Preface

The quest for simplicity in a complex world has occupied thinkers for millennia. How to conceptualize
what humans observe around them and what they wish to design in order to improve the quality of
people’s lives has been one of the major driving forces in advancing civilization. The advent of
computers in the middle of the previous century was a great impetus to fostering thoughts about how to
conceptually represent things in the real world. The initial accepted train of thought produced procedural
programming, which put procedures, routines, functions, etc. at the center of programming. Further
contemplations have led to the idea of putting objects, which are more static in nature, as the anchor of
programs. The shift to the object oriented (OO) paradigm for programming languages, which occurred in
the 1980s and 1990s, was followed by the idea that programming should be preceded by analysis and
design of the programs, or, more generally, the systems those programs represent and serve. Naturally,
the approach which was taken is also object-oriented.

In the early 1990, a plethora of some three dozen object-oriented analysis and design methods and
notations flourished, leading to what was known as the “Methods War”. Around that time, in 1991, when
I moved from University of Kansas to Technion, Israel Institute of Technology, as I was tasked with
teaching software design, I got interested in these topics. It was not long before I realized that just as the
procedural approach to software was inadequate, so was the “pure” OO approach, which puts objects as
the sole “first class” citizens, with “methods” (or “services”) being their second-class subordinate
procedures. However, I could not put my finger on what was missing.

My Eureka moment was in 1993, when I and colleagues from University of Washington were trying
to model a system for automated transforming of hand-made engineering drawings to CAD models, a
topic around which my research focused during that time. Drawing objects as the model’s building blocks
and connecting them on the white board, it dawned on me that not all the boxes in the model were really
objects; some were things that sappen to objects. When I circled those things, a pattern of a bipartite
graph emerged, where the nodes representing objects—the things that exist—were mediated by those
circled nodes, which I immediately called processes. This was the first object-process diagram (OPD)
ever drawn. I realized then that the pendulum of the previously accepted procedural software to the
primarily static OO paradigm moved too drastically. While the shift from procedures to objects as the
focus of interest was a right move, it went too far, as it suppressed the systems’ procedural aspect, which
is essential to faithfully describe how systems change over time.

Forbidding processes, such as cake baking or check cashing, from being conceptual entities in their
own right, and allowing their representation only as methods of object classes, results in distorted models,
in which a check “owns” the cashing method or the cake owns the baking process. In real life, however,
baking is a pattern of transformation of ingredients making up the dough that requires a baker, an oven,
and energy to prepare the dough and convert it into a cake. Similarly, a check cannot cash itself; it
requires a check writer having an account with sufficient funds, a check casher, and a bank clerk or an
ATM. Each of the objects involved in these methods could just as well be the owner of the method.
Modeling baking and cashing as stand-alone processes—conceptual things that represent physical or
informatical object transformation patterns—open the door for creating models that are much more
faithful to the way we conceive reality and convey it to others.

ix



X Preface

Indeed, recognizing processes as bona fide conceptual modeling building blocks beside, rather than
underneath objects, is the prime foundation of Object-Process Methodology (OPM). OPM is founded on
a universal minimal ontology, according to which objects exist, while processes transform them.
Transformation includes object creation and consumption, as well as change of the state of an object.
Therefore, OPM objects are stateful—they can have states. Hence, stateful objects and processes that
transform them are the only two concepts in OPM’s universal minimal ontology. Two other cornerstones
of OPM are its bimodal graphical-textual representation and its built- in refinement-abstraction
complexity management mechanisms of in-zooming and unfolding of a single type of diagram—OPD.

When I tried to publish a paper titled “Object-Process Analysis: Maintaining the Balance between
System Structure and Behavior” with the buds of these ideas in 1993, it was serially rejected off hand
with claims along the line that it had already been proven that what I was suggesting is impossible, like
“mixing water with oil.” Finally, the Journal of Logic and Computation accepted it, perhaps because
being mathematics- rather than software-oriented, it was more tolerant toward ideas that went against the
then new and glorious OO paradigm.

Meanwhile, in 1997, the “Methods Wars” culminated in the adoption of the Unified Modeling
Languages (UML), by the Object Management Group (OMG), making it the de-facto standard for software
design. UML 1 had nine types of diagrams. In 2000, when I attended a Technical Meeting of OMG in
which UML was considered for progression from version 1 to 2, I proposed considering UML for being
extended to handle not just software systems, but systems at large, a proposal that was dismissed off-hand
by most attendees, who were software people. However, following a 2001 initiative of the International
Council on Systems Engineering (INCOSE), in 2003 OMG issued the UML for Systems Engineering
Request for Proposals, and in 2006 OMG adopted SysML (Systems Modeling Language) 1.0
specification, which is based on UML 2. Since then, SysML has become the de-facto standard for
systems engineering.

Meanwhile, the first book on OPM, Object-Process Methodology—a Holistic Systems Paradigm,
(Dori, 2002) was published, and OPM has been successfully applied and papers published in many
diverse domains, ranging from the Semantic Web to defense and to molecular biology. In December 2015,
after six years of work, ISO adopted and published OPM as ISO 19450—Automation systems and
integration—Object-Process Methodology.

The realization and recognition that models can and should become the central artifact in system
lifecycles has been gaining momentum in recent years, giving rise to model-based systems engineering
(MBSE) as an evolving filed in the area of systems engineering. SysML and OPM have been serving as
the two MBSE languages, but since SysML was adopted as a standard about eight years before OPM and
has been backed by top-notch vendors, its adoption is currently more widespread. However, OPM is
rapidly gaining acceptance in academia and its application in diverse industry segments is spreading.

This textbook, designed for both self-learning and as an undergraduate or graduate course, endows its
readers with deep understanding of MBSE ideas, principles, and applications through modeling systems
using both OPM and SysML. The book is comprised of three parts that encompass 24 chapters. Each
chapter ends with a bulleted summary and a set of problems. Solutions to problems may be available in
http://esml.iem.technion.ac.il/.

Part I introduces OPM and SysML via step-by-step modeling of a car automatic crash response
system. Chapter | starts with a description of the system and its initial OPM model. In Chap 2 we
enhance the model with text and animated simulation. Chapter 3 introduces links that connect things in



Preface xi

the model. In Chap. 4 we introduce and use SysML’s first three diagrams. Chapter 5 presents ways for
managing the complexity of systems, while the dynamic aspect of the system is modeled in Chaps. 6 and
7. Abstraction and refinement mechanisms as means to manage complexity are the focus of Chap. 8, the
last chapter in Part I.

Part 11, Model-Based Systems Engineering Fundamentals, is a formal, theory-grounded exposure to
OPM and SysML that discusses MBSE ontology, conceptual modeling constructs, and applications.
Chapter 9 introduces and defines conceptual modeling. Chapter 10 presents the two basic building blocks
of OPM—objects and processes, while Chap. 11 is about the textual modality of OPM—OPL. In Chap.
12 we turn to an orderly study of SysML with its four pillars and nine kinds of diagrams. The dynamic,
time-dependent aspect of systems is the focus of Chap. 13, followed by studying the structural, time-
independent system aspect in Chap. 14. Following Chap. 15, which deals with participation constraints
and fork links, in Chap. 16 we introduce the four fundamental structural relations.

In Part II1, Structure and Behavior: Diving In, we go to the heart of conceptual modeling, elaborating
on the four fundamental structural relations and whole system aspects, including complexity management
and control. Chapters 17 and 18 discuss aggregation-participation and exhibition-characterization,
respectively. Chapter 19 is about states and values, concepts that are needed for generalization-
specialization and classification-instantiation, both of which are elaborated on in Chap. 20. Chapter 21
concerns complexity management and the refinement-abstraction mechanisms of OPM, as well as
complexity management in SysML. Chapter 22 is about OPM operational semantics and control links—
the way control is managed during execution of the system. In Chap. 23 we specify how to model logical
operators and probabilities. Finally, Chap. 24 is an overview of ISO 19450—Automation Systems and
Integration—Object-Process Methodology, adopted by the International organization for Standardization
in December 2015.

With respect to OPM, this book can be considered a superset of ISO 19450. While OPM, as specified
in this book, is ISO 19450-complaint, the book provides in-depth motivation, rationale, and philosophical
foundations for decisions made during the design of ISO 19450. These cannot be elaborated on in a
standard, which, by its nature, is expected to be short and decisive, with little justifications. OPM points
in the book that are not covered in ISO 19450 can be considered optional, or, in ISO nomenclature,
informative, as opposed to normative—abiding ISO specifications.

This book is a product of six years of work, during which I have made all efforts to make it accurate,
consistent, and formal, while also not lose the human touch and the interest of the future reader. It is my
sincere hope that the book will serve as a reliable reference to MBSE in general and to OPM and SysML
in particular.



xii Preface

“\\\\\\\“\ P

&,

%
l:nanue "’fw & e 7,

participation :
Physical \ ¢ “ “e\ 4"2‘? e
\ orner ﬂm 0’7 output é".% 5@“-‘}

euem NG Ml effect L
f,,”c’ o % %, Time Soqe® %

lo,, relallnns \\\?v stales % % Q‘“ o % J& g
relation” V%% e,

""'035\359 Diagram
's.ll,g, \"l %‘9 o

@ alsn “\\ \

Examining the above word cloud of this book (created by a program developed skillfully by Jason
Davies),2 based on close to 140,000 words contained in this book, we can see that the most frequent
words are process, object, and link. Indeed, this is a most faithful testimony that OPM focuses on how to
model systems (two other most frequent words in the cloud) by relating processes to objects using links.
Relation is there too, along with other notable words, including diagram, attribute, structural,
procedural, semantics, state, control, change, effect, agent, time, constraint, and function. Of course,
SysML is there between process and model, near OPD (Object-Process Diagram—OPM’s graphical
modality) and OPL (Object-Process Language—OPM’s textual modality). This list gives a good idea of
what this book is about.

I wish to thank my three MIT collaborators, Prof. Ed Crawley and Prof. Oli de Weck from
Engineering Systems Division and the Aero-Astro Department, and Pat Hale, Director of Systems Design
and Management Program. Special thanks to my PhD student, Yaniv Mordecai, who provided insightful
comments on many of the chapters in this book. I thank the Technion, Israel Institute of Technology,
which provided me with the environment to develop OPM and with the 2013-4 sabbatical to complete
this book. Finally, I wish to thank my beloved wife, Prof. Judy Dori, who provided pedagogical guidance
and moral support, which made it possible for me to finish the book.

Dov Dori Massachusetts Institute of Technology, July 2015

“https://www.jasondavies.com/wordcloud/


http://www.jasondavies.com/
http://www.jasondavies.com/
https://www.jasondavies.com/wordcloud/

2 Springer
http://www.springer.com/978-1-4939-3294-8

Model-Based Systems Engineering with OPM and SysML
Dori, D,

2016, XX, 411 p. 175 illus., Hardcover
ISBN: 978-1-4939-3294-8



	Preface

