
Chapter 2
Arrival and Service Processes

2.1 Introduction

For every queuing system we have to specify both the arrival and the service
processes very clearly. The stochastic process that characterize arrival and service
are key to explaining how queues build, fluctuate and dissipate. They are some of
the key characteristics that determine the performance of a queueing system. If the
times between arrivals of items are generally short and the service times are long it
is clear that the queue will build up. Most important is how those times vary, i.e. the
distribution of the inter-arrival times and service times. We will present the arrival
and service processes that commonly occur in most queuing systems. However
before we do that let us briefly review some important probability axioms and other
aspects associated with probability of discrete event since a matrix approach of
representing probability distributions will be used in this chapter a brief review of

2.2 Review of Probability for Discrete Random
Variables and Matrices

We define a discrete state space Z = {a0,a1,a2,a3,a4, · · ·} as a countable sequence,
where ai �= aj, i �= j. Throughout this book we will consider special discrete state
space where Z = {0,1,2,3,4, · · ·}. Consider any random collection of discrete
variables we call the set Zs = {a1,a2, · · · ,aN}. Let Zs ⊆ Z . As an example Zs

could be the possible outcome of tossing a six-sided die, i.e. Zs = {1,2,3,4,5,6},
or the number of heads showing up when three unbiased coins are tossed in which
case Zs = {0,1,2,3,}, etc. Let A be a random variable that is in the set Z and
P(A ) be the probability of the event A . We define pi as the probability that A
assumes the value i ∈Z , then we write
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24 2 Arrival and Service Processes

1. P(A = i) = pi, i ∈Z ,
2. 0 ≤ pi ≤ 1,
3. ∑i∈Z pi = 1.

The expectation of a random variable can be written as

1. E[A ] as the expected value of A .
2. For the example above we can write E[A ] = ∑i∈Z ipi = ∑i>0 ∑∞

k=i pk, and
3. in general we have E[g(A )] = ∑i∈Z g(i)pi.

2.2.1 The z transform

For |z| ≤ 1, we define the z-transform or the probability generating function (pgf) of
A as

A(z) = ∑
i∈Z

zipi.

We have

E[A ] =
dA(z)

dz
|z→1 = ∑

i≥1
ipi,

and in general we have the nth factorial moment of A written as

En
f [A ] =

dnA(z)
dzn |z→1 =

∞

∑
i≥n

i!
(i−n)!

pi.

2.2.2 Bivariate Cases

Consider two random variables A and B, with A ∈Z and B ∈Z , and let A ∪
Band A ∩B represent the union and intersection, respectively, of A and B, we
have

1. P(A ∪B) = P(A )+P(B)−P(A ∩B), where P(A ∩B) is the probability of
both event A and B occurring.

2. P(A ∩B) = P(A )P(B|A ), where P(B|A ) is the conditional probability that
B occurs given that A has occurred.

3. P(A ∩B) = P(A )P(B), if A and B are independent

4. P(B|A ) = P(A ∩B)
P(A ) , P(A )> 0.

5. Let us write pi,j = Pr{A = i,B = j} then we have P(z1,z2) = ∑i∈Z ∑j∈Z zi
1zj

2
pi,j, |zk| ≤ 1, k = 1,2.
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All these results can be written for multivariate cases of 3 or more random variables.
For example, consider n random variables A1, A2, · · · ,An and let pi1,i2,··· ,in =
Pr{A1 = i1, A2 = i2, · · · ,An = in}, then we can write

P(z1,z2, · · · ,zn) = ∑
i1∈Z

∑
i2∈Z

· · · ∑
in∈Z

zi1
1 zi2

2 · · ·zinpi1,i2,··· ,in , |zk| ≤ 1,∀k ≥ 1.

2.2.3 Some very Common Discrete Distributions

2.2.3.1 Bernoulli Process

The Bernoulli process is one of the most important processes in probability and
especially when carrying out discrete time analysis of queues. Consider a random
variable or an event A that has only two possible outcomes, success (S) or failure
(F). Let P(A = S) = p and P(A = F) = q = 1− p, then this process is called a
Bernoulli process, if each trial is independent of the previous one and the outcomes
have the same probability.

The z−transform or probability generating function (pgf) associated with
Bernoulli distribution B(z) is stated as

B(z) = q+pz, |z| ≤ 1.

As an example, consider taking well shuffled deck of playing cards (52 of them).
If we draw a card from the deck at random and we consider drawing a King as
success then

P(A = S) = p =
4
52

=
1

13
,

and of course

P(A = F) =
48
52

=
12
13

= 1− 1
13

.

If we replace the drawn card into the deck, reshuffle the deck and draw again
at random, the probability p remains the same. If we take this example further and
say customers arrive at every time interval according to a Bernoulli process with
probability p, then we can determine, probabilistically how the number of customers
grow in the system at any time.

2.2.3.2 Geometric Distribution

Geometric distribution is derived from the Bernoulli process. It captures how many
repetitive tries it takes for a success to occur. For example, let us consider the
example case of drawing a card from the deck as given above. Suppose we draw
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from the deck and replace the drawn card each time back to the deck and we want
to know the probability of how long it takes to draw the first King (first success).
If we were successful the first time then the probability that it took us one draw
to be successful is p. The probability that it took us two draws to be successful
will imply that the first draw was unsuccessful while the second was successful.
The probability that it took two draws for the first success is qp. Let the X be the
number of attempts for first success, then it follows that

P(X = i) = qi−1p, i ≥ 1.

The pgf associated with the geometric distribution, G(z), is written as

G(z) =
∞

∑
i=1

qi−1pzi =
pz

1−qz
, |z| ≤ 1.

In some other disciplines or books people study, instead, the number of failures
before a success. In that case we speak of a number X̃ =X −1. Hence we have

P(X̃ = i) = qip, i ≥ 0.

In this case the pgf, ˜G(z) is written as

˜G(z) =
∞

∑
i=0

qipzi =
p

1−qz
, |z| ≤ 1.

We will be using the first definition in this book, because our interest is in
queueing systems for which both inter-arrival and service times are always at least
one time unit.

2.2.3.3 Binomial Distribution

If on the other hand the question of interest to us is given that we are allowed to
draw Y times from the deck (with replacement), how many successes do we expect
to have? Let X be the number of draws and Y the number of successes out of the
X draws (Y ≤X ) then

P(Y = j)|X = n) =

(

n
j

)

pjqn−j, 0 ≤ j ≤ n.

The pgf associated with the Binomial distribution, B̂(z), is written as

B̂(z) =
n

∑
j=0

(

n
j

)

pjqn−jzj = (pz+q)n = (B(z))n, |z| ≤ 1.

The Poisson distribution can be derived as a limiting distribution of the Binomial
under certain conditions.
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2.2.3.4 Negative Binomial Distribution

Another distribution that is very related to the Bernoulli process is the negative
binomial distribution. Here the interest is in knowing how many draws are needed
to have exactly a particular number of successes. Let Z be the number of draws
required for the Y th success to occur. We have

P(Y = j|Z = n,) =

(

n−1
j−1

)

pjqn−j, 1 ≤ j ≤ n.

It is clear that when j = 1 we have that the Negative Binomial is a special case of the
Geometric distribution. The pgf associated with the Negative Binomial distribution,
NB(z), is written as

NB(z) =
n−1

∑
j=1

(

n−1
j−1

)

pjqn−jzj = pz(pz+q)n−1 = pz(B(z))n−1, |z| ≤ 1.

This is the discrete analog of the Erlang distribution.

2.2.3.5 Mixture of Geometric Distributions

Finally we present another distribution that is also related to the Bernoulli process
and Geometric distribution – a mixture of geometric distributions. Consider n
geometric distributions with parameters (pk,qk), k = 1,2, · · · ,n. Suppose we are
given a probability distribution (θ1, θ2, · · · , θn) with ∑n

i=1 θi = 1. There is a
distribution called a mixture of geometric distributions. If the number of draws for
first success as X is of the mixture of geometric distribution, then

P(X = i) =
n

∑
k=1

θkqi−1
k pk, k ≥ 1.

This is the discrete equivalent of the hyper-exponential distribution.
For detailed exposition to these distributions, the reader is referred to basic

probability books. Most of these distributions will be covered in detail later with
regards to queueing theory. Specifically how they arise in discrete time queueing
models will be further discussed later.
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2.2.4 Brief Summary of Required Material from Matrices

In this section we briefly present a few properties of a square matrix that will be
needed in this chapter. Generally a matrix D of dimension m× n can be written as

D =

⎡

⎢

⎢

⎢

⎣

d11 d12 · · · d1n

d21 d22 · · · d2n
...

... · · · ...
dm1 dm2 · · · dmn

⎤

⎥

⎥

⎥

⎦

. Consider

1. a non-negative finite square matrix A of dimension n, i.e. each element ai,j of this
matrix has the property that 0 ≤ ai,j < ∞,

2. an n row vector c = [c1, c2, · · · , cn], and

3. an n column vector b =

⎡

⎢

⎢

⎢

⎣

b1

b2
...

bn

⎤

⎥

⎥

⎥

⎦

.

4. A column vector 1 = [1 1 · · · 1]T , where AT is the transpose of a matrix A
5. ej(n) which is an n column vector of zeros in all locations except at location j

where there is a 1.
6. An identity matrix I. We will usually assume the dimension of I is obvious and

when it is not we write it as I(n), i.e. of dimension n.

We have the following properties of matrices that will be used in this book

1.

A2 =

⎡

⎢

⎢

⎢

⎢

⎣

∑n
j=1 a1,jaj,1 ∑n

j=1 a1,jaj,2 · · · ∑n
j=1 a1,jaj,n

∑n
j=1 a2,jaj,1 ∑n

j=1 a2,jaj,2 · · · ∑n
j=1 a2,jaj,n

...
... · · · ...

∑n
j=1 an,jaj,1 ∑n

j=1 an,jaj,2 · · · ∑n
j=1 an,jaj,n

⎤

⎥

⎥

⎥

⎥

⎦

,

2. From the above we can infer Ak, k = 1,2,3, · · · ,
3. By definition A0 = I, the identity matrix, where Ii,j are the elements of I and

Ij,j = 1 with Ij,k = 0, for j �= k.
4.

cA =
[

∑n
i=1 ciai,1, ∑n

i=1 ciai,2, · · · ∑n
i=1 ciai,n

]

,

5.

Ab =

⎡

⎢

⎢

⎢

⎢

⎣

∑n
j=1 a1,jbj

∑n
j=1 a2,jbj

...
∑n

j=1 an,jbj

⎤

⎥

⎥

⎥

⎥

⎦

,
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6. The matrix A has n eigenvalues λi, i = 1,2, · · · ,n and associated left eigenvectors
ai such that

λiai = aiA.

7. The spectral radius of A denoted by sp(A) is given as

sp(A) = max{|λi|, i = 1,2, · · · ,n}.

Next we give some simple but very interesting examples of matrix representations
of discrete distributions.

2.2.5 Examples of Simple Representations of Discrete
Distributions Using Matrices

We will consider three simple examples of representations.

1. Consider a variable θ , 0 ≤ θ ≤ 1, and an integer n < ∞. Let b(n,θ , i) =
(

n
i

)

θ i(1−θ)n−i, 0 ≤ i ≤ n. Define

• an n row vector α= [α1, α2, · · · , αn], where αi = b(n,θ , i),

• a column vector t =

⎡

⎢

⎢

⎢

⎣

1
0
...
0

⎤

⎥

⎥

⎥

⎦

and

• a matrix T =

⎡

⎢

⎢

⎢

⎣

0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

⎤

⎥

⎥

⎥

⎦

.

If we define a random variable A = {0,1,2, · · · ,n}, for which we have

Pr{A = 0}= 1−α1,

Pr{A = i}=αTi−1t, i = 1,2, · · · ,n.

It is immediately obvious that what we have done is written the Binomial
distribution in a matrix form (be it in efficiently). As an example,

Pr{A = j}=
(

n
j

)

(1−θ)jθ n−j.
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2. Consider an n row vector α = [1, 0, 0, · · · , 0], an n column vector t =

⎡

⎢

⎢

⎢

⎣

0
0
...
1

⎤

⎥

⎥

⎥

⎦

and an n square matrix T =

⎡

⎢

⎢

⎢

⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤

⎥

⎥

⎥

⎦

. If we define a random variable A =

{0,1,2, · · · ,n}, for which we have

Pr{A = i}=αTi−1t, i = 1,2, · · · ,n,

then one sees that what we have is

Pr{A = n}= 1, and Pr{A = j}= 0, j �= n.

This is a constant random variable.
3. Consider

• a variable θ ,
• an n row vector α= [1, 0, 0, · · · , 0],

• an n column vector t =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
...
θ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and

• an n square matrix T =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1−θ θ 0 · · · 0
0 1−θ θ · · · 0
0 0 1−θ θ · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1−θ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

If we define a random variable A = {0,1,2, · · · ,n}, for which we have

Pr{A = i}=αTi−1t, i = 1,2, · · · ,n.

One sees that this random variable has the negative binomial distribution. For
example,

Pr{A = j}=
(

n−1
j−1

)

(1−θ)j−1θ n−j.
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These are just simple examples of representation of some well known discrete
distributions using the matrix approach. The key here is that we have demonstrated,
through examples, that at least some well-known discrete distributions can be
represented using matrix form. This approach becomes very useful later when we
discuss some very important and basic queueing models.

2.2.6 Matrix Representation

Consider a square matrix T of dimension 1<m<∞ with the following properties.

• its elements Ti,j satisfy the condition: 0 ≤ Ti,j < ∞
• there is constant κ such that the spectral radius ρ = sp(κT) < 1. Usually

0 < κ ≤ 1.

Theorem 2.1 Then there exists a row vector a, with elements ai > 0 and a1 ≤ 1, and
a column vector w, with elements wi > 0, such that

0 ≤ aTk−1w ≤ 1, ∀k = 1,2, · · ·
and

0 ≤ a(I −T)−1w ≤ 1.

Proof: If 0 ≤ Tij < ∞ and sp(T) < 1, then it is known from matrix analysis that
0 ≤ (Tn)ij < ∞, ∀k ≥ 0, hence it is possible to find two vectors a and w such that

0 ≤ aTk−1w ≤ 1, and
∞

∑
k=1

aTk−1w ≤ 1..

Definition: Let A be a discrete random variable, and pk be defined as
pk = Pr{A = k}, then

pk = aTk−1w, k = 1,2,3, · · · .

p0 = 1−a(I −T)−1w.

These matrix representations will be used later in Section 2.5.

2.3 Arrival and Service Processes

These two processes can probably be discussed separately. But because the distribu-
tions used for service processes can also be used for the inter-arrival times, we will
combine them in the same section.
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Consider a situation where packets arrive to a router at discrete time points. Let Jn

be the arrival time of the nth packet. Further let An be the inter-arrival time between
the nth and (n − 1)th packet, i.e. An = Jn − Jn−1, n = 1,2, · · · . We let J0 be the
start of our system and assume an imaginary zeroth packet so that A1 = J1 − J0. If
A1, A2, A3, . . . are independent random variables then the time points J1,J2,J3, . . .
are said to form renewal points. If also An = A, ∀n, then we say the inter-arrival
times have identical distributions. We present the distributions commonly assumed
by A. We will not be concerned at this point about A1 since it may have a special
behaviour. We assume it is a well behaved interval and not a residual. Dealing with
the residuals at this point would distract from the main discussion in this chapter.

Let t0
n be the start time of the service time of the nth packet and let tf

n be the
completion time of its service time duration, i.e. Sn = tf

n − t0
n. If Sn = S, ∀n, then

we say that the service times have identical distributions. We can also consider a
system that is saturated with a queue of packets needing service. Let Cn be the
service completion time of the nth packet. Then Sn = Cn −Cn−1.

First let us briefly introduce the renewal process, which is related to some of
these arrival and service processes which are independent.

2.4 Renewal Process

Let Xn be the inter-event time between the (n−1)th and nth events such as arrivals.
In our context Xn could be An or Sn. If Y0 = 0 represents the start of our observing the
system, then Yn = ∑n

i=0 Xi is the time of occurrence of the nth event. For example,
Jn = ∑n

i=0 Ai is the arrival time of the nth customer. We shall assume for simplicity
that X0 = 0 and X1,X2, . . . are independent. Later we may also assume that they are
identically distributed variables (note that it is more general to assume that X0 has a
value and it has a different distribution than the rest, but that is not very critical for
our purpose here). If they are independent and identically distributed we say they
are iid.

If we consider the duration of Xn as how long the nth inter-event lasts, then Yn

is the point in time when the nth process starts and then lasts for Xn time units.
The time Yn is the regeneration point or the renewal epoch. We assume that P{Xn >

0} > 0, ∀n > 1, and we let pn be the collection pn = (p(n)1 ,p(n)2 . . .), where p(n)i =
Pr{Xn = i}, ∀n ≥ 1. We define the z−transform of this inter-event times as

p∗n(z) =
∞

∑
j=1

p(n)j zj, |z| ≤ 1, ∀n. (2.1)

Let the mean number of events per unit time be given by μ then the mean
interevent time

E[Xn] =
dp∗n(z)

dz
|z→1 = μ−1 > 0, ∀n. (2.2)
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Since X1,X2, . . . are independent we can obtain the distribution of Yn as the
convolution sum of X1,X2, . . . as follows

Pr{Yn}= Pr{X1 ∗X2 ∗ . . .∗Xn}. (2.3)

Letting q(n)j = Pr{Yn = j} and q∗n(z) = ∑∞
j=1 q(n)j zj, |z| ≤ 1 we have

q∗n(z) = p∗1(z)p
∗
2(z) · · ·p∗n(z). (2.4)

2.4.1 Example:

Pr{Y2 = j}=
j−1

∑
v=1

Pr{X1 = v}Pr{X2 = j− v}.

If X1 = X2 = X, then p∗1(z) = p∗2(z) = p∗(z) and hence we have

q∗2(z) = (p∗(z))2.

Further let

p1 = 0.1, p2 = 0.3, p3 = 0.6, pj = 0, j ≥ 4,

then

p∗(z) = 0.1z+0.3z2 +0.6z3

and

q∗2(z) = 0.01z2 +0.06z3 +0.21z4 +0.36z5 +0.36z6.

From this we obtain

q(2)1 = 0, q(2)2 = 0.01, q(2)3 = 0.06, q(2)4 = 0.21, q(2)5 = 0.36, q(2)6 = 0.36, q(2)j = 0,∀j ≥ 7.

In this case, for example, X could be the length of time it takes to process a job.
If we have two jobs in a system the total time it takes to process the two is given
by Y2. It is easy to show that if we have K jobs then the z-transform of the total time
to process all of them will be (p(z))K .
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2.4.2 Number of renewals

Let Zn be the number of renewals in [0,n] then

Zn = max{m ≥ 0|Ym ≤ n}. (2.5)

Hence,

P{Zn ≥ j}= P{Yj ≤ n}=
n

∑
v=1

P{Yj = v}. (2.6)

If we let mn = E[Zn] be the expected number of renewals in [0,n), it is
straightforward to show that

mn =
n

∑
j=1

n

∑
v=j

P{Yj = v} (2.7)

mn is called the renewal function. It is a well known elementary renewal theorem
that the mean renewal rate μ is given by

μ = lim|n→∞
mn

n
. (2.8)

For a detailed treatment of renewal process, the reader is referred to Wolff (1989).
Here we only give a skeletal proof.

In what follows, we present distributions that are commonly used to describe
arrival and service processes. Some of them are of the renewal types.

2.5 Special Arrival and Service Processes in Discrete Time

2.5.1 Bernoulli Process

The Bernoulli process in general terms was presented in a previous section of the
chapter. Let us consider it in the context of a queueing system. If time is slotted, i.e.
if we consider discrete time of equal intervals, and assume the arrival of packets at
each interval could only be singly with probability p > 0 and we have q = 1−p and
are equally likely at each time. Then at any interval between time tn and tn+1 the
probability of one packet arrival is p and no packet arrival is q.

The idea can be extended to service completion probability. Suppose a job
(packet) is receiving service (being processed) and at each time when it is in service
that service could end with probability p or continue with probability q. Then the
service process is based on a Bernoulli process.
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2.5.2 Geometric Distribution

Geometric distribution is the most commonly used discrete time inter-arrival or
service time distribution. Its attraction in queuing theory is its lack of memory
property.

Consider a random variable X which has only two possible outcomes - success or
failure, represented by the state space {0,1}, i.e. 0 is failure and 1 is success. Let q
be the probability that an outcome is a failure, i.e. Pr{X = 0}= q and Pr{X = 1}=
p = 1−q be the probability that it is a success.

The mean number of successes in one trial is given as

E[X] = 0×q+1×p = p.

Let θ ∗(z) be the z−transform of this random variable and given as

θ ∗(z) = q+pz.

Also we have

E[X] =
d(q+pz)

dz
|z→1 = p. (2.9)

Suppose we carry out an experiment which has only two possible outcomes
0 or 1 and each experiment is independent of the previous and they all have the
same outcomes X, we say this is a Bernoulli process,and θ(z) is the z−transform
of this Bernoulli process. Further, let τ be a random variable that represents the
time (number of trials) by which the first success occurs, where all the trials are
independent of each other. It is simple to show that if the first success occurs at the
τ th trial then the first τ −1 trials must have been failures. The random variable τ has
a geometric distribution and

Pr{τ = n}= qn−1p, n ≥ 1. (2.10)

The mean interval for a success is

E[X] =
∞

∑
n=1

nqn−1p = p−1. (2.11)

We chose to impose the condition that n ≥ 1 because in the context of discrete
time queueing systems our inter-arrival times and service times have to be at
least one unit of time long, respectively. Let the z− transform of this geometric
distribution be T∗(z), we have

T∗(z) = pz(1−qz)−1, |z| ≤ 1. (2.12)
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We can also obtain the mean time to success from the z−transform as

E[X] =
T∗(z)

dz
|z→1 = p−1. (2.13)

In the context of arrival process, T is the inter-arrival time. Success implies an
arrival. Hence, at any time, the probability of an arrival is p and no arrival is q. This
is known as the Bernoulli process.

Let Zm be the number of arrivals in the time interval [0,m] , with Pr{Zm = j} =
am,j, j ≥ 0, m ≥ 1 and a∗m(z) = ∑m

j=0 am,jzj. Since the outcome of time trial follows
a Bernoulli process then we have

a∗m(z) = (q+pz)m, m ≥ 1, |z| ≤ 1. (2.14)

The distribution of Zm is given by the Binomial distribution as follows:

Pr{Zm = i}= am,i =

(

m
i

)

qm−ipi, 0 ≤ i ≤ m (2.15)

The variable am,i is simply the coefficient of zi in the term a∗m(z). The mean number
of successes in m trials is given as

E[Zm] =
a∗m(z)

dz
|z→1 = mp. (2.16)

In the context of service times, T is the service time of a customer. Success
implies the completion of a service. Hence, at any time the probability of completing
an ongoing service is p and no service completion is q.

This is what is known as the lack of memory property.

2.5.2.1 Lack of Memory Property:

This lack of memory property is a feature that makes geometric distribution very
appealing for use in discrete stochastic modelling. It is shown as follows:

Pr{T = n+1|T > n}= Pr{T = n+1}
Pr{T > n} =

qnp

∑∞
m=n+1 qm−1p

=
qnp
qn = p (2.17)

which implies that the duration of the remaining portion of a service time is
independent of how long the service had been going on, i.e. lack of memory.

The mean inter-arrival time or mean service time is given by p−1.
Throughout the rest of this book when we say a distribution is geometric with

parameter p we imply that it is governed by a Bernoulli process that has the success
probability of p.
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While there are several discrete distributions of interest to us in queueing theory,
we find that most of them can be studied under the general structure of what is
known as the Phase type distribution.

2.5.3 Phase Type Distribution

Phase type distributions are getting to be very commonly used these days after
Neuts (1981) made them very popular and easily accessible. They are often
referred to as the PH distribution. The PH distribution has become very popular
in stochastic modelling because it allows numerical tractability of some difficult
problems and in addition several distributions encountered in queueing seem to
resemble the PH distribution. In fact, Johnson and Taaffe (1989) have shown that
most of the commonly occurring distributions can be approximated by the phase
type distributions using moment matching approach based on three moments. The
approach is based on using mixtures of two Erlang distributions - not necessarily of
common order. They seem to obtain very good fit for most of the cases which they
studied. Other works of fitting phase-type distributions include those of Asmussen
and Nerman (1991), Bobbio and Telek (1992), and Bobbio and Cumani (1992). The
data fitting works by most of these authors are for the continuous PH distributions.
There are several other works by Telek and his team for the fitting discrete PH
(Bobbio et al (2004)).

Phase type distributions are distributions of the time until absorption in an
absorbing Markov chain. If after an absorption the chain is restarted, then it
represents the distribution of a renewal process.

Consider an (nt + 1) absorbing discrete time Markov chain (DTMC) with state
space {0,1,2, · · · ,nt} and let state 0 be the absorbing state. Let T be an m-dimension
sub-stochastic matrix with entries

T =

⎡

⎢

⎣

T1,1 · · · T1,nt
...

...
...

Tnt,1 · · · Tnt,nt

⎤

⎥

⎦

and also let

α= [α1,α2, . . . ,αnt ], and α1 ≤ 1.

An example of a PH with n = 2 states is shown in Fig. 2.1.
In this context, αi is the probability that the system starts from a transient state

i, 1 ≤ i ≤ nt, and Tij is the probability of transition from a transient state i to a
transient state j. We say the phase type distribution is characterized by (α,T) of
dimension nt. We also define α0 such that α1+α0 = 1.
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T221 2

0

T12

t1
T21

t2
α1 α2

T11

Fig. 2.1 A Two State PH Distribution Diagram

The transition matrix P of this absorbing Markov chain is given as

P =

[

1 0
t T

]

(2.18)

where t = 1−T1.
The phase type distribution with parameters α and T is usually written as PH

distribution with representation (α,T). The matrix T and vector α satisfy the
following conditions:

Conditions:

1. Every element of T is between 0 and 1, i.e. 0 ≤ Ti,j ≤ 1.
2. At least for one row i of T we have ∑nt

j=1 Ti,j1 < 1.
3. The matrix T + tα is irreducible.
4. α1 ≤ 1 and α0 = 1−α1.

Throughout this book, whenever we write a PH distribution (α,T) there is
always a bolded lower case column vector associated with it; in this case t. As
another example, if we have a PH distribution (β,S) then there is a column vector s
which is given as s = 1−S1.

If we now define pi as the probability that the time to absorption into state nt +1
is i, then we have

p0 = α0, (2.19)

pi = αTi−1t, i ≥ 1. (2.20)

Let p∗(z) be the z−transform of this PH distribution, then

p∗(z) = α0 + zα(I − zT)−1t, |z| ≤ 1. (2.21)
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Then nth factorial moment of the time to absorption is given as

μ
′
n = n!αTn−1(I −T)−n1. (2.22)

Specifically the mean time to absorption is

μ
′
1 = E[X] =α(I −T)−11. (2.23)

We will show later in the study of the phase renewal process that also

μ
′
1 = E[X] = (πt)−1, (2.24)

where

π=π(T + tα), π1 = 1.

Example:
Consider a phase type distribution with representation (α,T) given as

T =

⎡

⎣

0.1 0.2 0.05
0.3 0.15 0.1
0.2 0.5 0.1

⎤

⎦ , α= [0.3 0.5 0.2], α0 = 0.

For this α0 = 0 and t = [0.65 0.45 0.2]T . We have

p1 = 0.46, p2 = 0.2658, p3 = 0.1346, p4 = 0.0686, p5 = 0.0349,

p6 = 0.0178, p7 = 0.009, p8 = 0.0046, p9 = 0.0023, p10 = 0.0012,

p11 = 0.00060758, p12 = 0.0003093, · · ·

Alternatively we may report our results as the complement of the cumulative
distribution, i.e.

Pk = Pr{X ≥ k}= 1−Pr{X ≤ k}=αTk−1(I −T)−1t.

This is given as

P1 = 1.0, P2 = 0.54, P3 = 0.2743, P4 = 0.1397, P5 = 0.0711, P6 = 0.0362, · · · .
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2.5.3.1 Two very important closure properties of phase type distributions:

Consider two discrete random variables X and Y that have phase type distributions
with representations (α,T) and (β,S).

1. Sum: Their sum Z = X + Y has a phase type distribution with representation
(δ,D) with

D =

[

T tβ
0 S

]

, δ= [α α0β].

2. Mixture: Their mixture with [θ1, θ2], 0 ≤ θi ≤ 1, i = 1,2, mixing density (θ1 +
θ2 = 1) has a phase type distribution with representation (δ,D) with

D =

[

T 0
0 S

]

, δ= [θ1α θ2β].

3. Minimum: Their minimum W = min(X,Y) has a phase type distribution with
representation (δ,D) with

D = T ⊗S, δ= [α⊗β].

4. Maximum: Their maximum U = max(X,Y) has a phase type distribution with
representation (δ,D) with

D =

⎡

⎢

⎢

⎣

T ⊗S t⊗S T ⊗ s t⊗ s
0 T 0 0
0 0 S 0
0 0 0 0

⎤

⎥

⎥

⎦

, δ= [α⊗β, α0β, αβ0, 0].

These results can be extended directly to the case of more than two PH distributions.

2.5.3.2 Minimal coefficient of variation of a discrete PH distribution

The coefficient of variation (cv) of a discrete PH distribution has a different
behaviour compared to its continuous counterpart. For example, for some integer
K < ∞ a random variable X with

Pr{X = k}=
{

1, k = K,

0, k �= K,
, (2.25)

can be represented by the discrete PH distribution. This PH distribution has a cv of
zero. This type of case with cv of zero is not encountered in the continuous PH. This
information can sometimes be used to an advantage when trying to fit a dataset to a
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discrete PH distribution. In general for the discrete PH the coefficient of variation is
a function of its mean.

A general inequality for the minimal cv of a discrete PH distribution was obtained
by Telek (2000) as follows. Consider the discrete PH distribution (α,T) of order nt.
Its mean is given by μ ′. Let us write μ ′ as μ ′ = �μ ′�+〈μ ′〉 where �μ ′� is the integer
part of μ ′ and 〈μ ′〉 is the fractional part with 0 ≤ 〈μ ′〉< 1. Telek (2000) proved that
the cv of this discrete PH distribution written as cv(α,T) satisfies the inequality

cv(α,T)≥
{ 〈μ ′〉(1−〈μ ′〉)

(μ ′)2 , μ ′ < nt,
1
nt
− 1

μ ′ , μ ′ ≥ nt.
. (2.26)

The proof for this can be found in Telek Telek (2000).
Throughout this book we will assume that α0 = 0, since we are dealing with

queueing systems for which we do not allow inter-arrival times or service times to
be zero.

2.5.3.3 Examples of special phase type distributions

Some special cases of discrete phase type distributions include:

1. Geometric distribution with α = 1, T = q, t = p = 1− q. Then p0 = 0, and
pi = qi−1p, i ≥ 1 and nt = 1. For this distribution, the mean μ ′ = 1/p and the
cv(1,q) = 1−1/p

2. Negative binomial distribution with

α= [1,0,0, . . . ,0], and T =

⎡

⎢

⎢

⎢

⎣

q p
q p

. . .
. . .

q

⎤

⎥

⎥

⎥

⎦

,

and nt is the number of successes we are looking for occurring at the ith trial. It
is easy to show that

pi =αTi−1t =
(

i−1
nt −1

)

pnt qi−nt , i ≥ nt.

3. Mixed Geometric distribution with

α= [θ1, θ2, . . . , θn], 0 ≤ θi ≤ 1, i = 1,2, · · · ,n and T =

⎡

⎢

⎢

⎢

⎣

q1

q2
. . .

qn

⎤

⎥

⎥

⎥

⎦

,
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with ∑n
i=1 θi = 1 and 0 < qi < 1, ∀i.

4. Multiple-time-scaled PH Distribution: Consider a random variable X with PH
distribution (α,T) of dimension n. Now consider another random variable Y
such that

Pr{X = j}= Pr{Y = kj}, j = 1,2, · · · ; k = 1,2, · · · ,

with

E[Y] = kE[X].

We find that Y has a PH distribution (β,S) of dimension kn and its parameters
are given as

β=α⊗ eT
k−1(k), S =

⎡

⎢

⎣

S11 · · · S1n
... · · · ...

Sn1 · · · Snn

⎤

⎥

⎦
,

where Sii =

[

0 Ik−1

Tii 0T

]

and Sij = Tijek(k)⊗ ek(k)T , i �= j.

5. General discrete distribution with finite support can be represented by a
discrete phase type distribution with α = [1,0,0, . . . ,0] and 0 < tij ≤ 1, j = i+1,
and tij = 0, j �= i+ 1 where nt is the length of the support. For example, for a
constant inter-arrival time with value of nt = 4 we have α= [1, 0, 0, 0] and

T =

⎡

⎢

⎢

⎣

0 1
0 0 1
0 0 0 1
0 0 0 0

⎤

⎥

⎥

⎦

.

Note that the general distribution with finite support can also be represented as
a phase type distribution with α = [α1, α2, · · · , αnt ] and tij = 1, i = j−1, and
tij = 0, i �= j− 1. For the example of constant inter-arrival time with value of
nt = 4 we have α= [0, 0, 0, 1] and

T =

⎡

⎢

⎢

⎣

0
1 0
0 1 0
0 0 1 0

⎤

⎥

⎥

⎦

.

The case of general discrete distribution will be discussed in detail later.
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2.5.3.4 Analogy between PH and Geometric distributions

Essentially discrete phase type distribution is simply a matrix version of the
geometric distribution. The geometric distribution has parameters p for success (or
arrival) and q for failure (no arrival). The discrete phase type with representation
(α,T) has tα for success (arrival) and T for failure (no arrival). So if we consider
this in the context of a Bernoulli process we have the z−transform of this process as
θ ∗(z) = T + ztα. Next we discuss the Phase renewal process.

2.5.3.5 Phase Renewal Process:

Consider an inter-event time X which is described by a phase type distribution with
the representation (α,T). The matrix T records transitions with no event occurring
and the matrix tα records the occurrence of an event and the re-start of the renewal
process. If we consider the interval (0,n) and define the number of renewals in this
interval as N(n) and the phase of the PH distribution at phase J(n) at time n, and
define

Pi,j(k,n) = Pr{N(n) = k,J(n) = j|N(0) = 0,J(0) = i},

and the associated matrix P(k,n) such that (P(k,n))i,j = Pi,j(k,n), we have

P(0,n+1) = TP(0,n), n ≥ 0 (2.27)

P(k,n+1) = TP(k,n)+(tα)P(k−1,n), k = 1,2, · · · ;n ≥ 0. (2.28)

Define

P∗(z,n) =
n

∑
k=0

zkP(k,n), n ≥ 0.

We have

P∗(z,n) = (T + z(tα))n. (2.29)

This is analogous to the (p+ zq)m for the z− transform of the Binomial distribution
presented earlier. It is immediately clear that the matrix T∗ = T + tα is a stochastic
matrix that represent the transition matrix of the phase process associated with this
process.

Secondly, we have T as the matrix analogue of p in the Bernoulli process while
tα is the analogue of q in the Bernoulli process. Hence for one time epoch T+z(tα)
is the z−transform of an arrival. This phase renewal process can be found in state i
in the long run with probability πi where π= [π1, π2, · · · , πnt ] and it is given by

π=π(T + tα), (2.30)
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and

π1 = 1. (2.31)

Hence the average number of arrivals in one time unit is

E[Z1] =π(0×T +1× (tα))1 =π(tα))1 =πt. (2.32)

This is the arrival rate and its inverse is the mean inter-arrival time of the
corresponding phase type distribution, as pointed out earlier on.

Define rn as the probability of a renewal at time n, then we have

rn =α(T + tα)k−1t, k ≥ 1. (2.33)

Keep in mind that π is the solution to the equations

π=π(T + tα), π1 = 1.

This π represents the probability vector of the PH renewal process being found in a
particular phase in the long term. If we observe this phase process at arbitrary times
given that it has been running for a while, then the remaining time before an event
(or for that matter the elapsed time since an event) also has a phase type distribution
with representation (π,T). It was shown in Latouche and Ramaswami (1999) that

π= (α(I −T)−11)−1α(I −T)−1. (2.34)

Both the inter-arrival and service times can be represented by the phase type
distributions. Generally, phase type distributions are associated with cases in which
the number of phases are finite. However, recently, the case with infinite number of
phases has started to receive attention.

2.5.4 The infinite phase distribution (IPH)

The IPH is a discrete phase type distribution with infinite number of phases. It is
still represented as (α,T), except that now we have the number of phases nt = ∞.
The IPH was introduced by Shi and Liu (1998). One very important requirement is
that the matrix T be irreducible and T1 ≤ 1, with at least one row being strictly less
than 1.

If we now define pi as the probability that the time to absorption into a state we
label as ∗ is i, then we have

p0 = α0

pi = αTi−1t, i ≥ 1



2.5 Special Arrival and Service Processes in Discrete Time 45

Every other measure carried out for the PH can be easily derived for the IPH.
However, we have to be cautious in many instances. For example, the inverse
of I −T may not be unique and as such we have to define it as appropriate for
the situation under consideration. Secondly computing pi above requires special
techniques at times depending on the structure of the matrix T . The rectangular
iteration was proposed by Shi et al (1996) for such computations.

2.5.5 General Inter-event Times

General types of distributions, other than of the phase types, can be used to describe
both inter-arrival and service times. In continuous times it is well known that general
distributions encountered in queueing systems can be approximated by continuous
time PH distributions. This is also true for discrete distributions. However, discrete
distributions have an added advantage in that if the distribution has a finite support
then it can be represented exactly by discrete PH. We proceed to show how this
is true by using a general inter-event time X with finite support and a general
distribution given as

Pr{X = j}= aj, j = 1,2, · · · ,nt < ∞.

There are at least two exact PH representations for this distribution, one based on
remaining time and the other on elapsed time.

2.5.5.1 Remaining Time Representation

Consider a PH distribution (α,T) of dimension nt. Let

α= [a1, a2, · · · , ant ], (2.35)

and

Ti,j =

{

1, j = i−1
0, otherwise,

(2.36)

Then the distribution of this PH is given as

αTk−1t = ak; k = 1,2, · · · ,nt. (2.37)

For detailed discussion on this see Alfa (2004).
In general, even if the support is not finite we can represent the general inter-event

times with the IPH, by letting nt →∞. For example, consider the inter-event times A
which assume values in the set {1,2,3, · · ·} with ai =Pr{A = i}, i= 1,2,3, · · · . It is

easy to represent this distribution as an IPH withα= [a1, a2, · · · ] and T =

[

0 0
I∞ 0

]

.
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2.5.5.2 Elapsed Time Representation

Consider a PH distribution (α,T) of dimension nt. Let

α= [1, 0, · · · , 0], (2.38)

and

Ti,j =

{

ãi, j = i+1
0, otherwise,

(2.39)

where

ãi =
ui

ui−1
, ui = 1−

i

∑
v=1

av, u0 = 1, ãnt = 0.

Then the distribution of this PH is given as

αTk−1t = ak; k = 1,2, · · · ,nt. (2.40)

For detailed discussion on this see Alfa (2004). Similarly we can use IPH to
represent this distribution using elapsed time by allowing nt → ∞.

2.5.6 Markovian Arrival Process

All the inter-event times discussed so far are of the renewal types and are assumed
to be independent and identically distributed (iid). However, in telecommunication
queueing systems and most other traffic queueing systems for that matter, inter-
arrival times are usually correlated. So the assumption of independent inter-arrival
times is not valid in some instances.

Earlier Neuts (1979, 1992) and Lucantoni (1991) presented the Markovian
arrival process (MAP) which can handle correlated arrivals and is also tractable
mathematically. In what follows, we first describe the single arrival MAP and then
briefly present the batch MAP.

Define two sub-stochastic matrices D0 and D1, both of the dimensions n. The
elements (D0)ij refer to transition from state i to state j without an (event) arrival
because the transitions are all within the nt transient states. The elements (D1)ij

refer to transition from state i into the absorbing state 0 with an instantaneous restart
from the transient state j with an (event) arrival during the absorption. We note
that the phase from which an absorption occurred and the one from which the next
process starts are connected and hence this captures the correlation between inter-
arrival times. The matrix D = D0 +D1 is a stochastic matrix, and we assume it is
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irreducible. Note that D1 = 1. If we define {(Nn,Jn),n ≥ 0} as the total number of
arrivals and the phase of the MAP at time n, then the transition matrix representing
this system is

P =

⎡

⎢

⎢

⎢

⎣

D0 D1

D0 D1

D0 D1
. . .

. . .

⎤

⎥

⎥

⎥

⎦

. (2.41)

Consider the discrete-time Markov renewal process embedded at the arrival
epochs and with transition probabilities defined by the sequence of matrices

Q(k) = [D0]
k−1D1, k ≥ 1. (2.42)

The MAP is a discrete-time point process generated by the transition epochs of that
Markov renewal process.

Once more let Nm be the number of arrivals at time epochs 1,2, . . . ,m, and Jm the
state of the Markov process at time m. Let Pr,s(n,m) = Pr{Nm = n, Jm = s | N0 = 0,
J0 = r} be the (r,s) entry of a matrix P(n,m). The matrices P(n,m) satisfy the
following discrete Chapman-Kolmogorov difference equations:

P(n,m+1) = P(n,m)D0 +P(n−1,m)D1, n ≥ 1, m ≥ 0 (2.43)

P(0,m+1) = P(0,m)D0 (2.44)

P(0,0) = I (2.45)

where I is the identity matrix and P(u,v) = 0 for u ≥ v+1.
The matrix generating function

P∗(z,m) =
m

∑
n=0

P(n,m)zn, |z| ≤ 1 (2.46)

is given by

P∗(z,m) = (D0 + zD1)
m, m ≥ 0 (2.47)

If the stationary vector π of the Markov chain described by D satisfies the
equation

πD = π, (2.48)

and

π1 = 1 (2.49)
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then λ ′
= πD11 is the probability that, in the stationary version of the arrival

process, there is an arrival at an arbitrary point. The parameter λ ′
is the expected

number of arrivals at an arbitrary time epoch or the discrete arrival rate of the MAP.
It is clear that its kth moments about zero are all the same for k ≥ 1, because

1jπD11 = πD11 = λ ′
, ∀j ≥ 1, since its jth moment about zero is given as

∑∞
k=0 kjπDk1. Hence its variance σ2

X is given as

σ2
X = λ

′′ − (λ
′
)2 = λ

′ − (λ
′
)2 = λ

′
(1−λ

′
). (2.50)

Its jth autocorrelation factor for the number of arrivals, ACF(j), is given as

ACF(j) =
1

σ2
X

[πD1Dj−1D11− (λ
′
)2], j ≥ 1. (2.51)

The autocorrelation between inter-arrival times is captured as follows. Let Xi be
the ith inter-arrival time then we can say that

Pr{Xi = k}=πDk−1
0 D11, k ≥ 1, (2.52)

where π = π(I −D0)
−1D1, π1 = 1. Then E[Xi], the expected value of Xi, ∀i, is

given as

E[Xi] =
∞

∑
j=1

jπDj−1
0 D11 =π(I −D0)

−11. (2.53)

The autocorrelation sequence rk, k = 1,2, · · · for the inter-arrival times is thus
given as

rk =
E[X�Xk]−E[X�]E[Xk]

E[X2
� ]− (E[X�])2

, �= 0,1,2, · · · . (2.54)

Special Cases:
The simplest MAP is the Bernoulli process with D1 = q and D0 = p = 1−q. The

discrete phase type distribution is also a MAP with D1 = tα and D0 = T .
Another interesting example of MAP is the Markov modulated Bernoulli process

(MMBP) which is controlled by a Markov chain which has a transition matrix P and
rates given by the θ = diag(θ1,θ1, . . . ,θnt), 0 ≤ θi ≤, i = 1,2, · · · ,n. In this case,
D0 = (I −θ)P and D1 = θP.

Several examples of discrete MAP can be found in Alfa and Neuts (1995), Alfa
and Chakravarthy (1994), Alfa et al (1995), Liu95, Park et al (1994) and Blondia
(1992).
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2.5.6.1 Platoon Arrival Process (PAP)

The PAP is a special case of MAP which occurs in several traffic situations mainly in
telecommunications and vehicular types of traffic. It captures distinctly, in addition
to correlation in arrival process, the bursts in traffic arrival process termed platoons
here.

The PAP is an arrival process with two regimes of traffic. There is a platoon of
traffic (group of packets) which has intra-platoon intervals of arrival times that are
identical. The number of arrivals in a platoon is random. At the end of a platoon
there is an inter-platoon interval between the end of one platoon and the start of the
next platoon arrivals. The inter-platoon intervals are different from the intra-platoon
intervals. A good example is if one observes the departure of packets from a router
queue, one observes a platoon departure that consists of traffic departing as part of
a busy period. The inter-platoon times are essentially the service times. The last
packet that departs at the end of a busy period marks the end of a platoon. The next
departure will be the head of a new platoon. The interval between the last packet
of a platoon and the first packet of the next platoon is the inter-platoon time which
in this case is the sum of the service time and the residual inter-arrival time of a
packet into the router. If we consider this departure from the router as an input to
another queueing system, then the arrival to this other queueing system is a PAP.
This type of arrival pattern is also noticed at a signalized road traffic intersection,
where departing vehicles up form some kind of platoon when the light turns green.
This platoon eventually dissipates, depending on how long the green light lasts.

A PAP is described as follows. Let packets arrive in platoons of random sizes
with probability mass function (pmf) given as {pk, k ≥ 1}, i.e. pk is the probability
that the number in a platoon is k. Time intervals between arrivals of packets in
the same platoon denoted as intra-platoon inter-arrival times have a pmf denoted
as {p1(j), j ≥ 1}. The time intervals between the arrival of the last packet in a
platoon and the first packet of the next platoon is referred to as the inter-platoon
inter-arrival times and has the pmf denoted by {p2(j), j ≥ 1}. Let the size of platoon
be distributed according to the PH distribution (δ,F). For this PH let us allow δ0 =
1−δ1 ≥ 0, and define f = 1−F1. Here we have

pk =

{

δ0, k = 1
δFk−1f, k = 1,2, · · · . (2.55)

The platooned arrival process (PAP) is a discrete-time Markov renewal process
whose transition probabilities are described by the sequence of matrices

f (j) =

[

δ0p2(j) δp2(j)
fp1(j) Fp1(j)

]

, j ≥ 1. (2.56)

If we let the intra-platoon and inter-platoon inter-arrival times assume PH
distribution then we actually end up with a PAP that is a special case of a MAP.
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Let (α1,T1) be a PH distribution that describes intra-platoon times and (α2,T2)
a PH distribution describing the inter-platoon times. Then the PAP is described by
two matrices D0 and D1, with

D0 =

[

T2 0
0 I ⊗T1

]

, (2.57)

and

D1 =

[

δ0t2α2 δ⊗ t2α1

f⊗ t1α2 F⊗ t1α1

]

. (2.58)

Note that f = 1−F1, tk = 1−Tk1, k = 1,2.
Next we explain the elements of the matrices D0 and D1.
For the matrix D0 we have

• the matrix T2 captures the phase transitions during an inter-platoon arrival time,
and

• the matrix I ⊗ T1 captures the transitions during an inter-arrival time within a
platoon.

For the matrix D1 we have

• the matrix δ0t2α2 captures the arrival of a platoon of a single packet type, with
an end to the arrival of a platoon and the initiation of an inter-platoon inter-arrival
time process, whilst

• the matrix δ⊗ t2α1 captures the arrival of a platoon consisting of at least two
packets, with an end to the inter-platoon inter-arrival and the initiation of an intra-
platoon inter-arrival time process.

• The matrix F⊗ t1α1 captures the arrival of an intra-platoon packet, with an end
to the intra-platoon inter-arrival and the initiation of a new intra-platoon inter-
arrival time process, whilst

• the matrix f⊗t1α2 captures the arrival of the last packet in a platoon, with an end
to the intra-platoon inter-arrival and the initiation of an inter-platoon inter-arrival
time process.

A simple example of this is where intra-platoon and inter-platoon inter-arrival
times follow geometric distributions, with p1(j) = (1 − a1)

j−1a1, p2(j) = (1 −
a2)

j−1a2, j ≥ 1, and the distribution of platoon size is geometric with p0 =
1−b, pk = b(1− c)k−1c, k ≥ 1, where 0 < (a1,a2,b,c)< 1. In this case we have

D0 =

[

1−a2 0
0 1−a1

]

, D1 =

[

ba2 (1−b)a2

ba1 (1−b)a1

]

.

For a detail discussion of the discrete PAP see Alfa and Neuts (1995).
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2.5.6.2 Batch Markovian Arrival Process (BMAP)

Define substochastic matrices Dk, k ≥ 0, such that D = ∑∞
k=0 Dk is stochastic. The

elements (Dk)ij refer to a transition from state i to state j with k ≥ 0 arrivals.
If we define π such that

πD =π, π1 = 1

then the arrival rate λ ′
= E[X] =π∑∞

k=1 kDk1. Let λ ′′
= E[X2] =π∑∞

k=1 k2Dk1 be
its second moment about zero, then its variance σ2

X is given as

σ2
X = λ

′′ − (λ
′
)2. (2.59)

Its jth autocorrelation factor ACF(j) is given as

ACF(j) =
1

σ2
X

[π(
∞

∑
k=1

kDk)D
j−1(

∞

∑
k=1

kDk)1− (λ
′
)2], j ≥ 1. (2.60)

2.5.7 Marked Markovian Arrival Process

Another class of arrival process of interest in telecommunication is the marked
Markovian arrival process (MMAP[K]), with K classes. It is represented by K + 1
matrices D0, D1, · · · , DK all of dimension nt × nt. The elements (Dk)i,j, k =
1,2, · · · ,K, represent transitions from state i to state j with type k packet arrival
and (D0)i,j represents no arrival. Let D = ∑K

v=0 Dv, then D is a stochastic matrix. For
a detailed discussion of this class of arrival process see He and Neuts (1998).

An example application of this type of arrival process is in the telecommunica-
tions where we may have different paying classes of customers (users) who demand
different types of service. The arrivals of these customers may be correlated and a
MMAP can capture this process.

2.5.8 Semi Markov Processes

Service times with correlations can be described by a class of semi-Markov
processes, which are the analogue of the MAP. For such examples, see Alfa and
Chakravarthy (1994) and Lucantoni and Neuts (1994).
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2.5.9 Data Fitting for PH and MAP

Fitting of PH distribution is both a science and an art. This is because PH
representation of a given probability distribution function is not unique. As a trivial
example, the geometric distribution rk = qk−1p, k = 1,2, · · · , can be represented as
a PH distribution with parameters (1,q) or even as (α,T), where α = [0, 1, 0]

and T =

⎡

⎣

b1 b2 b3

0 q 0
c1 c2 c3

⎤

⎦ , where 0 ≤ (bi,ci) ≤ 1 and b1+b2+b3 ≤ 1, c1+c2+c3 ≤ 1.

Several examples of this form can be presented. It is also known that PH rep-
resentation is non-minimal, as demonstrated by the last example. So, fitting a
PH distribution usually involves selecting the number of phases in advance and
then finding the best fit using standard statistical methods such as the maximum
likelihood method of moments. Alternatively one may select the structure of the PH
and then find the best fitting order and parameters. So the art is in the pre-selection
process which is often guided by what the PH distribution is going to be used for
in the end. For example if the PH is for representing service times in a queueing
problem we want to have a small dimension so as to reduce the computational load
associated with the queueing model. In some other instances the structure of the PH
may be more important if a specific structure will make computation easier.

In general assume we are given a set of N observations of inter-event times
y1, y2, · · · , yN , with y = [y1, y2, · · · , yN ]. If we want to fit a PH distribution
(α,T) of order n and/or known structure to this set of observations we can proceed
by of the following two methods:

• Method of moments: We need to estimate a maximum of n2+n−1 parameters.
This is because we need a maximum of n2 parameters for the matrix T and n−1
parameters for the vector α. If we have a specific structure in mind then the
number of unknowns that need to be determined can be reduced. For example if
we want to fit a negative binomial distribution of order n then all we need is one
parameter. But if it is a general negative binomial then we need n parameters.
Let the number of parameters needed to be determined by m ≤ n2 + n − 1.
Then we need to compute m moments of the dataset y, which we write as μ̃k,
k = 1,2, · · · ,m. With this knowledge and also knowing that the factorial moments
of the PH distribution are given as μ ′

k = k!α(I −T)−k1 we can then obtain the
moments of the PH μk from the factorial, equate them to the moments from the
observed data. This will lead to a set of m non-linear equations, which need to
be solved to obtain the best fitting parameters.

• Maximum likelihood (ML) method: This second approach is more popularly
used. It is based on the likelihoodness of observing the dataset. Let fi(yi,α,T) =
αTyi−1t, i = 1,2, · · · ,N. Then the likelihood function is

L (y,α,T) =
N

∏
i=1

fi(yi,α,T).

This function is usually converted to its log form and then different methods can
be used to find the best fitting parameters.
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Data fitting of the PH distribution is outside the scope of this book. However, several
methods can be found in Telek (2000) and Bobbio et al (2004). Bobbio et al (2004)
specifically presented methods for fitting acyclic PH. Acyclic PH is a special PH
(α,T) for which Ti,j = 0, ∀i ≥ j and α1 = 1.

There has not been much work with regards to the fitting of discrete MAP.
However, Breuer and Alfa (2005) did present the ME algorithm based on ML for
estimating parameters for the PAP.

2.6 Service Times: What does this really mean?

We conclude this chapter with a point that has not been addressed much in queueing.
What does service distribution really imply? Is the distribution because a server
cannot guarantee to process a job that requires k units of work time in k units of
time due to its own lack of consistency? Or is it that the server can complete k units
of work in k units of time but the arriving customers come with different service
time requirements? This has a major effect when considering telecommunication
problems.

2.7 Problems

1. Question 1: Packets arrive at a router for processing. Each of the packets requires
2 units of time for set up before processing; this is a set up time which we call Ss.
After the set up time of 2 units a packet requires additional units of service and
this additional units of service has a geometric distribution with parameter a; i.e.
if the additional service is Sa then Pr{Sa = j}= (1−a)j−1a, j ≥ 1. Therefore the
total service time of a packet is S = Ss +Sa. Show how this S can be represented
by a discrete phase type distribution, and give the representation. What is the
mean of S, i.e. E[S]? Find the z-transform of this processing time. What is
the probability that the processing time of two packets is 8 units of time?

2. Question 2: Consider a service system with each item’s service time following
a geometric distribution with parameter p. Suppose the server can take a break
after serving n items. Let X be the length of time the server works before taking
a break and xk = Pr{X = k}. Write down the expression for xk, k ≥ n. If the
service time of an individual item follows a phase type distribution (α,T), write
down the expression for xk.

3. Question 3: Consider three boxes with infinite capacities. Packets are generated
according to the phase type distribution (α,T). Supposes these items are placed
in the boxes according to the following rule; items 1,4,7,10, · · · , go into first
box; items 2,5,8,11, · · · , go into the second box and items 3,6,9,12, · · · , go into
the third box. Develop an expression that captures the arrival process of items
into any of the boxes. Extend the idea to the case of n ≥ 1 boxes.
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4. Question 4: Consider two classes of items A and B. Items A arrive according to
the phase type distribution with parameter (α,T) and item B according to phase
type distribution (β,S). Write down an expression for the probability that item
A arrives before item B. What is the probability that the first arrival of an item is
at time n?
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