Since the publication of the second edition of this book, in 2006, several
important changes have occurred in the domain of computer arithmetic.

First, a new version of the IEEE-754 Standard for Floating-Point Arith-
metic was adopted in June 2008. This new version was merged with the
previous binary (754) and “radix independent” (854) standards, resolved
some ambiguities of the previous release, standardized the fused multiply—
add (FMA) instruction, and included new formats (among them, the bina-
ry128 format, previously called “quad precision”). An appendix to this new
IEEE 754-2008 standard also makes some important recommendations
concerning the elementary functions.

New tools have been released that make much easier the work of a pro-
grammer eager to implement very accurate functions. A typical example is
Sollya." Sollya offers, among many interesting features, a certified supremum
norm of the difference between a polynomial and a function. It also computes
very good polynomial approximations with constraints (such as requiring the
coefficients to be exactly representable in a given format). Another example
is Gappa,” which simplifies the calculation of error bounds for small
“straight-line” numerical programs (such as those designed for evaluating
elementary functions), and makes it possible to use proof checkers such as
Coq for certifying these bounds. FloPoCo® is a wonderful tool for imple-
menting floating-point functions on FPGAs.

Research in this area is still very active. To cite a few examples: Harrison
designed clever techniques for implementing decimal transcendental func-
tions using the binary functions; Chevillard, Harrison, Joldes, and Lauter
introduced a new algorithm for computing certified supremum norms of
approximation errors; Johansson designed new algorithms for implementing
functions in the “medium precision” range; Brunie et al. designed code
generators for mathematical functions; several authors (especially de Dine-
chin) introduced hardware-oriented techniques targeted at FPGA imple-
mentation; Brisebarre and colleagues introduced methods for rigorous
polynomial approximation.

'Available at http://sollya.gforge.inria.fr.
2Available at http://gappa.gforge.inria.fr.
3Available at http://flopoco.gforge.inria.fr.
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Since the publication of the first edition of this book, many authors have
introduced new techniques or improved existing ones. Examples are the
bipartite table method, originally suggested by DasSarma and Matula in a
seminal paper that led Schulte and Stine, and De Dinechin and Tisserand to
design interesting improvements, the work on formal proofs of floating-point
algorithms by (among others) John Harrison, David Russinoff, Laurent
Théry, Marc Daumas and Sylvie Boldo, the design of very accurate
elementary function libraries by people such as Peter Markstein, Shane
Story, Peter Tang, David Defour and Florent de Dinechin, and the recently
obtained results on the table maker’s dilemma by Vincent Lefévre. I there-
fore decided to present these new results in a new edition. Also, several
colleagues and readers told me that a chapter devoted to multiple-precision
arithmetic was missing in the previous edition. Chapter 7 now deals with that
topic.

Computer arithmetic is changing rapidly. While I am writing these lines,
the IEEE-754 Standard for Floating Point Arithmetic is being revised.*
Various technological evolutions have a deep impact on determining which
algorithms are interesting and which are not. The complexity of the archi-
tecture of recent processors must be taken into account if we wish to design
high-quality function software: we cannot ignore the notions of pipelining,
memory cache and branch prediction and still write efficient software. Also,
the possible availability of a fused multiply-accumulate instruction is an
important parameter to consider when choosing an elementary function
algorithm.

A detailed presentation of the contents is given in the introduction. After a
preliminary chapter that presents a few notions on computer arithmetic, the
book is divided into three major parts. The first part consists of three chapters
and is devoted to algorithms using polynomial or rational approximations
of the elementary functions and, possibly, tables. The last chapter of the first
part deals with multiple-precision arithmetic. The second part consists of
three chapters, and deals with “shift-and-add” algorithms, i.e.,
hardware-oriented algorithms that use additions and shifts only. The last part
consists of four chapters. The first two chapters discuss issues that are

“*For information, see http:/754r.ucbtest.org/.
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important when accuracy is a major goal (namely, range reduction, mono-
tonicity and correct rounding). The third one mainly deals with exceptions.
The last chapter gives some examples of implementation.
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The elementary functions (sine, cosine, exponentials, logarithms...) are the
most commonly used mathematical functions. Computing them quickly and
accurately is a major goal in computer arithmetic. This book gives the the-
oretical background necessary to understand and/or build algorithms for
computing these functions, presents algorithms (hardware-oriented as well as
software-oriented), and discusses issues related to the accurate floating-point
implementation of these functions. My purpose was not to give “cooking
recipes” that allow to implement some given functions on some given
floating-point systems, but to provide the reader with the knowledge that is
necessary to build, or adapt algorithms to his or her computing environment.

When writing this book, I have had in mind two different audiences:
specialists, who will have to design floating-point systems (hardware or
software parts) or to do research on algorithms, and inquiring minds, who
just want to know what kind of methods are used to compute the math
functions in current computers or pocket calculators. Because of this, the
book is intended to be helpful as well for postgraduate and advanced
undergraduate students in computer science or applied mathematics as for
professionals engaged in the design of algorithms, programs or circuits that
implement floating-point arithmetic, or simply for engineers or scientists who
want to improve their culture in that domain. Much of the book can be
understood with only a basic grounding in computer science and mathe-
matics: the basic notions on computer arithmetic that are necessary to
understand are recalled in the first chapter.

The previous books on the same topic (mainly Hart et al. book Computer
Approximation and Cody and Waite’s book Software Manual for the
Elementary Functions) contained many coefficients of polynomial or rational
approximations of the elementary functions. I have included relatively few
such coefficients here, firstly to reduce the length of the book — since I also
wanted to present the shift-and-add algorithms —, and secondly because today
it is very easy to obtain them using Maple or a similar system: my primary
concern is to explain how they can be computed and how they can be used.
Moreover, the previous books on elementary functions essentially focused on
software implementations and polynomial or rational approximations,
whereas now these functions are frequently implemented (at least partially) in
hardware, using different methods (table-based methods or shift-and-add
algorithms, such as CORDIC): I have wanted to show a large spectrum



of methods. Whereas some years ago a library providing elementary
functions with one or two incorrect bits only was considered adequate,
current systems must be much more accurate. The next step will be to pro-
vide correctly rounded functions (at least for some functions, in some
domains), i.e., the returned result should always be the “machine number”
that is closest to the exact result. This goal has already been reached by some
implementations in single precision. I try to show that it can be reached in
higher precisions.
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