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    Chapter 2   
 Complement Regulators and Inhibitors 
in Health and Disease: A Structural 
Perspective                     

       Laure     Yatime     ,     Goran     Bajic    ,     Janus     Asbjørn     Schatz-Jakobsen    , 
and     Gregers     Rom     Andersen    

    Abstract     The complement system is an important effector within the innate immune 
system as a defence against pathogens and maintaining homeostasis. Detection of 
pathogen- and damage-associated molecular patterns triggers the proteolytic cascade 
in complement. In healthy self-tissues effector proteins are tightly controlled by pro-
teins acting as regulators of complement activation, and absence or malfunction of 
these regulators contribute to pathogenesis in a number of disease conditions in 
humans. Complement is highly relevant to nanomedicine due its role in adverse reac-
tions on polymers and nanoparticle drug carriers, but also since complement hyper-
activation contributes to pathogenesis in many disease conditions that are frequently 
addressed within nanomedicine. We review here the regulatory mechanisms that 
modulate complement activation and some of the most prominent cases linking com-
plement dysregulation/defi ciencies to pathogenesis as well as the strategies that have 
been considered for the development of therapeutic complement inhibitors and mod-
ulators to alleviate complement-mediated detrimental effects. In addition, this chap-
ter summarizes the wealth of strategies adopted by pathogens to evade complement, 
such as inhibition of the proteolytic cascade, degradation of complement effector 
molecules and interference with transmembrane signaling by effectors, and highlights 
how structural and functional insight into their mode of function now provides leads 
for the development of novel complement therapeutics.  
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2.1       Introduction to Complement and Associated Diseases 

2.1.1     Overview of the Complement Cascade 

 Complement is one of the major effectors of the innate immune system and is in the 
fi rst line of defence against invading pathogens. Complement not only protects 
against infectious organisms, but also disposes of immune complexes, products of 
infl ammatory injury and bridges the innate and the adaptive immunity [ 1 – 3 ]. 
Complement is a complex network of more than 50 circulating  and   membrane- 
bound proteins that can be activated through three different pathways: the classical 
(CP), lectin (LP) and alternative (AP) pathways (Fig.  2.1 ). The classical pathway is 
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  Fig. 2.1    General overview of the complement cascade emphasizing the initiation of the proteo-
lytic cascade upon pattern recognition and the effector molecules acting on both host cells and 
pathogen/damaged cells       
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initiated upon recognition by the C1 complex of antibody (IgG or IgM):antigen 
complexes or pentraxins (CRP, PTX3 and SAP) binding directly to activators [ 4 ,  5 ]. 
The C1 complex consists of the pattern-recognition molecule C1q and the associ-
ated serine proteases C1r and C1s that are activated upon pattern recognition [ 6 ]. 
C1s then initiates the cascade by proteolytic cleavage of C4 into C4a and C4b. 
Through an internal reactive thioester C4b is covalently linked to the activator [ 7 ], 
and C2 subsequently joins to form the proconvertase C4bC2, which is cleaved, 
also by C1s, resulting in the appearance of the CP C3 convertase C4bC2a [ 8 ]. The 
lectin pathway is similar to the CP but differs in the molecular patterns activating 
it. The recognition is achieved by mannan-binding lectin (MBL), fi colins, and col-
lectin-11 binding to glycan moieties of a variety of glycoproteins and glycolipids 
specifi c to pathogens (bacteria, viruses and fungi) and damaged self [ 9 ,  10 ].  The 
  pattern recognition molecules are associated to serine proteases MASP-1 and 
MASP-2, and recent work has established that MASP-1 may autoactivate and then 
cleaves MASP-2 resulting in an activated MASP-2 which can cleave C4. Further 
processing of the proconvertase may then be carried out by either MASP-1 or 
MASP-2 [ 11 ,  12 ].

    C3 convertases are proteolytic complexes able to cleave the central complement 
component C3 into C3a and C3b [ 13 ]. The anaphylatoxin C3a recruits immune cells 
to the site of infection and initiates an acute infl ammatory response [ 14 ] whereas 
C3b is the major opsonin of the complement system. Like C4b, it covalently attaches 
to the activator through its thioester [ 15 ] thereby “tagging” foreign and altered-self 
objects leading to opsonization. This also leads to initiation of the alternative path-
way as activator-bound C3b recruits and binds factor B which is then cleaved by 
factor D, yielding the AP C3 convertase C3bBb [ 16 ]. The C3 convertase in turn 
generates more C3b from C3 and in this way creates a powerful amplifi cation loop 
that accounts for 80–90 % of the outcome in the terminal pathway (see below) when 
complement is activated through the CP [ 17 ] or the LP [ 18 ]. However, AP activa-
tion may also occur spontaneously upon hydrolysis (tick-over) of the thioester bond 
within C3 generating a water-reacted molecule, C3(H 2 O) capable of forming the 
fl uid-phase C3 convertase [ 19 ], which can then be stabilized on microbial surfaces 
and apopotic/necrotic host cells by properdin [ 20 ]. 

 The C3 convertases may recruit  a   second molecule of C3b yielding the AP C5 
convertase C3bBbC3b or the CP C5 convertase C4bC2aC3b [ 21 ]. These cleave 
C5 into C5a and C5b thereby initiating the terminal pathway (TP) [ 22 ]. The C5a 
anaphylatoxin signals through the G-protein coupled receptor, C5aR, and initiates 
infl ammation (see below). C5b is devoid of the thioester and does not attach to 
activating surfaces but instead binds to C6, C7, C8 and multiple copies of C9, 
forming the (C5bC6C7C8)C9n complex known as the membrane attack complex 
(MAC) [ 23 ]. Active MAC is able to insert into membranes and form pores result-
ing in cell lysis. Although MAC is potentially a powerful weapon against invad-
ing pathogens, defi ciencies in the TP proteins primarily leads to  meningococci  
infections  [ 24 ].  
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2.1.2     Complement Regulation 

 Obviously, uncontrolled C3b deposition causes infl ammation and cytolysis. For this 
reason complement has to be tightly regulated on healthy tissues. Host cells express 
cell-surface and soluble regulators (Fig.  2.2 ). Low concentration/absence or muta-
tions in these proteins are at the heart of pathogenesis when complement is involved. 
The  serpin C1 esterase inhibitor (C1-INH) blocks      the C1 complex and also the LP 
proteases MASP-1 and MASP-2 [ 25 ], but it is not specifi c to complement as it also 
targets plasmin, thrombin, factor Xa and kallikrein. In the AP, most regulators 
function at the level of the C3 convertases by stimulating their dissociation (decay 
acceleration activity) or by promoting the proteolytic degradation of C3b into iC3b 
by the serine protease factor I [ 26 ] (co-factor activity). iC3b cannot associate with 
factor B and is thus irreversibly unable to form the C3 convertase. iC3b may be 
further degraded into C3dg and  fi nally      C3d by factor I and plasmin [ 27 ].

    Factor H (fH) is      the major AP regulator and exhibits both decay and co-factor 
activity for both C3bBb and C3(H 2 0)Bb C3 convertases [ 28 ]. A pathogen cell opso-
nized with C3b but not capable of stabilizing fH binding will bind fH weakly pre-
venting inactivation of C3b, whereas a non-activating host cell presenting the 
appropriate glycosaminoglycans will associate effi ciently with fH yielding protec-
tion through C3b degradation [ 29 ]. fH consists of 20 complement control protein 
(CCP) domains (Fig.  2.2a ). X-ray crystallography and NMR have deciphered the 
three-dimensional structures of all fH CCP domains but CCPs 9, 14 and 17, while 
full length fH has been studied by solution scattering [ 30 – 34 ]. Most of the structure- 
function research has focused on CCPs 1–4 and 19–20 binding C3b, and CCPs 6–8 
and 19–20 associating with self-surfaces [ 34 – 36 ]. 

 There are six other proteins related to fH that bind to C3b or C3d, the fH-like 
protein 1 (a splice variant of fH) and fi ve fH-related proteins (CFHR1–5). All these 
are also composed entirely of CCP domains with different degrees of sequence 
identity with fH (Fig.  2.2a ). CFHR1 can associate into a homodimer as well as into 
a heterodimer with CFHR2 or CFHR5 [ 37 ]. CFHR1 inhibits the C5 convertase as 
well as MAC formation [ 38 ] by binding to C3b through its N-terminal homodimer- 
forming moiety, but CFHR1 lacks both co-factor and decay activity [ 39 ]. CFHR2 
inhibits the formation of the C3 convertase [ 40 ] but does not compete with fH for 
the binding to C3b [ 40 ]. CFHR3 competes with fH for the binding to C3b but its 
role in complement control is not settled [ 41 ]. The activity of CFHR4 is also unclear, 
but it binds C3b and has cofactor activity. CHFR5 possesses both cofactor and 
decay activities and is also recruited to damaged self-surfaces [ 42 ]. 

  C4b-binding protein (C4BP)      is a large plasma-circulating glycoprotein. The 
major form of C4BP consists of seven identical α chains and one β chain, both con-
sisting of CCP domains [ 43 ]. The chains are connected by disulfi de bridges and the 
structure is spider-like with seven elongated subunits attached to a relatively small 
central body [ 44 ]. Each α chain contains a binding site for C4b. Once bound to 
C4BP, C4b serves as a substrate for factor I. C4BP can also act as cofactor in factor 
I-mediated proteolysis of C3b, although fH and CR1 (see below) are more effi cient 
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cofactors for C3b. Humans have three CCP-based membrane-bound complement 
regulators as well (Fig.  2.2b ). The fi rst is CD46, also known as the membrane cofac-
tor protein (MCP). It is a cofactor for factor I-mediated cleavage of C3b and C4b 
into iC3b and iC4b. CD46 is ubiquitously expressed on all nucleated cells, thus only 
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  Fig. 2.2    Complement regulators built on complement control protein (CCP) modules. ( a ) Domain 
organization of human factor H. CCP domains involved in C3b binding are colored  red , glycos-
aminoglycan (GAG) binding moieties  yellow , CCPs binding C3d/GAG  blue . Therapeutic mole-
cule mini-fH is presented below. Factor H CCPs are conserved in CFHRs and are presented 
directly below. Regions mutated in AMD and aHUS are delimited with  arrows . Bacterial species 
evading complement by binding fH are listed below with the respective fH binding regions. ( b ) 
Domain organization of the most prominent membrane-bound host regulators. ( c ) Structural 
model of fH binding to C3b [ 34 ,  36 ] (Color online)       
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erythrocytes lack CD46 [ 45 ]. The extracellular part of CD46 contains four CCP 
domains that harbor the C3b  and      C4b binding sites. The second membrane-bound 
complement regulator is CD55  or   decay accelerating factor (DAF). This is a 70 kDa 
GPI-anchored glycoprotein expressed on a variety of cells and tissues [ 46 ]. 
Membrane-bound DAF exerts its complement-inhibitory properties by disrupting 
both AP and CP C3 and C5 convertases, and this function resides within its four 
CCP domains [ 47 ]. 

 Another important complement regulator  is   complement receptor 1 ( CR1).   It is 
a type 1 transmembrane protein composed of numerous CCP domains (44 for the 
longest allelic variant). CR1 is expressed on almost all peripheral blood cells except 
platelets, NK- and T-cells [ 48 ,  49 ]. Apart from peripheral blood cells, CR1 is found 
in some tissues. It plays an important role in the germinal centers of the lymph 
nodes where it is found on follicular dendritic cells capturing complement- opsonized 
antigens that serve to stimulate B-cells [ 50 ,  51 ]. CR1 can bind to both C3b and C4b 
with high affi nity and to iC3b and C3d(g) with somewhat lower affi nity [ 52 ]. Both 
CP and AP C3 and C5 convertases are inhibited by CR1 via its decay-accelerating 
activity. It also serves as cofactor for factor I-mediated degradation of C3b and C4b. 

 Three proteins not based on CCP domains function as MAC assembly inhibitors. 
Vitronectin (S-protein) binds to C5b-7 through the C5b-7 membrane-binding site 
and the resulting SC5b-7 complex associates with C8 and three molecules of C9 to 
form the 1 MDa soluble SC5b-9 complex [ 53 ,  54 ]. Another regulator is clusterin 
(also called SP-40,40 or apoliporotein J) which impedes C5b-7 membrane associa-
tion and the addition of C9 to C5b-8 and C5b-9 [ 55 ].  Whereas   vitronectrin and 
clusterin are soluble proteins, the third inhibitor of MAC assembly, CD59, is a 20 
kDa, GPI-anchored and heavily glycosylated protein widely expressed on almost all 
tissues and circulating cells [ 56 ].  

2.1.3     Complement-related Diseases 

 Uncontrolled and excessive complement activation leads  to   tissue damage and 
pathogenesis. The molecular details of how complement proteins contribute to a 
wide variety of disease conditions and how control of complement may be re- 
established has recently been extensively reviewed [ 57 – 59 ]. Here we will present 
some prominent conditions in which animal models, studies of individuals with 
mutations in complement proteins, and clinical usage of a C5 antibody suggest that 
therapeutic control of complement is clinically relevant. 

 The most frequent cause of blindness (50 %) affecting elderly persons  is   age- 
related macular degeneration ( AMD)   with more than 30 million people affected 
worldwide. AMD causes signifi cant changes in the retinal anatomy and deposition 
of drusen. This can develop into either neovascular/wet AMD with invasion of 
blood vessels into the retina or dry AMD with constriction of blood vessels, photo-
receptor degeneration, and geographic atrophy [ 60 ]. The dry form is currently 
untreatable whereas wet AMD is treated with intravital injections of VEGF  antibody. 
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AMD is strongly correlated with insuffi cient control of the AP caused by mutations in 
fH, C3, and fI but also in other complement proteins [ 61 – 64 ]. The best characterized 
mutant, fH Tyr402His, accounts for 50 % of the heritability of AMD, and causes the 
altered fH to bind more weakly to host cell glycans as the tyrosine is located in the 
ligand binding site of fH [ 32 ]. Since fH has AP convertase decay and co-factor 
activity for fI in C3b degradation, host cells are less protected than in the presence 
of normal fH. The same effect is caused by two C3 mutations for which fH co-factor 
activity is reduced [ 65 ], and fI variants which are less expressed and secreted [ 66 ]. 
Further supporting the link between AMD and high convertase activity, mutations 
in fB causing weaker association with C3b provide protection against AMD [ 67 ]. 
Despite these connections between AMD and complement, clinical trials with com-
plement inhibitors targeting either the AP (C3 and factor D) or the TP (C5) have so 
far been disappointing, and so far no complement based therapeutic for AMD has 
reached phase III clinical trials [ 60 ]. 

 Sepsis is a systemic  infl ammatory   condition established by infectious agents, 
which leads to an excessive immune response resulting in host damage [ 68 ]. A ‘cyto-
kine storm’ occurs and together with intravascular coagulation triggers multi- organ 
failure. The two C5a receptors C5aR and C5L2 have been implicated in the patho-
genesis of sepsis by contributing to the cytokine storm and suppression of the oxida-
tive burst in neutrophils, thereby, hampering the elimination of the infectious agent 
[ 69 ]. In a rat cecal ligation and puncture (CLP) sepsis model, C5a antibodies effec-
tively decreased bacteremia, increased survival, restored H 2 O 2  release by blood neu-
trophils and reduced coagulation [ 70 ,  71 ]. Neutrophil function was also restored in a 
mouse CLP model upon treatment with a cyclic peptide C5aR antagonist [ 72 ]. 
Furthermore, in a CLP model of sepsis simultaneous blockade of both C5aR and 
C5L2 with antibodies or a C5aR/C5L2 antagonist (C5a-based antagonist (see below)) 
increased survival compared to inhibition of the receptors one at a time [ 73 ]. 

  Ischemia–reperfusion (I/R) injuries      are caused by a reduction of blood fl ow to 
tissues and organs followed by re-establishment of the blood fl ow during which 
there is an accumulation of leukocytes in the vascular epithelium, upregulation of 
vascular pro-infl ammatory molecules and reactive oxygen species [ 74 ]. Complement 
activation has been observed in many different organs undergoing I/R, including 
the gastrointestinal system, brain, lung, and kidneys [ 75 ]. I/R damage occurs during 
kidney transplantation, and locally-produced complement proteins are the impor-
tant mediators of damage in this case [ 76 ,  77 ]. The molecular mechanism of 
complement- mediated damage during I/R appears to be intricate and tissue- 
dependent. In renal I/R, the TP plays a central role since both inhibition of C5b-9 
assembly in C6 defi cient mice and inhibition of C5aR with a small molecule antago-
nist reduce I/R damage [ 78 ,  79 ]. Whereas MBL-defi cient mice are protected [ 80 ], 
absence of C4 does not provide protection [ 78 ], suggesting that C3 cleavage 
bypasses the C4b-based CP C3 convertase. In mouse models of myocardial and 
gastro-intestinal I/R injury both knockout of MASP-2 and MASP-2 inhibition with 
antibodies conferred protection and again C3 deposition was found to be independent 
of C4 [ 81 ]. Once C3b has been generated, further amplifi cation takes place through 
the AP explaining the benefi ts in a mouse ischemic stroke model of fB absence, 

2 Complement Regulators and Inhibitors in Health and Disease...



20

but with no protection afforded by C6 knockout [ 82 ]. In a mouse model of myocardiac 
I/R injury absence of MBL and MASP-2 [ 81 ,  83 ] attenuates injury, and interest-
ingly, when given at pharmacological doses, the naturally occurring MAP-1 
(Map44) protein competing with MASP-1/2 for binding to MBL and fi colins also 
inhibits I/R injury in addition to  inhibiting      thrombosis [ 84 ]. 

 Rheumatoid arthritis (RA) is a  chronic      autoimmune infl ammatory condition con-
ferring synovial joint damage [ 85 ] to which complement TP has been acknowl-
edged as an important contributor [ 86 ]. Aggregation of self-antigen-antibody 
complexes leads to the formation of complement-activating immune complexes in 
the synovial tissue [ 87 ]. Several complement proteins are involved in RA pathogen-
esis, but C5 is likely to play a pivotal role in complement-mediated tissue damage 
within RA [ 86 ]. Studies on C5-defi cient murine models with type II collagen- 
induced arthritis (CIA), suggest a role of C5 in the pathogenesis [ 88 ], and adminis-
tration of anti-C5 antibodies in C5-suffi cient murine models prevents the onset of 
CIA and signifi cantly reduces the severity of the disease during active CIA [ 89 ]. 
Signaling of C5a through C5aR and C5L2 is believed to play a signifi cant role in the 
pathogenesis of RA [ 90 – 92 ] and vaccination with a C5a-fusion protein reduced 
arthritis severity and incidence in a mouse model [ 93 ]. However, somewhat disap-
pointing considering these results from animal models, administration of the C5aR 
antagonist PMX53 failed to reduce synovial infl ammation in RA patients [ 94 ]. 

 In humans the terminal pathway and MAC formation is an important contributor 
to pathophysiology in  paroxysmal nocturnal hemoglobinuria (PNH)     , paroxysmal 
cold hemoglobinuria [ 95 ], and atypical hemolytic urelytic syndrome (aHUS) [ 96 ]. 
PNH is caused by a  PIGA  gene mutation in haemopoietic stem cells resulting in 
defi ciency of all GPI-anchored proteins on progeny cells [ 97 – 99 ] including CD59 
and DAF. In PNH patients up to 90 % of erythrocytes are lysed by MAC assembly 
[ 100 ] resulting in anemia, intravascular hemolysis, and thrombosis. PNH is rou-
tinely treated by administration of a humanized monoclonal antibody (Eculizumab), 
preventing C5 cleavage and, thus, the assembly of MAC and the formation of C5a 
[ 101 ]. Eculizumab-treated patients are much more susceptible to neisserial infec-
tions and need to be immunized prior to treatment with the C5 antibody. 

 Asthma is a chronic airway  disease   characterized by infl ammation of the upper 
respiratory tract, reversible airway obstruction, mucus cell hyperplasia and airway 
hyperresponsiveness (AHR) [ 102 ]. These outcomes are mediated by a T helper type 
2 (Th2) polarized immune response, and the anaphylatoxins C3a and C5a have been 
implicated in both the sensitizing and the effector phases of the disease by regulat-
ing the adaptive immune response to allergens [ 103 ]. Through studies targeting 
C5aR by monoclonal antibodies or a C5a-based antagonist, it was suggested that 
C5a signaling mediates tolerance to aeroallergens by altering the ratio of immuno-
genic myeloid dendritic cells (mDCs) to tolerogenic plasmacytoid dendritic cells 
(pDCs), suppressing the Th2 immune response [ 104 ]. In contrast to C5a, C3aR 
knock-out mice develop less pronounced AHR when treated with ovalbumin (OVA) 
[ 105 ], and blocking of complement activation with the recombinant soluble form 
of the rodent-specifi c complement regulator Crry decreases airway infl ammation in 
already sensitized mice, by a decrease in both pulmonary eosinophils and immunogenic 

L. Yatime et al.



21

Th2 cytokine levels in bronchoalveolar lavage fl uid (BALF) [ 106 ]. Increased levels 
of both C3a and C5a were found in BALF from asthmatic patients when compared 
to normal individuals [ 107 ], suggesting that both anaphylatoxins function during 
the effector phase [ 106 ,  108 ].   

2.2     Inhibitors Targeting Complement 

2.2.1     Inhibitors Targeting the Convertases 

  Convertases are obvious targets for complement inhibition, although therapeutics 
targeting these will in most complementrelated disease conditions have to be given 
systemically, thus, requiring high doses. Convertases targeting has been exploited by 
pathogens to evade complement and in research and drug development for control-
ling complement activation at either C3 or C5 cleavage stage [ 109 ]. To understand in 
detail the mechanism of known convertase inhibitors and how to develop new ones, 
it is helpful to investigate the structure of convertases, their substrates and the com-
plexes these molecules form with their inhibitors (Fig.  2.3 ). Considerable structural 
information has been generated concerning the AP C3 convertase. Structures of the 
proconvertase C3bB by EM and crystallography revealed how fB, in a MIDAS-Mg 2+  
dependent manner, associates with the C-terminal C345c domain of C3b, that is fl ex-
ibly attached to the remaining relatively rigid part of C3b [ 110 ,  111 ]. The proconver-
tase can exist in two states, open and closed, differing by a rotation of the fB SP 
domain, and only in the open conformation is the scissile bond region exposed and 
accessible to fD, which binds primarily through a fB exosite located 25 Å from the 
scissile bond [ 110 ]. The relevance of this exosite is evidenced by the ability of the 
anti-factor D mAb, developed for localized complement inhibition in the eye by 
Genentech, to prevent fD binding to this exosite by steric hindrance [ 112 ].

   Once the activation of the convertase has taken place it dissociates in minutes, 
but the  S. aureus  protein SCIN (see below) binds tightly to the AP C3 convertase 
and prevents it from binding C3. A dimeric form of the C3bBb-SCIN complex in 
which two SCIN molecules bridge two C3bBb complexes were crystallized and 
revealed the basic architecture of C3bBb. The only contact here is between the C3b 
C345c domain and the Bb von Willebrand factor type A (vWA) domain, whereas, 
the SP domain is extending away from C3b [ 113 ]. Deeper insight into substrate 
recognition by the convertases was obtained with the structure of C5 in complex 
with the C3b homolog cobra venom factor (CVF). C5 and CVF interact in a head- 
to- head manner with the long axis of the two molecules aligned and with two sepa-
rated points of contact. The largest of these is formed between the MG4 and MG5 
domains from both proteins. The remaining intermolecular contacts are formed 
between the C5 MG7 domain and the CVF MG6 and MG7 domains [ 114 ]. Compared 
to the structure of both unbound C5 [ 115 ] and human C3 [ 116 ], CVF-bound C5 
undergoes a signifi cant conformational change that is necessary to establish the 
two-points interaction, and this conformation has also been captured by crystal 
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packing for bovine C3 [ 117 ]. The combination of the SCIN-stabilized C3bBb structure 
and the C5-CVF structure led to the formulation of a general model for convertase- 
substrate interactions (Fig.  2.3 ). Since the catalytic subunit C2a/Bb is common for 
the CP/AP C3 and C5 convertases, it was suggested that the orientation of the sub-
strates C3 and C5 with respect to the catalytic subunit is similar in the two types 
of convertases [ 114 ], although covalent or non-covalent association of either C3 
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convertase with C3b switches the specifi city from C3 to C5 [ 118 – 120 ]. The additional 
C3b molecule lowers the K m  value for the C5 substrate by a factor of 100–1000 
[ 121 ,  122 ], but whether this is through a direct interaction with C5 or induced con-
formational change in the C3 convertase remains open. The validity of this conver-
tase-substrate model is emphasized by its ability to rationalize how some of the best 
characterized man-made and microbial complement inhibitors exert their effect. 
Prominent examples are the antibodies S77 and Eculizumab, the CRIg ectodomain, 
and the cyclic compstatin peptide, as described in the following. 

 The S77 mAb interferes with both AP convertases [ 123 ], which can be explained 
by its binding to C3b MG6 and MG7 domains (Fig.  2.3e ), that are both predicted to 
recognize the substrate C3/C5 MG7 domain [ 114 ]. A similar inhibitor is the ectodo-
main of the CRIg complement receptor. This receptor is found on tissue resident 
macrophages and plays an important function in clearance of pathogens from circu-
lation through interaction  with   C3b and iC3b on complement-opsonized activators 
[ 124 ]. The binding site on C3b has been mapped to the MG3, MG4, MG5, MG6 
domains and the LNK region (Fig.  2.3e ), and the ectodomain inhibits AP C3 and C5 
convertase activity [ 125 ]. The Compstatin peptide is frequently used as a general 
complement inhibitor and through its binding to C3 it blocks both the CP and AP 
C3 convertases by interfering with binding of C3 to the convertases. Compstatin 
also binds to C3b, iC3b and C3c [ 126 ]. One disadvantage of compstatin is the high 
C3 plasma concentration (7 μM) and the rapid clearance of peptides, but new comp-
statin analogues with sub-nanomolar K d  have substantially increased half-lives 
[ 127 ]. The peptide binds in a groove between the MG4 and MG5 domains of C3 or 
its fragments [ 128 ] (Fig.  2.3e ). As these domains in the substrate C3 are predicted 
to be recognized by the convertase, this explains the ability of compstatins to sup-
press C3 cleavage by either AP or CP convertases. Like compstatin, the C5 antibody 
Eculizumab hinders the binding of the substrate C5 to the convertase and, thereby, 
prevents its cleavage. However, Eculizumab binds to an epitope far from the conver-
tase cleavage site in the MG7 domain centered on residues 879–885 [ 129 ,  130 ], 
which overlaps substantially with the area of C5 in contact with CVF in their 
complex [ 114 ] (Fig.  2.3b, c ) .  

2.2.2     Regulator-derived C3 and C5 Inhibitors 

 Over the past years, the development  of   complement-targeted therapeutics has been 
inspired by natural complement regulators. The idea behind the rational design of 
such therapeutics is the use of naturally-occurring host proteins. Strategies involving 
complement targeting with systemically-administered inhibitors of such type have, 
however, a few drawbacks. Firstly, inhibiting complement systemically could have 
detrimental consequences in regard to the host immune defence. Secondly, due to 
the relatively low affi nity of these molecules (μM range) the administered dose 
would need to be very high. Thus, a more focused strategy is needed. Indeed, direct 
targeting of the surfaces where complement activation occurs is a more intelligent 
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and less costly approach. fH would be very attractive in therapeutics as it is a 
complement modulator that is a self-molecule, acts in the fl uid-phase as well as on 
surfaces and does not interfere with complement defence against pathogens. Purifi ed 
fH was shown to be able to control the C3 convertase in a mouse model of fH defi -
ciency [ 131 ]. In vitro assays in the presence of aHUS-associated anti-fH autoan-
tibodies showed that fH protected self-cells from complement. However, due to its 
size (155 kDa), presence of glycans and 40 disulfi de bridges, recombinant produc-
tion of full-length fH is challenging for routine administration to patients. 

 By the use of protein engineering it  has   been possible to develop mini-fH, a 
compact version of fH harbouring fH CCP 1–4 linked to CCP 19–20 (Fig.  2.2a ). 
This molecule contains fH binding sites to C3b/iC3b/C3d, retains its decay accel-
eration and cofactor activity and, very importantly, has the ability of fH to recognize 
host surface-specifi c glycans. Interestingly, this molecule surpasses fH in both 
affi nity towards C3 activation products and the ability to control AP activation [ 132 , 
 133 ]. Mini-fH has potential as a therapeutic molecule in complement-mediated dis-
eases such as aHUS, PNH or C3 glomerulopathies although its clinical properties 
remain to be investigated. Another inhibitor based on the fH ability to bind C3b is 
TT30 [ 134 ]. It is a chimeric protein developed by Alexion containing fH regulatory 
domains CCP 1–5 and CR2 CCP 1–4 responsible for binding to the C3b thioester 
domain. TT30 was extensively tested in the case of complement-mediated hemoly-
sis and found to inhibit MAC formation resulting from AP but not CP or LP 
activation. 

 Part of the recent research in complement therapeutics has been focused on pre-
venting complement activation on blood-exposed materials,    such as implants. A 
great deal of research has been evolving around heparin as it has been expected to 
recruit fH and inhibit complement activation on the surface of biomaterials. As 
expected, coating the biomaterials with high densities of heparin resulted in inhibi-
tion of complement activation [ 135 – 137 ] but it was later found that this inhibition 
was fH-independent [ 138 ]. An alternative approach, employed recently, consists of 
coating the bioimplant surfaces with fH binding peptides but not interfering with its 
activity as complement regulator [ 139 ] but this approach remains to be tested in a 
clinical setting. 

 Since CR1 possesses cofactor activity for factor I-mediated proteolysis of C3b 
and C4b, its potential in therapeutics has been extensively studied. Soluble recom-
binant CR1 (sCR1) was studied in animal models of autoimmune and infl ammatory 
disorders such as glomerulonephritis [ 140 ], myocardial infarction [ 141 ] and auto-
immune thyroiditis [ 142 ]. In mice, administration of sCR1 resulted in resolution of 
infl ammation and these encouraging results drove Avant Immunotherapeutics to 
develop sCR1 (TP10) for managing complement activation following coronary 
artery bypass graft surgery. TP10 was shown to be safe and well-tolerated in 
patients.    However, its effi cacy was far greater in male patients, and this formulation 
has been withdrawn from the market but its potential as a therapeutic agent has not 
been disputed. In fact, it has been successfully used in I/R injury when administered 
intravenously [ 143 ]. Nevertheless, since it is produced in Chinese hamster ovary 
cells as a 240 kDa glycoprotein [ 141 ,  144 ] and has to be injected systemically, it is 
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an expensive therapeutic agent. An alternative approach has been used for the devel-
opment of Microcept [ 145 ], a molecule readily produced in  E. coli  containing only 
the fi rst 3 CCP domains of CR1, suffi cient for inhibition of C3 and C5 activation by 
the AP and CP. Microcept contains a synthetic thiol-reactive myristoylated basic 
peptide tail attached through a C-terminal cysteine residue allowing its insertion 
into biological membranes and, thus, targeting and protecting the cells directly. 

 CD59 is an important complement regulator  as   evidenced by PNH patients, and 
the protein has been explored as a therapeutic agent since it only blocks MAC for-
mation. Although CD59 has little effect as MAC inhibitor when administered sys-
temically in a soluble form, if targeted to the sites of MAC formation, recombinant 
CD59 could be an effective complement modulator. Several strategies have explored 
generating CD59 chimeric proteins. One of them consisted of fusing CD59 to DAF 
and a GPI anchor, thus allowing its insertion into the membranes and its localization 
where C3 and C5 convertases are present [ 146 ]. Another strategy involved fusing 
CD59 to CR2 and DAF to CR2 [ 147 ]. These CR2 fusion proteins were effi cient 
complement modulators in mouse models of lupus nephritis. In conclusion, fusing 
CD59 to a cell-surface targeting moiety may be an effi cient therapeutic strategy in 
disease conditions where only MAC formation needs to be inhibited.  

2.2.3     Inhibitors Targeting the Anaphylatoxin/Receptor Axis 

  The anaphylatoxins C3a and C5a produced by the complement proteolytic cascade 
and their associated receptors are important targets for the therapeutical treatment 
of infl ammatory disorders. C3a and C5a mediate their pro-infl ammatory effects by 
signaling through the G-coupled protein receptors C3aR and C5aR, respectively. 
This leads to chemotaxis, oxidative burst, production of pro-infl ammatory molecules 
and activation of the adaptive immune system [ 148 ]. C3a is generally considered as 
a weaker pro-infl ammatory inducer than C5a. To control the signaling exerted by 
both anaphylatoxins, carboxypeptidases cleave their C-terminal arginine resulting in 
C5a-desArg and C3a-desArg. C5a-desArg partially maintains C5aR binding and 
signaling activity whereas C3a-desArg is devoid of any signaling through C3aR 
[ 149 ,  150 ]. The 7TM receptor C5L2 binding C5a, C5a-desArg, C3a, and C3a-
desArg, has long been considered as a decoy receptor, but there are now reports sug-
gesting that it actively participates in orchestrating pro-infl ammatory events [ 151 ]. 
Plasma levels of anaphylatoxins are elevated in various disease settings, and they can 
be used as biomarkers in a number of infl ammatory disorders [ 148 ]. 

 Targeting of the anaphylatoxin-receptor axis provides a selective way of down- 
regulating complement-mediated infl ammation and is, therefore, an attractive thera-
peutic strategy since opsonization and MAC formation are preserved. Focus has so 
far been given to the C5a-C5aR axis, although C3aR antagonists are also in devel-
opment as extensively reviewed recently [ 152 ]. In humans, C5a is a glycosylated 
protein that adopts either a compact four-helix bundle core with a fl exible C-terminal 
extension [ 153 ] or a three-helix bundle for C5a-desArg [ 154 ]. The proposed binding 
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interface for C5aR on C5a is hidden within the C5 molecule [ 115 ]. Thus targeting 
molecules can mostly be directed either towards the exposed C5a surface present on 
C5 or towards the C5aR binding surface only available on the released anaphylatoxin. 
The fi rst strategy presents more risks since it can generate global C5 inhibitors, if 
large inhibitory molecules are employed impairing C5 cleavage and, thereby, the 
entire TP. This effect is in some clinical contexts undesirable, e.g. in the treatment 
of sepsis. Inhibitors directly interfering with C5a-C5aR interaction while preserving 
other C5 functions are, therefore, more appealing. 

 Several groups and companies have developed potent C5a monoclonal antibod-
ies [ 155 ]. The use of C5a antibodies for preventing multiple organ failure and 
improving survival rate in sepsis has been documented since the 1980s [ 156 ]. 
Of interest among these, the anti-C5a mAb 137-26 directly binds to the C5a moiety 
on C5 without inhibiting C5 cleavage and subsequent MAC formation [ 157 ]. It is 
commercialized as TNX558 by Tanox/Genentech and has been in preclinical devel-
opment for infl ammatory diseases [ 158 ]. Another humanized C5a monoclonal anti-
body, CaCP29 (IFX-1), developed by Infl aRx GmbH, has passed Phase I clinical 
trials in Germany for human sepsis [ 159 ]. Aptamer approaches have also been con-
sidered for the blockade of C5a function. NOXXON Pharma has developed a class 
of aptamers called Spiegelmers ®  [ 160 ] built on nucleotides containing  L -ribose 
making them the mirror images of  D -ribose containing RNA. As therapeutics, 
Spiegelmers are much more resistant to nuclease degradation compared to conven-
tional aptamers giving high stability in the blood. C5a has been effi ciently targeted 
by Spiegelmers ®  NOX-D19 and NOX-D20, which have shown promising results in 
reducing vascular injuries after transplantation and in attenuating organ damage 
during sepsis [ 151 ,  161 ]. NOX-D20 binds to both human and murine C5a with 
picomolar affi nities but also human C5 with similar affi nity although NOX-D20 
does not prevent C5 cleavage. These mirror-image L-RNA aptamers, therefore, 
appear to be promising anti-C5a therapeutics. An alternative strategy involving 
immunization with a recombinant MBP-C5a fusion protein resulted in the produc-
tion of neutralizing C5a antibodies [ 93 ]. A new study instead used a recombinant 
C5a molecule modifi ed with unnatural amino acids. A single replacement was suf-
fi cient to induce the production of anti-C5a antibodies capable of blocking the C5a- 
C5aR interaction, leading to signifi cant relief of the clinical symptoms in a mouse 
model of rheumatoid arthritis [ 162 ]. 

 In relation to C5a-targeting molecules the anaphylatoxin receptors have also 
been a focus for inhibitor development. A large number of C5aR inhibitors have 
been developed. A well described cyclic peptide antagonist known as PMX53 or 
3D53 targets C5aR and competes with C5a binding to human polymorphonuclear 
neutrophils (PMNs) with an IC 50  value of 300 nM, but does not bind human C5L2 
[ 148 ,  163 ]. The antagonistic activity of PMX53 was measured, showing an inhibi-
tion of myeloperoxidase release from PMNs with an IC 50  of 20 nM [ 163 ]. NMR 
studies of PMX53 suggests a  β -turn motif in the molecule [ 164 ]. Mitsubishi 
Pharmaceuticals Company developed the orally active small molecule C5aR antag-
onist W54011 with a K i  of 2.2 nM. It inhibits calcium mobilization in human neu-
trophils and C5a-induced neutropenia in gerbils, and shows no inhibition of 
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C5a-binding to C5L2 [ 165 ,  166 ]. Another small molecule, NDT9513727, specifi -
cally targeting C5aR, reduces the constitutive GTPγ[ 35 S] binding of human C5aR- 
coupled G-proteins, and, therefore, functions as an inverse agonist [ 167 ]. 

 Proteins have also been selected to target C5aR. Developing human C5aR 
knock-in mice responding to endogenously produced C5a facilitated the selection 
of anti-C5aR antibodies showing promising results in preventing and reversing 
serum-induced infl ammation in the knock-in mice. The most potent anti-C5aR anti-
bodies bind to the second extracellular loop of the receptor [ 90 ], which was previ-
ously identifi ed as important for balancing the activity of C5aR, since mutations in 
this region resulted in constitutively active receptors [ 168 ]. The C5a molecule has 
also been exploited as a scaffold to generate potent competitors of C5a receptors, 
and from a phage library an antagonist called ΔpIII-A8 was selected which reduced 
intestinal injury and lung vascular permeability and increased survival of (I/R) 
injured mice [ 169 ]. A shortened version (A8 Δ71-73 ) targeting both C5aR and C5L2 
was developed later and, interestingly, it was found that one particular residue 
determines agonism versus antagonism of A8 related proteins. In C5a, this amino 
acid is an aspartate and in A8 Δ71-73  it is mutated to an arginine [ 170 ]. 

 For C3aR inhibitor developments  have   mainly focused on peptide analogs of the 
C-terminal region of C3a. Hexapeptides mimicking the C-terminus of C3a were syn-
thesized resulting in both agonists and antagonists. The most potent agonists shared 
an N-terminal phenylalanine, a tryptophan or leucine at the second position and the 
highly conserved C-terminal sequence Leu-Ala-Arg. Substituting the fourth leucine 
to the bulky cyclohexylalanine resulted in antagonists [ 171 ]. By NMR, one of the 
most potent agonistic peptides was found to adopt a  β -turn motif similar to C5aR 
ligands [ 172 ]. As an alternative to peptides, small-molecule compounds targeting 
C3aR have also been discovered, with an example being the functional antagonist 
SB290157 with an IC 50  of 200 nM [ 173 ]. Although this drug showed anti-infl amma-
tory activity in a guinea pig model [ 174 ], a more recent paper found this molecule to 
have partial agonistic activity, a confl ict that might be explained by differences in 
receptor density in the systems used [ 175 ]. Numerous other drugs including proteins, 
peptides and small molecules have been developed targeting the anaphylatoxin 
receptors and have been extensively reviewed elsewhere  [ 148 ,  152 ,  176 ].   

2.3     Bacterial Strategies for Immune Evasion: 
What Can Be Learnt from Them 

 Complement primary function resides in the host defence against pathogens, but 
many pathogens successfully evade complement [ 177 ]. One can learn from these 
evasion strategies on how to inhibit complement at various stages of the cascade 
and apply this knowledge to design inhibitors for therapeutic applications. Many 
 pathogen   inhibitors have also proven useful to gain structural insights into comple-
ment mechanistics by freezing complement proteins and their complexes in specifi c 
functional states with the ability of the  S. aureus  protein SCIN to stabilize the 
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otherwise rapidly dissociating C3 convertase as the best example. We will review 
here some of the best characterized pathogen inhibitors and try  to   comprehend how 
their interaction with complement may inspire attempts to make potent, selective 
inhibitors of complement. 

2.3.1     Pathogen Inhibitors Targeting C3 

  Staphylococci  are quite versatile organisms with respect to complement evasion. 
Targets of choice for staphylococcal proteins are the C3 and C5 convertases [ 178 ] 
as already described for SCIN above. Three other potent  complement   inhibitors 
from  Staphylococcus aureus  - Efb, the closely related Ehp, and Sbi - are binders of 
C3 and its cleavage products, C3b and iC3b, through preferential interaction with 
the C3 thioester domain, with the C3b degradation product C3d as the minimal 
binding partner. Crystal structures of the Ehc:C3d, Efb-C:C3d and Sbi:C3d com-
plexes revealed that their primary binding site on C3d is partially inaccessible 
within the intact C3b molecule [ 179 – 181 ] (Fig.  2.4a ). As a consequence of their 
binding to this hindered site, Efb and Ehp induce an altered overall conformation of 
C3 and C3b. Displacement of the C3d thioester domain is relayed to the rest of the 
molecule, therefore preventing its further participation in the downstream events of 
the complement cascade, including formation of the AP convertases and covalent 
deposition on the pathogen surface. In the case of Sbi, a secondary binding site on 
C3d allows the inhibitory protein to form a covalent adduct with activated C3 forms 
(C3b and/or C3(H 2 O)), thereby directly interfering with AP activation [ 181 ] 
(Fig.  2.4a ). In addition, all three inhibitors compete with complement receptor 2 for 
the binding of C3d and, therefore, impede the stimulation of B cells mediated by 
this receptor [ 182 ].

2.3.2        Pathogen Inhibitors Targeting C5 

 Several pathogen inhibitors block the C5 convertase by interacting with C5. OmCI, 
a small protein from the soft tick  Ornithodoros moubata ,  binds   directly to C5 and 
inhibits its cleavage into C5a and C5b [ 183 ]. Structural studies of the OmCI:C5 
complex suggested that OmCI binding to C5 fi xes the C5 C345c domain and inhib-
its convertase binding to C5 by impairing the conformational fl exibility of this 
domain [ 115 ]. A recombinant version of OmCI, rev576, has shown promising 
results in models of auto-immune neuromuscular diseases and sepsis [ 184 – 186 ]. 
The SSL7 protein from  Staphylococcus aureus  likewise binds C5 and prevents its 
proteolytic processing by the C5 convertase, thereby impairing MAC-mediated 
bacteriolysis and C5a release. Its mechanism of action was elucidated through 
structural analysis of the C5:SSL7 complex [ 187 ]. SSL7 binds to a surface patch 
quite distant from the C5 cleavage site suggesting a more complex mechanism than 
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simple steric hindrance of the C5 cleavage site. This was later confi rmed by the 
structure of the ternary complex between C5, SSL7 and CVF [ 114 ]. Together these 
studies explained how simultaneous recruitment of C5 by SSL7 C-terminal domain 
and IgA by SSL7 N-terminal domain prevented convertase recognition of C5 
(Fig.  2.4b ). Interestingly, the isolated C-terminal domain of SSL7 devoid of affi nity 
for IgA, did not prevent C5 cleavage and permitted bacteriolysis while preserving a 
very low hemolytic activity on erythrocytes [ 187 ] suggesting that this domain may 

  Fig. 2.4    Complement evasion by pathogens. ( a ) The two binding modes of staphylococcal protein 
Sbi onto C3d [ 181 ] and their docking onto C3b [ 210 ], revealing the structural model for their 
inhibition of the C3 convertase function. ( b ) Structural model for SSL7 inhibition of the C5 con-
vertase by dual recruitment of C5 and IgA, based on the C5:SSL7 [ 187 ], C5:CVF [ 114 ] and 
SSL7:IgA-Fc [ 211 ] complex structures. ( c ) Structure of the inhibitor CHIPS in complex with a 
peptidic fragment of C5aR [ 193 ] and model for its inhibition of C5a binding by blocking the C5aR 
N-terminal docking site around the two sulfo-tyrosines. ( d ) Structure of the complex between fH 
CCPs 6–7 and fH-binding protein (fHBP) from  N. meningitidis  [ 199 ] and scheme for fH trapping 
on the pathogen surface       
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indicate a direction for development of a therapeutic agent targeting complement- 
dependent hemolytic diseases. 

 Bacterial proteins that directly  target   MAC formation have also been reported. 
Streptococcal Inhibitor of Complement (SIC) and variants from other  Streptococcus  
strains bind to the C5b67 complex hindering membrane insertion [ 188 ]. An outer 
membrane protein from  Escherichia coli  K12 strain, TraT, also impairs MAC forma-
tion by direct binding to C5b6 preventing C7 recruitment [ 189 ].  Borrelia burgdorferi  
produces a CD59-like protein that blocks C9 polymerization [ 190 ]. Pathogen prote-
ases are also potent effectors in complement evasion and C5a peptidases are found in 
various organisms. In particular, group A  streptococci  produce a cell- envelope pro-
teinase (ScpA or ScpB) cleaving off the seven last residues from the C5a C-terminus, 
thereby shifting C5a from agonistic to antagonistic activity [ 190 ]. Proteinases from 
 Porphyromonas gingivalis  are also capable of shedding off the N-terminal region of 
C5aR [ 191 ], thus inactivating the receptor. Direct inhibition of C5aR is also achieved 
by pathogenic virulence factors. A well-studied case is the secreted chemotaxis 
inhibitory protein of  Staphylococcus aureus  (CHIPS) binding C5aR with a  K  d  of 1.1 
nM [ 192 ]. An NMR structure of CHIPS in complex with a peptide mimicking the 
N-terminus of C5aR containing  O- sulfated tyrosines revealed how CHIPS competi-
tively antagonizes the interaction of the core structure of C5a with the receptor 
[ 193 ] (Fig.  2.4c ). CHIPS or derivatives of this was suggested to serve as an anti-
infl ammatory therapeutic agent but this was questioned due to the high immunoge-
nicity of CHIPS [ 194 ]. However, mutated or shortened versions of CHIPS with 
lower immunogenicity maintain the C5aR antagonizing effect [ 195 ,  196 ].  

2.3.3     Inhibition/Trapping of the Complement Regulators 

 Bacteria and viruses have also developed approaches to hijack complement compo-
nents to their own advantage with complement regulators fH, fHL-1 and C4BP 
being the preferred victims. The plethora of bacterial fH binders  includes   comple-
ment regulator-acquiring surface proteins ( CRASP)   and outer surface protein E 
(OspE) from  Borrelia burgdorferi , M proteins, Fba, Scl1.6 and Hic from 
 Streptococci , and fH binding protein (fHBP) from  Neisseria meningitidis.  CRASP-1 
binds to CCP5–7 of fH as a dimer and clamps the bound CCP domains, thereby 
enhancing scavenging of the complement regulator on the pathogen cell surface 
[ 197 ]. OspE and neisserial FHBP, on the other hand, use a protein mimicry of the 
host carbohydrates to sequester fH by targeting either CCP19–20 [ 198 ] or CCP6–7 
[ 199 ] (Fig.  2.4d ). In both cases, the binding epitopes on fH are similar to the ones 
proposed for glycosaminoglycans binding on endothelial cells. Finally, certain 
viruses also possess complement regulators, such as the vaccinia virus complement- 
control protein (VCP) and the smallpox inhibitor of complement enzyme (SPICE) 
which both show cofactor activity for degradation of C3b [ 200 ].    http://www.nature.
com/nrmicro/journal/v6/n2/full/nrmicro1824.html-B27       
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2.4     Discussion and Concluding Remarks 

 Although the concept of complement as a cornerstone in defence against microbial 
invasion and in homeostasis still holds true, there is also clearly a dark side to this 
highly complex machinery. The capacity of complement to recognize danger-asso-
ciated molecular patterns from both pathogens and host cells and its interconnectiv-
ity with other branches of the innate and adaptive immune system and even the 
coagulation system [ 2 ], adds on to diffi culty of maintaining tight control of the 
system. Evidently, any breach in its regulation may disturb the fi ne balance between 
protection and damage. The list of diseases that implicate complement as one of the 
causative elements keeps growing and encompasses a broad panel of pathologies 
ranging from infl ammatory diseases to neurodegenerative disorders and cancers 
[ 59 ,  201 ]. Our knowledge of the intricate mechanisms at work during complement 
activation and complement crosstalk with parallel defence systems has gained 
considerable depth over the last decade, not least due to the increasing amount of 
available structural and biochemical data allowing a comprehension of the comple-
ment cascade in atomic details. 

 The success  of   Eculizumab [ 101 ] has encouraged many new initiatives in the 
fi eld. A constantly growing number of molecules arising from both academic and 
industrial research efforts are now under development, with already promising pre-
liminary results in clinical studies for several of them, as reviewed here. Many 
classes of molecules have been considered for these drug candidates, including 
antibodies, aptamers, small chemical compounds and recombinant versions of 
naturally occurring proteic inhibitors, e.g. based on bacterial inhibitors or host 
regulators. The constantly improved understanding of the mode of action of com-
plement regulators and receptors has led to the conception of new generations of 
multimodular inhibitors incorporating functionalities of one or several comple-
ment regulators for effi cient convertase decay and/or opsonin degradation [ 57 ]. 
Although many regulatory concepts have already been exploited, new ideas are 
emerging thanks to the availability of both functional and structural data allowing 
comprehending the mechanistics of complement activation at the molecular level. 
As one example, recent structures of C4 and its complex with MASP-2 revealed an 
important exosite interaction of MASP-2 with the C4 C345c domain and it could 
be demonstrated that a recombinant version of this domain functions as a CP/LP 
pathway inhibitor [ 202 ]. 

 Evidently, targeting of complement at specifi c stages of the cascade is highly 
desirable to allow selective containment of the dysregulated pathway while pre-
serving protective functions of the overall immune system. While targeting of cen-
tral complement components such as the C3 convertase will lead to complete 
shutdown of the system, more refi ned approaches can be directed towards the ini-
tiation or the terminal steps. Interfering with the initial steps of complement activa-
tion may, for example, offer a way to specifi cally target one of the activation 
pathways while retaining normal complement defence functions through the other 
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untargeted pathways—granted that the identifi ed pathway is the major contributor 
to the pathological condition. 

 Targeting of the terminal steps of complement cascade has already been exten-
sively exploited through the inhibition of C5a-mediated signaling [ 70 ,  152 ] and the 
blockade of C5 by Eculizumab [ 95 ,  101 ]. Nevertheless, improvement of the known 
strategies may still be needed as exemplifi ed by Eculizumab. Although the antibody 
effectively prevents hemolytic activity by impairing MAC formation, it does not 
interfere with AP complement activation and subsequent opsonization of PNH cells, 
which thus are still preferentially marked for extravascular lysis [ 203 ]. Furthermore, 
the increased susceptibility to neisserial infections of the patients treated with 
Eculizumab still constitutes a disadvantage [ 204 ]. Another major concern for life-
long Eculizumab treatment for PNH and for some aHUS patients is the annual cost 
of €460,000 for an adult [ 130 ]. Despite these drawbacks, no effi cient substitute has 
been produced yet and clinical trials for the use of Eculizumab in acute infl amma-
tory disorders, such as antibody-mediated transplant graft rejection, are currently 
conducted [ 205 ]. In such settings where C5aR- mediated signaling is seen as a major 
contributor to the underlying infl ammation, a C5a or C5aR antagonist might simply 
be a more promising drug candidate [ 203 ]. 

 An emerging idea is that the inhibitor design has to be rethought for each particu-
lar disease [ 57 ]. During acute infl ammation (e.g. in sepsis), large amounts of com-
plement effectors (C3b, C4b, C5b, anaphylatoxins) will be produced. Thus, effi cient 
inhibitors should have fast, high affi nity binding capacities towards their target and 
a slow dissociation rate, to allow rapid and complete blocking of the complement 
cascade. In chronic infl ammation, on the other hand, a milder modulation of com-
plement may be suffi cient to re- establish a proper balance between protective func-
tion and injury—complete shutdown of the system being avoidable in that case. 
Another trend within complement inhibitors is the specifi c cell/tissue targeting of 
these [ 206 ]. Local delivery at the site of injury is highly desirable if one wants to 
preserve systemic complement function. Efforts in that sense have already been 
made for example by fusing regulator-mimicking molecules to targeting modules in 
order to deliver engineered versions of these inhibitors to sites of complement acti-
vation, with the factor H-CR2 fusion protein TT30 as an excellent example [ 134 , 
 207 ,  208 ]. Such targeting approaches may in the future be combined with nanopar-
ticle-based delivery systems for delivery of anti-infl ammatory drugs. More thoughts 
are to be put in this design strategy and organ- or tissue- specifi c delivering strate-
gies used for other systems should be addressed as well in the complement thera-
peutics fi eld. Finally, the control of complement activation may become an important 
issue for the future success of nanomedicine as surfaces considered as “foreign” to 
the complement system are introduced into the human body and often elicit activa-
tion of the system [ 209 ] and deeper structural knowledge of the mechanisms at play 
during complement activation will undoubtfully provide new tools to successfully 
overcome these challenges. 
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