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Abstract

The pharmaceutical industry is predominantly dominated by the handling of particulate matter in the form
of solids and emulsions. With the enforcement of the Quality by Design (QbD) initiative by the Food and
Drug Association (FDA), a process systems engineering based case toward particulate process design is
advantageous. This suggests the need for mechanistic modeling approaches that can be used for an accurate
representation of the process dynamics. The inherent discrete nature of population balance models (PBM)
makes it an appropriate framework for modeling particulate processes. With the representation of the
particulate processes used for pharmaceutical product manufacturing using various modeling frameworks,
advancements can be made to improved control and optimization of the process. This chapter provides a
detailed review on the applicability and significance of PBMs in drug product manufacturing and is aimed to

provide greater insight into the field of process systems engineering.

Key words Pharmaceutical manufacturing, Population balance model, Flowsheet modeling, Particu-
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1 Introduction

Particulate processes are ubiquitous in various fields of engineering.
Such processes, which are essentially multiphase in nature, are
crucial and extensively used in industries, such as pharmaceuticals,
detergent manufacturing, polymer processing, and food proces-
sing. Within the pharmaceutical industry, these unit operations
involve handling of powder or emulsions and transforming their
inherent attributes, improving flowability, uniformity, modifying
their bioavailability /dissolution characteristics or changing the
polymorphic form. Historically, manufacturing costs contributed
little to the overall cost of bringing a product to the market.
However, due to rising research and development expenditures,
rising manufacturing costs, expiration of drug patents, and compe-
tition from generic manufacturers, the industry has recognized the
need to alter its manufacturing practices to improve operational
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efficiency. The proper regulation of such particulate processes in the
pharmaceutical industry is of immense importance due to the
imposition of a tight quality criteria [75]. The Quality by Design
(QbD) initiative launched by the US FDA suggests that quality
should be built into a product based on a thorough understanding
of the product and process by which it is developed and manufac-
tured, along with an in-depth knowledge of the risks involved in
manufacturing the product and procedures to mitigate those risks.
Thus, it is beneficial for a pharmaceutical company to implement
a process systems engineering-based approach with heavy focus
on modeling in order to attain a sustainable position in the market
[31, 75, 89]. A model-based systems approach can play a crucial
role in the design, operation, evaluation, and analysis of processes
because of its potential to provide better process understanding,
leading to a reduction in the time and cost for the operation of the
process [31, 39].

Processes involving particulate matter cannot be modeled via
the continuum approach (e.g., Navier Stokes/momentum balance
equation for fluid) since these systems are discrete in nature and can
be described using the population balance modeling (PBM) frame-
work. Size, porosity, and composition are some of the critical
properties that characterize the end product obtained from these
processes. PBMs can be successfully considered for modeling par-
ticulate processes, owing to its discrete nature. PBMs are a class of
hyperbolic partial differential equations that represent the meso-
scopic framework. They involve classification of the particulate
population within a process or a system based on discrete set of
classes describing their inherent attributes by tracking the number
of particles in each class as they are subjected to rate processes. It
can be successfully used to relate macroscopic properties based on
the information obtained at the microscale. Figure 1 shows the
overall pharmaceutical drug manufacturing process starting from
the synthesis of the drug. It can be seen that a number of unit
operations within the flowsheet (circled) can be conveniently mod-
eled using PBMs, such as crystallization, granulation, milling, mix-
ing, and coating.

PBMs have been very popular for modeling the unit operations
involved in the pharmaceutical industry. Significant progression in
the application of PBMs for improved pharmaceutical operation has
been observed over the past decade [11, 46, 63]. Several research-
ers have implemented the PBM framework to model the crystalli-
zation process [ 1, 11]. More detailed discussion is presented in the
tollowing sections. Granulation has also been modeled using
PBMs, but there still exists a lack of available mechanistic knowl-
edge [80]. Milling is yet another poorly understood process which
has been described using PBMs [ 3, 6]. The mixing process has also
recently been studied in detail using PBMs [86]. PBMs have also
been used to represent coating in order to control and track the
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coating variability. Coating investigations pertaining to poly-
disperse particles are limited in the literature. Experimental obser-
vations in a fluid bed coater suggested that coating distribution of
the particles is primarily governed by the available surface area [61,
71]. Wnukowski and Setterwall [98] identified two distinct regions
within the coater which suggests the existence of an active zone
(where particles are coated and dried) and the less active zone (away
from the coating fluid nozzle and near the walls). Later, Maronga
and Wnukowski [58] identified three distinct domains within a
fluid bed coater suggesting the existence of an active spray zone,
an active drying zone and a non-active domain. With this observa-
tion, the coating process has been extensively modeled using a
compartment based PBM which accounts for the inhomogeneities
associated with the existence of distinct regions within the coater
[30, 46, 57, 79]. A surface renewal based model has been imple-
mented to model coating processes in order to track the motion of
particles between the bulk and spray zone [24, 88]. This approach is
useful to identify how particles get replenished in the spray zone with
the progress of the operation. Some work has also been performed to
model continuous coating processes [42]. However, utilization of
PBMs for that purpose has not been explored significantly.

Using a mathematical model that captures the system behavior,
various model based control [72] and optimization techniques [32 ]
can be performed which improve the operation of the process.
In this article we aim to provide the readers with a detailed discus-
sion on the application of PBMs in modeling particulate processes,
tollowed by solution techniques, implementation of reduced order
models in order to combat the high computational overheads
associated with solving PBMs and various advanced studies that
can be performed using PBM:s.

2 Mathematical Model Development

Particulate processes are very common in the pharmaceutical indus-
try although they are very poorly understood due to the lack of
mechanistic knowledge in terms of solid handling. The discrete
nature of the particulate processes makes it difficult to understand
the obscure behavior of such systems. Over the past few decades
population balance has been successfully utilized for modeling
processes such as crystallization, granulation, coating, milling, and
mixing. The PBM in its most general form can be written as [74]:

%(x, t) +% {F%] (x,2) = h(x,t, F(x,1)) (1)

where Fis the number density of the particulate matter, x is a vector
of internal coordinates whose variation is tracked along the
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progression of the process, the partial derivative terms in the left-
hand side of the equation represent the growth terms whereas the
terms in the right-hand side (/(x, #, Fx, t))) depict the source
terms involving an overall change in the number of particles. The
source terms comprise of the rate of aggregation, breakage, and
nucleation. In the following sections further discussion is provided
with regard to using PBMs for describing various pharmaceutically
relevant processes.

The crystallization process is used in the initial stages after the
synthesis of the drug product. It can be used for various purposes,
such as separation, purification, or stabilization of the molecule
(through polymorph transformation). This step primarily decides
the particle size distribution of the API crystals formed. It is desir-
able to obtain a uniform size distribution so that the properties of
the final pharmaceutical blend remain uniform throughout. Crys-
tallization occurs in two stages. The first stage is nucleation, where
several nuclei of a distinct solid phase are formed. The second stage
is crystal growth, during which the nuclei grow until a critical
crystal size is reached.

When a supersaturated solution is cooled, nucleation and crys-
tal growth takes place, causing the compound concentration in the
solution to decrease. Hence, crystallization can be carried out in the
manufacturing by manipulating the temperature profile to maintain
a specific cooling schedule or by controlling the addition rate of an
anti-solvent. When a crystal is formed, it retains some mother
liquor that gets occluded within the crystal mass. PBMs are helpful
to relate the shape and product size distribution to process
parameters.

1-D PBMs have been most commonly used to model crystalli-
zation [ 1, 35, 55],until recently, when some 2-D models have also
been developed to describe the crystallization processes [16, 27,
34, 54]. Certain 2-D models also employ the volume and surface
area in order to account for the shape of particles [47]. The 1-D
and 2-D PBMs are, respectively, shown as

OF(L,t) N 0 (G(L, C, t)F)

3, 3 = By(C,)5(L) 2)
0F(L1, La,t)  0(Gi(L1,La, C,t)F) i 0(Ga(L1, L, C, 1) F)
ot oL, 0L,
= Bo(C,2)5(L1)5(L2)

(3)

Here, the number density, F, is a function of the two length
directions and the concentration of solute in the solution. G/ Gy,
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G, represent the growth terms in the length direction (L/1,1,),
and B, represents the nucleation term. The growth and the nucle-
ation terms in Eq. (3) can be written as

C— Cm A
G1 = ky (ﬁ) (4)
C— Cur\
Gy = ky (Tt) (5)
sat

C— Cm b
By = ky (Tt> (6)
sat

Here, C is the concentration of solute in the solution, C,,, is the
solubility of the solute at the particular thermodynamic conditions,
and k1, kp, ki g1, g2, b are the various empirical parameters
used to represent growth and nucleation in the form of power law
expressions.

Some works have also been observed that consider mother
liquor occlusion into the crystal by representing it using a separate
dimension [84, 87]. An empirical expression has been obtained for
the growth with respect to the additional liquid dimension in order
to address the occlusion of liquid into the crystals. From the works
of Miki et al. [60], the calculations for mother liquor inclusion in a
KDP crystal has been adopted, which was then used to extend the
dimensionality of the PBM. Figure 6 in the work of Miki et al. [60]
shows the relation between the amount of mother liquor included
in the crystal and the size of the crystal. Although the size coordi-
nate considered in the paper was unidimensional, Sen et al. [84]
considered two length dimensions. An averaged equivalent length
was utilized, which was obtained by calculating the diameter of a
sphere with an equal amount of volume as the cuboidal crystal in
case of the latter. Considering the depth of the crystal to be L;, the
equivalent length of the crystal can be expressed as

1
6 3
Ley(Li, Ly) = (E X L§L2> (7)

From Eqgs. (2) and (3), it can be seen that the number density of
particles is a function of the solute concentration, thus indicating
the need for a mass balance equation to update the solute concen-
tration in the solution over time. The mass balance equation can be
written as
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iC y
== —p[/ F(Ly, Ly, 1) (2(;1 (LiLy — I3) + Gsz)dleLz
0

o~—2

(8)

where p, is the density of the crystal. The solubility of the solute in
the solution is also a function of the temperature of the crystals.
Hence, an energy balance equation is also necessary to quantify the
change in the temperature, T'over time. Aggregation of crystals has
also been addressed in several works involving 1-D PBMs [7,
22, 43], however addressing aggregation in the case of multi-
dimensional models (while preserving the shape) has not yet been
explored. This is primarily due to the lack of mechanistic or statisti-
cal information suggesting the propensity of agglomeration based
on the length /surface area of the colliding surfaces/length scales.
Recently, PBMs have also been employed to study the continuous
crystallization process by various researchers [70].

One of the most significant purposes of developing sophisti-
cated models for crystallization processes is the ability to adopt
the QbD approach. Using the detailed PBM, the outcome of a
crystallization process can be predicted. The crystallization PBM
can be calibrated using standard optimization techniques in order
to be utilized for predictive purposes. In the work by Sen et al. [85],
a 2-D PBM has been employed to validate the model against
experimental results. A 2-D PBM enables the crystal shape to be
tracked over time and provides more information regarding the
progression of the crystallization process. The objective function
for the parameter estimation is the minimization of the sum of
squared error between the experimental and model predicted con-

centration. This objective function has been formulated as shown in
Eq. (9):

QCOnccntration (P) = ZH Cpredicted(ti’ P) - Cexperimmml(ti)uz (9)
=1

where Q represents the objective function, Cp,.gicred a0 Coperipentar
represent the predicted and the experimental concentrations,
respectively, #; represents the sth time instant, and p represents the
set of empirical parameters within the PBM.

The shape of the crystal is tracked using the aspect ratio as
expressed in Eq. (10):

Ly max L2 max L
AR 1m0 2p,o F(L1, Loy 1)
(t) - Ly max Ly max
L,=0 L,=0
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The optimization was solved using the fminsearch function
in MATLAB which employs the Nelder-Mead algorithm. Figure 2
presents the validation results using a proprietary molecule.
The model reveals good agreement with the experimental
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Fig. 2 Validation results from parameter estimation for the evolution of concentration with time for different
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observations. The concentration of the solute was fitted with the
simulated results using experimental data. The validation results
show good agreement between the PBM and the experimental
results. Typically, the crystallization process can be calibrated
using experimental data consisting of crystal size and shape, the
concentration of solute in the mother liquor, temperature or super-
saturation of the system. For more advanced studies, other quan-
tities such as polymorph composition or the mother liquor
occlusion volume can also be considered.

Mixing is one of the most important unit operations in the down-
stream tablet manufacturing process. In the pharmaceutical indus-
try, an active pharmaceutical ingredient (API) is mixed with one or
more excipients prior to tabletting, and the blend quality is primar-
ily determined by the mixing operation. Poor mixing can lead to
segregation and result in potency variations in the final dosage
form. The outcome of this is a poor quality product which has a
higher chance of being out of specification. Mixing is brought
about by the particle velocity gradient within the mixer when two
or more distinct bulk material particles come into intimate contact.
Variability in the mixture is induced by segregation which occurs
mainly when particles of different densities tend to settle in differ-
ent layers [76]. The population balance equation for the mixing
process can be written as shown in Eq. (11) [82]. Both internal and
external coordinates have been considered, hence a multi-
dimensional formulation of the PBM is required.

0 0 dx 0 dy
EF(n’x’y, 7/" t) +a_x {F(n’x’y) 7’ t)E] +a_y [F(n’x)y’ V’ t)E]

0 ar
2k == ~
+ o, |: (74, X5 V57, t) df:| iRﬂ)rmatlon(”a X057, t)

+ Rdepletion (72, %, ¥, 7, t) + Inflow — Outflow
(11)

Here, xis the spatial co-ordinate in the axial direction, yis the spatial
co-ordinate in the radial direction, and 7is the internal co-ordinate of
particle size. The counter # stands for the number of components.
For example, it the model deals with the mixing of two components
(component A and component B), #» = 1 represents component A

and 7 = 2 represents component B. The terms 4% and% represent the

velocities in the axial and radial directions, rcspedcttivcly. Hn, x, v t)is
the particle number density (number of particles per unit volume),
which varies with the spatial location inside the mixer and the type of
particle. Inflow is the rate at which the components are fed to the
system, held at a constant value over time. Outflow is the rate at

which the components exit the mixer.
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Within the pharmaceutical industry, certain API particles are
cohesive and tend to stick to each other, forming aggregates. As a
result, cohesion leading to aggregation has been studied both
experimentally [92] and via DEM simulations [77]. The aggrega-
tion rate process is defined in Eqs. (12)—(14):

maggrcgation = mformarion - 5y{dcplction (12 )
where

”—"min
Rformation =0.5 ﬂ(”;x;% 7/>V_ V')F(”,x,)’; Vlat) (13)
7min

x F(n,x,y,r — 7, t)dr
Rdcplction = ﬂ(”a X057, V/)F(n, X057, t)F(n,x, ) 7/) t)dV (14)

P(n, x, 5 7, /) is the aggregation kernel defined in Eq. (15). The
aggregation kernel is based on the kinetic theory of granular flow
(KTGF) [90].

B(n,x,y,7,7) :K\/@OH—V{)Z is—l—% (15)
P oy

Here K is a constant, p is the particle density, and 0 is a pseudo-
temperature termed granular temperature (Eq. (16)). By defini-
tion, vis the random fluctuation of the velocity within a continuous
granular medium; however, in this study » is assumed to be the
actual particle velocity depicted by its magnitude [33]. This
assumption has been deemed valid since the relative differences in
the aggregation model are important, as opposed to the absolute
differences.

1
6’:§<v.v> (16)

In certain cases, formation of aggregates during mixing is not
desired. For example, in the pharmaceutical industry, the API is
rendered free flowing by addition of suitable lubricants [91]. In the
case of free flowing powders, the internal coordinates can be
dropped and the population balance equation can be written as
shown in Eq. (17):
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0 0 dx 0 dy
EF(”,M,)’J) +a {F(n,x,y,t)%] +a_y [F(”,x,)’at)%]

= Inflow — Outflow

(17)

One of the approaches for modeling a mixer is by dividing it
both axially and radially into several compartments. If there are
Xmax X Ymax compartments, then outflow (as seen in Eq. (11)) can
be represented as Zi:l Zﬁv“z“l F(n, %max, y,t) Vp, which is the total
number of particles exiting from the end compartments. Vyis the
torward axial velocity. Mixing can occur in both the axial and radial
directions by convection and dispersion. In a continuous mixer,
mixing takes place when the particles are moved about by the
motion of the blades with the dispersive component being negligi-
bly small relative to the convective one. Such assumptions have
been justified in literature [66]. Particles can be treated as discrete
entities and their exchange between any two compartments is
simulated. It is assumed that homogeneous mixing occurs in each
of the compartments. The axial and radial velocities move the
particles from one compartment to another in both the axial and
radial directions. The exchange of mass between the compartments
has been represented as a number of particles. Particles can either
move forward to the compartment ahead of it or backward to the
compartment behind it. On the other hand, radial mixing con-
serves the total number of particles at a fixed axial location at any
given point in time. Hence the mass exchange (in terms of particle
density) of a single component among the compartments can be
simplified according to Eq. (18), given below:

OF(n,%,9,t)  VplFux1,y,r— Fnxyil I ViolFv1,9,0 = Fosy,t
ot o Ax Ax
[Fe,yi1,e + Fuwy1,0 = 2F 5 x y,4]
Ay

+V,

(18)

The above equation can be written for each component present in
the mixer. Here, Vj refers to the forward velocity in the axial
direction, V} refers to backward velocity in the axial direction, and
V,. refers to the radial velocity.

The inputs to this model are V4 V;, and V,. The velocity values
can be obtained either experimentally or from a previously run
detailed numerical simulation (e.g., DEM simulation). DEM cal-
culates the velocity values from the particle properties (e.g., particle
diameter, density). Once velocity values are extracted, the simula-
tion can be used to provide information about the dynamics and
the outputs of the process.
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Consider a case where two components (component A and
component B) are being mixed, where component A can be taken
as the API and component B as the excipient. At inlet, the flowrate
of the component A (API) is 16.3 % of the total flowrate (i.e., the
sum of component A and component B inlet flowrates). The input
parameters Vj V, and V, have been obtained from a previously run
DEM simulation, where a continuous mixer has been simulated
using EDEM™ (DEM Solutions). A commercial mixer (Gericke
GCM250™) with impeller blades in alternating forward and back-
ward orientation has been simulated. Equal number of particles
each of component A and B have been introduced into the mixer
using two feeders discharging particles on either side of the inlet. A
teed rate of 1990 particles per second and an impeller speed of
250 RPM have been maintained. The details of the DEM simula-
tion and velocity extraction have been previously reported by the
authors [86]. The mixing performance is defined in terms of certain
critical quality attributes (CQAs) such as relative standard deviation
(RSD), composition of A, which can be active ingredient of interest
for a given process (C,4) and residence time distribution (RTD).
These CQAs should be regulated and controlled in order to achieve
the desired mixing efficiency. These parameters can be found as
described below:

.ymax
Zy:1F<l’ Xmax> ) t)

Mhmax Ymax
§ n=1 yle(n) xmax»y’ t)

Ca= (19)

In the above equation, the numerator stands for the total number
of particles of component A which exit from the last compartments
at any point in time. The denominator represents total number of
particles of both components A and B exiting from the last com-
partments at any point of time. Since this model involves two
components, the value of 7.,y 1S 2. % and yma, stand for the
maximum number of grids in the axial and radial directions, respec-
tively. Figure 3 shows how the API composition at the mixer outlet
varies over time. It can be seen that the API composition at the
outlet increases with time and finally reaches a steady value 0ot 0.163
(which is same as the inlet composition).

The homogeneity of samples retrieved from the outflow is
measured by calculating the variability in the concentration. The
RSD of the tracer concentration measures the degree of homoge-
neity of the mixture and is given by

ZN (ci—tag)”
i=1 N-1 (20)

Cavg

RSD =

where N represents the total number of compartments (N = Xpa
X Ymax)- ¢ 18 the index to represent the compartment. ¢; is the
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Fig. 3 Evolution of API composition

concentration of component A at any compartment i. c,g is a
spatial average of the concentration of component A. Figure 4
represents how the overall RSD decreases over time as well as
over the mixer length. This is because the variability in the mixture
is reduced over time. In Fig. 4, the mixer length is represented by
the compartment number. The spikes present in the graph depict
back mixing in the respective compartments.

The RTD, E(?), is a measure of the time spent by the particles
within the mixer, capturing the non-ideality associated with the
flow. The RTD can be found by

()
) = tyar @)

In the above equation, ¢(#) stands for the concentration of compo-
nent A in the outlet stream at any time #. It is important to make the
following assumptions in order to determine the RTD: (1) the flow
in the mixer is well mixed; (2) the powder elements entering
the mixer simultaneously flow with constant velocity and leave the
mixer at same time. Figure 5 depicts the RTD of the API in
the mixer upon injecting a pulse of API at # = 100 s. The RTD is
a measure of the time spent by the API particles in the mixer and
correlates to mixing performance. The width of the RTD curve can
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be set as a metric to optimize process performance as a function of
formulation properties and processing conditions.

The mathematical model has been validated with experimental
results. Experiments have been designed to obtain the RSD and
API composition at the mixer outlet as a function of time. Materi-
als, which have been used in the experiment are Avicel PH-200
(FMC biopolymer), which is the excipient and Acetaminophen
(Mallinckrodt), which is the API. The mixing has been carried
out in a commercial mixer (Gericke GCM250"™). One experimen-
tal data set which has been obtained for a feed rate of 20 kg,/h and
mixer speed of 40 RPM has been considered. API concentration in
the mixture fed to the mixer inlet is 10 %. More details on the
experimental setup can be obtained from [83]. The API composi-
tion and RSD values have been obtained as a function of time at the
mixer outlet. A linear trendline has been fitted to the experimental
data points and the model has been validated with respect to the
trendline. The objective function can be formulated as shown

below (Egs. (22)-(24)) [83]:

n

QAPIComposition(p) _ Z

i=1

2
yAPI, predicted ( Li, P) - yAPI, experimental ( ti)

(22)

.QRSD(Z’) = ZkHRSDprcdictcd(tia p) — RSDCXPCrimCmal(ti)H2 (23)

i=1
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2.3 Granulation

p is the set of estimated parameters, which, in this case, are the
forward, backward, and radial velocities (Vs Vj, and V,). The
objective function for the RSD has been multiplied by a constant
(k) to facilitate convergence since the API composition and RSD
have values of different orders. The overall objective function was
then formulated as follows:

QTotal(p> _ QRSD(p) + QAPIComposition(p) (24)

An RTD study has been performed, as well. Since the RTD
measurement requires a different set of experiment, the objective
function has been formulated and optimized separately, as shown in

Eq. (25):
.QRTD(P) = ZHEPerictcd(tiw p) — Ecxpcrimcmal(ti>||2 (25)
—1

Figure 6 shows that there is a good agreement between the model
predicted and experimental (linear trendline) values for both RSD
and API composition.

Granulation is yet another crucial process that is very relevant to the
pharmaceutical industry. It involves the size enlargement of parti-
cles in order to improve flowability and dissolution and enhance
homogeneity of finer particulate solids. It is a highly complex
process that is poorly understood and is currently operated in the
industry under high recycles [80]. Due to the discrete nature of the
process, PBMs are highly useful in modeling granulation [48]. In
carly days, 1-D models were more popular for modeling granula-
tion due to their reduced complexity [53, 81]. However, Iveson
[38] presented a detailed case study emphasizing the need for
multi-dimensional models for accurately modeling granulation.
Eventually, Wauters [97] suggested an easier yet effective approach
of framing a multi-dimensional population balance model for gran-
ulation by re-casting it in terms of their individual volumes of solid
(s), liquid (/), and gas (g), which enables the decoupling of the
integrated process with respect to the individual meso-scopic sub-
processes. The overall 3-D PBM for granulation can be written as

da
(5) l>ﬂ7 t);

%Fu,w,t) { b )[ﬂ +% ' f] (26)

d
i [F (s,L,4,1t) fﬂ = Rnue + Ragg + Rbreak

where F(s, [, g, t) represents the population density function such
that K, 1, g, t)dsdldg is the number of moles of granules with a
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solid volume between sand s + 4ds, a liquid volume between / and
I+ dl, and a gas volume between gand g + dg. The partial derivative
term with respect to s accounts for the layering of fines onto the
granule surfaces, the partial derivative term with respect to /
accounts for the drying of the binder or the re-wetting of granules
and the partial derivative with respect to g accounts for
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consolidation, which, due to compaction of the granules, results in
an increase in the pore saturation and decrease in the porosity.

Various submodels can be used to describe the different growth
mechanisms involved in granulation. Wang et al. [96] modeled the
layering of fines using a Monod based growth model as shown in
Eq. (27):

M powder

[7a(xw7xuvc)2] 27
max 4
ki Z Mi + Mpowdcr ( )

G=G

where Gp,a  is the maximum growth rate, M,wqer i the mass of fine
powder, M; is the mass of particles in the sth size class, x,, is the
critical moisture, and % and « are fitting parameters (based on
experimental data-particle size distribution, porosity, moisture con-
tent). Layering is highly affected by the amount of fines present in
the system.

Drying and rewetting are associated with the gain or loss of
liquid into or from the granulation system due to evaporation or
liquid addition. The liquid growth rate can be obtained from the
mass balance as

aL B mspray(l - 5bindcr) - mcvap
. >
dt Msolid

(28)
where

Msolid = Msolid fraction T msprayfbinderAt > (29)

In the above equations, 7z is the rate at which liquid is being
sprayed in the system, cpingder 18 the concentration of solid binder in
the liquid added, sy, is the rate of liquid being evaporated,
Misolid fraction 18 the volume of solid of the particles in each bin and
Lis the liquid in the powder bed. In the case of a high shear mixer,
the assumption of 7, = 0 is valid. However, in the case of a fluid
bed process, the evaporation rate dominates over rewetting, and
thus the evaporation term needs to be taken into account [18].

Consolidation is a negative growth process which represents
the compacting of granules due to the escape of air from the pores.
It can modeled as an empirical exponential decay relation [94],
given by

de

e —c(€ = €min), (30)

dt $

— €min

dg c(s+14+9) 1 — €mn) EminS
= x |1 1 +4 (31)



Population Balance Models for Pharmaceutical Processes 61

where the porosity ¢ is

€ = H_iﬂ (32)
s+1+yg

Here &4,;, is the minimum porosity of the granules and ¢ is the
compaction rate constant.

The above equations adequately represent the growth terms
that are observed on the left side of the PBM (Eq. (26)). The
source terms on the right side of Eq. (26) comprise of nucleation,
agglomeration, and breakage. Aggregation of particles is one of
the dominant mechanisms that enables size enlargement during
granulation. The aggregation of particles is obtained as a combina-
tion of the formation and depletion terms as shown in Egs. (34)
and (35):

Rage (5, 1,5) = Riga” — R (33)
such that
S”Zﬂx lmz\x ﬂmz\x
m‘lfgogrm = E /}’(S/)S - S/) l,a /- l/ag/)ﬂ _ﬂ/) (34)

Smin =~ 0 0
x F(s', 0,40, )F(s —s, 1 —1U',gy— 4, t)ds dl' dy

Smax Imax Fmax

dep __ ,
i}{aggp - F(J" l’ﬂ’ t) / / / ﬂ(l‘/)s - S/) l b} l - l/,gl’g _ﬂ/)
Smin 0 0
x F(s',I',g4,t)ds dl' dg'
(35)

where $y,i, is the minimum solid volume of the particles present in
the system and B(s',s — &', /', 1 — I', 4/, 9 — 4') is the size-dependent
aggregation kernel that describes rate expression for aggregation
of two granules of internal coordinates (s, 7/, 4') and
(s—s,1—1,9—4"). The formation term accounts for the new
particles that are formed after coalescence, whereas the depletion
term accounts for the particles that are lost when the smaller parti-
cles coalesce and aggregate. The PBM has been validated against
experimental data by calibrating the model using parameter estima-
tion techniques. Figure 7 shows agreement between the experimen-
tal and predicted results for the mean diameter and porosity of the
product class for the granules. It can be seen that the modelis able to
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Fig. 7 (continued)

capture the experimental trends and also make close predictions.
The 45° dotted line depicts the condition where the simulated
values equal the experimental results (perfect agreement). The prox-
imity of the points to the dotted 45° line shows the accuracy in the
approximation. This suggests the applicability towards QbD for
improved process operation.
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The appropriate selection of the aggregation kernel is also a
crucial task in accurate modeling of a granulating system. Many
empirical kernels have been observed in literature, but a mecha-
nistic kernel is most desirable as it takes into account the various
material and system properties and can hence be extrapolated for
different systems. An empirical kernel requires more number of
parameters that have to be tuned in order to tailor the kernel to a
particular system. This makes an empirical kernel extremely system
specific and thus cannot be generalized. A list of the various
aggregation kernels available in literature has been shown in a
tabular form by Cameron et al. [12]. The approach based
on [26] and [50, 51] was implemented by Immanuel and Doyle
[37] in order to obtain a mechanistic kernel, which takes into
account various system parameters, such as particle diameter and
temperature, resulting in a more generalized kernel which requires
fewer estimated parameters. A modified physical-based kernel has
also been proposed recently, which considers variable binder
thickness for obtaining the aggregation kernel [52]. A novel
semi-mechanistic kernel has been recently proposed that takes
into account the influence of various measurable operating para-
meters on the final granule properties and yet is computationally
inexpensive [21]. This model can effectively capture the steady
and induction growth behaviors that have been observed experi-
mentally. Figure 8 depicts the ability of the semi-mechanistic
kernel to be able to capture the various growth behaviors. For
highly porous starting particles, the growth in particle size is not
observed immediately after the onset of liquid addition. Growth is
brought about only after there is sufficient consolidation to
squeeze out liquid which can then aid with agglomeration. There-
tore, there is a delay with the growth of particle size. This scenario
is called induction growth. The granulation of less porous parti-
cles, however, starts immediately after the addition of liquid. This
is known as steady growth. Figure 8 not only captures the influ-
ence of crucial operating parameters, e.g. viscosity (higher viscos-
ity suggests higher viscous forces thus forming bigger granules),
but is also able to demarcate the existence of induction vs steady
growth. As expected intuitively, the growth of primary particles is
aided on increasing the viscosity of the binder. The highly viscous
binder is more efficient with dissipating the kinetic energy through
viscous forces.

Breakage is the disintegration of a particle into two or more
fragments and is mainly governed by attrition and impact. It plays a
crucial role in controlling the final granule size distribution in high
shear granulators. Many published breakage kernels have been
presented in literature, one of which defines the breakage kernel
in terms of empirical parameters and shear rate [64]. Mechanistic
kernels have also been proposed in literature, where the kernel has
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been expressed to be proportional to the ratio of the external stress
to the intrinsic strength [73].

Several models have been developed in order to quantity the
breakage distribution function [65]. Using this information, the
breakage term can be broken into its corresponding birth and death
terms as

SRbreak (Sa l)g) = mfb(;gﬁ( - SR(biicl:ak’ (36)

such that the birth and death terms can be explained using
Eqgs. (37) and (38):

Smax /max Tmax

mﬂ)rm _ / / /I(break(5> l’g)b(y/’s — 5/, l/’ I — l/aﬂ/aﬂ _g/)

break

0 0 0
x F(s', 1,4, t)ds' dl' dg'
(37)

RIP = Kireak (5, 1,5) F(s, 1,5, 1). (38)

A more mechanistic approach towards obtaining the breakage ker-
nel has also been proposed by Ramachandran et al. [73] where the
Kprear has been represented as a ratio of the external stress to the
internal stress. These stresses have been further obtained by apply-
ing the physics of the system combined with the information of the
various microscopic properties. Breakage has also been studied
using a non-linear effect on the mechanism for milling processes
by Bilgili and Scarlett [6].

The effect of the various underlying mechanisms governing
granulation has been presented in [15]. The effect of the primary
particles and the binder addition mode has also been studied.

A continuous granulation operation has also been studied
recently in the work by Barrasso et al. [4]. The continuous granu-
lator has been subdivided into three distinct zones demarcating the
premixing zone, the spray zone, and the wet massing zone. The
multidimensional PBM for the continuous process is expressed as a
function of the internal and the external coordinates in order to
address the inhomogeneities based on the spatial positions (as
shown in Eq. (39)):
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= Fin(fl,JZ’l’ﬂ’xay’ t) =+ Fout(SIaXZalaﬂ3x’y’ t)
+ Rpue + f~Ragg + %brcak
(39)

The modeling results could very well capture the experimental
trends that were observed in practice (see Fig. 9). A detailed para-
metric study involving the study of the various crucial operating
parameters has also been studied [4]. Findings suggest that the
residence time and liquid-to-solid ratio are the most critical para-
meters in determining the product size distribution in twin screw
granulation. The residence time is the result of design parameters,
such as screw length and configuration, as well as process para-
meters, such as screw speed and throughput. The model calibration
for the granulation process requires experimental data consisting of
the particle size distribution and porosity in typical cases. The tight
quality criteria in the pharmaceutical industry requires the particle
size to lie within a certain range, such that the dissolution and
bioavailability of the drug can be controlled. The granule size can
be measured using various equipments measuring the size or using
the sieve analysis. Sieve analysis is a more crude method and is
generally associated with a relatively high measurement error [63].

Milling is a particle size reduction process often used in pharma-
ceutical manufacturing of solid oral dosage forms. Used for
delumping in the direct compaction manufacturing route, milling
processes have additional purposes in wet and dry granulation
manufacturing routes. In dry granulation, a roller compactor is
used to form compacted ribbons from fine powder. Milling is
then used to produce granules from these ribbons. In
manufacturing routes using wet granulation, milling operations
can be used to reduce oversize particles following granulation and
increase amount of the product within the desired size class.

The conical screen mill, which is most widely used for pharma-
ceutical applications, applies strong shear forces on particles that are
trapped between the impeller and the screen, resulting in particle
attrition [3]. Small fragment particles are able to pass through the
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screen, while larger fragments are contained and experience addi-
tional breakage. In all milling processes, the primary mechanism is
particle breakage. Particles are subjected to shear or impact forces,
which break larger particles into fragments. The breakage rate,
distribution of fragment particles, and screen classification deter-
mine the product size distribution. These factors can depend on
process parameters, such as impeller speed and screen size, as well as
material properties, such as ribbon strength and particle size. PBMs
can be employed to understand these effects.

Typically, milling processes have been modeled using 1-D
PBMs, accounting for variations in particle size [3, 6, 23, 78].
A general 1-D PBM for milling is presented in Eq. (40), which
describes the rate of change in the number of particles of each size
class in the system.
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OF(u,t
%) = SRbrcak(”v t) - iRbrcak,form(%, t) - 9%brcak,dcp(i/”) t)

(40)

Here, K u, t) represents the number of particles in the system
of size » at time #. Rpear 18 the breakage term, accounting for
the formation of particles due to the breakage of larger particles,
Rbreak, form> and the depletion of particles as they break into smaller
fragments, Ry reak dep- EXpressions for the formation and depletion
rates are given in Eqs. (41) and (42):

mbreak,dep(”a t) = S(M)F(Ma t) (41)
Rorest orm (145 £) = / S(v)E(r) b, v)dv (42)

un

Here, S(#) is the breakage rate kernel for a particle of size #, and
b(n, v) is the fragment distribution, describing the probability that
a particle of size # will result in a fragment of size ». While the
depletion rate depends only on the number of particles and break-
age kernel, the formation rate is more complex. The rate of frag-
ment formation depends on the breakage rates and numbers of
particles of all size classes larger than the size class in consideration,
resulting in an integral term. Additionally, the breakage distribu-
tion function is necessary to describe the sizes of the fragments.

Some studies use a constant rate kernel [ 78], while various size-
dependent rate kernels are also found in the literature [64, 65, 95].
The breakage rate kernel depends on the material properties of the
formulation, as well as the process conditions. While these kernels
are empirical, a mechanistic breakage kernel for granulation was
developed by Ramachandran et al. [73] and can be applied to
milling processes. Similarly, various breakage distribution functions
have been proposed, including the Hill-Ng distribution [25], a
bimodal lognormal distribution [78 ], and a lognormal distribution
[3]. Selection of an appropriate breakage rate kernel and fragment
distribution depends on the desired complexity of the model and
the ability to describe experimental data.

For a mill operated in batch mode, the mill is treated as a closed
system, and any material that passes through the screen is consid-
ered a part of the system. The breakage rate §(#) is used to charac-
terize the screen, and small particles are represented with breakage
rates of zero as they have passed through the screen and can no
longer break. The size cut-off value is often extracted from experi-
mental data [78].

The breakage rate kernel, fragment distribution, and screen
model contain parameters that are unknown and must be evaluated
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empirically. Parameter estimation has been employed to determine
unknown parameters by Reynolds [78], Capece et al. [13], and
Barrasso et al. [3].

As a case study, Barrasso et al. [3] developed a 1-D PBM for a
continuous conical screen mill, accounting for the eftects of impel-
ler speed and screen size. Experimental data was collected from a
conical screen mill (Quadro 197-S) using pure microcrystalline
cellulose (Avicel PH 200). A full-factorial 2 x 3 x 2 experiment
was performed to measure the effects of screen size (3 levels),
impeller speed (2 levels), and ribbon density (2 levels) on the
product size distribution and mass hold-up.

The PBM incorporated inlet and outlet flow rates, Finand F outs
to represent the feed and product streams of the continuously
operated mill, as shown in Eq. (43) [3]:

OF(u,rt)

at - 9qbrcak(”’a t) + Fin(”a t) - Fout(”, t) (43)

Using this approach, S(#) only describes the breakage rate but
does not account for the screen. An expression for Fou was
tormulated to describe the likelihood that a particle will leave the
mill, shown in Eq. (44):

Fout = (mbreak,form<u> - inreak,dep(”) + Flll(”))(l - fﬂl(”’))a
(44)

where f; is a classification function given by Eq. (45) [3]:

0 for d(u) < (1 — 8)dcreen
-1 - screen
fpl(”) = d(%> 5(d 5)d tor (1 - 5)Vlscrcen S Vl(”) S Vlscreen
1 for d(”) > Vlscreen

(45)

In this equation, 4(#) represents the diameter of a particle in size
class #, dycreen 18 the screen aperture, and § Ay peen 1S the cut-off size
at which particles are large enough to be held up by the screen,
assumed to be proportional to the screen size.

An empirical shear rate- and size-dependent breakage kernel
was adapted from Pandya and Spielman [64] to account for the
effect of impeller speed, v, on the breakage rate, shown in
Eq. (46):

S(M) =D ‘VimpMP2 (46)
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In this equation, P; is a rate coefficient and P, describes the size-
dependence of the breakage rate. Both parameters must be evalu-
ated experimentally.

Finally, a log-normal fragment size distribution was assumed,
given by Eq. (47):

uo 2062

b(u, ) = <) exp l_ Ml : (47)

where p(v) and ¢ describe the mean and variance of the fragment
size distribution formed from a particle of size », and C(») is a
normalization constant [ 3]. The mean of the fragment distribution
was defined to be proportional to the log of the parent particle size.

Using this data, parameter estimation was performed for each
ribbon density to determine five unknown model parameters. For
each ribbon density, four of the six experiments were used in
parameter estimation. The calibrated model was then used to sim-
ulate the remaining two experiments (at the intermediate screen
size), and the resulting particle size distributions were compared.
The simulated and measured particle size distributions for the low
density ribbon showed strong agreement, as shown in Fig. 10 [3].
Once validated, a PBM can be used as a tool to predict the CQAs
based on process parameters, demonstrating a model-based
approach to QbD.

3 Numerical Techniques to Solve Population Balance Models

The solution of a population balance equation can be obtained
using various methods, such as direct discretization, Monte Carlo
and the method of moments. Direct discretization is a straightfor-
ward approach to obtain an accurate estimate of the particle size
distribution, but a disadvantage associated with this methods is the
inaccuracy with tracking the moments [41]. Monte Carlo methods
are more stochastic in nature and can be used to obtain the solution
of multi-component or poly-disperse population balance equation,
provided that the probability of dynamic behavior in the system
obeys the balance principle for system details, the time step for each
successful event can be calculated accurately and all the events
occurring in the system are mutually dependant [29, 59]. Various
other techniques, such as the method of classes [69 ], the method of
characteristics [28], the method of moments [44, 56], and high
resolution algorithms [34] have been used to solve PBMs. Direct
discretization techniques, such as the finite difference method,
finite element method, and finite volume method, are quite popular
for solving PBMs [36, 55]. A more systematic approach known as
the hierarchical two tier algorithm was proposed by Immanuel and
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Doyle IIT [36]. The partial differential equation can be discretized
(with respect to spatial /internal coordinates) to obtain a set of
ODEs (as shown in Eq. (48) for the 3-D PBM for granulation),
which can then be solved using a standard Runge Kutta or Euler
technique.

AF; ji  Fijeds)  Fiju ds Fj judl
At As; dt ASit1 dt Alj At
Si Sitl l;
CFi il Fijwdg|  Fijendg (48)
Aljyy dt Ay, dt Afp At
Lin T i1

= E}{agg(-yia l],ﬂk) + 9£{brcak(-ria ljaﬂk)

, sicl Ll Ipn
Here F; ;.= [ [ [ E(s,l,g) ds dl dg, s5; is the value of the
Si i g
solid volume at the ﬁppekr end of the sth bin along the solid volume

axis, /;is the value of the liquid volume at the upper end of the jth
bin along the liquid volume axis, and s, /4, and gy are the values of
the solid, liquid, and gas volume at the upper end of the sth, jth,
and kth bins along the solid, liquid, and gas volume axes, respec-
tively. As;, Aljand Agy are the sizes of the ith, jth and kth bins.

The solution to PBMs is highly computationally expensive. It is
thus desirable to develop approaches by which the computational
complexity can be alleviated. The discretization of the PBM can be
performed using a linear or a nonlinear grid. A linear grid requires a
large number of bins to span a certain size range. However a
nonlinear grid can span the same range using fewer bins, thus
reducing the computational overhead [17]. Various algorithms
have been developed to implement a nonlinear grid for discretiza-
tion [14, 40, 41, 49]. It is most accurate to employ multi-
dimensional PBMs to represent the various particulate processes
[38]. However, sometimes there are difficulties in solving such
system of equations due to the “curse of dimensionality.” It has
been pre-established that with an increase in the dimensionality of
the PBM, the computation for the aggregation term increases
polynomially [67]. The computational expense associated with
calculating the aggregation term has been split or redistributed
and the overall solution technique has been sped up by parallelizing
the code [67, 68].

Another approach for alleviating the computational load for
the solution to PBMs is the development of reduced order models.
A lower dimensional model was developed by Barrasso and Rama-
chandran [2] which involved lumping the model in terms of certain
independent coordinates in order to reduce the computational
expense. The results from the reduced order model suggest a
reasonable approximation of the original high dimensional model.
As expected, the accuracy of the results reduces as the number of
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Fig. 11 Comparison of output properties for particle size based on different
lumped models. (a) Average diameter over time and (b) normalized particle size
distribution at final time

lumped variables is increased (see Fig. 11). It is thus advisable to
choose an appropriate framework with a certain extent of lumping
which balances the speed and accuracy of the simulations. The
ability to discretize a differential equation using a larger number
of finer grids reduces the chances of introducing a discretization
error (which is a function of the step size for the discretization) into
the solution. The appearance of such an instance can be minimized
by using a large number of bins for the discretization and also
keeping the associated computational time at a reasonable value.
For this purpose, the tensor-decomposition approach has been
used (implemented in MATLAB by Oseledets et al.) which com-
presses large volumes of data in the form of a tensor transformation
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thus enabling significant savings in the computational time and
memory for the simulations [62]. The aggregation term has been
calculated as a convolution with the help of fast fourier transforms
(FFT). The breakage term and the associated breakage distribution
is calculated by separation of variables and reformulating the sum-
mation to calculate the equivalent integral terms. The detailed
approach for performing the tensor decomposition on the pre-
existing high dimensional model has been described in [19].

4 Parameter Estimation

Effective parameter estimation is very crucial for model calibration
in order to utilize the mathematical model for predictive purposes.
Estimation of empirical parameters requires the need for matching
the model outcome with the experimental data. The required
experimental data for model calibration might vary for every unit
operation. Typically for crystallization processes, the experimental
data utilized are the solute concentration in the mother liquor,
crystal size [5], and shape. These quantities can be used to fit the
model output for calibration purposes. In order to study mixing,
the typical data measured in the experiments are the outlet concen-
tration of the powder over time. This information can be utilized to
derive various quantities such as RSD and RTD [85]. For studying
the agglomeration associated with the mixing process, particle size
data can be utilized. In case of granulation processes, the particle
size and porosity data are typically considered for parameter esti-
mation purposes [20]. Particle size data also plays a crucial role in
the model calibration of milling processes [3].

Parameter estimation is performed by implementing an opti-
mization algorithm that can minimize the mismatch between the
model outcome and the experimental data. The objective function
¢ can be written as

¢ = (CQAsimulatcd - CQAffXPCfimemal)z (49)

Here, CQA is utilized for the simulated and the experimental
results. The CQA varies for each unit operation. The objective
function/error can be minimized using various optimization algo-
rithms, such as Nelder-Mead algorithm, various gradient based
algorithms, or meta-heuristic techniques (such as genetic algo-
rithm, particle swarm algorithm). With the availability of extensive
data, and based on the needs, multiple CQAs can be simultaneously
used to fit the model. This can be implemented using a multi-
objective optimization algorithm. There are various means by
which multiple objective functions can be simultaneously taken
into consideration. Using multiple objective functions, there is a
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need to obtain the pareto optimal solution. The multiple objective
functions can be tackled in various ways—sum /weighted sum of
objective functions, min-max method, € -constraint method.
The optimization algorithm efficiently minimizes the error between
the simulated and the experimental results thus fitting the model to
the system under consideration. The calibrated model can then be
utilized for making predictions of the process outcome.

5 Flowsheet Applications of PBM in Pharmaceutical Manufacturing

Detailed process modeling is highly beneficial towards improved
process operation for pharmaceutical drug manufacturing. The
formulation of a PBM requires an in-depth understanding of the
process physics and associated risks. Thus, development of a first
principles-based PBM leads to compliance with the guidelines of
QbD as proposed by the FDA. Using eftective parameter estima-
tion techniques to calibrate the model (as discussed in the previous
sections) contributes to the predictive ability of the PBM frame-
work. PBMs can also be utilized for performing control and opti-
mization of various particulate processes. Some of the works
presenting a control strategy for improved process operation
include [54, 72, 93].

In recent years, a large thrust is observed, pushing the drug
manufacturing mode from batch to continuous. This would not
only involve modernizing the overall process with more sophisti-
cated equipment/control strategies but also the need for modifying
the mathematical models for improved process understanding [45].
Some benefits of adopting the continuous manufacturing route
include the use of the same equipment for the production of
variable quantities of drug, thus minimizing the need for scale-up
studies and reducing the time-to-market. This also enables the
entire setup to fit in a much smaller space. Also, in a continuous
setting, the human factor is significantly reduced through automa-
tion of operation and thus overheads incurred due to labor can be
minimized. Drug products can be continuously manufactured
using one of the three primary routes, as selected based on the
material being handled. These routes are, namely, direct compac-
tion, roller compaction, and wet granulation [8]. Figure 12 shows
the continuous mode for running the upstream and downstream
processes for drug manufacturing. Within this flowsheet, various
unit operations can be addressed using a PBM are crystallization,
granulation, milling, mixing, and coating. In the previous sections a
brief description has been provided on the extension of the PBMs
for batch operation to continuous operation. Boukouvala et al.
[9, 10] have performed detailed studies on simulating and optimiz-
ing the downstream pharmaceutical drug manufacturing in contin-
uous mode. Sen et al. [84, 87] have conducted studies on
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developing and analyzing the upstream purification process in the
continuous mode.

The flowsheet modeling approach provides a more accurate
representation of the continuous manufacturing mode due its con-
sideration of the unit operations in an integrated framework. All the
unit operations within the flowsheet framework are not represented
using population balances, however several complex unit opera-
tions are described using population balance models. The proper-
ties of the solid /mixture change at the exit of every unit operation
is accounted into the flowsheet model and can successtully
describe /explain the evolution of powder properties over the con-
tinuous manufacturing framework.

Figure 12 also shows the critical quality attributes (CQA) that
are of concern at the exit of each unit operation. It can be seen that
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using the corresponding model, such exit properties can be tracked.
Boukouvala et al. [9] have also performed a sensitivity analysis for
the flowsheet models and have studied how noise gets propagated
through the multiple unit operations present in the flowsheet. This
enables the identification of noise propagation through the contin-
uous operation and can provide the upper bounds to the extent of
upset that would keep the system within the acceptable range of
operation. Sen et al. [87] performed optimization studies coupled
with a multiscale model on the upstream pharmaceutical
manufacturing process in order to maximize the efficiency of the
overall operation. The crucial parameters affecting each unit opera-
tion were identified, which were then fed into the optimization
algorithm with the flexibility to be manipulated such that the
overall flowsheet could be optimized. Various PBMs were also a
part of the flowsheet, which enabled to alleviate the inefficiencies
associated with the continuous operation mode. With the develop-
ment of sophisticated and mechanistic models that can effectively
capture the trends in continuous manufacturing operation, the
overall understanding of the continuous operation can be enriched
and the operation of the process can be improved.

6 Conclusions

There exists a significant amount of inefficient operation in the
pharmaceutical industry which suggests the need for a model-
based system approach in order to alleviate the operation of the
process and reduce wastes. Using a model based approach, the
number of experimental trials can be significantly reduced, thus
accelerating the profits made by the industry. Population balance
models are highly useful for modeling the processes relevant to the
pharmaceutical industry, due to its ability to effectively capture the
dynamics of a discrete particulate process. Population balance mod-
els can be used to describe the process involving solid handling and
can be further used to make effective predictions. Parameter esti-
mation techniques enable the quantification of the empirical con-
stants within the model thus extending the utility of the model to
make predictions. A brief overview of the parameter estimation
techniques is presented in this chapter and provides guidance on
the applicability of this framework for predictive purposes. This
aligns very closely with the principles of QbD /Process Analytical
Tools (PAT) that has been recently proposed by the US FDA.

In order to effectively use this framework for improving the
process operation, development of numerical techniques for solu-
tion of PBMs is essential. Various numerical techniques have sur-
faced over the past decade that enable effective solution to PBMs.
Some of those techniques have also been briefly discussed in
Sect. 3. The “curse of dimensionality” can be overcome using
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reduced order models as discussed above. Since pharmaceutical
drug manufacturing mostly involves the handling of powder and
other particulate matter (such as crystals), employing PBMs for
modeling such processes is an effective approach. With the advent
of a paradigm shift in the mode of process operation for drug
manufacturing, the operation of the continuous manufacturing
process requires the study of the integrated process using a flow-
sheet modeling approach. Several unit operations within the flow-
sheet model are represented using PBMs. From the discussions
presented above, it can be clearly inferred that PBMs play a vital
role in modeling pharmaceutical processes, primarily due to the

inherent discrete nature of PBMs.
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