Chapter 2
The Time Value of Money

You may have heard the expression, “A dollar today is worth more than a dollar
tomorrow,” which is because a dollar today has more time to accumulate inter-
est. The time value of money deals with this basic idea more broadly, whereby
an amount of money at the present time may be worth more than in the fu-
ture because of its earning potential. In this chapter, we discuss the valuing
of money over different time intervals, which includes a study of the present
value of future money and the future value of present money. The theory is
laid out in a rigorous, detailed, and general framework and accompanied by
numerous applications with direct relevance to personal finance.

To be self-contained for readers new to finance, Sections 2.1 to 2.5 intro-
duce our conventions and terminologies associated with time, interest rates,
required return rates, total return rates, simple interest, compound interest for
integral and nonintegral periods, and generalized compound interest, where
the interest rate and compounding period vary. Readers already familiar with
these topics should skim those sections for our notational usage. In Sec-
tion 2.6, we introduce the net present value and internal return rate, including
Descartes’s Rule of Signs. The theory of annuities is presented in Section 2.7
and includes amortization theory and annuities with varying payments and
varying interest rates. Applications of annuity theory to saving, borrowing,
equity in a house, sinking funds, the present value of preferred and common
stocks, and bond valuation are given in Sections 2.8 to 2.10.

© Arlie O. Petters and Xiaoying Dong 2016 13
A.O. Petters, X. Dong, An Introduction to Mathematical Finance with Applications, Springer
Undergraduate Texts in Mathematics and Technology, DOI 10.1007 /978-1-4939-3783-7 2



14 2 The Time Value of Money

2.1 Time

Before delving into the value of money over time, it is important to be clear
about our conventions and notation for time.

Throughout the book, the default unit of time is a year. Unless stated to the con-
trary, assume that a year consists of 365 calendar days and 252 trading days.!
When designating time, assume that there is a fixed starting time relative to
which the other moments of time are defined. The explicit choice of starting
time will depend on the context of the application, but we shall always repre-
sent it by 0. Note that the starting time need not be the current time.

We employ the following notation:

to = fixed current time, t = general moment of time.

Note that a general moment of time ¢ > 0 simultaneously designates the number
of years of elapsed time from 0 to the given moment. For example, writing
to = L = L
Ty T2
means that the current time is 3 months after the starting time and t is 3 months
from now. If October 1, November 1, and December 1 in 2015 mark the times
0, t1, and tp, respectively, then

We shall distinguish between an interval of time, say, [to,tf], and its time span
T, which is the length of the interval:

T =ty — tp = number of years from fy to t, (to >0).

If a time interval is partitioned into equal-length subintervals, then the length
of a subinterval is called a period. For example, a year has 12 monthly periods
and 4 quarterly periods.

We shall employ the following abbreviations:

mth = month(s), yr = year(s), prd = period(s).

In particular, one year is written as “1 yr” and two years as “2 yr.”

I Apart from being mindful of leap years, note that banks may use a 360-day year when computing
their charge on loans. Any deviation from a 365-day year will be stated explicitly.
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2.2 Interest Rate and Return Rate

2.2.1 Interest Rate

You are perhaps most familiar with interest as the rate a bank pays into your
savings account (where you lend the bank money) or the rate a bank charges
you for a loan (where the bank lends you money). Overall, interest is the cost
of money. It is the compensation received for lending or investing money. The
initial amount of money you lend or borrow is called the principal and will be
denoted by Fj. Henceforth, assume that money invested—whether in a sav-
ings account or in a start-up company—is money lent with the expectation of
receiving back more than the amount invested (principal plus interest).

The compensation for lending or the charge for borrowing a principal F is
typically expressed as a percent r of F( per year:

{compensation or charge per year} = rFj.

The percent r is called the annual interest rate or the quoted rate—e.g., a 5% per
annum interest means r = 0.05. By default, all interest rates will be on or con-
verted to a per annum basis. For this reason, we sometimes refer to r simply
as the interest rate rather than the annual interest rate. Interest rates appear in
numerous settings—savings accounts, certificates of deposit, credit cards, auto
loans, mortgages, treasuries, bonds, etc.

Remark 2.1. Bear in mind that the interest rate used for lending need not equal
the interest rate employed for borrowing. However, in later modeling, we shall
assume that the two rates are equal (e.g., see page 84). O

We shall also switch freely between expressing r as a percent and decimal.
It is possible to have r > 1 (interest rate of over 100% per year) or r < 0, which
can be interpreted as a bank charging you for holding your principal. For sim-
plicity, however, we abide by the following:

Unless stated to the contrary, assume that r is a positive constant.

Though r is constant by default, later in the chapter (e.g., Section 2.5), we shall
study models where r varies discretely and continuously with time. When the
interest rate r is a function of time, it is common practice to express this as
r(t)—an abuse of notation that should not cause undue confusion.

Interest rates can, of course, be quoted for any time span (week, month,
etc.). For example, an interest rate of 12% per year is mathematically the same
as 1% per month. More generally, if we divide a year into k equal-size interest
periods, then

.
interest rate per interest period = Iz
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Exact Interest, Ordinary Interest, and Banker’s Rule

The exact time of a time interval measures the length of the interval in days,
but excludes the first day. Exact interest is interest computed using 365 days
in a year or 366 days for leap years. Credit card companies tend to use exact
time and exact interest. Ordinary interest is interest calculated using 360 days
in a year with 30 days in each month. Banks usually lend using exact time and
ordinary interest, which has come to be known as Banker’s Rule.

2.2.2 Required Return Rate and the Risk-Free Rate

We always assume that when an investor commits her money for a specific
period of time, whether to a security, portfolio, or start-up, she expects to be
compensated. An investor’s required rate of return over an investment period is
then the interest rate the investor demands as compensation for the following:

> Opportunity cost: Since lending prevents an investor from using that money
for other investment opportunities, the investor requires compensation for
her money being tied up.

> [Inflation: Since inflation erodes the value of money, the investor requires
compensation that covers the impact of inflation.

> Risk: Since there is a nonzero probability that earnings promised to the in-
vestor will not materialize or that the investor can lose some or all of her
money, the investor requires compensation for the risks of the investment.

Unless stated to the contrary, we assume that no compensation to cover taxes and
transaction costs is part of a required return rate. It is messy to include these
items in an introduction to mathematical finance, not to mention that tax
laws and transaction costs change. Readers are referred to Reilly and Brown
[16, Chap. 1] for a detailed discussion of the required return rate.

In the absence of inflation and risk, the required return rate is called the real
risk-free rate and denoted ry,;. It is a compensation purely for opportunity cost.
If there is no risk, but you have inflation and an opportunity cost, then the
required return rate is termed the nominal risk-free rate or, simply, the risk-free
rate. When the real risk-free rate is intended as opposed to the risk-free rate,
we shall indicate so explicitly.

Notation. Let r denote the risk-free rate.

There is a simple relationship among 7,,), r, and the inflation rate i. Assume
that you invest Fy in a riskless asset over 1 year. Your required return rate is r,
which compensates you for opportunity cost and inflation. Specifically, your
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compensation for opportunity cost a year from now is .., Fo. However, a year
from now, the value of your compensation e, Fog for opportunity cost will
reduce by i (741 Fo) due to inflation. Furthermore, your initial investment will
also reduce in value by iF( due to inflation. Your required return rate amount
rFop beyond your initial investment should then be

rFo=1F) + TrealFo + 1(7realFo)-

Consequently, we obtain a formula for the real risk-free rate:

r—i
rreal:1+i-

A common proxy (i.e., substitute or model) for the risk-free rate r is the
coupon rate of a US Treasury. The specific type of US Treasury chosen in ap-
plications depends on the time horizon over which an analysis is conducted.
In the modeling of derivatives, however, traders typically choose LIBOR as a
proxy for r (see Hull [9, p. 74] for more).

When inflation constitutes a major portion of the market risk-free rate r,
sometimes r is even called the inflation rate. It is also possible for the inflation
rate to be above the market risk-free rate, which, for instance, can be due to
the government lowering interest rates to increase liquidity. Hence, one can-
not always assume r > i, but would expect it to hold under normal market
conditions.

2.2.3 Total Return Rate

Receiving an interest rate of 4% per year on a $20,000 investment means that
over 1 year, say, starting at time 0, you get

rFo = 0.04 x $20,000 = $800.

In other words, your investment would grow from $20,000 to $20,800 over 1
year. The return rate R(0,1) on your investment over 1 year is the fractional
percentage change
$20,800 — $20,000
R(0,1) = =0.04=r.
1) $20,000 ’

If you put F(fp) today in an investment that does not pay you any income and
the value of the investment at a future time tf = to + 7 is F(#7), then the total
return rate on your investment from time £y to t is defined to be

F(tf) — F(to)

Rt = ey
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with the fotal return amount defined by R(to,t¢)F(to)-

The total return rate will not necessarily equal the interest rate. First, on
mathematical grounds the interest rate is always positive, while the total re-
turn rate can be negative. Second, on financial grounds, the return rate is con-
cerned only with the initial and final values of the investment and so is a per-
formance measure of the investment. However, it is possible to apply an inter-
est rate during each period into which a time span is divided, i.e., the interest
rate is involved with the evolution of F(ty) to the final value F(t). This will be
made explicit when we look at simple and compound interest.

In general, we formalize the total return rate on a per-unit basis and with
a cash dividend, i.e., an income.? Suppose that your investment has a current
per-unit market value of V(ty), e.g., the price of a stock per share, and per-
unit market value V(ts) at a final time t; > fo. Assume that the value of an
investment at any point in time is nonnegative, i.e., there is no liability:

V(t) >0 (t>0). 2.1)

Assume that the investment pays a per-unit cash dividend of D(to,tf) dur-
ing the interval [to,t;)—e.g., a cash payout per share by a company to share-
holders.

Several clarifying remarks are needed about cash dividends:

> For simplicity, we do not include any cash dividend at ¢, but tally it as part
of the subsequent time interval starting at ¢ f.3

> It is also common practice to assume that D(t,ts) excludes any income
such as interest from the cash dividend during [to, 7). This is not a serious
concern for sufficiently short investment time intervals. We also exclude
complications like share splits and noncash payouts.

> When an investment pays out a cash dividend, it has lost value by the
amount of dividend. The market value V(tf) is then the ex-dividend (with-
out dividend) value and the cum-dividend (with dividend) value is

VE(ts) = V(tf) + D(to, £).

> In the case of a cash dividend-paying stock, there is actually an ex-dividend
date, which is the cutoff date to be eligible for a declared cash dividend. It is
actually the close of trading on the trading day before the ex-dividend date.
The stock is said to be traded cum-dividend before the ex-dividend date and
ex-dividend after that date. For this reason, when modeling, the value of the

2 A dividend does not have to be in the form of cash. It can be a stock dividend—e.g., a company can
pay you additional (typically, fractional) shares for each share of company stock you own.

3 This bookkeeping for the cash dividend makes it convenient mathematically when considering rein-
vesting dividends to buy more units of the investment over consecutive time intervals.
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stock is adjusted downward by the dividend amount on the ex-dividend
date, not on the payment date. Stock price data sets like Yahoo! Finance
have a column for adjusted prices, where the adjustments are for cash div-
idends and stock splits. The ex-dividend dates of stocks typically do not
coincide with an exact quarter and are not the same for all companies.

> For securities like stocks and bonds, the cash dividends flow in discretely—
e.g., quarterly, semiannually, and even annually in some cases. The divi-
dend stream for a sufficiently broad stock index is often modeled as con-
tinuous.

Expressing the per-unit total return amount on your investment from ¢; to
tr as a percent R(to,t) of the initial value V (ty), we obtain

R(to,tp) V(o) = V(tr)=V(to) +  Dltoty).
- ~ -~ ~ ~ -~ ~ ~~ -~
return amount capital gain cash dividend

The spread V(t;) — V(to) is called a capital gain. Note that a negative capital
gain is a capital loss. Equivalently,

V(ts) — V(to) D(to,tf) Ve(ts) = V(to)
Rbot) =" “vay 7 v T v @P
capital-gain return dividend yield

This is called the total rate of return or holding-period return of the investment
from fo to t;. We shall often refer to R(to,tf) simply as the return rate and
at times will even refer to R(to,t¢) as the return when it is clear from the con-
text that a rate is intended as opposed to the return amount R(to,ts) V(fp).
Note that if your ownership in the investment consisted of n units (shares),
then the return rate is still given by (2.2) since the numerator and denominator
of each term would be multiplied by n and so n would drop out.

Notation. When the return rate depends on the length T of [ty, ] rather than
on the location of [ty, 7] on the positive time axis [0,00), we set

R(to,tf) = R(T)

. D(to,tf)
The ratio V(to)

unit cash dividend from the investment as a percent of the initially invested

in (2.2) is called the dividend yield and represents the per-

capital V(tp). Additionally, we refer to the ratio ‘;Ez ; as the gross return from t

tot f.4 It expresses the final value V (ts) as a percent of the initial value V (fy).

* Some authors call ggig ; the return rate, but we shall not abide by that usage.
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Example 2.1. Suppose that after 1 year, the return rate on your investment is
50%. Then the gain to you, beyond your initial investment, is 50% of your
initial investment. If the return rate is —100%, then you have a complete loss.
If the return rate is 200%, then your gain is twice the initial investment, i.e.,
your initial investment tripled in value over the year. O

Finally, observe that the return rate becomes random if the future value
V(ts) and/or the cash dividend D(ty,ts) is random. Almost all the return
rates we encounter in this chapter are nonrandom, while all the return rates
in Chapter 3 are random.

2.3 Simple Interest

A principal of $1,000 held for a year at a 12% interest rate has a simple interest
of $120 at the end of 1 year. This amount is the same as adding 12 monthly
interests of $10, each of which is obtained from a monthly interest rate of 1%.
For a time span of T years, if we assume that the interest rate r is applied only
to the principal Fy, then

(simple interest amount earned or owed over T years) =r TF. (2.3)

If an annual simple interest rate is applied over multiple years (or periods)
to a principal, then at the end of each year (or period), interest is applied only to
the principal and the entire balance is reinvested back into the account. In other
words, all interest accrued at the end of each period or year is carried forward
without gaining interest. Under simple interest growth at rate r, a principal Fy
increases to the following amount at T years from the present:

F(t) =Fo+rtFy= (147r7)Fy, (2.4)

where, by a slight abuse of notation, we write F(7) instead of F(fy + 7) since
the value depends on the length T of the time interval.

Example 2.2. Suppose that an account has $700 and pays 4% per annum. Ap-
plying a 4% annual simple interest growth to the $700 for 1 year yields an
interest of 0.04 x $700 = $28 and a total amount accrued of

$700 + (0.04 x $700) = $728.

To obtain simple interest growth of $700 over 2 years, we add to the prin-
cipal a simple interest of 0.04 x $700 at the end of the first year and simple
interest of 0.04 x $700 at the end of the second year:

$700 + (0.04 x $700) + (0.04 x $700) = $756,



2.4 Compound Interest 21

or, equivalently,
$756 = (14 0.04 x 2) $700. (2.5)

Note that a 4% annual simple interest growth applied to $700 for 2 years is the
same as applying 8% per 2 years. ad

Investing $700 under simple interest growth of 4% per annum yields a future
value of $756 2 years from now. Conversely, the present value of $756 under 4%
annual simple interest discounting is $700. In general, if at the current time,
you invest (or borrow) a principal Fp under simple interest growth at an inter-
est rate r applied over T years, then the amount of money you receive (or owe)
at the end of the time span is called the future value of Fy and given by

{ future value of F

at T years from now } =F(7) = (1 +r7)Fo. (2.6)

The principal Fy is called the present value of the future amount F(7):

{ present value of the amount F(7), } —Fy= F(7) 27)

which occurs T years in the future 1+rT

The quantity (1 + r7)~! is called a discount factor since it reduces the amount
F(7) at the end of the time interval to the amount Fy at the start of the interval.

In the context of (2.6), we sometimes call the interest rate r the simple interest
growth rate of the principal F(, while in the setting of (2.7), we call r the simple
interest discount rate on the future value F(7). The return rate when F( grows
under simple interest r over T years is then

F(T) —Fo _

R(7) = Fo

rT. (2.8)

2.4 Compound Interest

We saw above that under simple interest for 2 years, an account with $700 at
4% per annum will grow to

$700 + (0.04 X $700) = $728 (2.9)

at the end of the first year and to $756 at the end of second year, after the
interest of $28 for the second year is added. However, there is a way to accu-
mulate more money over the same 2 years using the same simple interest rate.
Assume that at the end of the first year, you withdrew the $728, closed the
account, and immediately used the $728 as principal to open another simple
interest account paying the same interest rate. Then a year later, i.e., at the end
of the second year, the total you would accrue is
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$728 + (0.04 x $728) = $757.12, (2.10)

which is greater than the original total of $756! This type of growth is called
compound interest. In fact, an annually compounded account earning 4% per
annum over 2 years would earn you the latter amount without you needing to
engage in the previous inconvenient strategy.

Using (2.9), we can rewrite (2.10) as

$700 + (0.04x $700) + (0.04 x ($700+0.04 x $700)) = §757.12. (2.11)

Equation (2.11) summarizes exactly how the growth process works: annual
compounding of a principal of $700 over 2 years at an interest rate of 4% means
that one applies 4% simple interest to $700 at the end of the first year and then
applies 4% simple interest again at the end of the second year to the entire
balance (principal plus interest) carrying forward from the end of the first year.
Rewriting (2.11) as

$757.12 = (1 + 0.04)% x $700 (2.12)

yields the standard form for two annual compounds.

Let us extend (2.12) to a finite number of compoundings. In general, com-
pound interest occurs when the time span is divided into multiple periods, and
simple interest is applied over each period to the balance at the end of the pe-
riod. We assume that the entire balance at the end of each period is reinvested back into
the total being accrued, i.e., no money is withdrawn and no extra money is added. For
mathematical modeling purposes, we also treat the end of a period as equiva-
lent to the start of the next period.

2.4.1 Compounding: Nonnegative Integer Number of Periods

Assume that an account with an initial amount Fy (principal) pays an interest
rate of 7. Divide a year into k interest periods, each of equal length:

1prd = 11c yI.

In a compound interest setting, the end of each period marks when interest is
applied to the balance from the start of the period. Consequently, we shall refer
to each such period as an interest period, compound interest period (when being
explicit), or a compounding period.

Unless stated to the contrary, assume that the date when the prin-
cipal is deposited coincides with the start of an interest period.
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Following the structure of (2.12), we now compute the future value to which
the principal Fy will grow under k-periodic compounding at interest rate r over
n interest periods, where 7 is a nonnegative integer. Since n periods correspond
to n/k years, the future value at the end of the nth period is F(n/k). However,
in compound interest theory, the emphasis is on the number 7 of periods over
which compounding occurs, rather than the number of years. For this reason,
the future value is written as a function of the number of periods as follows:

()-r.

> At the end of the first period, apply simple interest to Fy to obtain the future
value F; to which Fy grows over the first period:

Fi=Fo+ Fo=(1+ )F
Now, do not take out any of the money. Instead, reinvest the entire amount
Fy in the account at the end of the first period until the end of the second
period.

> At the end of the second period, apply simple interest to F; to get the future
value F; to which F; grows over the second period:

r r\2
F2:F1—|—kF1: <1+k> Fop.
Note that compound interest occurs since interest was added to the whole
Fy, yielding interest on the principal Fy and interest on the interest (r/k) Fy.
Next, reinvest the entire amount F» in the account at the end of the second
period until the end of the third period.

> Continuing the above process, at the end of the nth period, apply simple
interest growth to F,,_; to obtain the future value F, to which F,,_; grows
over the nth period:

r r\"
Fn:Fn,l+an,1:<1+k> Fo, n=0,1,2,....

We have established the following: Under k-periodic compounding over n inter-
est periods at an interest rate r, a principal Fo will increase to the value F,, at the end
of the nth interest period:

r\ 1
F, = (1 n k) Fo, n=012,..., (2.13)
where ,r( is the periodic interest rate. Observe that F;, depends on the size of the
time interval over which the compounding occurs. This is because the interest
rate is constant for the n periods.
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In (2.13), we call F;, the future value of Fp under k-periodic compounding over
n periods at interest rate r. The present value of F,, under the above compound-
ing is defined to be F.

Example 2.3. Borrow $1,000 for a year at 12% interest rate. Applying this in-
terest with monthly compounding yields a balance due of

0.12

12
1,000 = $1,126.83.
)% 1000

Fip = (1+

The interest owed is then $1,126.83 — $1,000 = $126.83, which is more than the
$120 due when simple interest is applied. O

Example 2.4. (Money’s Growth Under Different Compounding Periods) In-
vest $1,000 at an interest rate of 7% and consider monthly, weekly, and daily
compounding. Determine the future values after 2 years.

Solution. We have Fy = $1,000, r = 0.07, T = 2, and k = 12 (monthly), 52
(weekly), and 365 (daily). The respective number of compounding periods is
then 24 (monthly), 104 (weekly), and 730 (daily). By (2.13) on page 23, the fu-
ture values at the end of 2 years are

Fps = $1,000 x 1.14981 = $1,149.81 (monthly compounding)
Fioa = $1,000 x 1.15017 = $1,150.17  (weekly compounding)
Fy3o = $1,000 x 1.15026 = $1,150.26 (daily compounding).

2.4.2 Compounding: Nonnegative Real Number of Periods

Suppose a principal of $10,000,000 undergoes monthly compounding at 10%
per annum over a time span of 15.36 mth. What is the principal’s value at the
end of the time span? First, view 15.36 mth as 15 mth + 0.36 mth. By Equation
(2.13), the value at the end of the first 15 months is

0.1\ "

Fi5 = (1 + 12 > x $10,000,000 = $11,325,616.82.
To how much will Fy5 grow during the remaining 0.36 mth? For the partial
interest period, assume that a bank applies simple interest growth to Fy5, which
yields a total of

~ ~ 0.1
F1536 = F15+036 = (1 + 0.36 x 12 > X F15 = $11,359,593.67. (214)
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However, it may concern the reader that compounding occurs over the first
15 mth, but then stops during the remaining 0.36 mth, and is replaced by sim-
ple interest growth. We claim that the latter is actually an approximation of the
exact mathematical compounding that should be applied during the partial
month. We apply fractional compounding to Fq5 during the remaining 0.36 mth,
which gives

0.36
F1536 = F154036 = (1 + 12) x Fi5 = $11,359,503.48. (2.15)
In this example, we see that the accrued total in (2.14) is higher by $90.19 than
the total in (2.15) obtained from exact modeling. The bank would be paying
more interest if (2.14) is used.

We now present a theoretical basis for (2.15) and the approximation used
in (2.14). First, we shall introduce the key defining mathematical property of
compound interest as in the treatment by Kellison [10, Sec. 1.5]. For an integral
number of interest periods, Equation (2.13) shows that

7\ mtn r\m r\n
Fuen = (14 ) Fo= (14 )7 (14 ) 0
where m and n are nonnegative integers. We denote the compound interest
growth function over n interest periods by

G(n) = (1+ ]:)"
where

GO0)=1, G(1)= (1+ 1:) Gn)>1 forn=1.2,....
The inequality G(n) > 1 for positive integers n means that the principal will
increase for compounding over at least one interest period. The compound
interest growth function satisfies:

G(m+n)=G(m)G(n). (2.16)

In other words, compound interest is such that compounding a principal Fy
over m + n interest periods is the same as compounding F( over n interest pe-
riods and then compounding the balance at the end of the nth interest period
over the remaining m interest periods. Of course, one can interchange m and
n. Equation (2.16) embodies the core multiplication property of compound in-
terest.

We then extend (2.16) to a more general defining mathematical property of
compound interest, one applicable to a nonintegral number of interest periods.
Specifically, for any nonnegative real number x, a principal Fy is said to grow
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to the value
Fy = G(x)Fy

by k-periodic compounding over x interest periods at interest rate r if the growth
function G(x) satisfies the following properties:

x+y)=G(x)G(y) for all real numbers x > 0and y > 0,

(2.17)

The top equation in (2.17) generalizes (2.16) to a nonintegral number of pe-
riods. The same intuition carries over from the integral case: compounding a
principal Fy over x + y interest periods to the value

is identical to compounding Fy for y interest periods to the value F, = G(y)Fo
and then compounding F, over the remaining x interest periods to the value
G(x)Fy. The equation G(0) = 1 in (2.17) states that no growth occurs when
there is no interest period, while G(1) = (1 + | ) means that the growth over
one interest period is given by simple interest (as we have done all along).
Finally, we require the condition G(x) > 1 for all x > 0 because we assume
that compound interest growth increases the principal over a nonzero interest
period, even if it is fractional.

Let us now solve for the growth function satisfying (2.17). For mathemati-
cal modeling reasons, we shall assume that G(x) is differentiable. Applying a
trick similar to the one used in deriving an exponential function, we first con-
sider the derivative of the growth function at x. Using the limit definition of a
derivative, we find (Exercise 2.30)

G'(x) = G(x) G'(0). (2.18)

Dividing by G(x), which is allowed since G(x) > 0 for all x > 0, and recalling
that G’(x)/G(x) is the derivative of In G(x), we obtain

dInG(x)

o
dx G(0),

or, equivalently,
dInG(x) = G'(0)dx.

Integrating the equation from 0 to x yields:
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InG(x) —InG(0) = G'(0) x.
ButInG(0) =In1 = 0. Hence:
InG(x) = G'(0)x. (2.19)

Equation (2.19) implies:

G'(0) =InG(1) =In 1+ ,:)

Inserting G’(0) back into (2.19), we find:

r 7\ X
InG(x) = xln(l + k) :1n<1 + k> .
The binomial series (1 + ]r()x with nonintegral x converges for 0 <r/k < 1. Ex-
ponentiating both sides of the above equation, we obtain the growth function:

7\ X
Glx) = (1+ k) .
We summarize the result in the following theorem:

Theorem 2.1. Under k-periodic compound interest at r per annum over a time span
of x interest periods, where x is a nonnegative real number, a principal Fy will increase
to the following future value at the end of the time span:

Fx:<1+;;)xF0, (0§£<1, x>0),  (220)

wherek =1,2,....

The periodic interest rate | in (2.20) is constrained to 0 < | <1 to assure con-
vergence of Fy when the nonnegative real x is not an integer. We do not need
this requirement when x is a nonnegative integer. In most applications, we
consider 0 < r < k. For example, under monthly compounding (k = 12), the
upper-bound condition expressed in percent means that the compounding in-
terest rate satisfies r < 1200%, which will surely be the case in most applica-
tions.

We also call F the future value of Fy at the end of x interest periods from the
present and refer to

Fy

Fo = ,
T )

(o < Irc <1, x> o), (2.21)
as the present value of Fy. The interest rate r is applied as a growth rate in the
future valuing of (2.20) and as a discount rate in the context of (2.21). Since x
interest periods is x/k years, the future value Fy occurs x/k years from now,
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o))

The number x of interest periods can always be expressed as the sum of an
integral number 7 of interest periods and a fraction v of an interest period:

ie.,

x=n+v,

where 7 is the greatest integer part of x and 0 < v < 1. For example, x = 15.36
interest periods splits into a sum of 7 = 15 and v = 0.36 interest periods.
We can then rewrite (2.20) as

Fx:<1+£>nFU:<1+I:>UFn, (0=, <1 0<v<1). @2)
Here F, is the amount to which Fy grows over the fraction v of an interest
period, i.e., we have fractional compounding during v mth:
1%
F, = (1 + ;;) Fo.

For a proper fractional period, i.e., for 0 < v < 1, the leftmost equality in (2.22)
states that the fractionally compounded amount F, is compounded over 7 in-
terest periods, and the rightmost equality captures that the accrued amount
F, is compounded over the fraction v of an interest period. The left equality
applies to settings where the start of the time span does not coincide with the
beginning or end of an interest period, while the right equality is for when the
end of the time span is not the beginning or end of an interest period.

The rightmost equality in (2.22) also shows that if the interest rate per inter-
est period r/k is sufficiently small, expanding the binomial series yields:

(14—]:)1/%14—1/;;. (2.23)

The amount accrued at the end of x interest periods can then be approximated

as follows:

v
Fx:<1+;;) Fn%<1+1/’:)Fn, 0<v<1, 0<r/k<1). (2.24)

Example 2.5. Returning to the example from the start of this section (page 24),
Equation (2.20) shows that a principal of $10,000,000 compounded monthly at
10% per annum for 15.36 mth will grow to:

0 15.36
Fi536 = (1 + 1'2 > x $10,000,000 = $11,359,503.48.

Equivalently,



2.4 Compound Interest 29

0.36
Fi536 = $11,359,503.48 = <1 + 1.2 > X Fy,
which is the form in (2.22) and the origin of (2.15). Equation (2.14) uses simple
interest, rather than fractional compounding, during the remaining 0.36 mth
and is justified by (2.24):

N 0.1
Fis.36 = (1 T v]:) F, = (1 +0.36 2) % F, = $11,359,593.67

and since r/k = 0.0083 < 1, we have fFv15.36 ~ F153¢4- O

For k-periodic compounding at a constant interest rate r per year, Equation
(2.20) yields that a principal Fp will grow to the following future value over T
years or kT periods:

Fp, = (1 n I:)kT Fo. (2.25)

Example 2.6. (Doubling Your Investment) Suppose that you invest Fy today
in an account with k-periodic compounding at r per year. Find a formula for
how long it will take you to increase your investment to xoFp, where xp > 1.
Does the length of time depend on the initial amount Fy? In particular, how
long will it take to double an investment of $1,000 using 6% per annum with
daily compounding? What about $2,000? Compare with the time it would take
using simple interest growth at the same interest rate.

Solution. We want to find how many years 7 it will take to have Fyp grow to
Fir = xoFp. By (2.25),

wro=(1+7)" 5o

which implies that
In X0

T hn(1+ )

The time does not depend on the initial Fy.

(r>0).

For Fo = $1,000, xo = 2, r = 0.06, and k = 365 (daily), we obtain
In2
= n 006, ~ 1155,
365In (1 + %¢)

so it will take 11.55 years. Since the time span will not depend on the initial
investment, we obtain the same answer for $2,000. For simple interest growth,

*0 r_ 1 ~16.67. The doubling time
is 5.12 years longer. O

we have xoFy = (1 +r7)F(, which yields T =
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2.4.3 Fractional Compounding Versus Simple Interest

Compound interest is constructed by applying simple interest over each inter-
est period to the balance at the start of the interest period. This may suggest
that simple interest should then be applied over each (proper) fraction of an
interest period to the balance at the start of the fractional interest period (since
simple interest adds over different time segments). However, if simple inter-
est is applied over a given fraction of a period, then it does not account for
the compounding that has to occur over every fraction of the given fractional
interest period. Indeed, a new insight from Theorem 2.1 is that compounding
occurs over every portion of an interest period. For example, start with a balance
F. and have it compound for % prd. You should not apply simple interest over
the % prd because the balance F, also has to compound over every fraction of
the % prd. For instance, compounding occurs over the first fourth of the % prd
and the remaining three-fourths of the period. By (2.20), the correct growth is:

1 3(1 1(1
B N3 i) rya(3)
Fip= (14 ) Fe= (14 )" (1) R
By (2.23), using simple interest over a fraction v of an interest period would
only yield an approximation under the following condition:

Fy=<1+£)vF*%<1+V£>F*, O<v<1 0<r/k<1).

If we do not use simple interest over a fraction of an interest period, then
why can we apply simple interest over a whole interest period? The reason is
that simple interest over one interest period is equivalent to fractional com-
pounding over the interest period. In fact, decompose an interest period into
any two fractional periods, say, v prd and (1 — v) prd. Suppose that the bal-
ance at the start of the interest period is F.. Then the balance at the end of the

period is:

(e )r= (1) ()
In other words, the simple interest growth of F, over 1 prd is the same as frac-
tional compounding of F, over v prd followed by fractional compounding of
the accrued amount (1 + ,C)VF* over the remaining (1 — v) prd. We could di-
vide an interest period into an arbitrary finite number of subperiods and still
obtain that simple interest over one period is fractional compounding over the

subperiods:
= (e e [0 )

=1

where1:1/1+1/2+~-+1/mand0<1/j<1withj:1,...,m.
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2.4.4 Continuous Compounding

When the number k of compounding periods per year increases without
bound, we have continuous compounding. Applying (2.25), the future value
under continuous compounding is

I tim (14 )" im (1+7)) —rer, 26
Fow = fim P = fim (1-+ )" R0 = (Jim (1+1)°) =rae”, @20

with return rate
R(t)=¢€""—1. (2.27)

Under continuous compounding, $1 will grow to $e’! over the time interval
0,£]. We can apply the same idea to a security (possibly risky) paying a contin-
uous cash dividend at a constant yield rate 4. Suppose that at time 0, you have
1 unit of a security, and as the cash dividend flows in, you continuously buy
more units of the security, i.e., the number of units of the security is continu-
ously compounded at rate q. Then 1 unit of the security at time 0 will grow to
e’ at time t. Consequently, the cum-dividend value of the security at t is

S¢=ells,, (2.28)

where S; is the ex-dividend price at t of one unit of the security. We assume that
St models the market price at t since it discounts the cum-dividend price at the
dividend yield rate: S; = e 7' S¢. See the discussion on page 18.

2.5 Generalized Compound Interest

2.5.1 Varying Interest and Varying Compounding Periods

This section extends compound interest from a fixed interest rate over a non-
negative real number of compounding periods to discretely varying interest
rates across compounding intervals of different lengths.

We begin with some needed notation. Suppose that you put the amount Fy
(principal) in an account for a time interval [fg, f f], where t; > 0. Assume that
each compound interest period is ,1( yr. Divide [to, ;] into n subintervals (not
necessarily of the same length), say,

to,t1], [t t2], oo i i), oo, [ta—1tal,

where 7 is a positive integer, {, = t¢. Denote the length of the ith subinterval
[ti_1,t;] by T;, which corresponds to the following number of periods:
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T; yr = kT1; prd, i=1,...,n

Suppose that k-periodic compounding at r; per annum applies during the ith
interval [t;_q1,t;] fori=1,...,n.

We now determine a formula for the amount to which the principal Fy will
grow at the future time t,,.

> Opver the time interval [to, 1], we have k-periodic compounding at interest
rate r1 of the principal Fy. Applying (2.20) on page 27 with x = k1, the
value of Fy grows to the following at time #;:

F(ty) = (1+ rkl)h1 Fo.

Reinvest the entire amount Fy in the account.

> Over the next time interval [t1,#;], the balance F; at time f; is k-periodically
compounded at rate rp. By (2.20) with x = k1, the value of F(#;) grows to:

- 72\ kT2 B 72\ k2 r1\kn
F() = (1+7) "R = (14 7)) (14 7)o
Reinvest F» in the account.

> Continuing this process, we find that over the final time interval [t,_1, 4],
the balance F(t,_1) at time t,_1 is k-periodically compounded at rate 7.
Again (2.20) yields that F(t,_1) grows to:

F(t,) = (1 + r]:‘)h" F(ty_1).

Explicitly:

F(ta) = (1+ r]:)h" (14 rkz)hz (1+ rkl)krl Fo. (2.29)

Observe F(t,) depends on the lengths of the subintervals over which the
various interest rates are constant.

We call F(t,) the generalized compound interest future value of F( at time t,,.
It is given in product notation as follows:

F(t,) = [ﬁ (1 n 2)'“] Fo, (0 < 2 < 1) . (2.30)

Here F is termed the present value of F(t,).
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Special Case

Assume that each interval [t; 1,t;], where i = 1,...,n, coincides with a com-
pound interest period. Then the generalized future value (2.30) becomes:

F(tn):(1+r]:)--- (1+:§)<1+:{1)FO, 2.31)

where Fy is the principal at the initial time ¢y. For a constant interest rate
amount r; =1, wherei=1,...,n, we recover the usual k-periodic compounding
formula over n periods or } years:

()= () romr

Example 2.7. How much will $1,000 grow after 1.5 years if it is compounding
semiannually with annual interest rate 7% applied at the end of the first 6
months, 8% at the end of the first year, and 9% at the end of 1.5 years?

Solution. Use the generalized compound interest formula (2.31) with k = 2
(semiannual compounding), n = 3 (number of periods), ty the current time,
tz3 = tg + 1.5 (future time), r1 = 0.07, r, = 0.08, and r3 = 0.09. We obtain the
following future value:

F(t3) = (1 + rk3) (1 + rkz) (1 + rkl) Fo = 1.045 x 1.040 x 1.035 x $1,000

= $1,124.84.

2.5.2 APR Versus APY

We begin by showing how the interest rate r relates to the return rate in the
context of compound interest.

At time tp invest an amount Fy > 0 (principal) in an account that grows
under k-periodic compounding at interest rate r. Suppose that the account
pays no dividend. Let F(t¢) > 0 be the value of the principal at a future time
tr = to + 7. Since a time span of T years has kt periods, Equation (2.20) on
page 27 yields that the return rate on the principal Fy is:

F(t kt

Rex(t) = (tf) —1:(1+r) 1, (2.32)
Fo k

where the subscript CI indicates that the return rate is in the context of com-

pound interest. Note the dependence on the length 7 of the time interval [to, .

For n periods, the return rate becomes:
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RCI<Z> =(1+ ,:)"—1. 2.33)

In addition, the interest rate r can be expressed in terms of Rcy(7) as follows:

1
_ (14 Rci(7))+ —1
r = Lk . (2.34)
Equation (2.32) also shows that growing the initial amount V(to) to the value
V(tf) under compounding at interest rate r is the same as growing V (to) to V(ty)

under simple interest using the return rate Rc1(T) over the time span T:

V(ts) = (1+ Rei(1)) V(to) = (1 + ]:)kT V(to).

The return rate Rc(1) over a year is also commonly used. Equation (2.32)
yields:
k
Rei()=(1+,) ~1, (2.35)
which is also called the annual percentage yield (APY) or effective interest rate and
denoted by Rc1(1) = APY. The interest rate » corresponding to Rcy(1) is called
the annual percentage rate (APR) or nominal interest rate and is given by:

1+ APY)k —1

_
APR = P

The APR should not be confused with the APY, which involves compounding;:

k
APR) 1
k

APY = <1 +

For instance, if you are quoted an APR of 12% per annum on a loan, then the
APR arises from a monthly interest rate of APR/12 = 1%. However, since in-
terest on debt typically involves compounding, the APY gives a true reflection
of the interest rate a borrower pays. In this case, the 1% per month interest
compounds to an annual percentage yield of

APY = (1+0.01)'? — 1 =12.68%,

not 12%. The next example further illustrates the difference.

Example 2.8. If a credit card company quotes only its APR on the card, say,
10.99%, it can cause a consumer to think that after 1 year, the interest amount
on a balance of $2,500 is

0.1099 x $2,500 = $274.75.
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However, this is not correct because it assumes simple interest for the year.
Most credit cards compound daily or monthly (and may add fees). The true
interest rate for a 365-day year with daily compounding is given by the APY:

0.1099

365
365 ) —1=11.6148%.

APY = (1 +

The actual interest amount for the year is then the (effective) return amount:
APY x $2,500 = 0.116148 x $2,500 = $290.37,

which is more than the amount $274.75 naively inferred from an APR of
10.99%. O

2.5.3 Geometric Mean Return Versus Arithmetic Mean Return

An argument essentially the same as the one used to derive (2.35) shows that,
given any period return rate Rp,q, the return rate over a year with compound-
ing at rate Rpq per period is given by:

Rann = (1 + Rprd)k 1, (2.36)

where (as usual) a year is assumed to have k periods. For example, a weekly
return rate of 1% annualizes as follows under weekly compounding;:

Rann = (14 0.01)% — 1 = 67.8%.

We can generalize (2.36) further. First, the return rate (2.33) extends naturally
to compound interest with varying interest rates over a time span of n com-
pounding periods, where each period is ]lc yr. Assume that the annual interest
rates used for the various n consecutive compounding periods are ry,...,ry,
i.e., the interest over the ith period is /. By (2.31) on page 33, the return rate
(2.33) generalizes to:

F(tn) n Tn-1 L8]
Rer(tot) =" 2" =1=(1+"") (1 ) (1+7) -1 @
CI( 0 n) FO + k + k + k ( )
Now, assume that you invest Fj in a nondividend-paying investment that
has return rate R; over the ith period, where i = 1,...,n. Explicitly, if V;_; and
V; are the respective values of the investment at the start and end of the ith
period, then return rate is

RPrd _ V] - Vj—l '
] Vj—l
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Employing arguments similar to those used to derive (2.37), we can extend
(2.37) from an ith-period interest rate of 7(", which is always positive, to the

return rate of Rfrd, which is not necessarily positive. In other words, we are
generalizing (2.36) to the return rate over n periods by compounding at the

. d d
respective return rates ler .. .,R}njr :

Rit = R (to,to n Z) - (1 n RE”‘) (1 +R§ff‘1) (1 +R§’fd) 1. (2.38)

Note that by (2.1), each factor in the product (2.38) is nonnegative since it is a
gross return:

V:
prd _ Y] o _
1+Rj v, >0, (Gj=1,...,n).
Equation (2.38) shows that the initial investment Fy will grow to the following
value:

F (Z) = (14 Rot) Fo. (2.39)

We remind the reader that in (2.39), we assume you do not withdraw or add
any funds to the investment during the n periods. Unless otherwise stated, this
is always our assumption when compounding; see Section 2.4.1.

Now, suppose that n periods ago, an investor put Fp into a nondividend-
paying fund and her investment grew by the process in (2.39) to the current
value F(}). She would now like to forecast the behavior of the fund over the
next period using a single “mean return rate” x. In other words, we seek a
single rate x such that when compounding Fy using x over each of the past
n periods, we obtain the same answer as compounding F( using the n return

rates Rfrd,. .. ,R},;rd:
ny n
F (k) = (1+x)" Fo. (2.40)
Comparing (2.39) and (2.40), we see that x must be the geometric mean return

d
RES of lerd, .. .,R},:rd, namely,

geom
d d d a\1/n
R = [ (14 REC) (14 RE)) oo (14 RP) ] -1,
We have:
n rd \"
F (k) = (1 + Rgpeom> Fo.
The geometric mean return relates as follows to the total return rate:
d n
Riot = (1 + Rgii,m) -~ (2.41)

In general, the geometric mean return does not equal the arithmetic mean
return,
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1 prd
Rpd = ;Rj .
]:

In fact,
prd
geom

RPom < R pra.

The two means coincide when the period return rates R? " are identical for j=
1,...,n. The example below illustrates these two means; see Reilly and Brown
[16, Sec. 1.2.2] for more.

Example 2.9. (Geometric Mean Return Versus the Arithmetic Mean Return)
Suppose that you initially invest $3,000 in a fund that pays no dividend. As-
sume that the investment decreases to $2,000 at the end of 1 year, decreases
from $2,000 to $1,000 from the end of year 1 to the end of year 2, and increases
from $1,000 to $3,000 from the end of year 2 to the end of year 3. Then the total
return rate on your investment over the 3 years is zero.

Let us compare what the arithmetic and geometric mean returns forecast for
the total return rate. The year-to-year return rates over the 3 years are:

$2,000 1 $1,000 1
R(tg,tg+1)) = —1=- R(tg+1,tg+2)) = —1=-
~$3,000

R(t0+2,t0+3)) 1=2.

T $1,000

The arithmetic mean return is:

1/ 1 1 7
Rye = <—3—2+2> = g =0.3889,

which when compounded annually over the 3 years yields a grossly incorrect
return rate:

(1+Ryr)® —1=(1+0.3889)° — 1 =1.6792 = 168%!

On the other hand, the geometric mean return is:

R geom = [(1+2) (1— ;) (1— ;)}1/3—1:0,

which gives the correct total return rate:

3
R(to to+3) = (1+ Reom) —1=0%.

This is, of course, an illustration of (2.41).

The arithmetic mean return deviated significantly from the geometric mean
because of the high volatility in the yearly return rates. The geometric mean
return was better able to capture this dispersion and, hence, produced the
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correct total return rate. The two measures approximate each other when the
return rates do not change significantly from period to period. The geometric
mean return is usually employed for longer time horizons, where there is more
opportunity for higher volatility. O

2.6 The Net Present Value and Internal Rate of Return

Compound interest can also be applied to develop the notion of a “net present
value.” This tool helps with deciding whether to partake in a particular in-
vestment opportunity. The opportunity can be a project, product line, start-up
company, etc. We assume that with an initial capital, the investment opportu-
nity produces net cash flows, i.e., cash inflows minus cash outflows, at different
future dates.

Unless stated to the contrary, assume that each net cash flow takes
taxes into account.

In addition, when the net cash flow on a particular future date is being esti-
mated, the estimate usually reflects activities over the year leading up to the
date. We shall then consider net cash flows on future dates separated by a year.
Furthermore, over the time span that an investment opportunity is analyzed
for its growth potential, we assume that all the annual net cash flows can be
modeled as arising from annual compounding at a constant interest rate. We
refer to this constant interest rate as the compounding growth (annual) rate from
investing in the opportunity.

2.6.1 Present Value and NPV of a Sequence of Net Cash Flows

For concreteness, we shall consider a credible, innovative start-up company.
Suppose that the start-up forecasts that, with an initial investment of $250,000,
it will generate net cash flows of $155,000 1 year from now, $215,000 2 years
from now, and $350,000 3 years from now. The entire initial capital is assumed
to be invested to produce these cash flows; e.g., none of the money is put aside
in an account unrelated to the company’s activities.

An important mathematical function we shall employ is the present value
PV(r) of the sequence of net cash flows at an annual discount rate r. Note
that in the current context, the present value is expressed as a function of the
discount rate r rather than the number of periods 7 since n will be fixed and r
will play a more key role. In our example, we have:
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$155,000 $215,000 $350,000
PV(r)= .
W="94r T e T s

Equally important will be the spread between PV(r) and the initial capital.
This function is called the net present value (NPV) at rate r of the sequence of
cash flows and is given by:

NPV (r) = PV(r) — $250,000.

For simplicity, we shall write expressions such as NPV (r) > 0, where it is understood
that the “0” represents a zero amount of cash in the currency of the net cash flows.

Now, an important step in deciding whether to invest in the start-up is to
research the marketplace to find the mean compounding growth rate from
investing in an alternative opportunity with a similar business profile and
risk—e.g., research competitor companies comparable to the start-up in scale,
risk, business sector, etc. For illustration, assume that the mean compounding
growth rate from investing in an appropriate alternative opportunity is esti-
mated to be:

TRRR = 15%.

We then take rrrr as our required return rate for investing in the start-up.

The current market value of the start-up’s projected stream of future net cash
flows is the present value of these net cash flows discounted at the required
return rate of 15%:

PV (ra) = $155,000  $215,000 $350,000
RRRJ™= 14015 7 (140152 © (140.15)3
— $134,782.61 + $162,570.89 + $230,130.68

— $527,484.18. (2.42)

It is important to observe that when determining the present value in (2.42), no
assumption is being made about reinvesting the net cash flows $155,000, $215,000,
and $350,000.

Equation (2.42) tells us that since the alternative opportunity grows your
investment at 15% per annum compounded annually, such an opportunity can
generate the start-up’s forecasted net cash flows if you invest $527,484.18 in the
opportunity today. To see this, separate the required investment of $527,484.18
into three parts as follows:

PV(rgrr) = $527,484.18 = §p134, 782.61 + §162,570.82 + §230,130.6§.

ARRR BRRR CRRR
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We can then produce the net cash flows by thinking theoretically of the alter-
native opportunity as growing Aggr to a future value of FVjy.(1) at 1 year
out, Brgr to a future value of FVg,,.(2) at 2 years out, and Cgrgr to a future
value of FV¢,,, (3) at 3 years out:

FVaer (1) = (140.15) x $134,782.61 = $155,000
FVpee (2) = (1+0.15)% x $162,570.89 = $215,000

FVier (3) = (14 0.15)% x $230,130.68 = $350,000.

On the other hand, the credible start-up claims that it can generate the
above future net cash flows with an investment today of less than the amount
$527,484.18 required by the alternative opportunity, namely, with an initial in-
vestment of only

Co = $250,000.

Naturally, investors will favor the start-up since the amount PV (rggR ) required
by the alternative opportunity is more expensive than the amount Cy required
by the start-up. In other words, the start-up appears favorable when the net
present value at the market required return rate is positive:

NPV(VRRR> = PV(VRRR> —Co>0.
The net present value at the required return rate, namely,
NPV (rrrr) = $527,484.18 — $250,000 = $277,484.18,

then measures how much cheaper (or more expensive, if the difference were negative)
it is to invest in the start-up than in the alternative opportunity. Of course, any final
decision to invest in a start-up will not rely solely on the NPV, but will be com-
plemented with a detailed analysis of the start-up’s business plan, innovative
products/services, market environment, management team, etc.

If we had NPV(rgrr) = 0, i.e., the initial capital required by the start-up
to produce the given future net cash flows was the same as that required by
the alternative opportunity, then there would be no extra value received from
investing in the start-up. In this borderline situation, however, some investors
may still invest in the start-up if, for example, it has more long-term promise.

The start-up would not be attractive to investors if NPV(rgrr) < 0, i.e., if
it costs more to receive the same future net cash flows from the start-up than
from the alternative opportunity.
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2.6.2 The Internal Return Rate

Indeed, the start-up can achieve these future net cash flows with less initial
capital only if it grows the initial capital at a rate greater than the alternative
opportunity’s compounding annual growth rate of 15%. The start-up’s com-
pounding annual growth rate on the initial capital Cy is called the internal rate
of return (IRR) and denoted rggr. To determine the start-up’s IRR, we must find
the interest rate rjrr that generates the forecasted net cash flows starting from
Co = $250,000:

C1 =$155,000  end of year 1
C, =$215,000  end of year 2
C3 = $350,000  end of year 3.
(2.43)

First, separate $250,000 into three amounts given by the present values of the
net cash flows $155,000, $215,000, and $350,000 at the unknown discount rate
rrr- The sum of these individual present values is the present value PV (rgR)
of the sequence of net cash flows. Explicitly:

$155,000 $215,000 $350,000
(1+rmrr) (I+rrr)?> (14 rrr)3
N Nt N

AIRR BIRR CIRR

$250,000 = = PV(rrr).  (2.44)

Then the future values at rate rigr of the three portions of the $250,000 in (2.44)
yield the desired future net cash flows. Specifically, the future value of AjrR at
1 year out is $155,000, of Bigr at 2 years out is $215,000, and of Cirr at 3 years
out is $350,000. It suffices then to find the IRR by solving (2.44) for rirr. Note
that (2.44) is equivalent to the vanishing of the net present value at the rate
TIRR-
NPV (rrr) = PV(rrr) — $250,000 = 0. (2.45)
Employing a software, we find that an approximate solution of (2.44) or,
equivalently, (2.45) is:
rrr = 0.652811.

Note that inserting this IRR into (2.44) actually produces $250,000.04, which,
of course, is not the exact value $250,000 due to the approximate value of rgg.
In other words, decomposing the start-up capital approximately as

$250,000 ~ §93,779.6§ + §78,703.1é —+ §77,517.ZZ = PV(0.652811)
A?I:R B?RfR C?RfR

and future valuing each term by compounding annually at the rate rrg will
yield the desired stream of net cash flows.
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The start-up’s IRR of 65.2811% compounded annually exceeds the alterna-
tive opportunity’s compounding annual growth rate of 15%, which makes the
start-up favorable. If it turned out that the IRR were 15%, then the start-up’s
growth rate would be no better than that of the alternative opportunity in the
market (borderline case). If, on the other hand, the IRR were less than 15%, the
start-up would be unattractive to investors (start-up not favorable).

In our example, we have: r[gg > rrrr if and only if NPV (rggg) > 0. In other
words, the IRR basis for deciding whether to favor the start-up is equivalent,
in this example, to the choice being based on the NPV. We have to be careful to not
generalize this observation widely. The example’s equivalence of the IRR and NPV
criteria is actually based on (2.44) or (2.45) having a unique positive solution
and on the net present value being a strictly decreasing function. These two
requirements need not hold in general. We address these issues next.

2.6.3 NPV and IRR for General Net Cash Flows

Extend the previous example to a general sequence of net cash flows. Suppose
that you are considering a new investment opportunity requiring an initial
capital of Cyp > 0 to generate future net cash flows,

Cl/ CZ/ ceey Ci’l/

at respective future years 1,2,...,n.

Making no assumptions about reinvesting the net cash flows Cy,C»,...,Cy,
we see that the present value of this sequence of cash flows at the compound-
interest discount rate of r is:

C1 Cy Cn

VO=in T asm T T @

(r>0). (2.46)
The net present value of the net cash flows is the cost of the alternative invest-
ment opportunity minus the cost of the new investment opportunity:

NPV (r) = PV(r) — C,, (r>0, Cy>0). (2.47)

As before, denote the required return rate of the new investment oppor-
tunity by rgrr. Recall that rgrr is the mean compounding (annual) growth
rate from investing in an alternative opportunity in the marketplace with busi-
ness profile and risk similar to the new investment opportunity. An NPV-based
decision-making rule about whether to invest in the new opportunity is as follows:

> If NPV(rggrr) > 0, then the new investment opportunity is cheaper than the
alternative investment and so is favorable.
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> If NPV(rgrr) < 0, then the new opportunity is more expensive and not
favorable.

> If NPV(rgrr) = 0, then the cost of the new opportunity is the same as the
alternative investment and it is borderline whether to invest.

As noted in Section 2.6.1, even with a robust NPV estimate, a real-world busi-
ness decision about whether to invest in a new opportunity will not use the
NPV as the only measure. One has to factor in the business environment, ex-
perience of the management team, etc.

An IRR of the new investment is a positive solution, r = rrg, of the following
equation:

C1 Co Cn

0=NPV(=—Cot gyt i T g

(2.48)
Equation (2.48) is equivalent to a real polynomial, so we are seeking the pos-
itive roots of such a real polynomial. Without loss of generality, suppose that
the real polynomial has degree k and is of the following form:°

a4 far+ag =0, (ap #0). (2.49)

There is no general formula for the real solutions of (2.49) for all positive inte-
gers k.

Perhaps the most cited general result about the number of positive solutions
of (2.49) is Descartes’s Rule of Signs. Before stating this result, we gather some
notation. Let N1 denote the number of positive solutions of (2.49), where we
count the solutions with multiplicity. For example, the polynomial,

r?—10r+25=(r—5)*=0,

has N1 = 2, corresponding to two positive solutions r = 5 counted with multi-
plicity. Let Nggn be the number of sign changes in the ordered sequence of the
coefficients in (2.49):

Ay, 5—-1,.--,01,40- (250)

Since the zero coefficients do not contribute to a sign change, it suffices to con-
sider the sign changes due to the ordered nonzero coefficients.

Theorem 2.2. (Descartes’s Rule of Signs) The number N of positive solutions
of (2.49) is the number Nsgn of sign changes of its ordered coefficients in (2.50) or is
Nsgn minus an even positive integer. Specifically, N equals either Nsgn, Nsgn — 2,
Nsgn —4, ..., Nsgn — 2(n — 1), or Nggn — 21 for some nonnegative integer n.6

5 If a; = 0, then simply apply the same discussion to the lower degree polynomial.

6 Using Ny < Nsgn, the reason a nonnegative even integer is subtracted from Nsgy in the theorem is
because N and Nsgn have the same parity, i.e., N+ is even (odd) if and only if Nsgy, is even (odd). This
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Proof. See Meserve [14, p. 156] and Wang [17] for a proof. O
For example, the polynomial equation
P—r+r—1=0

has three sign changes in its ordered nonzero coefficients: +1,—1,+1, —1. By
Theorem 2.2, this polynomial equation has either 3 or 1 positive solutions.
The IRR Equation (2.48) is equivalent to a polynomial equation of the form
(2.49) with ordered coefficients (2.50). By Theorem 2.2, if these ordered coeffi-
cients have one sign change, then there is at most one positive solution. If, in
addition, you can prove that the polynomial equation has at least one positive
solution, then this solution is the unique positive solution and the desired IRR.
In the example of the start-up, Equation (2.45) is equivalent to a cubic equation:

p(r) = —250,0007% — 595,0007% — 225,0007 + 470,000 = 0. (2.51)

There is one sign change, so there is at most one positive solution. Since p(r) >
0 atr=0and p(r) - —o0 as r — oo, its graph must cross the positive r-axis,
which means that p(r) must have at least one positive solution. Hence, the
cubic equation has a unique, positive solution, which is the desired rjgg. Using
a software, we found the approximate positive solution to be rjrg = 0.652811.

We also observed that for the required return rate of rgrr = 15%, the IRR
criterion to favor the start-up, namely, r[rr > rrrR, is equivalent to the NPV
criterion of NPV (rggr) > 0. This is not true in general, but holds in the example
because the function NPV(r) in (2.45) is strictly decreasing. The next result
shows when the situation of the example holds.

Theorem 2.3.

1) Suppose that all the future net cash flows are positive. Then NPV (r) is a strictly
decreasing function of r and, if there is an r = rrR, then rirg is the only IRR.”

2) If there is an rirg and NPV (r) is strictly decreasing, then the IRR and NPV
decision-making criteria are equivalent:

a) "[RR > TRRR ifand only lf NPV(VRRR> > 0.
b) TIRR = "RRR ifand only lf NPV(VRRR> =0.
¢) "rr < rrrr if and only if  NPV(rgrr) < 0.

Proof.

1) Since C; > 0 fori=1,...,n, the derivative of the NPV function satisfies:

implies Nsgn — N is a nonnegative even number, i.e.,, Ny = Nsgn — even. In particular, N is either
Nsgn, Nsgn =2, ..., Nsgn — 2(1 — 1), or Nsgn — 211 for some nonnegative integer 7.
7 By definition, we assume rrg > 0.
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d Cl Cz Cn

NV = TR T T Mgy <0

Consequently, the function NPV(r) is strictly decreasing and, hence, if the
graph of NPV(r) crosses the positive r-axis, i.e., there is an IRR, the graph
will do so only once, namely, at a unique value r{gg.

2) We are given that an IRR exists: rigg > 0. Since NPV/(r) is strictly decreasing,
we have rp > r1 > 0 if and only if NPV(r;) > NPV(r;). For part a) choose
2 = rRR, '1 = 'rRrR, and observe that NPV (rgr ) = 0. For part c) choose 1, =
'RRR, '1 = "RR- Part b) holds since NPV (rgg) = 0. O

It is important to note that in a real-world decision-making setting, the NPV
and IRR criteria have aspects not explicitly spelled out in Theorem 2.3. For
example, consider the start-up we have been exploring;:

Co C1 Co Cs rRRR NPV ("Rrr)  7IRR
$250,000 $155,000 $215,000 $350,000 15% $277,484.18 65.28%

The table shows that with an initial investment of Cy, the start-up is attractive
because it has:

> Positive future net cash flows Cy, Cp, and C3 that are nontrivial as a percent
of the initial capital and are nontrivially increasing. In particular, C; is more
than half the initial capital, C; is about 86% of the initial capital, and C; is
140% of the initial capital. Moreover, the net cash flow increases by about
39% from year 1 to 2 and about 63% from year 2 to 3.

> A nontrivially positive NPV value of NPV (rgrr) = $277,484.18, which
makes the start-up much cheaper to invest in than a comparable alterna-
tive opportunity by more than the initial capital.

> A quite large compounding growth rate of rrr = 65.28% compared to the
required return rate of rrRrr = 15%, i.e., the rgr is more than four times

'RRR-

No IRR and Multiple IRRs

The discussion so far assumes a unique IRR. However, complications already
arise in the simple case of net cash flows over 2 years (1 = 2), where the IRR
Equation (2.48) becomes a quadratic in r:

—Co r? + (Cl — ZCO) r—+ (—Co +C1+ Cz) =0, (CO > 0). (2.52)

~ ~ ~ ~ ~
a b Cc
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For example, if the net cash flows are C; = 2Cy and C; = —2Cy, then the
quadratic reduces to one with no real solution: r2+1 = 0. In this case, there
is no IRR.

It is also possible to have multiple IRRs. The quadratic (2.52) has two positive
solutions, say, 1 and r, if and only if the following positivity conditions hold:

0< b2—4ac:C%+4COC2

b C—-2C
O<ri+rn=— = ! 0
a Co
0<rimn= c :CO_Cl_Cz.
a C()
These positivity conditions are equivalent to
2
2Cy < Cq, 1 < Cr < Cy—0Cy, (Co>0).
4C

Choosing Cy = $10,000, C; = $25,000, and C, = —$15,620, we obtain two IRRs:
rRR = 22.76%, R =27.24%.

In the case of multiple IRRs, it is possible to construct a modified IRR. Nonethe-
less, in practice it is simplest to work with the NPV when there is no IRR or
multiple IRRs. Additionally, in cases where usage of the NPV and/or IRR are
unclear, it may be wise to hold off from making an investment decision.

Readers are referred to Bodie, Kane, and Marcus [1, Chaps. 5, 6] for a de-
tailed practical discussion of the uses of the NPV, IRR, and other tools in in-
vestment decision-making.

2.7 Annuity Theory

In this section, we continue our study of cash flow sequences by considering
annuities. An annuity is a series of payments made at equal time periods with
interest. Examples of annuities are the payment sequences of Social Security
funds, pensions, car loans, credit card debt, and mortgages. We shall study
annuities with identical payments and a constant interest rate and then gener-
alize them to payments and interest rates that vary discretely in time.

For simplicity, we shall explicitly indicate when the annuity payments vary
and, by default, abide by the following:

Unless stated to the contrary, assume that each annuity payment
is the same amount.

The term of an annuity is the time from the start of the first payment period to
the end of the last payment period. For an ordinary annuity, payments occur at
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the end of each time period. When the payments occur at the start of each pe-
riod, we have an annuity due, which will not be treated in the text; see Guthrie
and Lemon [8] and Muksian [15] for an introduction.

An ordinary annuity is called simple if, at the end of each payment period,
both a payment and the simple interest on the balance from the beginning of
the payment period are applied. Note that the entire balance from the previous
period is reinvested. Hence, for a simple ordinary annuity, the total accrued at
the end of a payment period has the following form:

(total accrued) = (payment) + (previous balance)

+(simple interest on previous balance). (2.53)

Here “previous balance” refers to the balance from the end of the previous
payment period, which recall we treat mathematically the same as the start of
the current period. Since the simple interest applied to a previous balance will
yield interest on the principal and interest on the interest, we obtain compound
interest naturally.

Unless stated to the contrary, assume that all loans are simple
ordinary annuities.

2.7.1 Future and Present Values of Simple Ordinary Annuities

Future Value of a Simple Ordinary Annuity

The future value of a simple ordinary annuity is the amount to which the se-
quence of payments of the annuity will grow, taking into account appreciation
due to periodic compounding. We shall see that the annuity’s future value is
the sum of the end-of-term future values of the individual payments of the
annuity.

Consider a simple ordinary annuity based on k-periodic compounding at
interest rate r. This divides each year into k equal-length payment periods.
Assume that each payment is the same amount P and the annuity has a term
of n periods, where 7 is a positive integer. The total accrued at the end of the
ith period will be denoted by S;. We shall apply (2.53) to obtain an expression
for the total amount S;, accrued over the n periods:

> At the end of the first payment period, a payment P is made. Since there is
no balance from the beginning of this period, the total accrued at the end
of the first period is:
S1="P.

Reinvest the entire amount & in the annuity.
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> At the end of the second period, the payment is P, the previous balance
is 51, and the simple interest earned on the entire reinvested amount &; is
(r/k)S1. The total accrued at the end of the second period is then:

r r
S=P+Si+ Si=P+(1+ )P

Reinvest the entire amount &; in the annuity.

> At the end of the 3rd period, the payment is P, the previous balance is S5,
and the simple interest earned on S; is (r/k)S,. The total accrued is:

$3=7>+Sz+£$z=7>+(1+£)P+(1+£)2P.

Reinvest S3.

> Continuing the above process, at the end of the nth period, the payment is
P, the previous balance is S,,_1, and the simple interest earned on S,,_1 is
(r/k)S;,—1. The total accrued at the end of the nth period is:

‘$:P+&4+£&4

or

Sn:7>+(1+£)P+(1+£)2P+---+<1+£)n173. (2.54)
Equation (2.54) shows that the future value of a simple ordinary annuity is the
sum of each of the payments future valued to the end of the annuity. To see this, in
(2.54) the future values of these payments are shown from right to left. Explic-
itly, the 1st payment P is at the end of the first period, so its future value at the
end of term (i.e., end of the nth period) is (1 + r/k)"~!P. The 2nd payment P
is at the end of the second period, which has a future value at the end of the
term of (1 +7/k)"~2P. The (n — 2)nd payment P has an end-of-term future
value of (1+r/k)*P, and the (n — 1)st payment P has (1 + r/k)P. The nth
payment P is at the end of the term so it equals its end-of-term future value.
By (2.54), the sum of these future values is S;.
The right-hand side of (2.54) has a simpler expression. Applying the geo-
metric sum,

1_ m
a+ax+---+axm_1=<1_xx>a, (m>1, x#1), (2.55)

witha="P,x=1+r/k # 1 (sincer > 0),and m = n > 1, we obtain:

_ @+ =1]
Sp= "k P (r>0, n>1).
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Remark 2.2. In actuarial science, the future value S, is denoted by s, (pro-
nounced “s angle n”). O

We summarize the result of the above analysis in the following theorem.

Theorem 2.4. At the end of n periods, the future value of the simple ordinary annuity
with payments P and k-periodic compounding at r per annum is:
[+ 1]

S, = s P (r>0, n=12,...). (2.56)

Let us consider how S, behaves as a function of r > 0. Intuitively, we expect
that as the interest rate r increases, the total S, accumulated after n periods
should increase. Of course, this is not true for n = 1.8 However, forn =2,3,...,
Equation (2.54) readily yields:

P

dj;”zf +2(1+£) L Tt (n—1)(1+

It follows that for n > 2, the total amount S,, accrued over n periods increases as r
increases. Additionally, for n = 2 we have

r>”—2 P

K k>0.

a’s,
2 =0.
However, if n = 3,4,..., then
azs, P r\n—3 P
r =2 e+ (=1 —2) (1+k) o >0

Hence, for n > 3, the total amount S,, accumulated over n periods accelerates® in
value as the interest rate r increases.

Present Value of a Simple Ordinary Annuity

The present value, denoted by A, of a simple ordinary annuity is the amount
needed today, taking interest into account, in order to be able to pay the
amount P at the end of each period for a total of 1 periods. In particular, an in-
terest per period of r/k is applied at the end of each period to the balance from
the start of that period. The funds are, of course, exhausted by the end of the
last period. For example, if A4, is a loan, then it would be paid off completely
at the end of the nth period. The total payout would be nP.

8 If there is only one period, then S; = P (constant) for all r since the principal is added only at the
end of the first period, but the first interest payment occurs at the end of the second period.
9 That is, S, is concave up as a function of r (it has an increasing slope).
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Let us determine a formula for A;. The first payment P will be made at

the end of the first period. The present value of that future payment P is then
P

(1+7/k)
for the amount to grow to P after one period. The present value of the second

. This is the amount needed at the start of the annuity’s term in order

payment P is since after two compoundings, i.e., at the end of the

(1+r/k)?
second period, it grows to P. Consequently, at the start of the annuity, the

individual present values of the n payments are given in sequential order as
follows:

P P P
T+0)" a+p* 7 O+"
Then A, is the sum of the present values of all payments:
P + P +- P .
L+ (a+))? (1+5)"

Equation (2.57) can be expressed as:

A, = (2.57)

T i-aep T
1—(1+r/k)~1

The last equality above follows from the geometric series (2.55) with a = P and
x = (1+r/k)~! and m = n. Further simplification yields:

Theorem 2.5. The present value of a simple ordinary annuity over n periods and with
payments P and k-periodic compounding at r per annum is:

1—(1+10)"
Anz[ (r 2 }79 (r>0, n=12...). (2.58)
k

Theorem 2.5 gives a formula for the amount needed today at interest rate r
in order to be able to pay out the amount P each period for n periods.

Remark 2.3. The present value A, is usually denoted by 4, and the discount
factor (1 +r/k)~! by v in actuarial science. O
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The Total Number of Periods as a Function of the Payment per Period

We know intuitively that increasing the per-period payments of a loan will
shorten the time it takes to pay off the loan. In fact, we can solve (2.58) for an
exact formula relating the number 7 of periods to payoff in terms of the inputs
P, A, (loan amount), r, and k:

in (1 794)
n=— . (2.59)
In(1+ )

To understand how n varies with P, we can fix A, r, and k and treat n for-
mally as a function of P given by (2.59). This treatment, of course, will lead
to noninteger values of 1, which we round off to find the approximate integer
value. For general values of A, > 0, r > 0, and k (nonnegative integer), as P in-
creases, the total number of periods n strictly decreases and the rate of decrease slows
down. In other words, the quantity n as a function of P is convex, i.e., n(P)
is everywhere concave up. Explicitly, though the function n(P) is a strictly
decreasing function, it has an increasing slope:

dn (r/k) An

=— <0 (r>0)
P (1= A P (14 )

/k) A
£ _ (2- /84 (r/K) Ay .
; .
PR (1 AN P (14 )

Here we used In (1 + ,r() > 0 (since r > 0) and employed (2.58) to conclude that

(r/k) An r\ "
s =(1+,) >0
Note that the quantity (r/k).A, is the (simple) interest on the loan at the end

of the first period. An example of n as a function of the per-period payment P
is shown in Figure 2.1.

1—

Present Value of a Perpetuity

A perpetuity is a sequence of cash flows that continues indefinitely. Though
a perpetuity has no future value, a simple-ordinary-annuity perpetuity has a
present value given by the following geometric series:

1—(1+7)™"
[ ( . 2 }73:7: (r>0), (2.60)
k k

A = hm A, = lim

—00 n—oo
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Number of Periods
360

180

106

. : . Monthly Payment
1000 1500 2000

Fig. 2.1 The graph shows the total number of periods n as a function of monthly payments P for a
loan of A, = $162,412 at 6.25% per annum compounded monthly (k = 12). The loan is paid off in
about 30 years (or 360 months) if the monthly payment is $1,000. Doubling the payments yields a
payoff time of 8 years and 10 months (or 106 months), which is much less than half of the time for a
$1,000 monthly payment.

which is an immediate consequence of (2.58). See Section 2.9.1 on page 64 for
a growing perpetuity, i.e., one where the payments P increase at a certain rate.

Relating Future and Present Values of a Simple Ordinary Annuity

If you put aside the amount A, today and have it grow by k-periodic com-
pounding with interest rate 7, then after n periods, the initial amount will grow
to Sj;. In other words, the initial amount A, is the present value of the future
amount S, under periodic compounding. To see this, note that by (2.56) and
(2.58), we obtain:

Sn A+ -1 P —n
ot I e
[l
= Ay, ‘ (2.61)

where r > 0. Equation (2.61) shows that an equivalent way of determining the
future value of a simple ordinary annuity is to take the present value of the
sequence of payments and then take the future value of that present value.
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2.7.2 Amortization Theory

Amortization is the reducing of a given loan amount (the principal) through a
series of payments over a fixed time span whereby one accounts explicitly for
the portion of each payment that goes toward the principal and the portion to-
ward the interest owed on the loan. The most common amortization is through
a mortgage, which is a loan where the borrower (mortgagor) gives the lender
(mortgagee) a lien on property as security for the repayment of the loan. The
mortgagor has use of the property and the lien is removed when the obligation
is fully paid. A mortgage usually involves real estate.!”

What happens if you are amortizing a debt with equal periodic payments
and at some point decide to pay off the remainder of the debt in one lump-
sum payment? This occurs each time a house with an outstanding mortgage is
sold. How much of each periodic payment is used for interest and how much is
used to reduce the unpaid balance of the principal? This issue is also important
because the interest part of the payment may be tax deductible (as it is in the
USA). In order to answer these questions, we must take a close look at the
mathematical structure of amortization.

A loan is paid off with interest through the full sequence of its stipulated
minimal payments. We then model the amount of a loan by the present value
of the entire sequence of its required future payments. Specifically, we model
the loan amount by the present value of a simple ordinary annuity. The initial
amount of the loan is A;, (principal balance), the payment at the end of each
period is P, and the loan is for n periods. Each period is (1/k)th of a year and
the annual interest rate is 7, i.e., the interest applied at the end of each period
isr/k.

Unpaid Principal Balances

We determine the unpaid balance on the principal at the end of each period of
the loan.
For notational simplicity, define

(r>0).
Then by (2.58), each end-of-period payment can be expressed as:

= )4, = V0= 4 (2.62)
1-y

n yn_l

10 While a typical mortgage is a loan used to buy a fixed asset like a house or land, which also secures
the loan, a mortgage used to buy movable property such as a mobile home or operational equipment
that acts as security for the loan is called a chattel mortgage or secured transaction.
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Denote the initial amount of the loan by:
BO - An.

Then the unpaid principal balances at the end of the different periods are given
as follows:

> At the end of the first period, an interest (/k).A, is added to the starting
balance A, and a payout/withdrawal of P is made. The unpaid principal
balance at the end of the first period is:

BlZAn+l:An_P:yAn_P.

> At the end of the second period, an interest (r/k)3; is added to the balance
B; from the start of the second period and then a payout/withdrawal of P
is made. The unpaid principal balance at the end of the second period is:

82:814—]:81—P:yBl—P:y(yAn—P)—P:yZAn—(1+y)P.

> At the end of the 3rd period, an interest (r/k)B; is added to the balance
B, from the start of the 3rd period and then a payout/withdrawal of P is
made. The unpaid principal balance at the end of the 3rd period is

r

B3=Bz+k82—'P:sz—'P

=y[y’ A —(1+y)P] - P
=y A= (L+y+y°)P.
> Continuing the above process, at the end of the /th period, an interest
(r/k)By_1 is added to the balance B, _; from the start of the /th period and

then a payout/withdrawal of P is made. The unpaid principal balance at
the end of the /th period is:

r

Bg:Bg_1+kBg_1—'P
=y A —(L+y+y 4+ +yHP
¢ 11—y
1-y
¢ (1-y)y"(y-1)
=v'A, + A, by (2.62
Tt oy ey A )
y"(y”—l)+yn(1—y”)A
— ’ .
y*—1
yn_yf
= 1An (£=1,2,...,n),

where By = A,. Hence:
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Theorem 2.6. The unpaid principal balance at the end of the (th period is given in
terms of Ay, r > 0, and k by:

n /
1+ 0" — (147
Bgz( ) n( ) An, (2.63)
(1+7) -1

wheren=1,2,...and ¢ =0,1,2,...,n.

The unpaid principal balance at the end of the loan’s term is B, = 0.

Amount of Per-Period Payment Toward Interest and Unpaid Balance

At the end of each period, a portion of the payment P is used toward interest
on the loan, the other portion toward reduction of the loan’s unpaid principal
balance.

Notation. Let:

I, = the portion of the payment P at the end of /th period that is applied
toward interest on the loan (i.e., the interest payment at the end of
period /).

Br = the portion of payment P at the end of the /th period that is applied
toward the unpaid principal balance of the loan.

We now express Z; and P, in terms of A, and r. The interest payment at the
end of period / is

r r (1+li)n_(1+lrc)éil
Ie=<k) Bg_lz(k) | 140y 1 }An, (2.64)

wherer >0,n=1,2,...and ¢ =1,2,...,n.
For the payment ‘B3, toward the principal, Equations (2.62) and (2.64) yield:

PBe=P-1,
(y—1y" (y=1) [yn _YH}
y'—1 y' =1
_ /-1
_ =Dy
y' =1
/-1
1 T
- () 0 4, (2.65)
K/ (1+7)" -1

As a check, we show that the payments, B, B>, ..., By, toward the principal
add up to the total loan amount A,:
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n n -1 /-1 -1 X
me: Z (Y ).V AnZAn;;_l Zyé—l
(=1

(=1 =t
oy 1E, y—1y"—1
_A”yn—lé;) A"”—ly—l
:.An.

Therefore:

Theorem 2.7. The total interest paid during a loan with n periods and k-periodic
compounding at interest rate r is then:

i Z (P —By) =nP — Ay, (2.66)
(=1

(=1

wheren =1,2,....

Note that nP is the total amount paid into the loan over the life of the loan and
nP — A, is the total cost of the loan.

Remark 2.4. If you receive a loan today for the amount A, at fixed interest rate
r, fixed payment P per period, and a term of n periods, then the sum nP of
all your future payments adds money at different future times without present
or future valuing them. In fact, the present value of all the future payments is
the loan amount A, and the future value is S, neither of which is nP. The
meaning of nP is the amount you would, in principle, have to pay the lender
today if immediately after receiving the loan you want to pay the loan off, but
the lender penalizes you by requiring you to pay the principal A, plus the
total interest for the full term of the loan. Of course, this is merely theoretical
since the majority of loans would not have such a drastic penalty. O

2.7.3 Annuities with Varying Payments and Interest Rates

Applying essentially the same arguments used to establish the future value
annuity Equation (2.54), we can generalize to a simple ordinary annuity with a
sequence of varying payments, Py, Py, ..., Py, and respective varying interest
rates, 1, 12, ..., Iy, over n interest periods that coincide with the payment
periods. We assume k-periodic compounding. The payment Py occurs at the end
of the Cth period, and the interest 1y is applied at the end of the (th period to the balance
from the start of the (th interest period, where ¢ =1,...,n. Assume that there is no
balance at the start of the first period.
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Future Value of a Generalized Simple Ordinary Annuity

The pattern for the future value of a simple ordinary annuity generalized to
varying payments and varying interest rates emerges as follows:

> At the end of the first payment period, a payment P; is made. Because
there is no balance from the beginning of this period, the total accrued at
the end of the first period is:

Reinvest Sj in the annuity.

> At the end of the second period, the payment is P,, the previous balance is
51, and the simple interest earned on &y is (r2/k)S;. The total accrued is:

. o _ o
S =Pa+Si+ 2Si=P+ (14 ]) Pr.

Reinvest S in the annuity.

> At the end of the 3rd period, the payment is P, the previous balance is S5,
and the simple interest earned on S, is (r3/k)S,. The total accrued is:

S=Ps+ &+ S =P+ (1+ )P+ (1+ ) (1+7) Pr

Reinvest Sz in the annuity.

> Continuing the above process, at the end of the nth period, the payment is
Py, the previous balance is S,,_1, and the simple interest earned on S,,_1 is
(rn/k)S,_1. The total accrued is

n

Sn:Pn_*’Snf]_*— k

Snfl
or

Sy =Py + <1+ r£> P1+ <1+ VI:) (1+r”k’l) Ppo+

o () ) ()
(2.67)

Observe that, by letting 1,1 = 0 and rewriting (2.67) as

Sy = <1+r”ljl) P + <1+r”k+1) <1+r£) P

=) () 047 P

o () () () 0 )

we see that (2.67) can be expressed more compactly as follows:
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Theorem 2.8. The future value at the end of n payment periods, which coincide with
the interest periods, of the simple ordinary annuity with payments Py,..., Py and
k-periodic compounding at respective interest rates ro,...,1r, during the consecutive
interest periods is:

n—11| ¢ .
Si=1), []—[ (1 + r’”kl_’)] Pu_s, (n=1,2,...), (2.68)

wherer; >0 fori=2,...,nand r,41 =0.

Whenr;=rfori=2,...,n,and P; =P fori=1,...,n, Equation (2.68) recovers
(2.54) on page 48.
An application of (2.68) to sinking funds is given in Section 2.8.3.

Present Value of a Generalized Simple Ordinary Annuity

Similarly, the present value Equation (2.57) generalizes naturally to the case
of a sequence of payments, Py,...,P,, and interest rates rq,...,r,. Here the
amount P; is paid at the end of the ith period, and the interest ; is applied
at the end of the ith period to the balance from the end of the (i — 1)st period.

When simple interest at rate r; is applied at the end of the first period to
the initial amount P (1 + r1/k) !, we obtain the first payment P;. Apply-
ing compound interest with rates r; and r;, at the end of the first and second
periods, respectively, to the initial amount P (1 + r1/k) (1 + rp/k) ! yields
the second payment P,. Continuing this process gives the initial amount that
will grow to the nth payment P,,. These initial amounts are the present values
of the sequence of payments under compound interest at different rates. Sum-
ming all the present values gives the following present value for the generalized
annuity:

P1 P>
A p—
T T aena+y)
4o P
1+73) @+72)@+7)
(2.69)
or, more compactly,

A=Y Pe , (2.70)

=npy (1 + r,j)

wheren =1,2,... and r; >0 fori =1,...,n. In the special case where r; = r and
P; =P fori=1,...,n, Equation (2.70) yields (2.57) on page 50.
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Applications of (2.69) to the dividend discount model and bond pricing are
given, respectively, in Section 2.9.1 and 2.10 (see page 68).

Relating Future and Present Values of a Generalized Simple Ordinary
Annuity

We now show that S, in (2.67) is the generalized future value of A, in (2.69)
under the generalized periodic compounding in (2.31) (see page 33). Using
Equation (2.67), direct calculation shows that

Sn
(1+rk1)(1—i—’}(2)(1+”nk—1) (1_’_1}?)
— Pn 4oy 7)2 n ’Pl
Taepaep-aen T aenaen e

= Aj.

It immediately follows that the relationship between the future and present
values in Equation (2.61) generalizes to

Ay = Sn (2.71)

10+1)
1+
AN

wheren=1,2,... andr; >0fori=1,...,n.

2.8 Applications of Annuities

2.8.1 Saving, Borrowing, and Spending

Example 2.10. (Saving During College) A prospective college student plans
to deposit $25 every month in an “untouchable” savings account, starting the
first of July of the year she enters college until the last deposit on the thirtieth
of June of her graduating year. Assume that she secured a fixed interest rate of
2.25% annually. Assume that the account compounds monthly.

a) Using this average interest rate, estimate how much she would have on July
1st of her graduating year.

Solution. Use the future value S, in (2.56). We have k = 12 for monthly com-
pounding and since the period is 4 years, we have n =4 x 12 = 48 periods,
r =0.0225, and P = $25. By (2.56),
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(405" 1]

0.0225
12

848 = x $25 = $1,254.43.

b) If her target is to have at least $1,300 on July 1st of her graduating year,
determine the minimum required interest rate.
Solution. Solving the equation,

{(1 + )" - 1}

r
12

$1,300 = 848 = X $25,

implicitly for 7 (use a software package), we obtain the smallest interest rate

to be r = 4.04%. Note that this is the smallest value of r that works since S,

is a strictly increasing function of r for natural numbers n > 2 (see page 49).
O

Example 2.11. (Saving for Retirement) Suppose that you open a retirement
fund at the start of a month and you deposit $200 at the end of each month.
If the fund pays 4% per annum compounded monthly, how much would you
accumulate at the end of 25 years?

Solution. This problem deals with the future value S, in (2.56). For monthly
compounding (k = 12), we have n = 25 x 12 = 300 periods, r = 0.04, and P =
$200. Equation (2.56) then yields the following future value:

(1) 1]

0.04
12

S300 = % $200 = 514.13 x $200 = $102,826.

O

Example 2.12. (Total Paid on Loan) A relative is considering a 20-year loan
of $150,000 with an interest rate of 8% compounded monthly. Assuming you
hold the loan the entire term and make the minimum payment at the end of
each month, what is the total amount you pay into the loan?

Solution. We have A,, = $150,000, k = 12, r = 0.08, and n = 20 x 12 = 240 peri-
ods, so by the present value annuity formula, we obtain the minimum monthly
payment:

_ (r/k) Ay
1—(1+7)
Since there are 240 months, the total paid is: 240 x $1,254.66 = $301,118.40.

_, = $1,254.66.

O
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Example 2.13. (Paying Off Debt) Suppose that you borrow $100,000 at an an-
nual interest rate of 6% with monthly compounding. For an ordinary annuity
based on this compounding, what is your minimum payment per month to
pay off the loan in 10 years?

Solution. The problem requires the present value A,. Since k = 12, there are
10 x 12 = 120 periods. Using Aj29 = $100,000 and ; = %% = 0.005, we get:

(0.005) x $100,000

P= 1 (1.005) 120

= $1,110.21.

Example 2.14. (How Much Loan Can You Afford) Suppose that you can pay
$1,495 per month for the next 15 years. What is the largest loan you can afford
at 6.25% per annum with monthly compounding?

Solution. Assume that the first payment is made 1 month from now. We have
n =15 x 12 =180 periods (months), P = $1,495, and r = 0.0625. The maximum
loan you can afford is:

i+
Ay = 006 x $1,495 = $174,359.71.
12

Example 2.15. (Living Off a Lump Sum) Suppose that you inherited $300,000
and invested it in an account with an annual interest rate of 7% compounded
monthly. For an ordinary annuity based on this compounding, if you want
your inheritance to last 20 years, what is the maximum fixed amount you can
spend from the account per month?

Solution. Using the present value annuity formula with A, = $300,000, k = 12,
r =0.07, n =20 x 12 = 240 periods, we obtain:

_ (/K A (0.07/12) >;(;$7300'000 — $2,325.90.
1—(1+7) 1= (1+55) 2

2.8.2 Equity in a House

Example 2.16. (House Equity) A couple bought their house 11 years ago for
$225,000 and put down 10% on the house. On the balance, they took out a
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15-year mortgage at 5.75% per annum with monthly compounding. The cur-
rent net market value of the house is its current market value minus all costs
in selling the house today. Suppose that the current net market value is now
$350,000 and the couple wants to sell their house.

a) How much equity (to the nearest dollar) is in the house today? Equity in a
house is defined as:

equity = (current net market value) — (unpaid loan balance).

Solution. The couple puts down 10% or $22,500 at the start, so the mortgage
is for A, = $225,000 — $22,500 = $202,500. Since n = 15 x 12 =180, r =
0.0575, k =12, and ¢ = 132, Equation (2.63) yields the unpaid balance at the
end of the 132nd month:

(4" =+
(1+])" -1

Hence, the equity is: $350,000 — Bi3; = $278,047.13.

Bz = A, = $71,952.87.

b) What are the 1st and 132nd interest payments?

Solution. We have 7; = | By = $970.31 and 713, = ; Bz = $351.15.

2.8.3 Sinking Funds

A sinking fund is an account into which one (individual or company) regularly
deposits money in order to cover an obligation or debt that will come due at a
known future date.

Example 2.17. (Saving for College Tuition) When a child was born in 2011,
her parents decided to invest in her college education. This was motivated by
a forecast that 4 years of in-state tuition at an average public college will be
about $96,000 when she will attend college. Suppose that the parents want to
accumulate that amount by their child’s 17th birthday. They open a sinking
fund into which they make a deposit on each birthday of the child up to the
17th birthday. Assume that the first deposit is for the amount P and thereafter
the parents increase the deposited amount by 4% annually. Suppose that the
bank where they have the sinking fund pays a fixed 5.5% per annum com-
pounded annually. What should the minimum annual deposits be in order for
the amount in the fund to reach at least $96,000 after her 17th deposit?
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Solution. This example applies generalized future value annuity formula in
(2.68), i.e.,

s _nfl 4 Tyl B
n—z H 1+ P Pu—s, n=1,23...,

(=0 |j=0

where 7,1 = 0. Note that r; does not appear in the formula since no interest is
paid at the end of the first period (because the first deposit is not made at the
start of the first period, but at the end of the first period).

We haven =17, S17 =$96,000, r, = - - - =r17 = 0.055, and k = 1. The product
in the sum above then becomes:

¢ Tnt1—j\ n Tn-1 "i—(e-1)\ _ ¢
g<1+ 5 >_ (1+ k) (1+ f )---(1+ ; >_(1.055),
where ¢ =0,1,2,...,n — 1.

Let us determine the deposits Py,...,P,. The deposit P; = P is made on
the first birthday. On the second birthdayj, it is increased by 4% to P, = P; +
0.04P; = (1.04) P. On the 3rd birthday, the deposit is Pz = P, + 0.04 P, =
(1.04)>P.For j=1,...,n, the deposit on the jth birthday is then P; = (1.04)/ ' P.
It follows: P,_; = (1.04)10-¢P.

The target amount for the sinking fund can then be expressed as:

$ o ¢ 16-¢ 16 W& (1.055)
96,000 = P x 1.055)" (1.04)°~ " =P x (1.04)"° x

¥ (1059 (108 o 3 (407)

=P x 1.87298 x 19.1104 = 35.7934P.
This yields P = $2,682.06, which is the first deposit. Hence, for j =1,...,17,

the minimum deposit on the jth birthday must be: P; = (1.04)/ ! x $2,682.06,
which has values

Py =$2,682.06, P, =92,789.34, ..., Pis=%4,830.24, Py =$5,023.45.

O

2.9 Applications to Stock Valuation

This section applies the theory of annuities to determining the present val-
ues of preferred and common stocks. The main tool is the dividend discount
model. A stochastic model for the future value of a stock will be taken up in a
later chapter.



64 2 The Time Value of Money

2.9.1 The Dividend Discount Model

The dividend discount model (DDM) was pioneered by Williams [18] (1938) and
Gordon [7] (1959). The fundamental hypothesis of the DDM is that, if a stock is held
for n years, then its current value is the present value of the sequence of its expected
future cash dividends through n years plus the present value of the stock’s expected
price in n years.

A stock has no maturity date and so is a security in perpetuity. Suppose
that the stock pays a dividend and the (annual) required return rate of the
stock is k.l Assume that you will hold the stock for n years. Let Dy be the
current cash dividend, i.e., the total cash dividend per share over the previous
year. Suppose that all future cash dividends are expected to grow at a constant
annual rate g, which we assume is less than the required return rate (k > g).
Let D(i) denote the expected cash dividend per share for the interval from the
present time to i years out, where i = 1,...,n. Then the expected sequence of
future cash dividends per share for years 1 through n is:

D(1)=(1+¢)Dy, DR2)=(1+g)?>*Dy, ..., Dn)=(1+g)"Dy.
The share value S(()n) of the stock today is the present value of the expected
dividend cash flows and the expected price of the stock n years from now:

gm_ D) D@ D(n) Tn

0 Ta4n (w2 tT T an

Ay (6>0), (2.72)

where 7, is the terminal price, i.e., the expected price of the stock in n years.
Note that (2.72) is a special case of the generalized present value equation (2.69)
(page 58) withk =1, r;=4, P;=D(i) fori=1,...,n—1,and P, =D(n) + Ty.

Now, if you hold the stock in perpetuity (indefinitely) rather than for n
years, then there is no terminal price, and the stock’s present share price be-
comes:

0 l
. 1+
=1

Since 11‘% < 1due toh > g, the geometric series yields

1_— <11+g) - i (iii)g

1+h =0

Il
—_
+
gk
VR
—_ =
+ +
= 0Q
N———

Hence, the present share price of the stock becomes:

!1 Recall that the marketplace is assumed to be in equilibrium, which allows for the required return
rate of the stock to be estimated using the CAPM model; see Chapter 4 for an introduction.
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(1+8)Do _ D(1)
= == . 2.7
So heg he g’ (h>g>0) (2.73)
Equation (2.73) is called the Gordon growth model. This is an example of a grow-
ing perpetuity, i.e., a perpetuity with payments that increase each period.
The Gordon growth model generalizes naturally to allow for k compound-
ings per year through the replacements ¢ — g/k and bk — k/k:

(1+5) Do D(1)
k_ 8 — h_g

k  k kk

S()Z (k>g>0>,

where D(j) = (1+ i)] Dy.

2.9.2 Present Value of Preferred and Common Stocks

A preferred stock grants its holder ownership in a corporation, but no vot-
ing rights, and a claim on assets in the event of bankruptcy that comes before
any claim of the common stock holders. Preferred stocks are considered fixed-
income securities because they promise to pay a fixed cash dividend, which
has priority over any cash dividends paid to common stock holders. Since the
future cash dividends are fixed and expected to be paid indefinitely, the value
of a preferred stock is then obtained from Equation (2.73) using ¢ = 0:

So= (k> 0) (2.74)

h

Example 2.18. (Preferred Stocks) Suppose that a preferred stock has a fixed to-
tal annual cash dividend per share of $2.50. Assume an annual required return
rate of 13% for the stock. How much should you pay for the preferred stock?

Solution. We apply Equation (2.74) with Dy = $2.50 and k = 0.13. The current
share price of the preferred stock is: Sy = 20 = %%0 = $19.23.

O

Common stocks do not have a promise to pay cash dividends. Nonetheless,
if a common stock currently pays no cash dividends, there is still investor ex-
pectation that earnings are being reinvested in the company to create growth
which will lead to cash dividends in the future. Due to the uncertainty of fu-
ture cash dividends for common stocks, we shall model their valuation under
certain assumptions about the expected cash dividends.
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Example 2.19. (Common Stocks) Suppose that the total cash dividend of a
stock last year was $2.75 per share and dividends are expected to increase at
3% per annum. If the annual required return rate is 10%, find the share price
of the stock today.

(14+8)Do _ (140.03)x$275 _ ¢4 40

Solution. By (2.73), the price is: Sg = heg 01-003) =

2.10 Applications to Bond Valuation

The US bond market is vast—much bigger than its stock market. As measured
at the end of 2012 in terms of capitalizations, the US bond market was twice
as big as the US stock market for domestic companies.!? As with other fixed-
income financial investments, the price of a bond is the present value of its
cash flow. We shall explore how to value bonds.

2.10.1 Bond Terminologies

A bond is a contract between an issuer (bond seller) and a lender (bondholder)
legally binding the issuer to repay the lender a specified fixed amount at ma-
turity and a series of interest payments during the life of the bond. In essence,
abond is an IOU.!3 The specific terms for a bond’s duration, interest payment,
etc. are described fully in the contract (indenture). The funds raised by bond is-
sues are used for capital expenditures, operations, corporate takeovers, public
projects, etc.

Bonds are usually redeemed on the maturity date. However, some bonds
have the option to be callable,'* i.e., such bonds give the issuer the right, but not
the obligation, to redeem (call) the bond prior to the maturity date. There are
also bonds with the option to be convertible, i.e., the bondholder has the right
to exchange the bond for a different security (e.g., shares of common stock),
and have a prescribed variable interest rate or even deferred interest. To avoid
confusion about which types of bonds are intended, we assume

Unless stated to the contrary, all bonds are without options, i.e.,
they are noncallable, nonconvertible, etc., and have a fixed interest
paid every 6 months.

12 http://www.learnbonds.com/how-big-is-the-bond-market/
13 TOU is an abbreviation for “I owe you.”
14 Most corporate bonds are callable. Also, the US Treasury has not issued callable bonds since 1985.
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Although both bonds and stocks are securities of a company, they are
different in the sense that bondholders are creditors of the company, whereas
stockholders are owners of the company. The cash flows from a company’s
bonds are more reliable than those from its stocks since the company has a le-
gal obligation to repay its bondholders. Sometimes even when a company be-
comes insolvent, its bondholders may still get back some compensation, while
compensation is not guaranteed for its common stockholders.

We now list and discuss some basic terminologies and features of bonds:

> The issue date of a bond is the date on which the bond issuer receives the
loan from the lender and from which the lender is entitled to receive inter-
est from the issuer.

> The maturity value M (also known as the par value, face value, principal) of
a bond is the unit of the amount borrowed at the time it was issued. It is
traditionally in units of $1,000, but municipal bonds are usually sold in
units of $5,000.

> There are two main markets for bonds: primary market, where bonds are
sold for the first time to institutional investors, and secondary market, where
the resale of bonds taking place after their initial offering is open to the
public, though individual investors will need to have a brokerage account
to transact trades. Bonds selling at their maturity value are called par bonds.
In the secondary market, bonds are traded at prices that are typically dif-
ferent from the maturity value. If a bond sells at a market price above
(respectively, below) its maturity value, then it is called a premium bond
(respectively, discount bond).

Remark 2.5. The primary bond market is essentially an institutional mar-
ket. In practice, the US Treasury uses an auction process to sell treasury
bills, notes, and bonds in the primary market, whereas the pricing of newly
issued corporate bonds is negotiated between the corporation (or its repre-
sentative) on the one hand and investment bankers and large institutional
investors on the other. O

> The maturity date is the date on which the bond issuer must repay the lender
the bond’s maturity value. Note that callable bonds have features which
allow for the principal to be repaid before the maturity date.

> The term to maturity, or simply maturity, of a bond is the length of the time
interval between the issue date and the maturity date.

Bonds can be classified into three groups: short term, intermediate term and
long term according to maturities of, respectively, 1-5 years, 5-12 years, and
greater than 12 years.
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> A coupon payment C, or simply coupon, is an interest payment of a bond.

Most bonds have a fixed coupon that does not change during the life of the
bond and is paid at regular time intervals, usually semi-annually.

If a bond does not pay a coupon during its life, it is called a zero-coupon
bond. To compensate for no coupon payments, such bonds are issued at a
deep discount from their value at maturity.'® For this reason, they are also
called discount bonds or deep discount bonds. Zero-coupon bonds are similar
to US government savings bonds® in concept and have significant theoret-
ical value.

> The current yield indicates the yield of a security based on its current market
value. The current yield of a bond, denoted by r, is determined by the formula
below:

annual coupon amount
Y =

2.75
current bond price @75)

> The coupon rate or interest rate, denoted by rc, is defined by the current yield
when the bond price is equal to its maturity value. That is:

annual coupon amount
rC = .
maturity value

> A bond’s yield to maturity (YIM), denoted by ry, is the marketplace’s an-
nual required return rate of the bond held to maturity and whose future
coupon payments are reinvested at the same rate. Equivalently, a bond’s
YTM equates the present value of the bond’s future cash flows to the bond’s
current market price:

= C C+M

current bond price = , 2.76

p e:Z‘i (1_|_r]{)g (1+r]{)n ( )

where 1 is the number of coupon payments remaining on the bond and

k is the number of coupon payments per annum (typically, k = 2). Equa-

tion (2.76) is obtained by applying Equation (2.69) on page 58 with P; = C
fori=1,2,....n—1, P,=C+M,andr;=ryfori=1,2,...,n.

Denote the current bond price and '} in (2.76) by B(n) and ?y, respectively.
Then:
M < C

. + T
i) T B 1y

B(n) = (2.77)

15 For example, such a bond might be issued at a 50% discount from its maturity value.
16 A savings bond offers a fixed rate of interest over a fixed period of time, but cannot be traded after
being purchased.
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By (2.58) on page 50, Equation (2.77) is equivalent to

M (1+#)"=1)C

B(n) = (14 Py)n (1+7y)" Py

(Py >0). (278

> Finally, the following relationships among yield to maturity (ry), current
yield (r), and coupon rate (r¢) hold (Exercise 2.35):

1. A bond trades at par iff ry = r = r¢ (see Proposition 2.1).
2. A bond trades as a discount bond iff ry > r > r¢.
3. A bond trades as a premium bond iff ry <r <rc.

Remark 2.6. Generally, evaluating financial investment performance can be a
complicated task as there are different measures to be applied to serve different
purposes. Yield is a measure of an investment income that an investor receives
annually. As a bond investor, if you just want to hold on to your bond until
its maturity, the coupon rate is the only measure that matters. However, if you
need to sell your bond before maturity, you have to adopt the current yield as a
measure. Yield to maturity is a measure that enables you to compare different
bonds by taking the effect of compound interest into consideration under the
assumption that all the coupon payments are reinvested at the same rate and
you hold the bond to maturity.” O

2.10.2 Bond Prices Versus Interest Rates and Yield to Maturity

Bond Price with YTM at the Coupon Rate

For a bond being traded after it was originally issued, we expect intuitively
that when the YIM is at the coupon rate, then the market value of the bond
should be its maturity value. The following proposition confirms that intuitive
result and its converse:

Proposition 2.1. Suppose that a bond has n coupon payments remaining. The market
price of the bond equals its maturity value exactly when its coupon rate is the YTM:

ry =rc ifandonlyif B(n)= M. (2.79)

17 Tt is worth noting that comparing different bonds by their percentage change in price is often mis-
leading since the significance is not the same for an identical percentage price change of bonds with
different interest rates. Also, it is important to realize that reinvesting all the coupon payments at the
same rate is rather difficult if not impossible in practice.
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Proof. 1If 7c = #y, where 7c =rc/2 and fy =ry/2, then C = 7c M =y M and
the bond valuation Equation (2.78) becomes:

Mo () =M M

L+ )" Atm) @y
= M.

B(n) = 1+ (1+7y)"—1)

Conversely, if B(n) = M, then (since C = ¢ M) Equation (2.78) reduces to:

1= (L+#y)" =1) ¢
(14 7y)" (1+ ?y)n Py ’

Multiplying through by (1 + 7y)" yields: (1 +7y)" — 1= ?C((Hg)n_l). Hence,

Pe = fy. O

Bond Prices Move in Opposite Direction to Interest Rates

The interest rate probably has the single largest impact on the prices of all
bonds. The following three examples are related to each other and illustrate
the relationship between bond prices on the one hand and interest rates and
YTM on the other.

Example 2.20. Suppose that a 30-year bond with an annual 3% coupon rate
payable semiannually was issued by the US Treasury on the first trading day of
2013. If the maturity value is $1,000, what is the semiannual coupon amount?

Solution. Solve for the semiannual coupon amount C from the equation

o 2C
3% = 41,000
to obtain C = $15. Assume, for simplicity, that the bond was sold in the primary
market at its maturity value. Then by Proposition 2.1, the YTM equals 3%.
O

In the next two examples, the bond in Example 2.20 will be referred to as
“the first bond.”

Example 2.21. Since the Feds kept interest rates artificially low in 2013, dou-
bling the interest rate in 10 years from 2013 is not an unreasonable speculation.
Suppose that another 30-year bond with an annual 6% coupon rate payable
semiannually will be issued by the Treasury on the first trading day of 2023.
What will be the price of the first bond at the time of the second bond initial
offering?
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Solution. For the simplicity of our argument, we assume almost no intraday
bond price fluctuations on the issue date of the second bond. Let

to = the issue date of the second bond,
r1 = the (current) yield of the first bond at ¢,
= the price of the first bond at f,.

Since no investors will buy a bond with 3% annual yield when they have the
choice to purchase a bond of the same type with 6% annual yield, we have
r1 = 6%. In other words, the current yield of the first bond will be forced to
approach 6% on the issue date of the second bond under the law of supply
and demand. To speculate on the price of the first bond, we apply (2.75) and
solve for By from the equation, 1| = 6% = 2XB$;15 , to obtain B; = $500. Observe
that when the interest rate rises from 3% to 6%, the first bond'’s price will fall from
$1,000 to $500.

O

Example 2.22. Suppose that you will purchase the first bond on the first trad-
ing day of 2023 at the price $500 and hold it to the maturity date of the first
trading day of 2043. What will be the yield to maturity?

Solution. We need to solve the bond Equation (2.78) for ry, which in our set-
ting is'®

(+7)-1e, M

rg(1+r]§)n (1—*—’,,{)”
Using By = $500, C = $15, M = $1,000, k = 2 (semiannual compounding), and
n = 40 (number of coupon payments remaining), we obtain ry = 8.084%. In-
deed, when the price of a bond drops from $1,000 to $500, the yield to maturity rises

from 3% to 8.084%. Note that we assumed the bond was sold in the primary
market at its maturity value.

B; =

O

We now establish, in general, the observation at the end of the solution of
Example 2.22. Take the first and second derivatives of the bond’s present value
2.77):

dB(n) M
= _ —C <0
dry n(1+ry n+l 21 1+ Py ) (1

and

18 As before, there is no general analytical solution ry for every n. In most applications, we can only
estimate ry numerically using a software.
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Fig. 2.2 The price of a bond is a strictly decreasing, concave-up function of the bond’s YTM. The
graph illustrates this for a bond with $1,000 maturity value and 6% coupon rate. Note that when the
YTM is 6%, the bond’s price is its maturity value.

d*B(n) M 00+ 1)

=nn+1
a2 =D G OL e

> 0.

In other words, the bond’s price is not only strictly decreasing as the yield
increases, but has a convex graph, i.e., the graph is everywhere concave up
(increasing slope). Figure 2.2 depicts this property for a bond with $1,000 ma-
turity value and 6% annual coupon rate.

2.11 Exercises

2.11.1 Conceptual Exercises

2.1. A physicist summed up the growth rate of an initial sum of money held
over a fixed time span as follows: “If simple interest is applied during the
time span, then the initial sum will grow with uniform (constant) velocity as
the interest rate increases. If periodic compound interest is applied, then the
growth of the initial sum will accelerate as interest increases.” Do you agree
with this interpretation? Justify your answer.

2.2. Theorem 2.1 on page 27 yields that k-periodic compounding of a principal
Fo at r per annum over a time span of T years consisting of x interest periods
gives a future value,

Fom <1+’:)x}"0,
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where x is a nonnegative real number and 0 < ,r( <1lfork=1,2,.... Does F,
increase or decrease as k increases indefinitely? Justify your answer.

2.3. Suppose you purchase a lottery ticket for $2. What is your return rate if
you lose? What if you win $200 million? Express your answer as a percentage.

2.4. Consider an investment that promises a fixed sequence of future cash div-
idends. Briefly explain why an increase in the required return rate on the in-
vestment would decrease the current value of the investment.

2.5. Explain what the following is stating financially about the start-up: “A
start-up’s NPV at 30% is $35,000.”

2.6. A friend borrows $1,000 from a lender that gives him the loan as a simple
ordinary annuity at a fixed interest rate over 2 years with a payment of $100
per month. If your friend carries the loan to its full term, then he will have
to pay more than the amount of the loan in just interest. True or false? Justify
your answetr.

2.7. A loan with a fixed payment of $1,000 per month for 5 years has the stipu-
lation that you will have to pay all the interest due on the loan even if you pay
the loan off early. If immediately after you receive the loan, you want to pay it
off, how much do you have to pay the lender?

2.8. How would you modify the interpretation of the noncallable bond pricing
formula (2.78) on page 69 to obtain the current price of a callable bond, i.e.,
a bond where the issuer has the right, but not the obligation, to redeem (in
practice, cancel) the bond before maturity? Use a single call date, i.e., a date
when the issuer can redeem the bond before maturity. Compare the price of
a callable bond with a noncallable one. Corporations issue callable bonds be-
cause if interest rates go down, they can call their bonds and refinance their
debt at a lower interest rate.

2.9. How would you modify the interpretation of the noncallable bond pricing
formula (2.78) on page 69 to obtain the current price of a puttable bond, i.e.,
a bond where the investor has the right, but not the obligation, to redeem the
bond before maturity? Use a single put date, i.e., a date on which the investor
can redeem the bond before maturity. Compare the price of a puttable bond
with a noncallable one. Investors buy puttable bonds because if interest rates
increase, they can sell back their original bonds at the put value and invest the
proceeds in a higher interest rate bond.

2.11.2 Application Exercises

2.10. Consider a principal F( that is held for nexact days during a non-leap
year at the simple interest rate . By what percent is the simple interest amount
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using Banker’s Rule greater than the simple interest amount employing exact
time and exact interest?

2.11. (Selling or Buying a Loan) On November 12, 2007, a borrower closes on
a loan for $176,000 at 6.25% per annum compounded daily. Repayment of the
loan’s maturity value (principal plus interest) is due in full on April 15, 2008.
Suppose that the fine print of the original loan stipulated that the lender can
sell the loan on the condition that the interest rate and maturity date remain
the same. The lender sells the loan to another lender on January 5, 2008. The
new lender agrees to purchase the debt for the present value of the maturity
value at 10% per annum compounded daily. Assume that interest compounds
daily and the borrower does not default on the loan. Use Banker’s Rule when
solving the following:

a) What is the maturity value of the loan?

b) What will the first lender receive for selling the loan? Is any profit made by
the first lender?

c) What profit will the second lender make on the loan’s maturity date if the
conditions of the original loan are unchanged?

d) Though the original interest rate and maturity date are unchanged, the sec-
ond lender is not prevented from reissuing the loan with a new start date
set as the loan’s purchase date and with the new loan’s principal set as the
value of the loan on the purchase date. Does the second lender make more
profit by resetting the loan in this way? Explain.

2.12. For an interest rate of 4% per year, compare the future value 2 years from
now to which $10,000 increases under daily compounding versus continu-
ous compounding. Assume 365 days per year and express your answer as a
fractional-difference percentage of the daily compounding case.

2.13. Suppose that at the start of college, you have $1,000 to invest and would
like for it to grow to $1,250 at the end of your senior year through monthly
compounding. Determine the general formula for the interest rate required for
the growth and then compute the interest rate.

2.14. Assume that college tuition is currently 30 times its cost 15 years ago.
Assuming annual compounding, what is the interest rate r that gives the rate
of increase in tuition?

2.15. How much should you have today in an account with monthly com-
pounding and annual interest rate of 4% to receive $1,000 per month forever?

2.16. (Equity in a House) A couple purchased a house 7 years ago for $375,000.
The house was financed by paying 20% down and signing a 30-year mort-
gage at 6.5% on the unpaid balance. The net market value of the house is now
$400,000. Assume that the couple wishes to sell the house.
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a) How much equity (to the nearest dollar) does the family have in the house
now, after making 84 monthly payments?
b) Find the first interest payment Z; and the 84th interest payment Zg,.

2.17. (Social Security Benefits) We present a simplified problem to illustrate
Social Security benefits. A college graduate begins work at age 22. She has an
annual income of $70,000 until retirement (a simplification), pays 12.4% of this
income into Social Security each year, and retires at age 65 with Social Security
benefits of $20,000 annually. How long must she live before the present value
of these benefits equals the present value of her annual contributions? In other
words, how long must she live after retirement to get back the full value of
her contributions to Social Security? Will she get the entire value? Assume a
discount rate of 4% per year, no change in her salary, and that all payments
and benefits occur at the end of each year.

2.18. (Worker’s Compensation) The usual legal settlement for an industrial
accident is the present value of the employee’s lifetime earnings. If you expect
to work for 10 more years, make $70,000 a year in the next 2 years, and get
a raise of $5,000 every 2 years, what would be your settlement? Assume an
annual discount rate of 4% in the first 5 years and 6% in the second 5 years,
and that your paycheck is received at the end of each year.

2.19. (Bonds) Suppose that you bought a 30-year bond with 4% annual coupon
rate. You wish to sell that bond at a later date when the remaining life of the
bond is 2.5 years and the current YTM of your bond has declined to 2%.

a) What is the fair value, as determined by the present value method, of the
bond at the time of your sale?

b) How much would you earn if you purchased the bond for $1,000, sold it at
the fair value, and did not reinvest the coupon payments?

2.20. (Bonds) Bonds are generally quoted as a percentage of their face value.
A bond selling at 99.2% of its face value is quoted as 99.2. The following in-
formation for a treasury bond was provided by the WS] market data center on
December 4, 2013:

Maturity Coupon Current price Previous price Change Yield
11/30/20 2.000  99.20 99.00 0.203 2123

The coupon column refers to the annual coupon rate. Verify that the last col-
umn indicates YTM.
Purchasing a House

The remaining Application Exercises deal with purchasing a house. Assume
that you are currently renting an apartment for $1,040 per month and you have
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been considering buying a house. You have saved $10,000 toward a down pay-
ment for the house.

A salesperson informs you that he has a new house for sale, where the house
and land were independently appraised at $200,000, but are being sold by the
builder at a discount price of $185,000. The builder wants to get rid of the prop-
erty quickly because the house is the last one to be sold in the development and
the builder is moving on to construction of a new development.

The salesperson connects you with his in-house lender, to whom you give
details about your income and grant permission to review your credit and
eligibility for a loan. You inform her that you are prepared to make a down
payment of $10,000 toward the house if necessary. She gets back to you with
good news that, if you put $8,100 toward the house, then they can give you
a 30-year loan for the balance of $176,900 at 6.25% per annum (compounded
monthly). Note that lenders require the house to appraise at or above the pur-
chase price; otherwise, they may reject the loan or require more down pay-
ment. The lender computes the monthly mortgage payment at $1,089.20. She
informs you that the remaining $1,900 of your $10,000 can be used toward costs
associated with the final evaluation of the physical property and the closing of
the purchase (property inspector fee, termite inspector fee, official survey, at-
torney fees, etc.). The builder agrees to pay for costs beyond your $1,900 and
make necessary repairs you identify during the period you have to inspect the
property (the due diligence period).

Hearing the news about your qualification for the loan, the salesperson asks
you how much rent you are now paying. When you inform him that you pay
$1,040 per month, he quickly points out that it would be a mere extra $50 per
month for you to meet the mortgage payments. He emphasizes that it is better
to own than to rent, especially if the mortgage is just a bit more than your
current rent.

You are thrilled! After the excitement subsides, however, you decide to run
the numbers yourself to make sure you get a clear understanding of what
you are getting into financially.!” The problems in this project help guide you
through some of this analysis.

2.21. Show that the monthly loan payment on the unpaid principal balance of
$176,900 is $1,089.20.

2.22. In addition to closing fees paid to settle the loan, there are expenses be-
yond the monthly mortgage payments.

First, since your deposit was less than 20% of the purchase price, you are
required to take out a private mortgage insurance (PMI) to protect the lender

19 Mortgages on a house are generally modeled as simple ordinary annuities by lenders.
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if you default on the loan. The PMI typically lasts until the unpaid principal
balance of the mortgage is paid down to 80% of the original value of the house,
where the house’s original value is the lesser of the purchase price and the
official appraised value of the house used in closing the sale. Note that the
bank may also require your payment history to be in good standing (e.g., no
late payments in the past year or two) before removing PMI. Of course, if the
value of the house increases nontrivially, you may be able to remove the PMI
earlier. Suppose that the PMI is $141.52 per month.

Second, along with PMI, you have to pay for hazard insurance to cover un-
planned damages to the house due to fire, smoke, wind, etc. Assume that the
hazard insurance is $36.50 per month.

Third, you have to pay property taxes to the tax district (e.g., county and
city) where the house is located. The property (i.e., house and land) will be
valued within your tax district, which is a valuation that is separate from the
appraisal done when purchasing the house. The resulting tax district’s valua-
tion is the taxable value of the house and is the amount to which the property
tax rate will be applied. Suppose that the annual property tax rate is 1.3% and
the taxable value of the property is $189,986. For this project, the taxable prop-
erty value is less than the appraised value (i.e., $200,000) used for the purchase.
Sometimes, however, the taxable value can be higher which was not uncom-
mon in the aftermath of the 2008 mortgage crisis.

The PMI, hazard insurance, and property tax payments are in addition to
the monthly loan payment, and all together they form a single payment you
make to the lender. The lender or a company hired by the lender manages
these payments by taking out the portion for the loan payment (principal plus
interest) and depositing the rest into an escrow account, which is used to pay
the annual insurance premiums and property taxes on behalf of the borrower.

Finally, assume that the property is in a housing development that comes
with a mandatory Homeowners Association (HOA) fee. The HOA fee is used
to maintain the grounds, roads, etc. in the development. If you do not pay the
fee, the HOA can foreclose on your property. Assume an HOA fee of $100 per
month.

a) What is the estimated total monthly PITI, i.e., the minimum monthly pay-
ment covering the principal, interest, taxes, and (hazard) insurance?

b) Identify two other mandatory house expenses that are outside of the PITI
payment and other basic house costs like utilities and repairs. Do exclude
costs like groceries, tuition, medical expenses, etc., which are more associ-
ated with running a home. What is the minimum monthly cost of the house
during the first year if you now include these two mandatory house ex-
penses and PITI? Which of these housing costs will likely increase in the
future?
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c) What is your opinion about the salesperson’s pitch about the cost of renting
versus buying a house?

2.23. Fill out the amortization schedule below, which is for the first 5 months
of the loan.

Payment # Payment (P) Principal (/) Interest (Z,) Bal. (/)
1,089.20 167.85 921.35 176,732.15
1,089.20

1,089.20

1,089.20

1,089.20

U1 = W N =

2.24. Are there discrepancies in the above amortization table? If so, explain
how to remove them mathematically.

For the remaining problems, note that only the payments toward principal
and interest (PI) are relevant to the loan’s balance. Costs associated with prop-
erty taxes, hazard insurance, PMI, HOA, etc. are separate expenses and do not
impact the balance of the loan. Such costs are typically not included in the
loan’s cost.

2.25. Using a software, compute the numbered payment at which the unpaid
balance on the loan will first dip below 80% of the original value of the house.
Roughly how many years and months does it take to reach that balance? If the
value of the house has not decreased below its original value at that point in
time, you would stop paying PMI henceforth.

2.26. Determine the total amount you would pay into the mortgage, excluding
escrow payments, if you make only the minimum payment over the full 30
years. What is the total cost of the mortgage? Is it more than the mortgage?

2.27. Estimate the number of years and months it would take to pay off the
mortgage if you double your monthly payments.

2.28. Estimate the total you would pay into the mortgage if you double your
monthly payments. What is the total cost of the mortgage for doubled pay-
ments? Is it more than the mortgage?

2.11.3 Theoretical Exercises

2.29. Suppose that an initial capital Fy grows to an amount F(7) over a time
span 7. A mathematician modeling the growth observes that for all time spans
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x and y, the accumulated amount F(x) is a differentiable function satisfying
the following:

dF

F(x+h)=F(x)+F(h)—Fo, F(0) = Fo, i

(0) =rFo,

where r > 0. Determine the type of growth model, i.e., find F(x).
2.30. Derive Equation (2.18) on page 26: G'(x) = G(x) G'(0).

2.31. (Capital After Spending, Inflation, and Interest) Consider the following
setup:

- Begin with an initial capital C(0) in an interest-bearing account and let C(n)
be the remaining capital at the end of the nth year.

- Assume an interest rate r is applied at the end of each year to the capital
remaining on that date.

- At the end of the first year, assume that an amount S was spent from C(0) on
goods and services, and money will be spent on similar goods and services
in each of the subsequent years.

- Suppose that the amount spent at the end of any specific year is the total
amount spent by the end of the first year increased in subsequent years at
the annual inflation rate i compounding annually until the end of the spec-
ified year. Assume that 7 > i since investors are not interested in a market
interest rate that is below the inflation rate.

a) Show that the total capital at the end of the (1 + 1)st year can be expressed
recursively as follows in terms of the capital at the end of the previous year,
taking into account spending, inflation, and interest growth:

Cn+1)=(1+7r)[C(n) — (1+1)"S]. (2.80)

b) Use induction to show that

Cln)=(1+71)" [Co— H.rs] + (1”) (1+1)"s.

r—1i r—1i

2.32. Suppose that after this year, your grandmother will receive regular pay-
ments from a retirement fund, but she has to choose between two options for
how to receive the payments during n + 1 years. She does not plan to spend
any of the money until after the n + 1 years. Assume that she will save all the
disbursements in an account that accrues the payments as a simple ordinary
annuity with k-periodic compounding at interest rate r (e.g., each payment
date coincides with an interest date).

The payment start date will differ for the two plans, but both payment op-
tions will have the last payment at the start of the last interest period during
the (1 4 1)st year. Your job is to help her choose between the two options.
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a) (A General Future Value Formula) The current problem determines a gen-
eral formula that incorporates the future value of the payments into your
grandmother’s account. Suppose that regular payments of P into an interest-
bearing account form a simple ordinary annuity with k-periodic compound-
ing at interest rate r. Assume that the account receives the first payment at
the end of the first interest period of a certain year and the last payment at
the end of the Nth interest period going forward, with no payment at the
end of the (N + 1)st interest period. Show that the amount accrued in the
account at the end of the (N + 1)st period is:

(14+r/K)NTL — (1 +7/k)

FV = 'k

P, (2.81)
where N is the total number of payments into the account.

b) We now explore the future values associated with the following two plans
for receiving payment.

i. Plan A. Assume that Plan A begins officially at the start of next year with
payments of A starting at the end of the first interest period of next year.
Show that the total amount she would accrue at the end of the (n + 1)st
year is:

(1+r/k) Dk — (14 ¢/k)

r/k =

FVAE

ii. Plan B. Under Plan B, your grandmother receives payments of B with the
choice of officially starting at the beginning of the (g 4 1)st year after Plan
A starts and the first payment disbursing at the end of the first interest
period of the official starting year. Show that the total amount she would
accrue by the end of the (1 4 1)st year is

FVBE r/k

(14 r/k)l+ D=k (1 4 r/k)] 5

where g =1,2,.... Note that for 4 = 0, the two options coincide.

¢) (Choosing Between Plans A and B) Naturally, since Plan B starts out later
than Plan A and both have the same last-payment date, the payment amount
of Plan B has to be higher than that of Plan A, i.e., B > A. Suppose that the
account’s interest rate exceeds a threshold as follows:

r>k[(B/A)1/‘7—1]

i. Show that there is no n such that the amounts accrued under both options
are equal by the end of the (n 4 1)st year.
ii. Show that Plan A is superior to Plan B, i.e., prove FV 4 > FV3.
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2.33. (Relating Present and Future Values of a Generalized Annuity) Using
n=11 /¢ r .
Su=1Y []‘[ (1 + ’)] Pt
(=0 |j=0

verify the formula
Sy

(1Y)

where n = 1,2,...,r]- >0forj=1,...,n,and r,41 =0.

An:

2.34. (Bonds) Given a coupon bond described by Equation (2.76) on page 68,
find the future value at maturity of the bond’s cash flow.

2.35. (Bonds) Show that for a coupon bond, its yield to maturity (ry), current
yield (r), and coupon rate (rc) have the following relationships:

a) A bond trades at a discount if and only if ry > r > rc.
b) A bond trades at a premium if and only if ry <r <rc.
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