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Abstract

Exploratory analysis is an essential step in the analysis of high throughput data. Multivariate approaches
such as correspondence analysis (CA), principal component analysis, and multidimensional scaling are
widely used in the exploratory analysis of single dataset. Modern biological studies often assay multiple
types of biological molecules (e.g., mRNA, protein, phosphoproteins) on a same set of biological samples,
thereby creating multiple different types of omics data or multiassay data. Integrative exploratory analysis of
these multiple omics data is required to leverage the potential of multiple omics studies. In this chapter, we
describe the application of co-inertia analysis (CIA; for analyzing two datasets) and multiple co-inertia
analysis (MCIA; for three or more datasets) to address this problem. These methods are powerful yet simple
multivariate approaches that represent samples using a lower number of variables, allowing a more casily
identification of the correlated structure in and between multiple high dimensional datasets. Graphical
representations can be employed to this purpose. In addition, the methods simultaneously project samples
and variables (genes, proteins) onto the same lower dimensional space, so the most variant variables from
cach dataset can be selected and associated with samples, which can be further used to facilitate biological
interpretation and pathway analysis. We applied CIA to explore the concordance between mRNA and
protein expression in a panel of 60 tumor cell lines from the National Cancer Institute. In the same 60 cell
lines, we used MCIA to perform a cross-platform comparison of mRNA gene expression profiles obtained
on four different microarray platforms. Last, as an example of integrative analysis of multiassay or multi-
omics data we analyzed transcriptomic, proteomic, and phosphoproteomic data from pluripotent (iPS) and
embryonic stem (ES) cell lines.
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1 Introduction

High throughput technologies including microarray, sequencing,
mass spectrometry based proteomics which assay biological
molecules have developed rapidly in the past decades. These tech-
nologies generate vast amounts of data that describe biological
samples at genomic scale and are often called omics data. The
capacity and performance of these technologies have improved
concurrently with dramatic decreases in cost, and therefore modern
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omics studies frequently apply multiple omics techniques to
describe the same set of biological observations, such studies
include The Cancer Genome Atlas (TCGA), Cancer Cell Line
Encyclopedia (CCLE), and ENCyclopedia of DNA Elements
(ENCODE). These projects systematically profile large numbers
of biological samples resulting in multiple levels of qualitative or
quantitative omics data. Whilst the systematically measuring large
number of biological molecules (genes, proteins) can reveal novel
knowledge that cannot be discovered by traditional methods, the
accumulation of multiple omics data presents new challenges for
data integration and interpretation.

Several exploratory data analysis (EDA) methods including
correspondence analysis (CA), principal component analysis
(PCA) have been widely applied to study single omics data [1, 2].
These EDA methods are frequently performed in the early stage of
analysis for quality control, detecting batch effect or exploring basic
cluster structure in a dataset. In the analysis of multiple omics data,
EDA also needs to identify correlations and associations between
each of the high dimensional datasets. In this chapter, we describe
the following EDA methods that enable researchers to identify
relationships between two or more high dimensional datasets:

e Co-inertia analysis (CIA) can be used to explore relationships
between two datasets [3];

e Multiple co-inertia analysis (MCIA) can be applied to analyze
multiple datasets [4].

Both methods project observations (samples) and variables
onto a lower dimensional space, but constrain the dimension reduc-
tion such that the new variables represent covariant structure
among datasets. Variables from each dataset are transformed onto
the same scale. The association between variables and samples can
be visualized in this new space, which greatly facilitates the detec-
tion of global variance structure and identification of the most
informative variables across datasets.

2 Methods

2.1 Analysis of Two
Datasets Using
Co-inertia Analysis

2.1.1

Co-inertia Analysis

Co-inertia analysis is a multivariate exploratory approach used to
identify the covariance between two datasets that have the same set
of observations [5]. In the field of omics data analysis, CIA was first
introduced to cross-platform comparison of microarray data [3].
With increasing availability of other omics data, it has also been
applied to integration of different types of omics data [6].

Two omics datasets may be represented by two matrices, X and
Y. In this chapter, we assume the rows of a matrix are samples
(observations) and columns are variables, such as genes, proteins,
other small molecules, etc. Similar to PCA, CIA is a dimension



2.2 Case Study I:
Integration of NCI-60
Cell Line
Transcriptomic

and Proteomic Data
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reduction technique but it considers two datasets simultaneously.
For the sth dimension, CIA finds a pair of new variables, designated
as co-inertia components or dimensions, using a linear combination
of the original variables in X and 7, so as to maximize the squared
covariance between them.

argmax,: scov®(Xu', Y'v') (1)

Xu' and Yv' are the co-inertia components for matrix X and 7,
respectively; » and #’ are the linear combination coefficients, which
is comparable to the loading vectors in the PCA. Due to the
optimized criteria, the co-inertia components capture the most
important covariance structure between the two datasets. The
co-structure between the two datasets may be visualized by the
co-inertia components in a lower dimensional space.

The NCI-60 panel is a collection of 60 cancer cell lines from nine
different tissues of origin. It includes leukemia, melanoma, ovarian,
renal, breast, prostate, colon, lung, and central nervous system
(CNS). These cell lines are widely used for in vitro screening of anti-
cancer compounds. In attempts to discover gene—drug interactions,
several genome wide data profiling approaches have been applied to
these cell lines, including DNA copy number variation, DNA muta-
tion, gene expression, protein expression, drug sensitivity, etc. In this
case study, we will examine the mRNA expression measure by Agilent
GE 4x44K microarray platform (downloaded from [7]) and the
proteome data (mass spectrometry based proteomics) [8]. We will
use CIA to explore the similarity between datasets and cell lines.
We load the required package and data using:

library (omicade4)
library (made4)

load("../data/NCI60_rnaprotein.RDA")
NCI60_rnaprotein is an object of class /ist, which consists of

two numerical matrices, mRNA and protein. These two matrices
have the following dimensions:

summary (NCI60_rnaprotein)

## Length Class Mode
## mRNA 640958 —-none- numeric

## protein 431288 -none- numeric
sapply (NCI60_rnaprotein, dim)

## mRNA protein

## [1,] 11051 1436
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Each of the matrices has 58 cell lines in columns. Due to the
problem of data quality, we removed two cell lines, resulting in 58
cell lines included in this analysis. CIA requires that the columns in
the matrices are correctly matched, to verity this:

identical (colnames (NCI60_rnaprotein$mRNA), colnames (NCI60_rnaprotein$protein))

## [1] TRUE

However, the number of rows in different matrices may be
different. To facilitate the visualization later, we first create some
auxiliary variables to indicate the names of cell lines, tissues of
origin of cell lines, and the color for each.

names <- strsplit (colnames (NCI60_rnaprotein$mRNA), "\\.")
tumorType <- sapply(names, "[", 1)
cellline <- sapply(names, "[", 2)

tumorColor <- as.factor (tumorType)

levels (tumorColor)

<— e("red", "green", "blue", "cyan", "pLI’lk",

"brown", "gray25", "orange", "gray75"

tumorColor <- as.character (tumorColor)

phenoData<-cbind (tumorType=tumorType,cellline=cellline, tumor

rownames (phenoData)

phenoDatal[l:4,]

##

## BR.MCF7

## BR.MDA_MB_231
## BR.HS578T

## BR.BT_549

2.2.1 PCA of Individual
Datasets

or=tumorColor)

colnames (NCI60_rnaprotein$mRNA)

tumorType cellline tumorColor
"BR" "MCE 7" "red"
"BR" "MDA_MB_231" "red"
"BR" "HS578T" "red"
"BR" "BT_549" "red"

Note that Bioconductor is developing a “multi-assay” data
object class https://github.com /vjcitn/biocMultiAssay which
should be helpful and will be recommended when analyzing
multi-assay data.

Before performing the integrative analysis, we first perform basic
exploratory analysis and PCA on each individual dataset. For exam-
ple, exploring the distribution of datasets:


https://github.com/vjcitn/biocMultiAssay
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layout (matrix(1:2, 1, 2))
boxplot (NCI60_rnaprotein$mRNA, main="mRNA", col=tumorColor)

boxplot (NCI60_rnaprotein$protein, main="Protein", col=tumorColor)

The plot is not shown here. But the lower boundary of the
boxes in proteomic data reaches 0. This is because the missing
values in the proteomics data are replaced with 0. Before the
integrative analysis of two datasets, we analyze each of single data-
sets using PCA:

pca_mrna <- prcomp (t (NCI60_rnaprotein$mRNA) )

pca_protein <- prcomp (t (NCI60_rnaprotein$protein))

The variance of principal components (PCs) and cell lines in the
first two PCs may be visualized by:

layout (matrix(1:4, 2, 2))

par (mar=c(3, 3, 1.5, 0.5))

plot (pca_mrna, main="mRNA")

legend("topright", col = unique (tumorColor), pch=20, legend = unique (tumorType))
plot (pca_mrna$x[, 1:2], col=tumorColor, pch=20)

abline (v=0, h=0)

plot (pca_protein, main="Protein")

plot (pca_protein$x[, 1:2], col=tumorColor, pch=20)

abline (v=0, h=0)

The output is shown in Fig. 1. We observe that the first two
PCs in transcriptomic data explain a larger proportion of variance
than those in proteomic data. We see cell lines with different
anatomical tissue of origin are better separated in the transcrip-
tomic data. But this analysis does not evaluate the co-structure
between the two datasets.

222 CIA of Both To visualize the correlated structure between the datasets, we per-
Datasets form CIA using R function cia,

mRNA <- NCI60_rnaprotein$mRNA
protein <- NCI60_rnaprotein$protein

coin <- cia(mRNA, protein, cia.nf = 5)

The output of the cia function is an object of class cia, which
can be easily visualized using the plot function



24 Chen Meng and Aedin Culhane

0 1000 2000 3000 4000

50

-100  -50

-150

mRNA o Protein
S ™
- * BR &
= CNS
* CO S | -
LE )
« ME A
LC o
. OV % -
PR
DU i ) HH
o —
[] ) U|:|
- DDD o —
o
E an
. & .‘
° LN 4 o _ '. .
o = . 8 .
.:o o P - . ‘_' — [
o - .
L‘P ] &3
I | I 1 1 | I I
-100  -50 0 50 100 -100 -50 0 50 100

Fig. 1 PCA of individual datasets of mRNA gene expression and protein expression profiles of NCI60 cell lines.
The upper panels show the variance associated with each principal component of the PCA. The lower panels
show a plot of the first (horizontal axis) and second (vertical axis) PC for the mRNA and proteins data,

respectively

barplot (coin$coinertia$eig[1:207])

plot (coin, col=tumorColor)

These commands generate Fig. 2. The scree plot in panel a
shows the variance associated with each of the co-inertia compo-
nents, which may be interpreted similarly to variance of PCs
in PCA. Fig. 2a shows that the first three components have signifi-
cantly higher variance than the others. Therefore, these three com-
ponents should be carefully interpreted and compared with
biological or batch factors. The interpretation of components
often involves the visualization of samples and variables. Panel b
shows the first two co-inertia components. In this plot, samples
from the transcriptomic data are shown as the head of arrows. The
corresponding cell lines in proteomic data are the ends of arrows.
Therefore, this plot is also denoted as sample space. We can see
that the leukemia cell lines and melanoma cell lines are weighted on
the negative end of the second component, indicating these
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Fig. 2 A plot showing results of a CIA of NCI60 transcriptomic and proteomics data (the same data as in Fig. 1).
(@): the variance associated with each co-inertia components; (b): sample space; (c): variables space for
mRNA data; (d): variable space for protein data

two cell lines are most different with others. The lengths of the
arrows describe the similarity between the samples from the two
different datasets. Highly correlated pairs of samples will be pro-
jected close to each other and, therefore, are linked by a short
arrow. In practice, we often need to extract the co-inertia compo-
nents and customize the plot. As an example, we remove some
labels of cell lines:

axl=1

ax2=2

par (mar=c(0.1, 0.1, 0.1, 0.1))

plot (coin$coinertia$mX[, c(axl, ax2)], col=tumorColor, pch=20,

xlim=c(-2.5, 2

abline (v=0, h=0)

.5), axes=FALSE, frame.plot = TRUE)

arrows (coinScoinertia$mX[, axl], coinS$Scoinertia$mX[, ax2],
coin$coinertia$mY[, axl], coinS$coinertia$mY[, ax2],
angle = 15, length = 0.1, col=tumorColor)

legend ("bottomleft",

# text (coi coinert

col = unique(tumorColor), pch=20, legend = unique (tumorType))

ex= )

, (ax1, ax2)], bels ce ine,
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Fig. 3 A customized plot of the sample space shows the project of NCI60 cells when a CIA is performed on
NCI60 transcriptomic and proteomic data analysis. Each cell line is colored by its anatomical tissue of

origin

These commands generate a plot similar to Fig. 3. In the plot,
we see most of the arrows are short in length, which indicates high
overall similarity or considerable correlated structure between the
datasets. This can be confirmed using the RV coefficient, which is
also included in the cia object and may be extracted by

coin$coinertia$RV

#4# 0.7464801

[1]

The RV coefficient is a multivariate extension of the Pearson
correlation coefficient to measure the overall similarity between
two matrices. It ranges from 0 to 1. A high RV coefficient indicates
high degree of similarity. In this case, the RV coefficients of 0.75
suggest that a relative high correlation exists between the two
datasets.



2.2.3 CIA: Exploring
the Variables
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Despite a good overall similarity, some cell lines have lower
correlation between their mRNA and protein profiles. These
include lung cancer cell line IGOV1, leukemia cell line SR, and
melanoma cell line SKMEL2. For example, whilst the SKMEL?2 is
projected close to other melanoma cell lines in transcriptomic data,
in the proteomics data this cell line is closer to the plot origin and is
far from most other melanoma cell lines. Similarly, the proteome of
leukemia cell line SR is closer to the melanoma cell lines in compar-
ison with other leukemia cell lines. This discrepancy may reflect
biological variance, a batch effect, or a technical artifact, such as
sample mis-labeling.

In CIA, the projection of each sample is determined by its vari-
able measurements. The variables from both datasets are trans-
formed onto the same scale and projected into the same space,
thereby enabling exploration of relationships between variables,
and between samples and variables. The loadings of the mRNA
and protein variables are shown in panel ¢ and d of Fig. 2, which
are also called gene space, or more generally, variable space. In
these variable plots, the variables with highest weights (i.c., on
the negative or positive ends of components) are the most influ-
ential variables and these define the co-inertia components. Vari-
ables and samples that are projected in the same direction from
the origin have a strong association (i.e. the variables are
increased or upregulated in those samples), whereas variables
projected at the opposite direction to a sample are frequently
have low values in those samples. Therefore, the variables with
highest weights in each of components can be extract and these
facilitate the biological interpretation of components. We will
extract the highest weighted variables using the function
topVar:
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topvVar(coin, axis = 1,
#4# axl_dfl_negative
#H TMEM45B
## OVOL1
## TSPANS
## POF1B
#i MACC1
#4# DDC
## SLC27A2
## LAD1
## FBP1
## ANKRD22
topVar (coin, axis = 1,

##
##
##
##
#4#
#H
##
##
##
##
##

axl_dfl_positive
COL1A2

FAP

CNRIP1

SPARC

PPAPDC1A

LAMA4

IGFBP7

SPOCK1
A_24_P554882

PDPN

end = "neg", topN

axl_df2_negative
CALML4_5696_prot
UGT1A10_3875_prot
AZGP1_3143_prot
DLG1_2351_prot
AKR7A3_4110_prot
SDCBP2_4458_prot
FABP1_844_prot
LGALS4_779_prot
TMEM62_5329_prot

MUC13_920_prot

end = "pos", topN

axl_df2_positive
NCOA7_5477_prot
COL6A2_3829_prot
HSPB7_4887_prot
COL5A1_5880_prot
MXRA8_5851_prot
PCOLCE_4369_prot
COPZ2_724_prot
LRRC15_7108_prot
COL3Al1_1636_prot

BMP1_704_prot

10)

10)
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topVar (coin, axis = 2, end = "neg", topN = 10)
## ax2_dfl_negative ax2_df2_negative
#4# 1 S100B SH2D1A_2507_prot
## 2 TYR PTPRCAP_1858_prot
## 3 Cl4orf34 CD1C_5757_prot
## 4 TRIM63 CD5_2006_prot
## 5 TYRP1 CD3E_1036_prot
## 6 MLANA GRAP_1115_prot
## 7 EDNRB FLI1_4768_prot
## 8 BCL2A1 RHOH_1471_prot
## 9 ST8SIAL NA_7341_prot
## 10 PTPRC TRAT1_698_prot
topVar (coin, axis = 2, end = "pos", = 10)

## ax2_dfl_positive ax2_df2_positive
## 1 ABCC3 CLCN1_7161_prot
#H 2 MAL2 AKTIP_7273_prot
## 3 TACSTD2 TM4SF18_2667_prot
##t 4 MMP7 PI4K2A_7076_prot
## 5 ELF3 SHISA2_3899_prot
## 6 ALPK2 PAPLN_6608_prot
##+ 7 NHS HLA.A_5614_prot
## 8 CST6 DHDPSL_6037_prot
## 9 KRT8P20 DNTTIP2_3974_prot
## 10 MALL HAVCR1_2844_prot

The results suggest that the positive end of the first component
captures several collagens, including COL1A1l, COL6A2, which
are the major components of the extracellular matrix and connec-
tive tissues. In tumors, collagens are associated with cancer cell
metastasis and poor prognosis in patients. Therefore, we can infer
that the first dimension reflects the mechanism related to different
potential of metastasis of the cell lines. The negative end of the
second component is associated with leukemia and melanoma cell
lines. Accordingly, genes (see “ax2_dfl_negative”) from transcrip-
tomic data with high weights in this component include several
melanogenesis genes, such as S100B and TRY, explaining why
melanoma cell line LOXIMVI, a cell line that lacks melanin is
projected closer to the origin in the proteome sample space. By
contrast these proteins are absent in the proteomics data, which
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2.3 Exploration
of Three or More
Datasets

2.3.1  Multiple Co-inertia
Analysis

2.3.2 Case Study 2:
Cross Comparison of Gene
Expression Data Obtained
on Four Different
Microarray Platforms

highlighted several immune cell markers, such as CD1C, CD5, and
CD3E, which are highly expressed in the leukemia cell lines. There-
fore, the projection of leukemia cell lines is more influenced by the
proteomic data whereas the weights of melanoma cell lines are
determined by the transcriptomic data. But both are separated
from other cell lines.

CIA can be used to explore the concordance and discrepancy
between two datasets. MCIA is a generalization of CIA to analyze
more than two datasets [4]. In MCIA, the multiple omics data are
represented by K blocks of matrices (X1, X2, ..., Xx). Similar with
CIA, for the ith dimension, MCIA defines a set of block compo-
nents using the linear combination of variables in each of the
matrices. The goal of MCIA is to find a synthetic component, ¢,
so as to maximize the sum of squared covariance between the block
components and the synthetic components, that is

K
argmnxué’:iz:covz (X1}, 5" (2)
=1

where X} are the set of block component and the s* is the synthetic
component; #;, are the loading for the variables in the kth matrix. In
PCA, the principal components are the optimal lower rank approxi-
mation of a high dimensional dataset, whereas the block components
in MCIA are sub-optimal in terms of representing the individual
matrices, but they represent the best covariant structures across
multiple datasets. Similar to CIA, the block components and syn-
thetic components can be visualized in a two dimensional space to
facilitate the interpretation of multiple high dimensional datasets.

Cross-platform comparison is often used in EDA, such as meta-
analysis or as part of cross-validation of findings. In this example,
we explore the consensus in data from four transcriptomic
studies of NCI60 cell line using different microarray platform
(Aftymetrix HG U95, U133, U133 plus2.0 and Agilent; down-
loaded from [7]). The goal of this analysis is to explore the con-
cordances and discrepancies in mRNA expression measurements
obtained using different platforms for each cell lines.
First, we load the data

load("../data/NCI60_4arrays.RDA")

and get an overview of dimensions of datasets using the following
functions:



Integrative Exploratory Analysis of Two or More Genomic Datasets 31

summary (NCI60)

## Length Class Mode

## agilent 640958 -none— numeric
## hgu9s 510574 —-none- numeric
## hgul33 524552 -none- numeric

## hgul33p2 602156 -none- numeric

sapply (NCI60, dim)

#4 agilent hgu95 hgul33 hgul33p2
## [1,] 11051 8803 9044 10382
## (2,1 58 58 58 58

names (NCI60)

## [1] "agilent" "hgu95" "hgul33" "hgul33p2"

tumorType <- sapply(strsplit (colnames (NCI60$agilent), "\\."), "[", 1)

tumorColor <- as.factor (tumorType)

levels (tumorColor) <- c("red", "green", "blue", "cyan", "pink",
"brown", "gray25", "orange", "gray75"

tumorColor <- as.character (tumorColor)

We draw a boxplot to explore the distribution of datasets.

layout (matrix(1:4, 2, 2))

boxplot (NCI60$agilent, main="Agilent", col=tumorColor)
boxplot (NCI60$hgu95, main="Affy HG U95", col=tumorColor)
boxplot (NCI605hgul33, main="Affy HG U133", col=tumorColor)

boxplot (NCI605hgul33p2, main="Affy HG U133 plus2.0", col=tumorColor)

MCIA is performed using the function mcia in omicaded
package and is visualized using the function plot, for example

mcoin <- mecia (NCI6O0)
## 'svd' fail to convergence, 'eigen' used to perform singular value decomposition

plot (mcoin, df.color = 2:5, sample.color=tumorColor,
sample.legend = FALSE,
sample.lab=FALSE)

legend ("bottomright", col = unique (tumorColor), pch=20, legend = unique (tumorType))


https://urldefense.proofpoint.com/v2/url?u=http-3A_bioconductor.org_packages_-231%26d=BQICAg%26c=k9MF1d71ITtkuJx-PdWme51dKbmfPEvxwt8SFEkBfs4%26r=kwZD24MMCbG_sisYwGVpukmuRHYOGbXk10phc-LvGu4%26m=XKTlhhtvoANSrHBDswkd1-SjNFU9mvmwfJk5-5dZUzc%26s=aEoPIU2jra9usJNTN5Nqdmq1fsnvIv9rYVC9ndwqGPM%26e=
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Fig. 4 A plot showing results of an MCIA which integrated and compared four different microarray gene
expression datasets. (a): the sample space; (b): the variable space, variables from four different platforms are
shown as different colors; (c): the scree plot shows the variance associated with each dimension. (d): Dataset
space

The function mcia returns an object of class mcia. A typical
visualization of the plot is shown in Fig. 2.4. Similar to CIA, the
plot consists of the sample space (Fig. 4a) and variables spaces
(Fig. 4b). In the sample space, samples from different datasets are
shown as point with different shapes and also the same cell lines in
each datasets are linked to the synthetic components. The short
lines in this plot indicate a good correlation for the four datasets.
The pairwise RV coefficient may be extracted by
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round (mcoin$mcoa$RV, 3)

#4# agilent hgu95 hgul33 hgul33p2
## agilent 1.000 0.953 0.955 0.955
## hgu9b 0.953 1.000 0.988 0.965
## hgul33 0.955 0.988 1.000 0.969
## hgul33p2 0.955 0.965 0.969 1.000

All the RV coefficients are higher than 0.95, indicating a good
correlation between datasets generated by different platforms.

Figure 4b shows the variable loadings, variables from different
datasets are shown with different colors. The variables and samples
projected on the same direction are highly associated with each
other. Figure 4c¢ shows the variance associated with each dimension.
In MCIA, multiple datasets contribute to the variance of compo-
nents. Therefore, the global variance can be decomposed into the
contributions of each individual datasets. This information is shown
in Fig. 4d, the pseudo-eigenvalue for each dimension indicates the
decomposed variance of a single dataset, so this panel may also be
called “dataset space.” It shows that all the datasets contribute
roughly equal to the first and second components as indicated by
the small range of x and y axes in Fig. 4d. Strictly, data from
HGU133plus2.0 contributes slightly higher than others to both
first and second components, whereas Agilent data have a lower
contribution to first component, but a higher contribution to the
second dimension in comparison with HGU95 and HGU133 data.

Next, we will show how to use MCIA to detect outlier or
“abnormal” samples using MCIA cross-platform comparison. To
do so, we swap the names of two samples in the Agilent data to
simulate a mis-labeling problem. We exchange the leukemia cell line
SR and melanoma cell line LOXIMVI in Agilent data and run
MCIA on the datasets

NCI60_rand <- NCI6O0
NCI60_rand$agilent[, c("ME.LOXIMVI", "LE.SR")] <-
NCI60_rand$agilent[, c("LE.SR", "ME.LOXIMVI")]

mcoin_rand <- mecia (NCI60_rand)

## 'svd' fail to convergence, 'eigen' used to perform singular value decomposition
plot (mcoin_rand, df.color = 2:5, sample.color=tumorColor,
ple.legend = FALSE,
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Fig. 5 Demonstration showing the application of MCIA to detecting outliers or “problem” samples. Here, the
same analysis (MCIA) is performed as in Fig. 4. However, the names of the melanoma cell lines LOXIMVI and
the leukemia cell lines SR are swapped. (a): the sample space; (b): Dataset space

2.3.3 Example 2:
Integrative Analysis of
Transcriptome, Proteome,
and Phosphoproteome

of Stem Cell Lines

Figure 5 shows the corresponding sample space and dataset space.
In the sample space, it is clearly shown that the Agilent data for SR and
LOXIMVI are projected away from their counterpart in other data-
sets. The relative long line in this plot suggests a mis-labeling problem.
In addition, the exchange of the labels of cell lines in Agilent data
results in that the covariate structure in both dimensions are less data,
which can be seen from the decreased pseudo-eigenvalue for Agilent
data in Fig. 5b (compare with Fig. 4d).

In this example, we use the data generated by Phanstiel et al. [9]. The
goal of this research was to compare protein expression and phos-
phorylation between embryonic stem cell (ES) and induced pluripo-
tent stem (iPS) cell lines. In the study, 4 ES and 4 iPS cell lines were
selected and their transcriptome, proteome, and phosphoproteome
data were measured in triplicates. Here, we only analyze one of the
replicates as the aim to illustrate how to use MCIA to integrative
analysis of multiple omics data of different levels.
First, load the data

load("../data/iPSES8ples.RDA")

and summarize the data



Integrative Exploratory Analysis of Two or More Genomic Datasets 35

summary (iPSES)

H#4# Length Class Mode
## mrna 124648 -none- numeric
## protein 30928 -none- numeric

## phospho 62272 —-none- numeric

sapply (iPSES, dim)

## mrna protein phospho
## [1,] 15581 3866 7784
## [2,] 8 8 8

perform the MCIA and plot the result

mcoin <- mecia (iPSES)
plot (mcoin, df.color = 2:4, sample.color=rep(c("cyan", "orange"), each=4),

sample.legend = FALSE, sample.lab=FALSE)

Figure 6a—d shows the sample space, variable space, component
variance, and dataset space, respectively. Panel ¢ suggests that the
first two dimensions have significantly higher variance than others.
The corresponding sample space suggests that the iPS and ES cell
lines could be distinguished by the first dimension. Particularly, iPS
cell lines DF6.9 and DF4.7, DF19.7 and DF19.11 are highly cor-
related. The ES cell lines are more dispersely projected onto the
space. H14 is on the negative end of the first component and H9 is
highly weighted on the negative end of the second component. The
relative short lines between samples indicate a good correlation
between the datasets. However, the dataset space (panel d) suggests
that the protein data have more variance on the first dimension,
whereas the protein phosphorylation data contribute more variance
on the second one. This finding is inconsistent with the variable
space, where the proteomic data are more spread on the first com-
ponent and the phosphoproteomic data have a wider range on the
second component. The RV coefficients between datasets are

round (mcoin$mcoa$RV, 3)

#4# mrna protein phospho
## mrna 1.000 0.705 0.845
## protein 0.705 1.000 0.457

## phospho 0.845 0.457 1.000
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Fig. 6 Plot showing results of an MCIA of iPS and ES data. Three datasets were integrated in this analysis,
including mRNA expression data (RNA sequencing), protein expression and phosphorylation data (Mass
spectrometry based proteomic) (a): the sample space; (b): the variable space, variables from four different
platforms are shown as different colors; (¢): the scree plot shows the variance associated with each
dimension. (d): Dataset space

Unexpectedly we find that the phosphorylation data have a
better correlation with the mRNA data rather than the protein
data. In addition, similarly to our previous analyses, we can select
the variables with the greatest weights on each of the dimensions
using the function topVar
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topVar (mcoin, axis = 1, end = "neg", topN = 5)

H## axl_mrna_negative axl_protein_negative axl_phospho_negative

## 1 ZIM2 IPI00946792.1 IPI00022628.5_s5387

##+ 2 MMP1 IPI00555956.2 IPI00657687.1_s182

## 3 CYP4F11 IPI00012989.2 IPI00969114.1_s55

#4# 4 PEG3 IPI00219774.3 1IPI00742682.2_s2155

## 5 LGALS4 IPI00873459.3 IPI00186139.8_s181

topVar (mcoin, axis = 1, end = "pos", topN = 5)

## axl_mrna_positive axl_protein_positive axl_phospho_positive
#4# 1 Cl70r£f50 IPI00026993.1 IPI00066543.2_s540.t44
## 2 Cl2orf39 IPI00306642.3 IPI00798034.2_5280.s5281
## 3 IAPP IPI00026219.4 IPI00304935.6_s6
#4+ 4 IL4I1 IPI00915008.1 IPI00008422.5_s5239.s5242
## 5 GTF2H2D IPI00607808.2 IPI00008422.5_5239.5242.5245
topVar (mcoin, axis = 2, end = "neg", topN = 5)

H## ax2_mrna_negative ax2_protein_negative ax2_phospho_negative

## 1 OLIG1 IPI00442171.4 1IPI00292975.4_s1012

## 2 HLA.DQA1 IPI00444452.3 IPI00871890.1_s16

## 3 OR7D2 IPI00843802.2 IPI00217467.3_s104

## 4 OLIG2 IPI00218271.5 IPI00657687.1_s5182

## 5 PSTPIP1 IPI00828098.2 IPI00011913.1_s188

topVar (mcoin, axis = 2, end = "pos", topN = 5)

## ax2_mrna_positive ax2_protein_positive ax2_phospho_positive

## 1 ZNF560 IPI00306406.4 IPI00010800.2_s352

## 2 VWA5B1 IPI00472164.2 IPI00292059.2_ 5240

##+ 3 CSH1 IPI00549381.5 IPI00640088.1_s5228

## 4 CYP2E1L IPI00386731.3 IPI00337315.1_s873

## 5 FGA IPI00183002.6 IPI00005978.8_y23

To reveal the biological meaning of different components,
additional methods, including gene set enrichment analysis
(GSEA), may be applied to further analyze the selected genes on
each component.
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3

Session Info

tolLatex (sessionInfo())

e Rversion 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=
en_US.UTF-8, LC_COLLATE=en_US.UTF-8, LC_MONETARY=
en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_
US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, graphics, grDevices, methods,

stats, utils

e Other packages: ade4 1.7-2, gplots 2.17.0, knitr 1.11,
made4 1.44.0, omicade4 1.10.0, RColorBrewer 1.1-2, scatter-

plot3d 0.3-36

e Loaded via a namespace (and not attached): BiocStyle 1.8.0,
bitops 1.0-6, caTools 1.17.1, codetools 0.2-14, digest 0.6.8,
evaluate 0.8, formatR 1.2.1, gdata 2.17.0, gtools 3.5.0,
highr 0.5.1, KernSmooth 2.23-15, magrittr 1.5, stringi 1.0-1,
stringr 1.0.0, tcltk 3.2.2, tools 3.2.2
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