
Chapter 2
Fundamental Properties of Phononic Crystal

Yan Pennec and Bahram Djafari-Rouhani

2.1 Introduction to the Concept of Phononic Crystals
and Their Band Structures

The control and manipulation of acoustic/elastic waves is a fundamental problem
with many potential applications, especially in the field of information and commu-
nication technologies. For instance, confinement, guiding, and filtering phenomena
at the scale of the wavelength are useful for signal processing, advanced nanoscale
sensors, and acousto-optic on-chip devices; acoustic metamaterials, working in
particular in the sub-wavelength regime can be used for efficient and broadband
sound isolation as well as for imaging and super-resolution.

Phononic crystals, which are artificial materials constituted by a periodic rep-
etition of inclusions in a matrix, are proposed to achieve these objectives via the
possibility of engineering their band structures. The elastic properties, shape, and
arrangement of the scatterers modify strongly the propagation of the acoustic/elastic
waves in the structure. The phononic band structure and dispersion curves can then
be tailored with appropriate choices of materials, crystal lattices, and topology of
inclusions.

Similarly to any periodic structure, the propagation of acoustic waves in a
phononic crystal is governed by the Bloch [1] or Floquet theorem from which one
can derive the band structure in the corresponding Brillouin zone. The periodicity
of the structures, that defines the Brillouin zone, may be in one (1D), two (2D),
or three dimensions (3D). The propagation of acoustic waves in layered periodic
materials or superlattices which are now being considered as 1D phononic crystals
has been extensively studied [2] since the early paper of Rytov [3]. However, the
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concept of phononic crystal was introduced only two decades ago in relation with
2D [4–6] and 3D [7] periodic media, especially to seek for the possibility of the so-
called absolute band gaps [8–10]. Indeed, the dispersion curves exhibit band gaps
in which the propagation of waves is prohibited. Such gaps may occur for particular
directions of the wave vector, but they can also span the whole 2D or 3D Brillouin
zone where the propagation of elastic waves becomes forbidden for any polarization
and any incident angle. Then, the structure behaves like a perfect mirror for any
incidence angle, thus prohibiting the transmission of sound waves.

The concept of phononic crystal followed by a few years the analogous concept
of photonic crystals [11, 12] for the propagation of electromagnetic waves. The
existence of band gaps is especially well-known in solid state physics in the field
of electronic band structure of crystalline materials. In particular, the properties
of semiconductors, such as electronic, conduction, and optical properties, are
dominated by the band gap separating the valence and conduction bands and,
moreover, these properties can be drastically modified and tailored by introducing
defects into the semiconductor due to the emergence of new states inside the
band gaps (the so-called localized modes associated with the defects which have
a decaying wave function far from the defect position). Similarly, the introduction
of defects such as waveguides and cavities in phononic or photonic crystals are at
the origin of many of their potential applications for confinement, guiding, filtering,
and multiplexing of acoustic waves at the level of the wavelength [10] and pave the
way for the realization of advanced sensors and acousto-optic devices.

The progress in the field of phononic crystals goes in parallel with their photonic
counterpart, although they involve a larger variety of materials as concerns the
possibility of high contrast among the elastic properties, large acoustic absorption
and the solid or fluid nature of the constituents. Since the band structure is scalable
with the dimensions of the structure (as far as the linear elasticity theory applies),
a great deal of works has been devoted to macroscopic structures in the range of
sonic (kHz) and ultrasonic (MHz) frequencies where the proof of concepts of band
gaps and manipulation of sound (such as wave guiding, confinement, sharp bending)
have been established with simple demonstrators. Yet, there is a continuous interest
in the engineering of band structures with new structures and materials as well as the
technological fabrication of sub-micron scale structures working in the hypersonic
(GHz) regime.

The general mechanism for the opening of a gap is based on the destructive
interference of the scattered waves by the inclusions and therefore requires a high
contrast between the elastic properties of the materials. In periodic structures,
this is called the Bragg mechanism and the first band gap generally occurs at
a frequency which is about a fraction of c/a, where c is a typical velocity of
sound, and a the period of the structure. However, when the propagating waves
in the embedding medium are strongly scattered by the internal resonances of the
individual inclusions, one may obtain a so-called hybridization gap which results
from the coupling between the propagating waves of the matrix and the localized
mode of the scatterers [13, 14]. Such a gap is less sensitive to the periodicity and
can persist even in presence of some disorder in the structure [15, 16]. For common
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materials, it may happen that both types of gaps arise in the same frequency range
since the internal resonances of the inclusions would be of the order of c/d where
d is the typical diameter or size of the inclusion. In such cases, the combination
of the two effects can widen the actual band gap. It is also worthwhile mentioning
the concept of locally resonant sonic materials (LRSM) introduced by Ping Sheng
et al. [17] which later developed into the field of acoustic metamaterials. In the
latter work, the coating of hard inclusions by a very soft rubber produced a very low
frequency resonance gap situated two orders of magnitude below the Bragg gap,
thus allowing the sound isolation below kHz by a sample with a thickness of a few
centimeters only.

Point or linear defects [18] such as cavities or waveguides [19] can be introduced
into the phononic crystal by removing or modifying one, a few or a row of
inclusions. Depending on their geometries and constitutions, such defects can give
rise to new modes inside the band gap of the phononic crystal that correspond
to localized or evanescent waves with a decaying displacement field far from the
defect [20–22]. Therefore, they can be used for confinement and guiding [23, 24] of
the acoustic waves and the coupling between a waveguide and cavities provide the
possibility of filtering devices [25, 26, 10].

In this preliminary chapter, we limit ourselves to a basic presentation of the trends
on the dispersion curves and band gaps in different types of phononic crystals with
solid or fluid constituents. For the sake of simplicity, we consider only the case
of 2D crystals constituted by a periodic array of infinitely long bars in a matrix
background. Then, we review the localized modes associated with some simple
defects and their applications in filtering and multiplexing phenomena. In a final
section, we briefly summarize further developments in the field of phononic crystals.

2.2 Dispersion Curves and Band Gaps in 2D Phononic
Crystals

2.2.1 Origin of the Band Gaps: Bragg Gaps and Local
Resonances

An absolute phononic gap, if one exists, can be a Bragg type gap, which appears
at about an angular frequency ! of the order of c/a where c is a typical velocity of
sound in the structure and a the lattice parameter. The existence of absolute band
gaps was predicted theoretically [4–8] prior to being demonstrated experimentally
in various phononic crystals constituted of solid components [27, 28] or mixed
solid/fluid components [29]. It has been shown that the existence and bandwidth
of the gaps depend strongly on the nature of the constituent materials (solid or fluid),
the contrast between the physical characteristics (density and elastic constants) of
the inclusions and the matrix, the geometry of the array of inclusions, the inclusion
shape and the filling factor.
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It can be also a resonance type gap, which can appear at frequencies below the
Bragg limit. In the latter case, it is possible to obtain absolute gaps at frequencies
one to two orders of magnitude lower than the Bragg diffraction threshold, without
increasing the size of the unit cell in the crystal. Such gaps can be realized in
the so-called LRSM, whose building units exhibit localized resonant modes at
specific frequencies [17, 30]. Forming a phononic crystal from such components,
the resonances interact and give rise either to flat bands or to resonance gaps about
the corresponding eigenfrequencies. As these localized resonances depend on the
properties of the individual scatterers, their position in frequency can be tuned
by properly choosing the properties (elastic or geometric) of the scatterer. These
materials could found several potential applications, in particular in the field of
sound isolation or in the realization of vibrationless environment for high precision
mechanical systems, negative refraction or cloaking acoustic metamaterials.

2.2.2 Behavior of the Band Gaps as a Function
of the Geometrical and Physical Parameters

Phononic crystals are heterogeneous elastic media composed of a periodic array of
inclusions embedded in a matrix. The main characteristic of such composite media
is to exhibit stop bands in their transmission spectra, in which the propagation
of waves is forbidden. Three classes of phononic crystal can be defined, which
differ from each other by the physical nature of the inclusions and the matrix. One
can thus define solid–solid, fluid–fluid, and mixed solid–fluid composite phononic
crystals. The opening of wide acoustic band gaps requires two main conditions.
The first one is to have a large physical contrast, such as density and speed of
sound, between the inclusion and the matrix. The second condition is to present a
sufficient filling factor of the inclusion in the matrix unit cell. One can note that the
forbidden band gap occurs in a frequency domain given by the ratio of an effective
sound velocity in the composite material to the value of the lattice parameter of
the periodic array of inclusions. In two-dimensional solid–solid phononic crystal,
the modes of vibration can be decoupled between the in-plane propagation where
the elastic displacement is perpendicular to the cylinders and the out-of-plane
propagation where the elastic displacement is parallel to the cylinders axis. In fluid–
fluid phononic crystals, only longitudinal modes are allowed. In mixed phononic
crystals, complex modes of vibration can exist, ranging from longitudinal in the
fluid to longitudinal and transverse in the solid part. In this section, we will give a
few examples of the three classes of phononic crystals, dealing with the nature,
the composition, and the geometry of the constituents. Most of the following
calculations have been performed using improved methods such as plane wave
expansion (PWE), finite difference time domain (FDTD), well-known in the field
of photonic crystals, and finite element method (FEM).
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Table 2.1 Mass density � and elastic constants C11, C44, and C12 of silicon and epoxy. cl D
q

C11

�

and ct D
q

C44

�
represent, respectively, the longitudinal and transverse speed of sound

Material � (kg/m3)
C11

(�1011 dyn/cm2)
C44

(�1011 dyn/cm2) C12 (�1011 dyn/cm2) cl (m/s) ct (m/s)

Silicon 2,331 16.57 7.962 6.39 8,430 5,844

Epoxy 1,180 0.761 0.159 0.443 2,540 1,161

2.2.3 Solid–Solid Phononic Crystal

The elastic band structure of two-dimensional solid–solid composite materials
has been investigated independently in a few works by Sigalas and Economou
[4, 7, 31] and Kushwaha et al. [5, 6]. These authors demonstrate the existence of
absolute phononic band gaps in the first irreducible Brillouin zone. The dependence
of the band gap on the composition of the material and on the physical parameters
of the constituents was investigated in [6, 8, 27]. In the following, we propose to
examine in detail the elastic band structures and existence of absolute band gaps
in phononic crystals made of two common materials, silicon and epoxy. Silicon is
considered to be a cubic material with a crystallographic axis [001] parallel to the
direction of propagation whereas epoxy is isotropic. The physical parameters of the
two materials are reported in Table 2.1. These materials present a strong contrast
between both their densities and elastic constants, meaning that silicon is the hard
material while epoxy is the soft one. The first general requirement corresponding to
the existence of absolute band gap is then respected.

The purpose of the section is to investigate three lattices of periodic structures,
i.e. square, hexagonal, and honeycomb, as depicted in Fig. 2.1. The two-dimensional
cross section of the three investigated arrays is represented, in which a is the lattice
parameter. The corresponding Brillouin zone is also represented where (� , X, M)
(resp. (� , J, X)) are the high symmetry points of the first irreducible Brillouin zone
for the square (resp. hexagonal and honeycomb) array.

We first deal with hard material inclusions inside a soft matrix. Figure 2.2a shows
one example of the dispersion curves for a square array of silicon cylinders in epoxy
matrix, the filling factor defined by ˇ being equal to 0.68. In the range of frequency
of Fig. 2.2a, two complete band gaps are found for the in-plane and out-of-plane
polarizations of the modes. The choice of the filling factor ˇ D 0.68 produces almost
the largest complete band gap.

Indeed, in Fig. 2.2b, the evolution of the band gap widths (white area) is
presented as a function of the filling factor. The first complete band gap is the largest
one and is open over a large range of filling factor, above 0.2. We note that the largest
width of the band gap ( �.fa/

.fa/max
D 28 % at ˇ D 0.74) is open for very high filling

fraction which can be a limitation for technological fabrication. A second smaller
band gap opens for ˇ > 0.55. The central frequencies of both band gaps increase
with increasing the filling factor.
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Fig. 2.1 Two-dimensional cross sections of square, hexagonal, and honeycomb lattices with
the corresponding Brillouin zone. The dashed lines represent the elementary unit cell of lattice
parameter a. r is the radius of the inclusions

In Fig. 2.2c, we present the evolution of the band gaps for the hexagonal lattice.
We obtain now three band gaps where the largest opens up for a filling fraction of
ˇ > 0.36, with a maximum width ( �.fa/

.fa/max
D 37 %) around ˇ D 0.80.

Finally, for the honeycomb lattice, (Fig. 2.2d), a large and complete band gap
opens at higher frequencies and for filling fraction in the range 0.24 < ˇ < 0.44. In
this composite system, the gap width ( �.fa/

.fa/max
D 8 % at ˇ D 0.34) is much lower

than those obtained for the two preceding geometries. As a conclusion, for hard
inclusions in a soft matrix the largest band gaps are obtained for the hexagonal and
square lattices and the former allows lower filling fractions.

It is worth noticing that the band gaps are also dependent upon the shape of
the inclusions. For example, we have shown [8] that their positions and widths can
be changed if the circular inclusions are replaced by squares. Moreover, by rotating
the squares with respect to the axes of the photonic crystals, one can also tune the
band gaps.

In the opposite situation of soft epoxy inclusions in a silicon matrix, the square
and hexagonal lattices display absolute band gaps only for very high filling fraction
which may be not interesting from a fabrication point of view. On the contrary, for
the honeycomb lattice (Fig. 2.3), one can observe the opening of an absolute band
gap as far as the filling fraction exceeds ˇ D 0.34. Moreover, the band gap width
increases strongly and reaches the larger value of �.fa/

.fa/max
D 78 % at ˇ D 0.60.
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Fig. 2.2 Band gap existence in phononic crystal made of hard silicon inclusion in soft epoxy
matrix. (a) Example of dispersion curve for the square array of symmetry with filling factor ˇ D
0:68. Band gap maps for (b) square, (c) hexagonal, and (d) honeycomb arrays as a function of the
filling factors
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Fig. 2.3 (a) Band gap map for the honeycomb array of soft epoxy inclusions in hard silicon matrix.
(b) Example of dispersion curves for the honeycomb structure with filling factor ˇ D 0.60
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Table 2.2 Mass density �

and speed of sound of steel
and water

Material � (kg/m3) cl (m/s) ct (m/s)

Steel 7,780 5,825 3,227
Water 1,000 1,490 –

2.2.4 Solid–Fluid Phononic Crystal

We now turn to solid–fluid periodic structures known as mixed phononic crystals.
A large contrast in physical properties between the two materials is often satisfied
particularly in the case of solid/gas combinations. The mixed systems present
complex modes of vibration as the liquid allows only longitudinal modes while the
solid allows both longitudinal and transverse modes. Due to this difficulty, the PWE
method generally fails to predict accurately the acoustic band structures for such a
mixed system. This drawback can be alleviated by imposing the condition of elastic
rigidity to the solid inclusions [32, 33] which is satisfactory to describe the sound
propagation in a phononic crystal made of solid inclusions in air. Nevertheless, this
difficulty can be overcome by making the band structure calculations with the FDTD
method [34] which allows defining the real nature of both solid and liquid [28, 35].
In the mixed systems, the fluid can be either a condensed liquid [28, 36, 37] or a gas
[38–40]. We propose here to consider two different cases, i.e. when solid inclusions
are inserted in a liquid matrix and the opposite situation.

We first investigate the case of a phononic crystal made of steel cylinders in a
water matrix. The density and elastic constants of the two materials are given in
Table 2.2. We present the calculations for the in-plane vibrations.

The left diagram of Fig. 2.4a shows the band structure along the direction � X
of the irreducible Brillouin zone, calculated for a square array of steel cylinders
of radius r/aD 0.38. The right part of Fig. 2.4a shows the transmission coefficient
using the FDTD calculation. The incoming wave is a longitudinal pulse, uniform
along the X direction and with a Gaussian profile along the Y axis. The transmitted
signal is recorded as a function of time over the cross section of the waveguide, and
finally Fourier transformed to obtain the transmission coefficient versus frequency.
The spectrum is normalized with respect to the signal obtained without the phononic
crystal sample. For the � X direction, the band diagram shows a large band gap from
500 m/s to almost 1,000 m/s.

We have then computed similarly the dispersion curves and transmission spec-
trum for hollow steel cylinder filled with water [22, 41]. The inner radius ri/a is
chosen equal to 0.22 with the same outer radius r/aD 0.38 as in the previous case.
One can see that the insertion of the hollow tubes widens the stop band, with the
upper edge of the band gap moving towards higher frequencies. But looking at the
transmission spectrum, the most remarkable feature is the existence of a narrow
pass band localized inside the band gap of the hollow cylindrical phononic crystal,
at faD 780 m/s. As the inner radius increases from 0.2 to 0.25, the frequency of the
narrow pass band decreases.
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Fig. 2.4 (a) Dispersion (left) and transmission (right) curves of the phononic crystal composed of
steel cylinders of radius r/a D 0.45 in water matrix. (b) (Left) Dispersion curve for hollow cylinders
of inner radius ri/a D 0.22 and filled with water. (Right) Transmission curves for hollow cylinders
of variable inner radius

The dispersion curves, calculated for the inner radius r/aD 0.22, present two
flat bands inside the band gap. The lower one, at faD 780 m/s, fits perfectly the
narrow pass band observed in the transmission spectrum. The upper one, at 900 m/s,
does not contribute to the transmission. Such a band is named a “deaf band”
because it cannot be excited due to symmetry reason [42]. A detailed analysis
of the eigenvectors associated with these vibration modes is reported in [43]. We
have also shown that the nearly flat transmitted branch does not correspond to
a mode localized in the water-filled cavities inside the hollow cylinders but to a
propagative branch with very slow group velocity.

We now consider the opposite situation where the two-dimensional phononic
crystal is made of water cylinders in silicon. The conclusion can be also extended to
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Fig. 2.5 Transmission curve
through a 2D square lattice
phononic crystal made of
periodic holes of radius
r/a D 0.18 in a silicon
substrate when (a) the holes
are empty and (b) the holes
are filled with water. (c) Map
of the displacement field at
the dip A and the peak B. (d)
Evolution of the frequencies
of the resonant modes A and
B as a function of the velocity
of the liquid inside the holes
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the case where the cylinders are filled with a liquid polymer [44]. Figure 2.5a shows
as a reference the calculation of the transmission curve when the phononic crystal is
made of air holes with radius r/aD 0.18 inside the silicon matrix. One can see that
the spectrum presents a large pass band below 3,000 m/s then a band gap between
3,000 and 4,200 m/s.

When the holes are filled with water (Fig. 2.5b), the transmission curve exhibits
two new features labeled A and B, which appear as a dip in the transmitted branch
and a peak in the band gap. To give a deeper insight of the two features A and B, we
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calculated (Fig. 2.5c) their corresponding maps of the displacement field. The dip A
and the peak B are associated with a high confinement of the field inside the water
holes. Due to the large contrast between the acoustic velocities and impedances of
water and silicon, these modes can be considered as cavity resonances inside the
holes surrounded by an almost rigid material. Therefore, their frequencies are very
close to the solution of the equation J0

m

�
!r=cliq

� D 0 where J
0

m is the derivative of
the Bessel function of order m, ! the frequency, r the radius of the cylinder, and
cliq the velocity of sound in water. In the transmission curve of Fig. 2.5b, it appears
that the resonant modes of the cavity give rise, respectively, to a dip or a peak as
far as their corresponding frequencies fall inside a pass band or a band gap of the
phononic crystal. In Fig. 2.5d, we give the evolution of the features A and B when
changing the longitudinal acoustic velocity cliq of the liquid filling the holes with
respect to the water. The frequencies of the resonant modes increase by increasing
the sound velocity of the liquid and in both cases the relative shift in frequency
(�(fa)/(fa)D 20 %) has almost the same order of magnitude as the relative shift of
the sound velocity (�cliq/cliq D 24 %).

One interest of such mixed structure is to present a new way to sense the sound
velocity of bio-chemical liquids [45, 46]. To make a phononic sensor, the well-
defined features should display a high quality factor, be very sensitive to the acoustic
velocity of the liquid, and remain relatively isolated in frequency from each other in
order to allow the sensing of the probed parameter on a sufficiently broad range.
Such ultra-compact structure can be shown as label-free, affinity-based acoustic
nanosensor, useful for bio-sensing applications in which the amount of analyte is
often limited.

2.2.5 Fluid–Fluid Phononic Crystal

In this section we assume that the materials constituting the phononic crystal are
made of two different fluids. An interesting example is provided by air cylinders (in
2D) or air bubbles (in 3D) in a water matrix. Indeed, these structures display giant
sonic stop bands resulting from a combination of Bragg and resonance scatterings
that can be obtained whatever the symmetry of the lattice [47–49]. Figure 2.6a
illustrates the transmission coefficient for a square lattice of air cylinders in water
background for a filling factor ˇ D 20 %. The lattice parameter taken equal to
aD 20 mm in order to fall in the audible frequency range. One can see a large
stop band extending from 0.5 to 20 kHz, followed by a sharp peak. Thus this system
would have the property of preventing the propagation of sound in a large frequency
domain, with the period of the sonic crystal being much smaller than the acoustic
wavelength in air. The few peaks of transmission below 0.5 kHz come from the
lowest dispersion curve. The peak A, at 20 kHz, corresponds to a mode localized
inside the air cylinder (a resonance of the air cylinder), as can be seen in Fig. 2.6a.
Such localization is possible due to the huge density and compressibility contrasts
between air and water.
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Fig. 2.6 Spectral transmission coefficient for three values of the polymer thickness: (a) d D 0, (b)
d D 1.25 mm, and (c) d D 2.50 mm. The lattice parameter is a D 20 mm and the inner radius of
the tube (air cylinder) is 5 mm. The maps of displacement field close to each diagram correspond
to one example of the transmitted peaks

In the following, we consider the more practical system where air inside cylinders
is surrounded by a thin polymer shell immersed in water. The transmission calcu-
lations are presented for different thicknesses of the polymer shell (Fig. 2.6b, c).
The density and elastic constants of the two materials are reported in Table 2.3.
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Table 2.3 Mass density �

and speed of sound of air and
polymer [50]

Material � (kg/m3) cl (m/s) ct (m/s)

Soft polymer 995 1,000 20
Air 1,000 340 –

In contrast to [34, 17] where the velocities of sound in the polymer were assumed
very low and especially unrealistic as concerns the longitudinal velocity, here we
chose realistic values of longitudinal (1,000 m/s) and low transverse (20 m/s)
velocities as reported in [50]. However, the physical conclusions which are much
dependent upon the transverse velocity of the polymer will remain very similar to
those presented in [34].

In Fig. 2.6b (resp. c), the thickness of the polymer shell is d D 1.25 mm (resp.
2.50 mm), while keeping the air cylinder at r D 5 mm. A large and low frequency
stop band is still observed but now starting at 1.2 kHz. Moreover, while the peak
at 20 kHz is still present, some new ones appear in the transmission as B or C,
mainly localized inside the polymer layer of the inclusion as seen in the map of the
displacement fields of Fig. 2.6b, c. As a conclusion, it has been shown that hollow
cylinders made of an elastically soft polymer containing air inside and arranged
on a square lattice in water can still give rise to very large acoustic band gaps at
low frequencies. In the opposite case of water cylinders in an air background, large
band gaps can be obtained with a honeycomb lattice with a very high filling fraction
(touching cylinders) [34].

2.2.6 Locally Resonant Phononic Crystal

As introduced previously, an absolute phononic gap, if one exists, can be a Bragg
type gap or a resonance type gap, which can appear at frequencies well below the
Bragg limit. Such structure, known as acoustic metamaterials, presents an important
issue for phononic crystals related to their property of perfectly reflecting mirror for
the purpose of sound isolation, negative refraction, and sub-wavelength imaging.
The objective consists of finding structures that attenuate the propagation of sound
over a sample whose thickness remains smaller than the wavelength in air. Most
of the recent studies have been directed towards a new class of phononic crystals,
the so-called locally resonant materials [17]. These structures essentially consist of
a hard core, such as a metal, surrounded by a soft coating (silicone rubber) and
immersed in a polymer such as epoxy. Due to the local resonances associated with
the soft coating material, dips can appear in the transmission coefficient at very low
frequencies situated about two orders of magnitudes below the Bragg frequency.
Such behaviors have been obtained in both 3 and 2D locally resonant phononic
crystals.

In this section, we present for a 2D phononic crystal, a generalization of the
preceding structure to a multilayer cylindrical core constituted by two or several
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coaxial shells surrounding the internal hard core [30]. The structural unit of the
phononic crystal consists of an infinitely long cylinder, composed of multicoaxial
shells, embedded in a water matrix. The inner (core) cylinder is made of steel. This
core is coated by alternate shells constituted, respectively, by a thin layer of an
elastically soft material and a thin layer of a hard material (steel). In this calculation,
the soft polymer is chosen to have very small transverse velocity ct D 19 m/s with
a longitudinal velocity of cl D 55 m/s. In the following, we fix the outer radius of
the cylinder equal to 8.4 mm and the thickness of each layer in the coating equal
to 1.6 mm. The filling fraction of the whole cylinder, taken to be ˇ D 55 %, will
be kept constant. Finally, the sonic crystal is constituted by five rows of elementary
units arranged on a square lattice, with a lattice parameter of aD 20 mm, embedded
in water. The whole size of the sonic crystal is therefore 10 cm.

Figure 2.7a reports the transmission through a phononic crystal made of a bi-
layer inclusion constituted by a steel core coated with one polymer and one steel
layer. At very low frequency, a sharp dip appears in the transmission spectrum
(f D 1.45 kHz) for which the displacement field (Fig. 2.7b) shows an elastic field
localized inside the inclusion. The displacement can be understood as a motion of
the core and the outer steel layer in phase opposite each other, while the polymer
acts as a spring (see the schematic representation). This behavior can be interpreted
as the appearance of a dynamic negative effective mass density in the frequency
range of the dip [17].

We investigate now the case of a multicoaxial cylinder containing an even
number of shells, 4 and 6, and we consider that the uttermost shell in contact with
water is made of steel. In this way, we obtain an alternation of hard and soft materials
with a solid core. Figure 2.8a presents the low frequency transmission curves in
which the number of low frequency dips evolves in relation with the number of
shells. A number of 2 (resp. 3) bi-layers give rise to 2 (resp. 3) low frequency peaks.

Fig. 2.7 (a) Transmission curve through a low resonant phononic crystal made of a steel core
coated with a polymer and a steel layer, embedded in water. (b) Displacement field calculation at
the frequency of the dip and corresponding schematic representation on the motion of the mode
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Fig. 2.8 (a) Transmission curves through a low resonant phononic crystal made of a steel core
coated with 2 (left) and 3 (right) bi-layers constituted of polymer and steel, embedded in water.
(b) Displacement field at the frequency of the dips for 3 bi-layers and the corresponding schematic
representation of the rigid motions of the steel core and shells

Figure 2.8b gives an illustration with N D 3 of the displacement fields of the three
resonance modes. For each frequency, we give the component of the displacement
along the direction of propagation, as well as a schematic view of the vibrations.
The common feature to all these three modes is the fact that the hard parts of the
inclusion, namely the inner core and the three steel cylindrical shells, vibrate as
rigid bodies linked together through the polymer shells that act as springs. In the
lowest mode, occurring at f D 1.61 kHz, the inner core and the two following steel
shells vibrate in phase along the propagation direction, while the outer steel shell
moves with the opposite phase. The displacement fields of the second (f D 3.0 kHz)
and third (f D 3.77 kHz) resonant modes correspond to other vibrational states
of four rigid bodies linked together through the polymer shells. Therefore, we
show the possibility of obtaining several dips in the transmission coefficient in a
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given frequency range. By combining two or more phononic crystals of different
parameters, we could also show that it is possible to overlap some dips and obtain a
widening of the frequency gaps [30].

2.3 Localized Modes Associated with Defects

2.3.1 Guiding

The existence of band gaps in phononic crystals may be useful for the purpose
of introducing functionalities such as waveguiding and filtering in integrated
structures. The ability to tailor the acoustic properties of phononic crystals and more
specifically of their waveguides makes them particularly suitable for a wide range of
applications from transducer technology to filtering and guidance of acoustic waves.
They can operate at the frequencies of telecommunications (about 1 GHz) when
the lattice parameter of the phononic crystal is in the micron range. This section is
dealing with some examples of the properties of linear and point defects in phononic
crystals such as wave bending and splitting [24, 52] or transmission through perfect
or defect-containing waveguides [19, 23, 53].

As a basic structure, we consider a mixed (solid/fluid) 2D phononic crystal
composed of steel cylinders in a water matrix. The inclusions are arranged period-
ically on a square lattice. Throughout this section, we assume the lattice parameter
aD 3 mm and the radius of the inclusion r D 1.25 mm resulting in a filling factor
ˇ D 0.55. This insures that the phononic crystal displays a large absolute band gap
of Bragg type in the ultrasonic range, extending from 250 to 325 kHz. All numerical
simulations are based on the finite difference time-domain (FDTD) method.

We first investigate the properties of the phononic crystal containing a simple
straight waveguide obtained by removing one row of cylinders along the direction of
propagation (Fig. 2.9a). We have calculated the transmission through the guide as a
function of the frequency. As seen in Fig. 2.9a, the guide exhibits a full transmission
band in the frequency range (270–300 kHz) that covers a large part of the phononic
crystal stop band. The map of the displacement field corresponding to the frequency
290 kHz shows that the transmission can be associated with a high confinement of
the field inside the waveguide.

One can also demonstrate the bending of acoustic wave constructed by removing
holes over a large frequency range inside the absolute band gap of the perfect
phononic crystal [24]. Figure 2.9b shows the transmission curve obtained through
the bending waveguide formed by two sharp corners with 90ı angle. We show
that most of the linear guided modes are transmitted except a transmission dips at
275 kHz. Figure 2.9b shows a numerical illustration of the propagation of the wave
at 290 kHz through the bending waveguide in which the incident wave propagates
along the first straight waveguide, couples successfully with the perpendicular one,
then reaches to the last horizontal one.
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Fig. 2.9 Calculated transmission spectra in the frequency range of the band gap and displacement
fields at f D 290 kHz through (a) a straight and (b) a bent waveguide

2.3.2 Filtering

We now turn to the behavior of the phononic crystal where a point defect is inserted
inside the waveguide. A resonant cavity (or stub) of nominal length and width equal
to one period is simply obtained by removing one cylindrical inclusion attached
to the guide as sketched in the insert of Fig. 2.10a. As compared to Fig. 2.9a,
the transmission remains almost unchanged except for one narrow dip occurring
at the frequency of 290 kHz where the transmission becomes very small. It clearly
appears that in the presence of a stub the transmission through the waveguide can
be significantly altered due to the interference phenomena. In Fig. 2.10a we have
represented the map of the displacement field at the frequency of the dip. One
can see the wave entering the guide, penetrates into the stub, reflects at the end
of the stub, and then returns back to the entrance of the guide while the transmission
towards the end of the guide remains negligible. The eigenmodes of the cavity have
been used advantageously to induce a very narrow stopping band in the pass band
of the waveguide.
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Fig. 2.10 Calculated transmission spectra in the frequency range of the band gap and displacement
fields at the frequency of the dip (resp. peak) when a cavity is inserted (a) at the side of the guide
or (b) inside the waveguide

In Fig. 2.10b, we have considered the same cavity incorporated inside the
waveguide. The cavity is isolated from the entrance and the exit of the waveguide
by three steel cylinders. Nevertheless, the transmission spectrum exhibits a peak
which occurs at the resonance frequency of the cavity. This transmission is due to a
coupling between the cavity modes and the waveguide one, via tunneling effects.
Indeed, a single cavity incorporated into the waveguide limits the transmission
mainly to the frequencies situated in the neighborhood of the eigenfrequencies of
the cavity.

So, the same cavity can have two opposite effects depending on whether it
is incorporated inside or at the side of the waveguide, leading, respectively, to
applications as transmitted selective or rejective filters.
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2.3.3 Demultiplexing

Based on the previous results, we have studied an acoustic channel drop tunneling
in a phononic crystal, i.e., the possibility of transferring one particular acoustic
wavelength between two parallel waveguides coupled through an appropriate
coupling element which is composed of two coupled cavities interacting with stubs
located at the sides of the two parallel guides (see Fig. 2.11a) [26]. The incoming
wave is a longitudinal pulse with a Gaussian profile which only covers the entrance
of port 1 (black arrow), leaving port 4 essentially unaffected. The transmitted
signals, displayed in Fig. 2.11b, are recorded at ports 2 (blue arrow) and 3 (red
arrow). It can be observed that the direct transmission at port 2 drops almost to zero
at the frequency of 290 kHz. At the same time, a significant peak of transmission
occurs at port 3, with a magnitude comparable to the loss at port 2. This means that,
at this frequency, the incoming signal is essentially transferred to the second wave

Fig. 2.11 (a) Schematic
view of the phononic crystal
with two waveguides coupled
through an element
constituted by two vacancies.
Stubs along the guides ensure
the efficiency of the coupling.
The black, red, and blue
arrows indicate the entrance
and exit signal. (b) Calculated
transmission spectra at the
output ports for an input
Gaussian signal coming from
port 1. At the frequency of
290 kHz, the incident wave
drops from the first to the
second waveguide. (c)
Calculated displacement field
along the direction of
propagation at a frequency of
290 kHz, averaged over one
period of oscillation. The red
color (blue) corresponds to
the highest (lowest) value of
the displacement field given
in arbitrary units
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guide towards port 3, leaving all other exits of the structure unaffected. In other
words, the input signal tunneled through the coupling element and dropped inside
the second wave guide.

To obtain a direct confirmation of the demultiplexing phenomenon, the FDTD
computation was used to simulate a monochromatic source at the frequency of
290 kHz. The computed displacement field along the direction of propagation is
displayed in Fig. 2.11c. The transfer of the input signal from port 1 to port 3 is
clearly apparent together with an absence of signal at port 2.

2.3.4 Tunability

The tunability can be achieved by a modification of the geometrical parameters,
the nature of the constituents [22, 41] or by an external physical stimulus applied
to the phononic crystal. The purpose of the tunability is to modify some specific
properties of the phononic crystal such as the band gap width or the position of
singular features.

In Sect. 2.4, we have investigated the case of a two-dimensional phononic crystal
that incorporates a narrow pass band inside a band gap. They are constituted of
a periodic repetition of hollow cylinders filled and immersed in water. As seen in
Fig. 2.4b, the position of the narrow pass band is quite sensible to the value of the
inner radius, ri of the inclusions. The modification of the frequency of the narrow
pass band has been also investigated when the hollow cylinders are filled with a
fluid other than water. We chose mercury because of the large contrast between its
physical parameters and those of water. In Fig. 2.12a, we report the transmission
coefficient through the phononic crystal with hollow cylinders with inner radius
ri/aD 0.22, filled with water or mercury and we clearly notice the shift of the
frequency of the narrow pass band.

Figure 2.12b summarizes the values of the frequencies for a set of inner radius.
One can conclude that the narrow pass band can be tuned and may offer a mean for
selective transmission. The value of the frequency can be adjusted both by changing
the inner radius of the cylinders or the nature of the fluid that fills them. In the latter
case, the tuning of the frequency can be made either in a passive way or actively by
injecting and flushing the fluids contained in the interior of the cylinders.

We can also combine tunability and guiding by design phononic crystals waveg-
uides with narrow pass band. We will discuss the multiplexing and demultiplexing
properties of Y-shaped waveguides constituted of hollow cylinders. Let us consider
sketched I Fig. 2.13a. The structure is constituted by a heteroradii waveguide with
alternating radii ri/aD 0.24 and ri/aD 0.20 then divided at its end into two branches.
Each branch is constituted of hollow cylinders designed for the propagation of
waves with only one frequency corresponding to one specific narrow pass band.
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Fig. 2.12 (a) Transmission spectra calculated for a phononic crystal composed of hollow cylinders
with inner radius ri/a D 0.22 containing mercury (solid red line) or water (dashed black lines). (b)
Values of the narrow pass band centered frequencies for phononic crystals of hollow cylinders with
different inner radius containing mercury or water

We launch at the entrance of the structure a monochromatic excitation at the
value of frequency of the narrow pass band corresponding to ri/aD 0.24 and
ri/aD 0.20. One can see on the displacement field calculations of Fig. 2.13 that each
frequency is guided through the heteroradii waveguide and then directed towards
the branch corresponding to the respective inner radius. It means that, when an
initial broad band signal is sent from the right of the system, each branch of the
Y-shaped waveguide will select its own narrow pass band. These two signals are then
superimposed into the heteroradii waveguide. As a result, the transmitted spectrum
will contain two peaks corresponding to both narrow pass band and selectively
transmitted. Finally, similar conclusions hold if the Y-shaped waveguide contains
hollow cylinders of same inner radius filled with two different fluids [41].
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Fig. 2.13 (a) Schematic
representation of the
Y-shaped waveguide. The left
part of the waveguide
contains two types of
cylinders with inner radii
ri/a D 0.24 and ri/a D 0.20, in
alternation. Each branch of
the Y contains one type of
cylinder to permit the
separation of the two narrow
pass bands. (b)
Representation of the
displacement field for a
Y-shaped waveguide at the
two frequencies of fa D 805
and 965 m/s

2.4 Concluding Remarks and Further Developments
in the Field of Phononic Crystals

The main object of this chapter was to present the basic results about the trends
of the dispersion curves and band gaps in phononic crystals, as well as the
emergence of localized modes associated with cavities and waveguides and their
functionalities in acoustic devices. Another type of localized modes which will
be described in detail in a next chapter concerns the surface acoustic modes
when the phononic crystal is cut along a plane. Besides the surface modes of
lamellar materials (or superlattices) that have been widely studied [54, 2], an early
paper presented the Rayleigh waves and their folding when a superlattice is cut
normal to the laminations [55]. Later, the surface modes of a 2D phononic crystal
cut perpendicular to the cylinders were calculated [56, 57] and then observed
experimentally a few years after [58–61]. The possibility of an absolute gap in the
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band structure of surface waves was also demonstrated [62, 59]. Other works studied
the surface waves of a 2D crystal cut parallel to the cylinders [63] or of a 3D crystal
composed of spheres in a matrix [64].

Phononic crystals of finite thickness, such as a periodic array of holes in a plate
or a periodic array of pillars on a membrane, started to be studied during the last
decade. It was demonstrated that they can also exhibit absolute band gaps, thus
providing the same functionalities associated with defects as in infinite phononic
crystals. In the case of periodic holes in a plate [65, 66], the existence of an absolute
band gap requires having a thickness of the slab about half of the period. In the case
of periodic pillars on a membrane [67–70], besides the possibility of wide Bragg
gaps, a low frequency gap exhibiting metamaterial type behavior can be obtained
with an appropriate choice of the geometrical parameters [67, 70], in particular a
small thickness of the membrane. With the advancements of nanotechnologies, there
is a great deal of interest on nanophononics [71, 72], in particular phononic circuits
with waveguides and cavities inside sub-micron phononic membranes working at a
few GHz.

In this paper, we briefly mentioned examples of tunable phononic crystal
where the band structure can be modified by changing the geometrical parameters
(for instance, rotating square shape inclusions [8, 51]) or material parameters (for
instance, filling hollow inclusions [41]). More generally, such modifications can be
induced dynamically by the application of external stimuli, for instance an electric
or magnetic field with piezoelectric or magnetoelastic materials [73–76], a stress in
elastomeric structures [77], or the change of temperature [78, 79] (for example, the
phase transitions of a polymer infiltrating the holes of a phononic crystal).

A new emerging topic concerns the search of dual phononic and photonic band
gap materials in which the phonon–photon interaction can be drastically enhanced
with the simultaneous confinement of both electromagnetic and acoustic waves
[80–82]. For instance, stimulated Brillouin scattering can be expected over a short
distance in a so-called phoxonic membrane while in general it happens in fibers
which are several meters long. The optomechanic interaction between phonons and
photons can take place through either the photoelastic or the interface deformation
mechanisms. The latter has been investigated intensively during the last few years
to cool or amplify the mechanical vibrations of a resonator via its coupling to the
light. Optomechanical effect at the quantum level may be expected in micro or
nanoscale systems hosting both optical and mechanical degrees of freedom. During
the last few years, dual phononic–photonic membranes and strip waveguides are
proposed to sustain such effects [83, 84]. Finally, more advanced dual phononic–
photonic sensors allowing a simultaneous determination of the index of refraction
and the acoustic velocity of an embedding liquid can be envisaged [85, 86]. The
transmission spectra for each type of waves should display narrow peaks that are
sensitive to the corresponding property of the liquid.

Besides the topics related to the existence of absolute band gaps, there is
a continuous growing interest on refractive properties of phononic crystals,
in particular: negative refraction phenomena and their applications in imaging
and sub-wavelength focusing in phononic crystals [87–91], self-collimation and
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beam-splitting in relation with the shape of the equifrequency surfaces [92],
control of the sound propagation with metamaterials with emphasis on cloaking
and hyperlens phenomena.

Thermal transport in nonmetallic nanostructured materials can be strongly
affected by the specific phonon dispersion curves as well as by different scattering
mechanisms such as phonon–phonon interaction and phonon-boundary scattering
which become very important at THz frequencies [93]. The existence of band
gaps and flat dispersion curves can reduce the thermal transport and be useful
for thermoelectric applications. Different frequency domains of phonons can be
involved depending on the temperature and on the wavelength dependent mean free
paths. Insights into the latter can be derived from molecular dynamic calculations.

In conclusion, one can expect that the field of phononic crystals will acknowledge
a continuous growth in relation with the fundamental understanding of the wave
phenomena in these heterogeneous materials and with their numerous expected
technological applications. The latter cover a broad range of frequencies from
the sonic regime for sound isolation and metamaterial behaviors, to GHz for
telecommunications and phonon–photon interaction, and to terahertz for thermal
transport phenomena.
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