
Chapter 2
Feto-Maternal Cell Trafficking and Labor

S. Christopher Derderian, Cerine Jeanty, and Tippi C. MacKenzie

�Introduction

Maternal-fetal cellular trafficking (MFCT) is a well described phenomenon during 
pregnancy in which maternal cells migrate into the fetus and fetal cells migrate into 
the mother [1–5]. The specific mechanisms leading to such trafficking and its life-
long consequences have fascinated scientists for decades and are still actively being 
investigated. For example, several groups have demonstrated an association between 
MFCT and both transplant tolerance and autoimmune disorders. Additionally, preg-
nancy complications have been shown to be associated with increased trafficking 
between the mother and fetus which are listed in Table 2.1. Innovative strategies to 
detect microchimerism have reinvigorated the interest in the field and will be out-
lined in this chapter. In this chapter, we will review implications of microchime-
rism, particularly as it relates to long-term consequences and pregnancy 
complications. Finally, we will explore the effects congenital abnormalities and 
fetal surgery have on maternal-fetal cellular trafficking.

�Mechanisms of Cellular Trafficking

Maternal microchimerism (MMc) refers to the presence of maternal cells within the 
fetus. This has been demonstrated by the presence of cells of maternal origin within 
the liver, spleen, thymus, thyroid, and skin of neonates [6], indicating the placenta 
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is not a perfect barrier as previously imagined. As MMc has been found in various 
organs well into adulthood, cells of maternal origin must possess the capacity to self 
renew [5]. Some postulate that MMc results from multipotent mesenchymal stromal 
cell migration across the placenta, which is governed by vascular endothelial growth 
factor A (VEGF-A) [7], a potent stimulator of hematopoietic stem cell migration 
[8]. In fact, the concentration of VEGF-A is higher in the fetal circulation compared 
to the maternal, which likely promotes its transplacental migration [9]. Additionally, 
in a mouse model, we demonstrated high levels of MMc in circulation at mid-
gestation which decreases over time, such that it is undetectable at birth [10]. In this 
model, inflammatory stimuli during pregnancy, such as fetal intervention, led to 
changes in the number and type of cells that traffic, including maternal T, which 
usually does not cross over at baseline [10]. These results suggest that alterations in 
trafficking are not a result of general leakiness at the maternal-fetal interface, which 
is further supported by experiments showing that chemokine gene silencing limits T 
cell trafficking [11].

Fetal microchimerism (FMc), on the other hand, refers to the presence of fetal 
cells within maternal tissues and blood and can also persist for decades after 
delivery [2]. Similar to MMc, fetal cells have been found in multiple organs 
including the liver, kidney, heart, and bone marrow [12, 13], though the exact 
mechanism by which fetal cells migrate into the maternal circulation remains 
elusive. Fetal cell-free DNA (fDNA) has also been observed within the maternal 
circulation, which is released from the placental trophoblast layer lining the 
maternal-fetal interphase. Apoptosis and cell necrosis at this interphase leads to 
the release of fDNA into the maternal circulation [14, 15], the implications of 
which are actively being explored.

Table 2.1  Conditions 
associated with increased 
maternal fetal trafficking

Autoimmune processes

 � Diabetes mellitus-type I

 � Neonatal lupus congenital heart block

 � Multiple sclerosis

 � Hirschsprung’s disease

 � Autoimmune thyroiditis

 � Primary biliary cirrhosis

 � Systemic lupus erythematous

Pregnancy complication

 � Preeclampsia

 � Intrauterine fetal growth restriction

 � Preterm labor

Iatrogenic

 � Open fetal intervention

 � Laparoscopic fetal intervention

Congenital anomalies

 � Aneuploidy

 � Congenital diaphragmatic hernia
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�Strategies to Detect Maternal-Fetal Cellular Trafficking

Fetal microchimerism was first observed in 1893 when fetal trophoblast cells were 
observed in a lung specimen from a woman who suffered from eclamspia [16]. 
Several decades later, in 1963, maternal cells were identified in a cord blood sample 
using fluorescently labeled maternal leukocytes [17]. Since then, our understanding 
of MFCT has improved in large part from advances in techniques to distinguish 
mixed populations of cells.

In recent years, investigators have applied the common technique of gene ampli-
fication with polymerase chain reaction (PCR) to identify microchimerism is the 
context of pregnancy. It has become a useful tool to detect and quantify fetal DNA 
within the maternal circulation [3, 5, 18, 19]. This method is in large part restricted 
to gender mismatches in which primers to loci on the Y chromosome are used to 
distinguish fetal from maternal DNA [18, 20]. Using PCR amplification, fetal DNA 
can be detected circulating within the maternal serum in 80 % of normal pregnan-
cies [21] and has been isolated as early as 4 weeks postconception [22, 23].

An alternative strategy is to compare non-shared HLA-DR or Insertion-Deletion 
alleles between the fetus and mother. To compare these allelic differences between 
cell populations, paired maternal and cord blood is analyzed using quantitative 
real-time polymerase chain reaction (qRT-PCR). Non-shared alleles between the 
two cell populations are termed informative alleles as they provide a means to dis-
tinguish one set of genetic material from another. In trauma patients who were 
transfused multiple units of allogeneic blood, Lee and colleagues compared 12 
HLA-DR and 12 Insertion-Deletion alleles [24]. From this study, they found that at 
least 1 informative allele could be determined in 99.5 % of patients. Applied to 
MFCT, this strategy has been used to quantify the number of fetal cells in the 
maternal circulation (or vice versa) [25]. While informative, this strategy requires 
examination of both maternal and fetal blood and is therefore usually only appli-
cable after birth.

MFCT is a particularly critical field of investigation as it has the potential to 
improve noninvasive detection of fetal anomalies. Currently, clinicians rely on sec-
ond trimester sonographic imaging to identify fetuses at risk for aneuploidy and 
congenital anomalies. Positive screening is followed by invasive procedures such as 
amniocentesis and chorionic villus sampling for diagnosis. Despite a diagnostic 
accuracy of 98–99 % [26], these procedures carry a risk to both the fetus and mother 
[27]. Prenatal diagnosis that does not disrupt the maternal-fetal interface may be 
accomplished by identifying and analyzing fetal DNA within the maternal circula-
tion. Several European countries including the Netherlands, Sweden, and Denmark 
have already implemented this strategy to determine fetal gender and Rhesus D 
status [28].

In mice, it is possible to evaluate the number and types of cells that traffic using 
flow cytometry [10], but this is not yet possible in humans unless the HLA type is 
known,[29] and antibodies to such cell markers exist. Alternatively, cells may be 
sorted into groups (T cells, B cells, etc.) prior to PCR sequencing, a technique that 
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has not yet been explored in pregnant woman. Currently, probing for fetal DNA is 
more feasible than isolating individual cells as the quantity of fetal DNA is much 
more than the number of fetal cells within the maternally circulating [15, 30]. 
Overcoming this barrier may help identify which cell populations are more influen-
tial during trafficking and whether particular populations are more prevalent in the 
setting of pregnancy complications.

�Tolerogenic and Immunogenic Consequences 
of Microchimerism

Microchimerism can lead to a tolerogenic or immunogenic state. The presence of 
maternal cells in the fetus may play a role in fetal immune education and has been 
found to induce regulatory T cells to maternal antigen, which suppress the fetal 
immune response to the mother [29]. Tolerance to non-inherited maternal antigens 
has implications for transplantation tolerance later in life. For example, patients 
with biliary atresia, who have increased levels of MMc, have improved graft sur-
vival when they receive a maternal liver transplant compared to a paternal graft [31]. 
In acute leukemia, patient survival is increased and graft-versus-host disease is 
reduced when transplantation is with maternal stem cells [32, 33].

Conversely, microchimerism has been associated with autoimmune diseases in 
both mothers and children. Increased levels of MMc have been observed in child-
hood diseases, including diabetes mellitus-type I, neonatal lupus congenital heart 
block, multiple sclerosis [34], and Hirschsprung’s disease [35]. Autoimmune dis-
eases associated with FMc include systemic sclerosis in which fetal cells have been 
detected within both peripheral blood and skin lesions [36, 37], autoimmune thy-
roiditis, primary biliary cirrhosis, and systemic lupus erythematous [38]. It is impor-
tant to note that a causal relationship has not been established and the association 
with microchimerism may indicate that microchimeric cells proliferate in response 
to the disease process.

�Pregnancy Complications Associated with Cellular Trafficking

Several independent investigators have found an association between increased 
FMc and pregnancy complications, including preeclampsia, intrauterine growth 
restriction (IUGR), and preterm labor [19, 39–46]. These observations may reflect 
a maternal immune response to fetal antigens, or may simply be a marker of the 
increased inflammatory milieu in the host. Understanding the mechanisms that pro-
mote increased cellular trafficking may lead to therapies to offset the development 
of preterm labor and other pregnancy complications.

S.C. Derderian et al.



37

�Preeclampsia

Preeclampsia is a significant cause of both fetal and maternal mortality during preg-
nancy [47] and is characterized by maternal hypertension and proteinuria after the 
20th week of gestation [48]. The incidence ranges from 2 to 7 % in normal nullipa-
rous females [49, 50], and increases to 18 % in those who have previously had 
preeclamsia [51]. Complications include placental abruption, renal failure, HELLP 
syndrome and even death.

The pathologic processes leadings to preeclampsia are thought to occur at the loca-
tion of the placenta, as histological examination of placentas in preeclamptic patients 
frequently shows infarction and sclerotic arterioles with poor remodeling of the uter-
ine spinal arteries [52]. In addition, hypoxic changes and oxidative stress at the feto-
placental interface may lead to increased apoptosis and DNA released into the 
maternal circulation [53–57], particularly from the syncytiotrophoblast layer [58, 59].

Multiple groups have proposed an association between FMc and preeclampsia 
[60–66]. While some have found elevated level of maternally circulating fetal eryth-
roblasts and placental syncytiotrophoblast microvesicles [67, 68], most studies have 
focused on increased levels of fDNA within the maternal circulation. Not only are 
levels elevated at delivery [64], but increased levels have been detected circulating 
within the maternal serum as early as the first trimester [65, 69]. Illanes and col-
leagues found that the quantity of maternal circulating fDNA measured between 11 
and 14 weeks gestation directly correlated with the likelihood of developing pre-
eclampsia [56], though other investigators have not found this association [70]. 
These conflicting observations warrant further investigation to not only standardize 
techniques but understand the process leading to fDNA release and how it may 
relate to the development of preeclampsia.

Maternal sampling for fDNA has been considered as a screening tool to predict 
preeclampsia. Preliminary results by Farina and colleagues found that increased 
levels of fDNA may be predictive in asymptomatic low risk patients during the 
second trimester [53]. They found that maternal serum levels of fDNA were 2.4-
fold higher in mothers who developed preeclampsia compared to gestational age 
matched controls. As these are preliminary results, further studies are needed to 
determine the sensitivity of the assay as well as a cost analysis profile. If second 
trimester fDNA levels prove to be a useful screening tool, efforts may be focused 
towards monitoring patients at high-risk for developing preeclampsia or other com-
plications associated with preeclampsia such as placental abruption, renal failure, 
and HELLP syndrome.

�Intrauterine Fetal Growth Restriction

Intrauterine growth restriction is another complication of pregnancy effecting 3–7 
% of births worldwide. It is defined by fetal weight below the 10th percentile 
for a given gestational age and may result in respiratory distress syndrome, 
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intraventricular hemorrhage, necrotizing enterocolitis, and death. There are various 
underlying causes including both fetal (congenital abnormalities, chromosomal 
anomalies, and infection) and maternal (alcohol consumption, smoking, vascular 
disease, and malnutrition) origins. Like preeclampsia, IUGR may develop from 
abnormal placentation involving aberrant spiral artery development [57] with 
increased trophoblast cell apoptosis and necrosis as well as impaired oxygen and 
nutrient delivery to the fetus [71, 72].

While studies examining FMc in IUGR are limited and conflicting, some groups 
have found increased fetal erythroblasts and fDNA in maternal serum in cases of 
IUGR [39, 73], while others have not, despite using similar methods and patient 
populations [74, 75]. Conflicting results may be secondary to the various etiologies 
of IUGR.  Perhaps maternal causes of IUGR, such as preeclampsia and vascular 
disease, result in abnormal placental development and trophoblast cell death, while 
fetal causes, such as aneuploidy and congenital abnormalities, do not significantly 
impact the placenta.

�Preterm Labor

Spontaneous preterm labor occurs in approximately 12 % of births and is the con-
verging end-product of various pathological processes [76]. Causes include intra-
uterine infections [77], placental vascular insufficiency [78, 79], uterine 
over-distention [80], and a shortened cervix [81, 82], resulting in the release of 
several cytokines and prostaglandins [83]. These inflammatory mediators promote 
the release of uterotonins which induce uterine contractions and proteases which 
result in cervical changes, culminating in preterm delivery [83].

Several groups have proposed an association between preterm labor and altera-
tions in cellular trafficking [19, 42, 44]. For example, Leung and colleagues have 
implicated fDNA as a marker for preterm labor near the time of delivery [44]. The 
molecular pathway leading to labor in this population is unclear and further studies 
correlating cytokine and prostaglandin levels among patients with increased FMc 
may shed light into a more specific pathway. Although it is not clear whether these 
alterations are causally related to preterm birth, it has been suggested that increased 
fetal cell trafficking triggers the maternal immune response, which can induces 
labor [19].

Investigators have also directly explored the role of the maternal immune system 
in preterm labor. For example, Lee and colleagues demonstrated that women with 
circulating antibodies against fetal HLA class I or class II antigen, measured during 
the second trimester, were at increased risk for developing spontaneous preterm 
labor [84]. We recently found that MMc is also increased in mice undergoing pre-
term delivery as a result of LPS injection, with a particular increase in T cell traf-
ficking if the fetuses are allogeneic to the mother [85]. Furthermore, we have seen 
that maternal T cells cause demise of allogeneic fetuses after fetal intervention, 
indicating the role of the maternal adaptive immune system in this pregnancy com-
plication [86]. Taken together, preterm labor is a complex process that likely results 
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from multiple mechanisms, including increases in the quantity of FMc and, possi-
bly, an immune response between the mother and the fetus.

�Fetal Surgery

Open fetal surgery was pioneered over 30 years ago and has since evolved with the 
advent of minimally invasive techniques. Fetal surgery has been shown to improve 
survival and long-term outcomes in disease processes such as twin-to-twin transfu-
sion syndrome, myelomeningocele, and congenital diaphragmatic hernias [87–90]. 
However, fetal surgery often results in preterm delivery, which abrogates some of 
the benefits of the procedure. For example, a recent multi-center randomized control 
trial comparing the prenatal repair of myelomeningocele to standard postnatal 
repair, found that prenatal repair led to a reduced need for postnatal ventriculoperi-
toneal shunting as well as improved long term motor function and mental develop-
ment [87] but frequently results in preterm delivery with a mean gestational age at 
delivery of 34.1 weeks compared to 37.3 in the standard postnatal control group.

Universal acceptance of fetal surgery for non-lethal congenital diseases has been 
hampered by the risk of pregnancy complications. These risks include preterm pre-
mature rupture of the membrane, placental abruption, uterine rupture, chorioamni-
otic separation, and preterm labor [87]. In fact, preterm delivery prior to 37 weeks 
gestation, even following minimally invasive procedures, exceeds 80 % [91, 92]. 
Since the latency period between the procedure and delivery typically ranges from 
4 to 7 weeks [91, 92], it is possible that downstream events rather than the insult of 
the surgery itself leads to preterm labor. This observation led multiple groups to 
explore the effect of fetal intervention on MFCT [10, 25, 93, 94]. In a mouse model 
of fetal intervention, we reported that maternal cells traffic into the fetal circulation 
after fetal stem cell transplantation, with a particular increase in trafficking T cells 
in this context [10]. These cells have a functional consequence, in that they limit the 
stem cell engraftment into the fetus [10]. We have reported a similar findings in 
patients undergoing fetal surgery for the correction of myelomeningoceles: using 
PCR to genotype non-shared HLA-DR alleles between mother and fetus, we dem-
onstrated increased trafficking of maternal cells within the fetal circulation follow-
ing open fetal surgery for myelomeningocele repair [25]. These findings suggest 
that there is either increased trafficking of cells after fetal intervention or increased 
proliferation of trafficked cells in the inflammatory environment after fetal surgery. 
Interestingly, there was no increase in MMc if fetal intervention was performed at 
the time of birth, indicating that changes in microchimerism take some time to 
develop.

Increase in FMc during fetal surgery has been demonstrated in some studies, [94] 
but not others [25]. Following laser coagulation for twin-to-twin transfusion syn-
drome [94]. increased fDNA was found with longer operative times, increased num-
ber of vessels ablated and demise of 1 twin [94]. However, a study measuring 
circulating mRNA following fetal intervention did not demonstrate a difference 
between those who underwent fetal intervention and age matched controls [93]. The 
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differences observed may reflect the challenge with detecting a very small pool of 
cells or genomic material within a large maternal blood volume. It is important to 
note that no study has proven a causal link between altered microchimerism and 
pregnancy complications. However, understanding the role of altered MFCT in the 
context of preterm labor and pregnancy complications may lead to treatments to 
abrogate such consequences.

Congenital Anomalies

Maternal-fetal cellular trafficking may also be influenced by aneuploidy and con-
genital anomalies. For example, levels of FMc are significantly higher in mothers 
carrying fetuses with trisomy 21 [95] and lower in those with trisomy 18, 13, or 
monosomy X [96]. In a study analyzing cord blood samples from infants with a 
congenital diaphragmatic hernia, we found an increased number of maternal cells in 
the fetal circulation at the time of birth which increased with disease severity [97]. 
These findings suggest that the presence of fetal anomalies may influence traffick-
ing, possibly secondary to an inflammatory response from fetal distress.

�Conclusion

In summary, there is striking evidence to suggest that pregnancy complications are 
associated with alterations in fetal microchimerism. The mechanisms leading to 
increased levels of trafficking remain a fascinating unanswered question in the field. 
Fetal and maternal inflammation and immune responses are likely critical players in 
this process and in the onset of pregnancy complications. New technologies will 
ideally unveil mechanistic pathways affected by MFCT and may provide targets for 
therapies to mitigate pregnancy complications. Beyond pregnancy, long-lived 
microchimerism may have additional consequences for tolerance and immunity in 
both the mother and her children.
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