brain functions. Especially in computer science, but also
in other engineering sciences, one tries to mimic certain cognitive powers of humans
(especially learning ability) using functional elements of the nervous system and
the brain. In physics, certain mathematical models that are analogous to (artificial)
neural networks are employed to describe specific physical phenomena. An example
are models of magnetism, for instance, the Ising model.

As can already be seen from this brief list, the study of (artificial) neural networks
is a highly interdisciplinary research area. However, in this book we widely neglect
the use of (artificial) neural networks in physics (even though we draw on examples
from physics to explain certain network models) and consider their biological basis
only very briefly (see the next section). Rather we focus on the mathematical and
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engineering aspects, particularly the use of (artificial) neural networks in the area of
computer science that is commonly called “artificial intelligence.”

While the reasons why biologists study (artificial) neural networks are fairly obvi-
ous, we may have to justify why neural networks are (or should be) studied in arti-
ficial intelligence. The reason is that the paradigm of classical artificial intelligence
(sometimes called, in a somewhat pejorative manner, GOFAI — “good old-fashioned
artificial intelligence”) is based on a very strong hypothesis about how machines can
be made to behave “intelligently.” This hypothesis says that the essential requirement
for intelligent behavior is the ability to manipulate symbols and symbol structures
that are represented by physical structures. Here symbol means a token that refers
to an object or a situation. This relation is interpreted in an operational manner: the
system can perceive and/or manipulate the object referred to. This hypothesis was
first formulated explicitly by Newell and Simon (1976):

Physical Symbol System Hypothesis: A physical-symbol system has the nec-
essary and sufficient means for general intelligent action.

As amatter of fact, classical artificial intelligence concentrated, based on this hypoth-
esis, on symbolic forms of representing knowledge and in particular on propositional
and predicate logic. (Artificial) neural networks, on the other hand, are no physical
symbol systems, since they do not process symbols, but rather much more elementary
signals, which, taken individually, rarely have a (clear) meaning. As a consequence,
(artificial) neural networks are often called “sub-symbolic.” However, if the ability to
process symbols is necessary to produce intelligent behavior, then it is unnecessary
to study (artificial) neural networks in artificial intelligence.

There is no doubt that classical artificial intelligence has achieved remarkable
successes: nowadays computers can automatically solve many types of puzzles and
brain-twisters and can play games like chess and Reversi (also known as Othello) on
an extremely high level. However, when it comes to mimicking perception (seeing,
hearing, etc.), computers usually perform fairly poorly compared to humans—at
least if symbolic representations are relied upon: here computers are often too slow,
too inflexible, and too little tolerant to noise and faults. We may conjecture that the
problem is that in order to recognize patterns—a core task of perception—symbolic
representations are not very well suited, because there are no adequate symbols on
this level of processing. Rather “raw” (measurement) data needs to be structured and
summarized before symbolic methods can effectively be applied. Hence it appears to
be reasonable to examine the mechanisms of sub-symbolic information processing
in natural intelligent systems—that is, animals and humans—in more detail and
possibly to exploit these mechanisms to mimic intelligent behavior.

Additional arguments why studying (artificial) neural networks may be beneficial
arise from the following observations:

e Expert systems that use symbolic representations usually become slower with a
larger knowledge base, because larger sets of rules need to be traversed. Human



2.1 Motivation 1

experts, however, usually become faster. Maybe a non-symbolic representation (as
it is used in natural neural networks) is more efficient.

e Despite the fairly long switching time of natural neurons (in the order of several
milliseconds) essential cognitive tasks (like recognizing an object) are solved in a
fraction of a second. If neural processing were sequential, only about 100 switching
operations could be performed (“100-step rule”’). Hence high parallelization must
be present, which is easy to achieve with neural networks, but much more difficult
to implement with other approaches.

e There is a large number of successful applications of (artificial) neural networks
in industry, commerce, and finance.

2.2 Biological Background

As already mentioned, (artificial) neural networks are inspired by the structure and
the operation principles of the nervous system and particularly the brain of animals
and humans. In fact, the neural network models that we study in this book are
not very close to their biological original, since they are too simplified to model the
characteristics of natural neural networks correctly. Nevertheless we briefly consider
natural neural networks here, because they formed the starting point for investigating
artificial neural networks. The description follows Anderson (1995).

The nervous system of animals consists of the brain (in so-called “lower” life forms
often only referred to as the “central nervous system”), the different sensory systems,
which collect information from the different body parts (visual, auditory, olfactory,
gustatory, thermal, tactile, etc., information), and the motor system, which controls
movements. The greater part of information processing happens in the brain/central
nervous system, although the amount of preprocessing outside the brain can be
considerable, for example, in the retina of the eye.

W.r.t. processing information, the neurons are the most important components of
the nervous system.! According to common estimates, there are about 100 billion
(10'") neurons in the human brain, of which a fairly large part is active in parallel.
Neurons process information mainly by interacting with each other.

A neuron is a cell that collects and transmits electrical activity. Neurons exist
in many different shapes and sizes. Nevertheless, one can derive a “prototypical”
neuron that resembles all kinds of neurons to some degree (although this is a fairly
severe simplification). This prototype is shown schematically in Fig.2.1. The cell
body of the neuron, which contains the nucleus, is also called soma. It has a diam-
eter of about 5-100 wm (micrometer, 1 wum = 10~°m). From the cell body extend
several short, heavily ramified branches that are called dendrites. In addition, it has
a long extension called axon. The axon can be between a few millimeters and one

I'The nervous system consists not only of neurons, not even for the largest part. Besides neurons
there are various other cells, for instance, the so-called glia cells, which have a supporting function.
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Fig.2.1 Prototypical structure of biological neurons

meter long. Axon and dendrites differ in the structure and the properties of the cell
membrane. In particular, the axon is often covered by a myelin sheath.

The axons are the fixed paths along which neurons communicate with each other.
The axon of a neuron leads to the dendrites of other neurons. At its end the axon
is heavily ramified and possesses at the ends of these branches terminal buttons.
Each terminal button almost touches a dendrite or the cell body of another neuron.
The gap between a terminal button and a dendrite is usually between 10 and 50nm
(nanometer; 1 nm = 1079 m) wide. Such a place, at which an axon and a dendrite
almost touch each other, is called synapse.

The most common form of communication between neurons is that a terminal but-
ton of the axon releases certain chemicals, the so-called neurotransmitters, which
act on the membrane of the receiving dendrite and change its polarization (its elec-
trical potential). Usually the inside of the cell membrane, which encloses the whole
neuron, is about 70mV (millivolts; 1 mV = 1073 V) more negative than its outside,
because the concentration of negative ions is greater on the inside, while the concen-
tration of positive ions is greater on the outside. Depending on the type of the released
neurotransmitter, the potential difference may be reduced or increased on the side
of the dendrite. Synapses that reduce the potential difference are called excitatory,
those that increase it are called inhibitory.

In an adult human all connections between neurons are completely established
and no new connections are created (again this is a severe simplification). An average
neuron possesses between 1000 and 10,000 connections to other neurons. The change
of the electrical potential that is caused by a single synapse is fairly small, but the
individual excitatory and inhibitory effects can accumulate (counting the excitatory
influences as positive and the inhibitory ones as negative). If the excitatory net input
is large enough, the potential difference in the cell body can be significantly reduced.
If the reduction is large enough, the axon’s base is depolarized. This depolarization is
caused by positive sodium ions entering the cell. As a consequence, the inside of the
cell becomes temporarily (for about one millisecond) more positive than its outside.
Afterwards the potential difference is rebuilt by positive potassium ions leaving the
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cell. Finally, the original distribution of sodium and potassium ions is reestablished
by special ion pumps in the cell membrane.

The sudden, temporary change of the electrical potential, which is called action
potential, propagates along the axon. The propagation speed lies between 0.5 and
130 m/s, depending on the properties of the axon. In particular, it depends on how
heavily the axon is covered with a myelin sheath (the more myelin, the faster the
action potential is propagated). When this nerve impulse reaches the end of the axon,
it causes neurotransmitters to be released at the terminal buttons, thus passing the
signal on to the next cell, where the process is repeated.

In summary: changes of the electrical potential are accumulated at the cell body
of a neuron and, if they reach a certain threshold, are propagated along the axon. This
nerve impulse causes that neurotransmitters are released by the terminal buttons at
the end of the axon, thus inducing a change of the electrical potential in the receiving
neuron. Even though this description is heavily simplified, it captures the essentials
of neural information processing on the level of individual neurons.

In the human nervous system information is encoded by continuously changing
quantities, primarily two: the electrical potential of the neuron’s membrane and the
number of nerve impulses that a neuron transmits per second. The latter is also
called the firing rate of the neuron. It is commonly assumed that the number of
impulses is more important than their shape (in the sense of a change of the electrical
potential), although competing theories of neural coding exist. A neuron can emit
100 or even more impulses per second. The higher the firing rate, the higher the
influence a neuron has on connected neurons. However, in artificial neural networks
this frequency coding of information is usually not emulated.
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