
Chapter 2
Basis of the Method of Polynomial
Approximation

2.1 Extension Sets of Observations: The Heuristic Path
for Nonlinear Estimation

The estimation algorithm outlined in Chap. 1 can be constructively implemented if
some a priori data are known. However, the algorithm does not fully use information
from observations, since its operations are linear over the results of observations. Is
it possible to increase the accuracy of the estimate, to use more complex, nonlinear
operations? A multidimensional version of K. Veyershtrassa’s theorem answers this
question affirmatively.

We believe that the real functions of many variables θ(YN ), which are further de-
fined as approximation representations, are continuous in the closed bounded domain
�YN of the multidimensional space. Fulfillment of this condition [1] allows the use
of a multidimensional analog of Weierstrass’s theorem (Stone’s corollary theorems).
The theorem states that for every ε, the following holds:

sup
YN ∈�YN

|P(YN , ε) − E(θ|YN )| ≤ ε, (1.1)

where�N is compact, E(θ|YN ) is a continuous function of N components of YN , and
P(YN , ε) is a polynomial from YN (linear combination of powers of the components
of YN ). If this condition is fulfilled, the approximation error ε tends to zero with
increasing dimension of the vector YN .

Let’s define the set �WYN
polynomial observing W (YN ), which depends on the

primary vector of observations YN . The input estimation algorithm is not supposed
to be the vectors YN and W (YN ). Inequality (1.1) makes it natural to assign that the
degree of the components of YN are components of the vectors W (YN ). The sum of
the exponents of all the degrees does not exceed a given integer d. �WYN

contains a
set of �YN original observations:

Y ∈ �Y ,�Y ∈ RN ∈ RN , W ∈ �W ∈ RN1 , N1 > N . (1.2)
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20 2 Basis of the Method of Polynomial Approximation

We will estimate the vector θ(W (YN )) via a formula similar to (1.3) of Chap. 1:

θ̂(W (YN )) = E(θ(W (YN ))) + �o(W (YN ) − E(W (YN ))), (1.3)

where
�o Q = L .

Algorithm (1.3) defines a vector of estimates, the optimal mean-square and linear
on the set of degrees of the components of YN . This vector is a polynomial of the
components of YN and the corresponding estimation of the errors’ mean cannot have
more errors; that delivers a suboptimal polynomial P(YN , ε) of (1.1).

This statement is true because algorithm (1.3) defines the optimal mean-square
evaluation on the set of linear combinations of the components of the degrees YN

and P(YN , 2N ) (linear combination of powers of the components of YN ). However,
the linear combinations P(YN , ε) are not optimal in the mean-square and true matrix
inequality C (1.3)≤C (1.1), whereC (1.3) andC (1.1) are covariance matrices of the
estimation errors, corresponding to the expressions (1.1) and (1.3) for the estimation
methods.

The set of elements W (YN ) expands with increasing d; some of its elements are
degrees of component YN in the polynomial P(YN , ε). In this case, the estimation
error, which corresponds to algorithm (1.3), is at least not greater than the ε in
formula (1.1).

Next, Sect. 2.3 represents data on the construction of the vector W (YN ). The
arrangement is such that with an increase in d, estimation errors are reduced and do
not exceed ε in (1.1).

A priori data for formula (1.3) are the vector andmatrix E(θ), E(W (YN )), C0, Q,

L numerically defined in Chap. 1, by replacing the symbol YN on the symbol W (YN ).
The elements of the vectors W (YN ) linearly depend on degrees of the observations;
therefore, formula (1.3) corresponds to a nonlinear algorithmic process. The estima-
tion error we obtain when using an extended set of observations will always be less
than many original observations �Y .

In Chap. 1, the formula was determined by calculating the estimation error co-
variance matrix obtained with this nonlinear algorithm and finding the best of their
reduction of the nonlinear terms in the function W YN .

Membership of the vector W (YN )’s degrees and the plurality of a sufficiently
large value of d in principle ensure the achievement of arbitrarily small mean-value
estimation errors.

2.2 The Statistical Basis

We assume that parameter vector θ has components θ1, . . . , θq and at fixed vector
YN belongs to a region �θ|YN ∈ Rq . This region can have a finite or infinite number
of points. The latter will be the case, for example, if θ = F(YN , ξ), where ξ is an
independent variable that varies in a region.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_1


2.2 The Statistical Basis 21

If the vector YN spans the region of �YN points, then the vector θ spans points of
some region �θ.

We suppose that YN , θ are random vectors on region �YN � �θN |Y ∈ RN+q and
that their joint stochastic measure is

p(θ, YN ) = p(Y )p(θ|YN ),

where function p(θ|YN ) is the conditional density of probabilities of the ran-
dom vector θ at the fixed vector YN . If the set �θ|YN is composed of points
θ1(YN ), . . . , θr (YN ), then

p(θ|YN ) = (δ(θ − θ1(YN )) + · · · + δ(θ − θr (YN )))/r,

where δ(. . .) is a delta function of θ variables. The vector of conditional expectation
E(θ|YN ) is represented by

E(θ|YN ) =
∫

θ∈�θ|YN

θp(θ|YN )dθ. (2.1)

Let the vector W be a function of components of the vector YN : W = W (YN ). If
the random vector YN is fixed, then the algorithm outlined in Chap. 1 delivers an
estimator of the vector θ (or a function of this vector) that is linear relative to vector
W and optimal in the root-mean-square sense on a class of linear operators.

We will use this algorithm to construct an estimator of the vector E(θ|YN ) that
will be linear relative to a vector W (YN ) and optimal in the root-mean-square sense.
We can construct an estimator because the joint density of probabilities p(θ, YN )

permits us to find the first and second statistical moments of the random vectors
E(θ|YN ), W (Y ) that are necessary for using formulas of Chap. 1. From Eq. (2.1),
we will find

E(E(θ|YN )) =
∫

YN ∈�YN ,θ∈�θ|YN

θp(θ, YN )dθdYN , (2.2)

E(W (YN )) = W (YN )p(θ, YN )dθdYn, (2.3)

L = E((E(θ|YN ) − E(Eθ|YN )))(W (YN ) − E(W (YN )))T )

=
∫

YN ∈�YN ,θ∈�θ|YN

(E(θ|YN ) − E(Eθ|YN )))(W (YN ) − E(W (YN )))T p(θ, YN )dθdYN ,

(2.4)

Q = E((W − E(W ))((W − E(W ))T )

=
∫

Y∈�YN ,θ∈�θ|YN

(W − E(W ))(W − E(W ))T p(θ, Y )dθdY. (2.5)
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We assume that E(θ|YN ) is a continuous vector-function YN .
Let the components w1(YN ), . . . , wm(YN ) of the vector W be the first m com-

ponents of W . Let’s find the optimal in the root-mean-square-sense estimator of the
vector E(θ|YN ); we’ll do it using a linear (relative to W ) vector-function of orm (1.3)
of Chap. 1. But under this condition, the vector W is a function of YN . Hence, addi-
tionally, the vector to estimate the conditional expectation—an estimator realized via
an optimal in the root-mean-square-sense linear operator over the vector W (YN )—is
denoted as Êθ|Y (Y, m)o and defined by

Êθ|YN (YN , m)o = E(E(θ|YN )) + �o(W (YN ) − E(W (YN ))), (2.6)

where
�o Q = L . (2.7)

2.3 Polynomial Approximation

Now, we believe that elements of the basic sequence are products of integer nonneg-
ative power functions of components of the vector of primary observations YN :

wa1,...,aN (YN ) = ya1
1 · · · yaN

N , (3.1)

where the nonnegative integers a1, . . . , aN deliver all integer nonnegative solutions
of the inequality 0 ≤ a1 + · · · + aN ≤ d, d = 1, 2, . . .. For d → ∞, we obtain a
countable sequenceof basic functions.Wewill notice that in this case, Stone algebra is
a space of polynomial N variables, and Stone’s theorem serves as amultidimensional
analog of Weierstrass’s theorem. For given integers d, N , we will denote the number
of elements of the basic sequence as m(d, N ).

Lemma 4.1 The value m(d, N ) is defined by the recurrent formula

m(d, N ) = m(d − 1, N ) + (1/d!)(N + d − 1) · · · N , m(1, N ) = N .

The formula is proved by induction.

With increasing d, the value m(d, N ) quickly increases. For example, if N = 4,
then

d 1 2 3 4 5 6 7 8
m(d, N ) 4 14 34 69 125 209 329 494.

The vectorial linear combination of basic functions that at fixed integer d delivers—
onto regions �Y × �θ|Y—an optimal (in the root-mean-square-sense) estimator of
the vector Ê(θ|Y ) of the form
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Ê(θ|YN )(YN , d)o = E(E(θ|YN )) + �o(W (YN ) − E(W (YN ))), (3.2)

�o Q = L , (3.2*)

or
Ê(θ|Y )(Y, d)o =

∑
0≤(a1+···+aN )≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N , (3.3)

where . . . ,λ(a1, . . . , aN ), . . . are the vectorial weight coefficients. We will find
these coefficients if, to the right of Eq. (3.2), we substitute components of vectors
andmatrices from relationships (2.2)–(2.5) aswell as components of the vectorW (Y )

from Eq. (3.1), and set as equal the coefficients before identical products of power
functions in Eqs. (3.2) and (3.3).

Vectors . . . ,λ(a1, . . . , aN ), . . . should be input to the computer. Then formula
(3.2) or (3.3) solves the problemof polynomial approximationwithout solvingmatrix
equation (3.2*) for any vectors Y ∈ �YN .

Equation (3.2) or (3.3) solves the problem of polynomial approximation of a
vector of conditional expectation for the random vector of unknown parameters with
an error, uniformly small on the given region �Y :

sup
YN ∈�YN

|E(θ|YN ) −
∑

0≤a1+···+aN ≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N | → 0, d → ∞.

We emphasize that with increasing number d, the polynomial, approximating vec-
torial series, contains a vector E(θ|Y ) with arbitrary small root-mean-square error
on region �Y , despite having used the simple linear operator over polynomial func-
tions of results of primary observations: Simplicity of the operator represented by its
linearity, “is compensated” for by nonlinear (polynomial) functions of results of the
primary observations, processed by the linear operator.

Then, by W (d, k) we denote a vector whose components contain all possible
products of the form ya1

1 · · · yak
k , . . . , 0 ≤ a1 + · · · + ak ≤ d. We assume that all the

components of the vector W (d, N ) are linearly independent. Then the numbering
of these components can be arbitrary. However, to represent the recurrent form of
an algorithm of polynomial approximation, the numbering, defined by recurrent
relationships, is reasonable.

The recurrent form of writing the vector W (d, k) is of the form

W (d, k)T = ‖W (d, k − 1)T w(d − 1, k − 1, k − 1, yk)
T ‖, (3.5)

where

w(d−1, k−1, yk)
T = ‖W (d−1, k−1)T yk · · · W (1, k−1)T yd−1

k W (0, k−1)T yd
k ‖,

(3.6)
W (0, i) = W (i, 0) = 1, i = 0, 1, 2, . . .
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For a given integer d, successive application of relationships (3.5), (3.6) leads to
the formulas

W (d, 1)T = ‖1y1 · · · yd−1
1 yd

1 ‖,

W (d, 2)T = ‖W (d, 1)T W (d − 1, 1)T y2 · · · W (1, 1)T yd−1
2 yd

2 ‖,

W (d, 3)T = ‖W (d)T W (d − 1, 2)T y3 · · · W (1, 2)T yd−1
3 yd

3 ‖, . . .

The formulas imply a way of successively numbering the components of vector
W (d, k). These components are then denoted as w1, w2, . . . , wm(d,k).

2.4 Calculating Statistical Moments and Choice
of Stochastic Measure

Theprecedingmaterial points to the fact that at the exact calculationof integrals (2.2)–
(2.5) and at a great value of an integer d, the presented method of approximation
delivers an estimator vector of parameters in the form of a vector of conditional ex-
pectation. It is well known that the estimator is optimal in the root-mean-square sense
for all vector-functions of a vector of observations. The efficiency of this estimator—
as a carrier of information, contained in a vector of observations—depends on the a
priori stochastic measure that was chosen.

It is likely that the problem of choosing an optimal stochastic measure can be
formulated. However, a similar problem is not further considered here.

Besides the a priori region �Y × �θ|YN , there are commonly no a priori data for
stochastic characteristics of the vectors YN , θ. Hence, it is natural to use the heuristic
arguments when assigning a stochastic measure. However, the heuristics’ role can be
reduced if we connect choosing a stochasticmeasurewith the problemof numerically
determining integrals (2.2)–(2.5).

Let’s consider a method of calculating multidimensional integrals, effectively
used below for polynomial approximation in solving applied problems.

Let � ∈ Rm ; it is necessary to calculate the integral

J =
∫

x∈�

F(x)dx, (4.1)

where F(x1, . . . , xm) is a given integrand function, and � is a unity cube in
Rm : 0 ≤ xi ≤ 1.

Every cube’s edge is divided into r equal segments of length 1/r , whose ends are
vertices rm of the smaller elementary cubes denoted as E1, . . . , Ek, . . . , Erm . Then,

J =
k=rm∑
k=1

Jk, (4.2)
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where

Jk =
∫

x∈Ek

F(x)dx . (4.3)

To calculate Jk , one generalizes the method of trapezoids to a multidimensional
case. Multidimensional linear interpolation is performed, at which the integrand
function F(x) is replaced with a multilinear function F(x)′. This function is a sum
of products of functions, linear in variables x1, . . . , xm , and coincides with F(x) in
2m cube vertices Ek .

We assume that xk1 , . . . , xkm , 1 ≤ k1, . . . , km ≤ r − 1 are coordinates of that
cube vertex Ek , whose coordinates have the smallest values of all 2m cube vertices
Ek . Then, coordinates of all 2m cube vertices can be represented by the expressions

xk1(α1) = xk1 + α1/r, . . . , xkm (αm) = xkm + αm/r,

where quantities α1, . . . ,αm assume—independently of one another—the value 0
or 1. Next, xki (1) − xki (0) = 1/r, i = 1, . . . , m, are the coordinates x1, . . . , xm

of a point, belonging to Ek , that satisfy the inequalities xki (0) ≤ xi ≤ xki (1),
i = 1, . . . , m.

Let’s define linear functions of these point coordinates by

f0(xi ) = r(xki (1) − xi ), f1(xi ) = r(xi − xki (0)).

It is clear that 0 ≤ f0(xi ) ≤ f1(xi ), f0(xi ) + f1(xi ) = 1.
The interpolating function F(x)′ is defined by

F(x1, . . . , xm)′

=
∑

α1,...,αm=0,1

fα1(x1) · · · fαn (xn)F(xk1 + α1/r, . . . , xkm + αm/r). (4.4)

Summation in Eq. (4.4) is done over all binary numbers of the form α1, . . . ,αm ,
and the term’s number is equal to 2m .

Linear functions f0(xi ), f1(xi ) satisfy the identity

∑
α1,...,αm=0,1

fα1(x1) · · · fαm (xm) = 1. (4.5)

The identity is proved by induction.
Replacing in Eq. (4.3) the function F(x) with F(x)′, after integrating over cube

Ek , we will find an approximate expression for the integral Jk :

Jk 	 (1/2r)m
∑

α1,...,αm=0,1

F(xk1 + α1/r, . . . , xkm + αm/r). (4.6)
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Hence, the approximate value of the integral over every elementary cube is propor-
tional to an arithmetic average of values of the integrand function in vertices of this
cube.

Let’s consider a situation when every integral Jk is of the form

Jk =
∫

x∈Ek

F(x)dx, (4.7)

where F(x) is a yet-to-be-determined probability density of the random vector x .
The value of Jk from (4.7) will become equal to the right of Eq. (4.6) if the probability
density is assumed to be the proportional sum of products of delta-functions:

p(x1, . . . , xm) = (1/2r)m

×
∑

α1,...,αm=0,1

δ(xk1 + α1/r − x1) · · · δ(xkm + αm/r − xm). (4.8)

For this function, there is a valid normalization condition on the unit cube.
Thus, assigning the probability density to be equal to a sum of products of delta

functions delivers an exact value of the corresponding integral. But we get the same
integral value if distribution of the random vector x on the unit cube is assumed
uniform, and generalization of the method of trapezoids (presented above) is taken
as an approximate method of calculating multidimensional integrals.

Hence, there are two possibilities.

1. Assign the probability density as a sum of products of delta functions on � and
find an exact value of integral (4.7).

2. Assign the probability density as uniform on � and find an approximate value of
this integral after using a generalized method of trapezoids.

In the latter case, approximate values should also be used; then some of the
integrals being calculated can be determined analytically. This means that integrals
being calculated are elements of a priori vectors and matrices needed to determine
the vector of linear estimators in Chap. 1, optimal in the root-mean-square sense.

It should be emphasized that for a determinate connection of random vectors θ
and Y , at the exact calculation of the integrals (2.2)–(2.5) and a sufficiently great
value of d, the estimator θ̂(Y, d) is close to the estimated vector θ and practically
does not depend on the chosen probability density p(Y ). This statement follows from
Eq. (4.8).

Let’s assume that the a priori region �Y is a cube in RN , which is divided into
r N elementary cubes in realizing the generalized method of trapezoids (see above).
Let’s choose probability density p(Y ) as the corresponding sum of products of delta
functions. Then Eq. (4.8) (representing, for the method of polynomial approxima-
tion, the key convergence of the calculations) will be true for any (including small)
number r .

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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Of course, for small r , it will be necessary to use a greater number d. Hence,
the “rough” (for small r ) calculating weight coefficients λ(a1, . . . , aN ) in Eq. (3.3)
should be compensated for by a greater number m(d, N ) of terms in Eq. (3.3).
The choice of rational—according to the criterion of minimum time—calculating
numbers r and d is a subject of special consideration.

2.5 Fragment of Program of Modified Method
of Trapezoids

An approximate value of a multidimensional integral over a unit cube is equal to a
sum of approximate values, to be calculated under Eq. (4.2). However, practical use
of this method is not rational, as it requires a huge volume of computing.

In fact, if a vertex of a small parallelepiped Ek iswithin a unit cube (it is surrounded
by small parallelepipeds all around), then, formultiple uses of formulas like Eq. (4.6),
one should calculate the value of the function F(. . .) in this vertex 2n times.However,
if a vertex coincides with that of the unit cube, then the function value of F(. . .) is
calculated only once.

It is reasonable to design an algorithm that would require calculating the function
F(. . .) only once in every node of the grid covering the unit cube. In such a case,
the explicit representation of an approximate integral as a linear combination of the
function F(. . .)’s values in nodes is rather difficult, because coefficients of this linear
combination depend on the integer r .

We will present the offered algorithm as a fragment of a Pascal program for the
case of r = 5:

J:=0;
for x1:=0 to r do for x2:=0 to r do
for x3:=0 to r do for x4:=0 to r do
for x5:=0 to r do
begin
x[1]:=x1;x[2]:=x22;x[3]:=x3; x[4]:=x4;x[5]:=x5;
nj:=0;
for i:=1 to 5 do if (x[i]=0) or (x[i]=r) then nj:=nj+1;
if nj=0 then mj:=32;
if nj=1 then mj:=16;
if nj=2 then mj:=8;
if nj=3 then mj:=4;
if nj=4 then mj:=2;
if nj=5 then mj:=1;
K:=mj/32;
J:=J+KF(x[1],x[2],x[3],x[4],x[5]);
end;
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Table 2.1 Values of integers for different values of r

r k(1) k(1/2) k(1/4) k(1/8) k(1/16) k(1/32)

5 1,024 2,560 2,560 1,280 320 32
10 59,049 65,610 29,160 6,480 720 32
15 537,824 384,160 109,760 15,680 1,120 32
20 2,476,099 1,303,210 274,360 28,880 1,520 32

The fragment implies that the algorithm gives an approximate integral J as a
linear combination of the function F(. . .)’s values in vertices of small cubes. The
coefficients K of this linear combination take the values 1, 1/2, 1/4, 1/8, 1/16, 1/32,
multiplied by integers, automatically determined by the algorithm for the modified
method of trapezoids.

Table2.1 gives values of these integers for different values of r .
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