Combinatorics of Poisson Stochastic Integrals
with Random Integrands

Nicolas Privault

Abstract We present a self-contained account of recent results on moment iden-
tities for Poisson stochastic integrals with random integrands, based on the use of
functional transforms on the Poisson space. This presentation relies on elementary
combinatorics based on the Faa di Bruno formula, partitions and polynomials, which
are used together with multiple stochastic integrals, finite difference operators and
integration by parts.

1 Introduction

The cumulants (kX),>; of a random variable X have been defined in [33] and were
originally called the “semi-invariants” of X, due to the property kX t7 = «X + k7,
n > 1, when X and Y are independent random variables. Precisely, given the moment

generating function

|~

E[e*] =) " —E[X"], (1)
n=0

of a random variable X, where ¢ is in a neighborhood of 0, the cumulants of X
are defined to be the coefficients (xX),> appearing in the series expansion of the
logarithmic moment generating function of X, i.e., we have

!

S

S
log(Ble™]) = 3 iy — 2)
n=1 :
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where ¢ is in a neighborhood of 0. In relation with the Faa di Bruno formula, (1)
and (2) yield the classical identity

EX =% Y Kpyokpy  neN 3)

a=0 PyU--UP,={1.....n}

which links the moments (E[X"]),>; of a random variable X with its cumulants
(/cff)nzl, cf., e.g., Theorem 1 of [16], and also [15] or §2.4 and Relation (2.4.4) page
27 of [17].

The summation in (3) runs over the partitions Py, ..., P, of the set {1, ..., n},
i.e., each sequence Py, ..., P, is a family of nonempty and nonoverlapping subsets
of {1,...,n} whose union is {1, ...,n}, and |P;| denotes the cardinal of P;, cf. §2.2
of [21] for a complete review of the notion of set partition. For example, when X is
centered Gaussian we have K,’f = 0, n # 2, and (3) reads as Wick’s theorem for the
computation of Gaussian moments of X counting the pair partitions of {1,...,n},
cf. [10].

In this survey we derive moment identities for Poisson stochastic integrals with
random integrands, cf. Theorem 1 below, with application to invariance of Poisson
random measures. Our method relies on the tools from combinatorics appearing
in [3], i.e., the Faa di Bruno formula and related Stirling numbers, partitions and
polynomials, in relation with Poisson random measures, integration by parts on
Poisson probability spaces and multiple stochastic integrals. Such moment identities
have been recently extended to point processes with Papangelou intensities (see [6]
and [5], respectively, for the moments and for the factorial moments of such point
processes).

The outline of this survey is as follows. Section 2 starts with preliminaries on
combinatorics and the Faa di Bruno formula, providing the needed combinatorial
background to rederive the classical identity (3). Then, in Sect.3 we introduce the
Poisson random measures and integration by parts on Poisson probability spaces,
along with the tools of 8§ and U transforms in view of applications to moment
identities. Single and joint moment identities themselves are then detailed in Sect. 4,
in relation with set-indexed adaptedness and invariance of Poisson measures.

Our computation of Poisson moments will proceed from the Bismut—Girsanov
approach to the stochastic calculus of variations (Malliavin calculus), via the use
of functional 8 and U-transforms, cf. Sects. 3.3 and 3.4. As an illustration, we start
with some informal remarks on that approach in the framework of the Malliavin
calculus on the Wiener space. Given (B;),er ., a standard Brownian motion and F()
a random functional of the Brownian path B;(w) = w(?), t € R4, we start from the
Girsanov identity

E[FE()] = E | F | o) + / Feds | | 4
0
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where f € L>(R+) and £ (f) = X is the terminal value of the (martingale) solution
of the stochastic differential equation

dXt :f(t)XtdBt, IS ]R,+. (5)
By iteration, the solution of (5) can be written as the series

§(f) =

1+ / f(®X,dB,
0

o0 Iy

:1+g 0/ / /(rl) f(,)dB,, ---dB,
=1+Z—I(f®")

of multiple stochastic integrals

o0 Iy

L = / / / F(0) 1), --dB,. = 1.
We can then rewrite (4) as

BIFE()] = BIF] + ) - BIFL (") ©
n=1

=E|F|o@)+ [ f(s)ds
/

o0 an p
= E[F] +Zni! S| F o0 +e / f(s)ds
n=1 0

e=0

By successive differentiations this yields the iterated integration by parts formula

E[FL,(f®")] = E[V}F], ()
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where V is the gradient operator defined by
1 '
ViF = 111‘[(1) - Flo()+ S/f(s)ds — F(w())

On the other hand, on the Wiener space the above Girsanov shift acts on the paths
(@(t))ser.. of the underlying Brownian motion (B;),er.. as

() — () + ¢ / F(s)ds.
0
which yields
E[V!F] = E / F51) -+ F(5)Ds, -+ Dy, Fds, ---ds, | ®)
0 0

where DgF is the Malliavin gradient which satisfies

[e]

ViF = /Dst(s)ds,

0

hence by (7) and (8) we obtain the iterated integration by parts identity

E[1,(¢®YF] = E / /f(n)---f(sk)m---D‘Ydesl---dsk k=1,
0 0

(€))

arelation that can be the basis for the computation of moments. On the Wiener space
the operator D also satisfies the identity

D1,(g®") = ng(OL,—1(g®" V),  teRy, (10)

which can be used to recover (9) as the Stroock’s formula [32], cf. Corollary 1 below
for the Poisson case.

However, when carrying over this approach to the probability space of a Poisson
random measure it turns out that there is no differential operator V; that can satisfy
both relations (8) and (10) above. In the sequel we will develop the above approach
on the Poisson space via the use of finite difference operators.
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2 Combinatorics

In this section we provide the necessary combinatorial background for the derivation
of cumulant-type moment identities. We refer the reader to [21] and references
therein, cf. also [22], for additional background on combinatorial probability and
for the relationships between the moments and cumulants of random variables.

2.1 Faa di Bruno Formula and Bell Polynomials
2.1.1 Faa di Bruno formula

The Faa di Bruno formula plays a fundamental role in the combinatorics of
moments, cumulants, and factorial moments. Namely, instead of the multinomial
identity

n k d
(;xz) =k > E”'dinl’ (11)

di++dn=k
d)=0.,....dn =0

we will use the combinatorial identity

oo k oo
(Zx) => > xayexg (12)
n=1

n=k di+-+dg=n
di=1...dg=1

or

(le,n) (Zxk,n) = Z Z X1y ** Xkdy - (13)
n=1 n=1

n=k di+-+dg=n
di=1...dg=1

The above identity (12) is equivalent to the Faa di Bruno formula, i.e., given g(x)
and f(y) two functions given by the series expansions

[e9)
X"
g(-x): E bnm
n=1 ’

with g(0) = 0 and

oo yk
=Y
k=0 '
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the series expansion of f(g(x)) is given by

ai
f(g(x))=zﬁ(2b )
o0
SO DD DRI
- " dl... dk_..._
prr i ) - d! 4!
di=1,..dg=1
oo n
:Z Z_ R (14)
n=0 k=0 k! di 4+ Adp=n dl' dk'
di=1,.dg=1

In the sequel we will often rewrite (12) using sums over partitions P7, ..., P} of
{1,...,n} into subsets with cardinals |PY|,...,|P}], as

n! bd] bdk
— E — e = = E b|Pn‘“.b‘Pn|'
k! di! dy! ! k
dy++~dy=n PIIIU"'UP;‘:{I ..... n}
d1=1,..dg =1

2.1.2 Bell Polynomials

The Faa di Bruno formula (14) can be rewritten as

fg) = Z Zaank(bls--- n—k+1)s (15)

O

where B, (b1, . .., by—k+1) is the Bell polynomial of order (n, k) defined by

1 n!
Bnk(bla---abn—k+l) = E —bdl "'bdk
’ ! 1...d,!
k! dy+-dg=n dil--dy!
di=1,..dp=1

= > bipr -+ by

PIU-UP!={1,...n}

- THEE)

ri 424t —k+Dry—ppy=n =1
ritr ety 41 =k
r 2().....r”_k+1 >0

_n > K bi\" bugt1 |
k! il ! U (n—k+1)! ’

ri 2+t k- Dy g =n
" +/‘2+'“+an1<+1 =k
=0ty —f-1 =0
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cf., e.g., Definition 2.4.1 of [21], with B, o(b1,...,b,) = 0,n > 1,and Bop = 1. In
particular when f(y) = ¢’ we have ax = 1, k > 0, and (15) rewrites as

eXp Z; = Z;An(bl,,bn), (16)
n=1 n=0

where

Anbr, - by) = Builbi, .- by (17)
k=0

n

k=0 PIU-~UP}={1,....n}

n 1 b; n
=n! T\
n 2. [1 (n!(n)) 4o
k=0 ri+2r+-Ao—k+Dn,_jp=n [=1

ritr et =k
r1=0,..., Tn—k+41 >0

=nt Y H (% (%))

ri+2r 4t =n [=1

r1=0....5p =0

is the (complete) Bell polynomial of degree n. Relation (16) is a common formula-
tion of the Faa di Bruno formula and it will be used in the proof of Proposition 5
below on the U-transform on the Poisson space.

2.2 Stirling Inversion

The Stirling numbers will be used for the construction of multiple stochastic
integrals, as well as to establish their relations to the Charlier polynomials in

Sect.3.2. Let
’ Kl = i

1 n!
T 2. dil--dy) (19)
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denote the Stirling number of the second kind with S(n,0) = 0,n > 1,and S(0,0) =
1, cf. page 824 of [1], i.e., S(n, k) is the number of partitions of a set of n objects
into k nonempty subsets, cf. also Relation (3) page 59 of [3], with

Bui(x,...,x) :)«,J‘S(n,k), 0<k<n.

Let also

n 1 : i k BN/
s(n.k) = [,J = 220w
T i=0

denote the (signed) Stirling number of the first kind, cf., e.g., page 824 of [1], i.e.,
(=1)""Ks(n, k) is the number of permutations of n elements which contain exactly k
permutation cycles.

The following Lemma 1, cf., e.g., Relation (3) page 59 of [3], also relies on the
Faa di Bruno formula applied to

*
f@) = E and a, = 1{n=l<}
and
g(t) =log(l14+1) and by = 1y—py.

Lemma 1 Assume that the function f(t) has the series expansion

oo

"
f@0) = ZO . 1E€R.
Then we have
o0 [k
' _
f(e —1)—Zk—!ck, teRR,
k=0

with

cp = 2”: arS(n, k),

k=0

and the inversion formula

a, = chs(n,k), n e N.
k=0
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Proof Applying the Faa di Bruno identity (14) to g(r) = ¢’ — 1 and using (19) we
have

fle=1 =Y a e__l) Z Z—S(nk)

k=0
o0 n o0
" r
Z— kS(n,k) =Y —cn tER,
=l —n

with

= Z aS(n, k).
k=0

Conversely we have

FO =3 Log1 +0) =Y @Y sk
k=0 k! k=0 n=k n:
= Z chs(n k) = Z t€ R,

n= 0

with

a, = chs(n,k).
k=0

O
As a consequence of Lemma 1, the Stirling transform
a, = chs(n,k), nelN,
k=0
can be inverted as
= ZakS(n,k), nelN,
k=0
i.e., we have the inversion formula
> Snbsk) =1ymy.  nlelN, (20)

k=1
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for Stirling numbers, cf., e.g., page 825 of [1]. As particular cases of the Stirling
transform of Lemma 1 we find that

1 A" 1 o A" n!

—( — l)k ( E ) — E -

k! = n! k! —n ! P di!---dg!
dy=>1,..dp=>1

_Z—Bnk(l 1):ZA—S(nk) k>1. (1)

n=k

We also have

1 S (2 =1\
o (log(1 + )k = (k!) (Z( n) t”)

n=1
00 -
o 1 1 (_l)n k=41
= ()Y —Bu-lz =2 ———
=D ;n! ’k( 23 n—k+1
(—DF & " n!
- (-1
k! ; n! d1+;ik:n dl dk
dj=1..di =1

o0
"
=Y —sk. k=1,
n!
n=k
which shows the relation

! —1yk
s(n,k):% 3 == 22)

1 di-d
dyttd=n ! k

In particular, taking ¢, = x* and letting a,, = x(,) be defined by the falling factorial

Xy i=x(x—=1)---(x=n+1), k,n>0,

ie.,
o0
*
' _ N
fle = =e"=3% ot
k=0
and by Lemma 1 we get
o 1
FO =0 +0"= 3 —x. (23)

n=0
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which will be used in Lemma 2 below on the Charlier polynomials.
By Stirling inversion we also find the expansion of the falling factorial

n

Xy =x(x—=1)---(x—n+1) = Zs(n,k))/‘

k=0

and

=) Sm k) xx—1) (x—k+ 1),

k=0

cf., e.g., [9] or page 72 of [8].

2.3 Charlier and Touchard Polynomials

2.3.1 Charlier Polynomials

47

(24)

The Charlier polynomials C,(x,A) of order n € IN with parameter A > 0 are
essential in the construction of multiple Poisson stochastic integrals in Sect. 3.2.

They can be defined through their generating function

oo

An
Yann =) —Carn =e M1+ A xreRy,

n=0 """

A e (—1,1),cf, e.g., §4.3.3 of [30].

Lemma 2 We have

Gy =3 ¢ ('Z) (—A)"s( k),  xAeR.
k=0 =0

Proof We check that defining C,(x, 7) by (26) yields

oo

TACTED pEarenty)
n=0
= W DD (’l’) (=151, k)
n= " k=0 1=k
[e’e] A n n l
=>=3 (1) (=" " s(lk)
n=0 " [=0 k=0

(25)

(26)
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e l
= p

=M1+ 1),

A,t > 0,x € IN, where we applied (23) and (24). O

As a consequence of Lemma 2 and (24), the Charlier polynomial C,(x, A) can be
rewritten in terms of the falling factorial x,) as

n

HEMEDY ( )( A ZZx s(L,k) = Z (’Z) ()", xA€R.

=0 =0

(27)
Lemma 3 We have the orthogonality relation
ety k—!Cn(k, A)Cnlk, X) = nIA gy (28)
k=0

Proof We have

e Aab _ —/l(l+a+b) Z (1 + a) (1 + b)k

oo A,k
= ; 7 Valk- ¥ (k. 1)

Ak

o0 o0 o0
—l
Z - 2;2)——c Wk, M) Con (K, A),
which shows that

o] o] Ak
ZAP(%V - Z T Z ——c (k. A)Cin(k, 1)
p=0

‘nOmO

—)k Z (ab)n i A,k (C (k A))2

(n!)2 k!
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with
o0 Ak
> T Crlk H)C(k, 2) =0
k=0
for n # m, and
A E Ak 2
A" =™y (Gl A)2,
k=0
forn = m. O

2.3.2 Touchard Polynomials
The Touchard polynomials can be used to express the moments of a Poisson random

variable as a function of its intensity parameter. They can be defined by their
generating function

gy
Ale'—1) _
e = § :;Tn(k), teR,

n=0 """

and from (16) or (21) they satisfy

T,(0) = AyA.....0) = Bu(h.....A)
k=0

= Z Z 2 = Xn:AkS(n,k), (29)

k=1 PIU~UPI={1....n} k=0

cf., e.g., Proposition 2 of [4] or §3.1 of [20]. Relation (29) above will be used in the
proof of the combinatorial Lemma 7 below.

2.4 Moments and Cumulants of Random Variables

Given the identity (1) defining the moment generating function of X, we can write

Ele™®] = 1 + B[X] + gE[XZ] +o(%),
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which allows us to rewrite the cumulant generating function (2) as
2
log(E[e]) = log (1 + B[X] + EE[Xz] + 0(t2))

? 1 2 ’

= (E[X] + EIE[XZ] -3 (tE[X] + E]E[xz]) +o(f)
SR )

= MBX] + SEX’] - 2 (E[X])® + o)
2

= E[X] + %Var[X] + o(£%),

hence k{ = E[X] and k¥ = Var[X]. More generally, as a consequence of (16),
the moment generating function of X expands using the complete Bell polynomials
A,(by,...,by) of (17) as

exp(log(E[e™]))

[ele)
I
exp ( KX—')
n=1 n

oo

ZtnA (/cl,...,/cff,

n=0

]E[erX]

which shows by comparison with (1) that

E[X"] = A,,(/cf,/c?, ... ,Kf)

n X X

DREIND BRI

N k! ! !

k=0 " dj+-tdg=n di di
di=1,..dp=1

e DD D T (30)

k=0 PIU-~UP}={1,....n}

and allows us to recover (3).
The identity (30) can also be recovered from the Thiele [33] recursion formula

S (=1 ] 1)! -
E[X]=Zman[X Zmz EX"] 3D

=0
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between moments and cumulants of random variables, cf., e.g., §1.3.2 of [22].
Indeed, assuming at the order n > 1 that

n

X X
Xn] = n' Kll KZ” — KX ...KX
a! L' oL Pl TPl

a=0 Iy +-tlg=n @ a=0 PIU-UPI={1,...,n}

h=1da=1

and using (31), we have, at the order n + 1,

n+1
n n n41—
E[X +1] — Z o K?E[X +1 k]
k=1
n+1 n+1—k 1 X X

— : i K M
_Z(k—l)"‘ g Z 111! 1!

Yt tg=nt+1—k

h=1lg=1
a1 " n+1—k
J— X X X
= E Ky, E E K ont1—k) K ar1—k
k _ 1 ‘Pl ‘ ‘Pa ‘
k= a=0 prtl=kyupi I = (1, a1k}
n n+l—a n
¢ > "
— K ...K _
k_l A ‘P”+l kl |PZ+1 kl
a=0 k=1 PRy upt T R = 1=k}
n
X X
_ P 32
2 T .

X X
= K’ -..K
Z Z 1Pt AN

a=L prily.upt =1, n+1}

n+1 KX KX
I ly

(n+1)‘
:Z ! 2 Ly

At lg=n+1

N=llg=1

where in (32) the set P+ g ! of cardinal |P2ﬂ | = k is built by combining {n + 1} with
k — 1 elements of {1,...,n}.
The cumulant formula (30) can also be inverted to compute the cumulant /cff from

the moments X of X by the inversion formula

=2 @=DI=D Y ey 2L (Y

a=1 prtiy-UPr={1,...n}
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where the sum runs over the partitions P}, ..., P: of {1,...,n} with cardinal |P}|
by the Faa di Bruno formula, cf. Theorem 1 of [16], and also [15] or §2.4 and
Relation (2.4.3) page 27 of [17].

2.4.1 Example: Gaussian Cumulants

When X is centered we have k' = 0 and k5 = E[X?] = Var[X], and X becomes
Gaussian if and only if k¥ = 0,n > 3,i.e., kX = 1(,=00%, n > 1, 0r

(Kf,/{f,/{?,/{f, L) = (0,02,0,0, o).

When X is centered Gaussian we have Kff = 0,n # 2, and (30) can be read as
Wick’s theorem for the computation of Gaussian moments of X ~ N(0,0?) by
counting the pair partitions of {1, ...,n}, cf. [10], as

o"(n— 1)1, neven,

EXT=0") " X0 Ky Ky = (34)

k=1 PlU-UP}=tl..n} 0, n odd,
[P{1=2....|P}|=2

where the double factorial

n!
(n—HN = 2k —1) =272
151;[9 (n/2)!
counts the number of pair-partitions of {1, ..., n} when n is even.

2.4.2 Example: Poisson Cumulants

In the particular case of a Poisson random variable Z >~ P(4) with intensity A > 0
we have

[eS) . [eS) ()Le’)” N |

Z1 nt _ - _ e'—1

E[e]—g "P(Z=n)=e E 0 =e , te Ry,
n=0 n=0

hence k2 = A, n> 1, or

n =

(KIZ,KZZ,Kf,Kf,...) = A A 0,1,..0),
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and by (30) we have

E2[2'] = Au(A.....0) = ) Bux(A..... )
k=0

n

= Z Yoo A=) NSk

k=1 PIU-UPI={1,...n} k=0

= Tn(k)a

i.e., the n-th Poisson moment with intensity parameter A > 0 is given by 7,,(1),
where T, is the Touchard polynomial of degree n.

In the case of centered Poisson random variables, we note that Z and Z — E[Z]
have same cumulants of order k£ > 2, hence in case Z — IE[Z] is a centered Poisson
random variable with intensity A > 0 we have

n

E[Z-EzZ])"] =) A=A k). n=0,
a k=0

=1 Plu-UPj={1..n}
IPl1=2....|P41 =2

where S;(n, k) is the number of ways to partition a set of n objects into k nonempty
subsets of size at least 2, cf. [25].
2.4.3 Example: Compound Poisson Cumulants
Consider the compound Poisson random variable

,BlZoc; +oeee At ,BpZocp (35)
with Lévy measure

aibp, + -0+ 0,
where B1,...,8, € R are constant parameters and Z,,, . .. s Za, is a sequence of
independent Poisson random variables with respective parameters oy, . .., o, € Ry
The moment generating function of (35) is given by

B[ 12+ +FrZey)] = o1 (@P1=D) e, (Fr—1)

which shows that the cumulant of order k > 1 of (35) is given by

B+ + By
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As a consequence of the identity (30), the moment of order n of (35) is given by

P n
E [(Z ,B,-Zml.) } (36)
i=1

=i Yoo @B BB

m=0 PlU--UPL={1,...n}
n
B P, .. gl
- l8 a aim ’

m=0 PIU-UPL={1,...n} il cccsim=1

where the above sum runs over all partitions P, ..., P of {1,..., n}.

2.4.4 Example: Infinitely Divisible Cumulants

In the case where X is the infinitely divisible Poisson stochastic integral

oo

= / h(r)dN,

0

with respect to a standard Poisson process (N;);er . With intensity A > 0 and & €
ﬂsil L’ (R+), the logarithmic generating function

o0 o0 ) 1 o0
loglE | exp /h(t)dNt =2 /(eh(’) —Ddr=2A Z —'/hn(f)dt
n!
0 0 n=l 0

n

o0
t
Dk
= K = —
n ’
n!
n=1

shows that the cumulants of fooo h(t)dN; are given by

o]

KX =2 / K (t)dt, n>1, (37)

0
and (30) becomes the moment identity

oo n 0o

E / h(ndn, | | = ixk > / nPil@yde - - / R (1)ds,

o k=1 PiU-UPI={1...n} 0
(33)
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where the sum runs over all partitions P}, ..., P} of {1,...,n}, cf. [2] for the non-
compensated case and [28], Proposition 3.2 for the compensated case.

3 Analysis of Poisson Random Measures

In this section we introduce the basic definitions and notations relative to Poisson
random measures, and we derive the functional transform identities that will be
useful for the computation of moments in Sect. 4.

3.1 Poisson Point Processes

From now on we consider a proper Poisson point process n on the space
N, (X) of all o-finite counting measures on a measure space (X, .Z") equipped
with a o-finite intensity measure p(dx), see [12, 13] for further details and
additional notation. The random measure 7 in N,(X) will be represented
as

1n(X)

n= j{: ana
n=1

where (xn)Z(=X1) is a (random) sequence in X, §, denotes the Dirac measure at x € X,

and 7(X) € IN U {oo} denote the cardinality of 1 identified with the sequence
(Xn)n-

Recall that the probability law IP,, of 7 is that of a Poisson probability measure
with intensity (dx) on X: it is the only probability measure on N, (X) satisfying

(1) For any measurable subset A € 2" of X such that u(A) < oo, the number
n(A) of configuration points contained in A is a Poisson random variable with
intensity p(A), i.e.,

n € IN.

P,({n € Ns(X) : n(A) =n}) = oA (H(nf}))"7

(2) In addition, if Aj,...,A, are disjoint subsets of X with p(A;) < oo, k =
1,...,n, the N"-valued random vector

n— A).....nA)), 1 eN(X),

is made of independent random variables for all n > 1.
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When (X)) < oo the expectation under the Poisson measure IP,, can be written as
o 1
EIF@] =Y = [ f . mn) - pin) (39)
=0 'X

for a random variable F of the form

o0
F() =Y 1g=mfulxi. ... x%) (40)
n=0
where for each n > 1, f, is a symmetric integrable function of n = {xi,...,x,}

when n(X) = n, cf,, e.g., §6.1 of [24].
The next lemma is well known.

Lemma 4 Given u and v two intensity measures on X, the Poisson random

measure 1+, with intensity 1 + v decomposes into the sum

77;L+v =~ 77# @ 77\)7 (41)

of a Poisson random measure 1,, with intensity j(dx) and an independent Poisson
random measure 1, with intensity v(dx).

Proof Taking F a random variable of the form (40) we have

EIF(0] = 00700 30 5 [ o [T + v
: k=1

n=0 xn

M2
SR
He—

Fllsts o) [ TGe@s) + v(dse))
k=1

-y - (1) [t sy s @i - v(ds,)
2 \)J

n=0 =

n

- 1
=23 oy [ A s i) ) - ds,)

n=0[1=0

xn
() 1 ool
:ZﬁZﬁ /ﬁ+m({v1, SSls e s Sibm))
m=0 1=0 'Xl+m

(dsp) - (ds)v(dsig) -+ v (dsign)
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_e,u_(X)Z / e PO | vdsy) -+ v(dsn) (42)

—_ Xln
= O ORF®G, & n,)).

where € " is the addition operator defined on any random variable F : N (X) — R
by

eEXFM =Fm+8; +-+8,)., neNX), s1,....5n€X, (43)
and

Sy = (s1,...,8m) € X", m>1.

In the course of the proof of Lemma 4 we have shown in (42) that

wwwn—aﬂ“Zj = [ Bl o] v@s) - vids,) = ElF G, @ 1))

- xm

where e is defined in (43).

In partlcular, by applying Lemma 4 above to p(dx) and v(dx) = f(x)u(dx)
with f(x) > 0 u(dx)-a.e. we find that the Poisson random measure 1 with intensity
(1 + f)du decomposes into the sum

N(+f)de = Ndp D Nedpes

of a Poisson random measure 7q,, with intensity ;+(dx) and an independent Poisson
random measure 74, with intensity f(x)(dx).

In addition we have, using the shorthand notation IE, to denote the Poisson
probability measure with intensity u,

EMWW—NWZ [ B0 sy )

Xlﬂ
(44)

The above identity extends to f € L?(X) with f > —1, and when f(x) € (—1,0),
Relation (44) can be interpreted as a thinning of 7(147)dy-
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3.1.1 Mecke Identity

The following version of Mecke’s identity [19], cf. also Relation (1.7) in [12], allows
us to compute the first moment of the first order stochastic integral of a random
integrand. In the sequel we use the expression “measurable process” to denote a
real-valued measurable function from X x N, (X) into R.

Proposition 1 For u : X x No(X) —> R a measurable process we have

E, /M(x, mn(dy) | =, L[M(x,n + 8ou(dy) |, (45)

X

provided

[ uten+ 8luc@o | < ox.
Proof The proof is done when 1 (X) < oco. We take u(x, ) written as

o0
u(x,n) = Z Loy =mfu (X5 X1, .0, X)),

n=0

where (xi,...,x,) —> fu(x;x1,...,x,) is a symmetric integrable function of n =
{x1,...,x,} when n(X) = n, for each n > 1. We have

E, / (e, ) (dx)

X

21
_ e—M(X)Z;;/ﬁl(xi;xl,...,xn)lL(dxl)“‘M(dxn)
X

n=0 n

e HX)

:Z Y /fn(x XLy ooy Xim 15 X, Xy o ooy Xp—1) 0(dx) e (dxy) - - - u(dx—p)

—M(X)Z //f,H_l(xxxl, »Xn)p(dx) pe(doe) - - - pu ()

n= 0 X" X

— B, | [ uten+8ou@
X
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3.2  Multiple Stochastic Integrals

In this section we define the multiple Poisson stochastic integral (also called
multiple Wiener—It6 integrals) using Charlier polynomials. We denote by “o” the
symmetric tensor product of functions in L?(X), i.e., given fi,...,f; € L*(X) and
ki,.o.. kg > 1,

ok oky
fi o...ofd

denotes the symmetrization in n = k; + - -+ + k; variables of
®ky ®Rkq
TR ® fd ,

cf. Relation (1.27) in [12].

Definition 1 Consider Aj,...,A; mutually disjoint subsets of X with finite pu-
measure and n = ky+- - -+ky, where ki, ..., k; > 1. The multiple Poisson stochastic
integral of the function

13100013k
is defined by
d
LAY @ - @17 () == [ [ C(n(A). w(A)). (46)

i=1

Note that by (27), Relation (46) actually coincides with Relation (1.26) in [12] and
this recovers the fact that

n®(A) = #({ (1. i) € {1 oonAY 1 i FE i, 1S T#Em < k)

defined in Relation (9) of [12] coincides with the falling factorial (7(A))y) for A €
Z such that u(A) < oo.

See also [7, 31] for a more general framework for the expression of multiple
stochastic integrals with respect to Lévy processes based on the combinatorics of
the Mobius inversion formula.

From (28) and Definition 1 it can be shown that the multiple Poisson stochastic
integral satisfies the isometry formula

]E[In(fn)lm(gm)] = 1{n=m}(fnv gm)Lz(X”)s 47)

cf. Lemma4 in [12], which allows one to extend the definition of /, to any symmetric
function f, € L?>(X"), cf. also (52) below.
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The generating series

oo n

A
> 7 Cn(n(A). n(4)) = eHD A+ 1) = Y, (n(A), 1(A)),

n=0
cf. (25), admits a multivariate extension using multiple stochastic integrals.
Proposition 2 For f € L*>(X) N L'(X) we have
o0

60 = Y ™) =ep | = [ropan | [Ja+re. @
X

n!
k=0 X€N

Proof From (47) and an approximation argument it suffices to consider simple
functions of the form

f= ady,
k=1

by the multinomial identity (11) we have

1 n!
* d] d, ®d1 ®dm
—E — E —ai a L (1, 001 )
n! di'--d,) ! " n< Al Anm

I
WK
S|

' m
St T Catn@d. na)
: : i=1

= €xp (‘ Xm: ai,u(Ai)) ﬁ(l + ai)U(Ai)

i=1 i=1

= exp (Z ai(n(A;) — M(Ai))) l_[((l + a;)"4D gmain4y O

i=1 i=1
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The relation between £(f) in (48) and the exponential functional in Lemma 5 of
[12] is given by

exp / @9~ D) | £ — 1) = exp /f(x)n(dx) ,
X X

provided ¢ — 1 € L'(X) N L*(X).

3.3 S-Transform

Given f € L'(X, ) N L*(X, ) with f(x) > —1 u(dx)-a.e., we define the measure
Qy by its Girsanov density

d
=t =ew |- [rwr@ | [T+, 49)
n X xeX

where IP;, is the Poisson probability measure with intensity ((dx). From (39), for F
a bounded random variable we have the relation

B[P0 = B, | Fexp | - [ e | []a+r0)
X

X€n

= exp| - / (1 + FO)p(dy)
X

o0 1 n
XZQ;/F({SI”Sn})I!—[I(l +f(sk))/“t(dsl)/¢£(dsn)
n= X =

= E[F(a-+a)]s

which shows the following proposition.

Proposition 3 Under the probability Qs defined by (49), the random measure 1 is
Poisson with intensity (1 + f)du, i.e.,

EL[FEP)] = Eq+paulF]

for all sufficiently integrable random variables F.
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The S-transform (or Segal-Bargmann transform, see [14] for references) on the
Poisson space is defined on bounded random variables F by

J = 8F(f) = By [F] = Eu[FE(f)]

= E, | Fexp —/f(x),u(dx) l—[(l +f() |,
X

X€n

for f bounded and vanishing outside a set of finite o-measure in 2"; Lemma 4 and
Proposition 3 show that

SF(f) = E[F(nay @ npau)] (50)

= [fdn
=e X [E,[F]

=i S 1
be XN [0 [P @) - waso.
k=1 "
where 774, is a Poisson random measure with intensity fdu, independent of 74, by
Lemma 4. In the next proposition we use the finite difference operator
D,:=¢f —1, xeX,
ie.,

and apply a binomial transformation to get rid of the exponential term in (50). In the
next proposition we let

k
DSk:DJI"'Dsk, Sty..., 8k €X,

and

CR
=+
+

Slyeves Sk EX,
as in (43), where

5k:(S1,...,Sk)€Xk, k>1.
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Proposition 4 For any bounded random variable F and f bounded and vanishing
outside a set of finite i-measure in Z°, we have

1
SF(N) = EAFED] = Y g7 [ F60)-f 0, [DhFla@sn) - (o
=0""7,

(51

Proof We apply a binomial transformation to the expansion (50). We have

SF(f)

||
ng

ki [0 g 0B, [ Fl sy -t

Xk
= Z l)n (/ d,u) %/f(sl)'”f(sk)Eu [G;iF]M(dSl)'”M(dsk)
n=0 X =0 'Xk
m—k
o0 m _1 m—k 1
=22 ﬁ( / fdu) o [r60 s OB [ Fl s - @)
k=0 ) X ‘Xk

o0 1 m
=2 > ( )(—U’"‘k / F(s1)--f(sn)Ey [ F] pu(dsi) - pu(dsin)
k= m

21
=2 [ £ f ) By [0 Fl p(dsi) -+ p(ds).

|

By identification of terms in the expansions (48) and (51) we obtain the following
result, which is equivalent (by (47) and duality) to the Stroock [32] formula, cf. also
Theorem 2 in [12].

Corollary 1 Given a bounded random variable F, for alln > 1 and all f bounded
and vanishing outside a set of finite i-measure in & we have

B, [1,(f®")F] = / F0) = f () By, [Df F] pa(dsy) -+~ pu(dsy). (52)
XV!
Proof We note that (48) yields

SF(f) = ByuulF] = BulFE()] = Y B[],
n=0
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and by Proposition 4 we have
= 1
SN = BaulF] = 3 [ 760+ 60)E [P, F sy - paasy)
n=0"xn

and identify the respective terms of orders n > 1 in order to show (52). O

When k = 1, we have the integration by parts formula
E [L(NF] =E, / f(s)DyF(ds)
X

Note that with the pathwise extension I;((Ff)®*) = F*I,(f®) of the multiple
stochastic integral, (52) can be rewritten as the identity

MWWWW=M'ﬂm%ﬂmmmuﬂmmmWMM),

cf. also Proposition 4.1 of [26].

3.4 U-Transform

The Laplace transform on the Poisson space (also called U-transform, cf., e.g., §2
of [11]), is defined using the exponential functional of Lemma 5 of [12] by

J fdn S —=Ddu
fr—UF(f) :=E, [Fex } = ¢k E, [FE( — 1)),

for f bounded and vanishing outside a set of finite p-measure in 2", and will be
useful for the derivation of general moment identities in Sect. 4.

Proposition 5 Let F be a bounded random variable. We have

UF(f) = Z DD [ #7160

n=0 " k=0 P{U-UP}={l...n}xx

E, [eX F] u(dsi)--- u(dsi). (53)

fel’ (X, p.
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Proof Using the Faa di Bruno identity (13) or (16) we have

21 ' /. J&=1)
> o | 7 [ran) | =[] = r - )
=0 X

[ —Ddu
= & (54)

xZ / (@O0 = 1) (0 = DB, [D5 F] pdsy) -+ u(ds)

nl ( )/(efm) (@) —DE, [D’;kF],u(dsl)...M(dsn)

n=

1
k— / (@) = 1) () — D), [ F] pu(dsy) - p(ds)

Z%/ (2f (SI)) (E L8 b e o
n=1 ’

oo oo d dy
=2 l' > x /! d(lsll) L dis!k) By [ F] pds) - puldse)

g

!
dy! n..dk! /fdl (51) S * () By [€ F] pu(dsy) -~ p(dsi),
Xk

dy,...dp=1

where we applied the Faa di Bruno identity (13). O

In particular, by (54) we have
Jfdn
L (gm)eX (55)

=— /(ef(“) < (¢ — DB, [DY Li(gn)] 1(ds1) - - pu(dsin)
XIV[

- / () — 1) (@ — D) gu(ste ... sm)p(ds) -+ pu(dsi).

cf. Proposition 3.2 of [11].
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4 Moment Identities and Invariance

The following cumulant-type moment identities have been extended to the Poisson
stochastic integrals of random integrands in [28] through the use of the Skorohod
integral on the Poisson space, cf. [23, 27]. These identities and their consequences
on invariance have been recently extended to point processes with Papangelou
intensities in [6], via simpler proofs based on an induction argument.

4.1 Moment Identities for Random Integrands

The moments of Poisson stochastic integrals of deterministic integrands have been
derived in [2] by direct iterated differentiation of the Lévy—Khintchine formula or
moment generating function

B, | exp [f(x)n(dx) — exp / @9~ () |,
X X

for f bounded and vanishing outside a set of finite p-measure in 2. We also note
that

E, |exp / Fen@ | | = exp / @~ Du(dy)
X X

n

Zni [~ Du

X

(/) = 1) () = Dypa(dn) -+ p(d,)

I
¢
3|,_.

3
I
=)

A

n

(/) = 1) () = Dypa(dn) -+ p(d,)

I
¢
3|,_.

3
I
=)

A

n

Zi/( (fl)) (Zf(x"))u(dxl)---u(dm
X

n=0
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> > i (x dn (x,
=y oY > [T

S NG k! y
= ZEZ; Z m/f Yoen) e o) p(dx) - - - p(d),
XV!

where we applied the Faa di Bruno identity (13), showing that

n

B | [romaen ] | = 3 [F oo [ F 6
Pl Pixa X
(56)
which recovers in particular (38).
The next Lemma 5 is a moment formula for deterministic Poisson stochastic
integrals, and applies in particular in the framework of a change of measure given
by a density F.

Lemmas5 Letn > 1, f € ﬂ;:l LP(X, ), and consider F a bounded random
variable. We have

n

E, |F /fdr)
X

= Z Z /flP?I(sl)...flPﬁl(sk)E [G:E;:F] w(dsy) - -« u(dsy).

k=0 PiU--UP[={1...., n}xk

Proof We apply Proposition 5 on the U-transform, which reads

n

O

Lemma 5 with F' = 1 recovers the identity (38), and (by means of the complete Bell
polynomials A, (by, ..., b,) as in (30)) it can be used to compute the moments of
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stochastic integrals of deterministic integrands with respect to Lévy processes, cf.
[18] for the case of subordinators.
Relation (55) yields

E[FZ"] = ZS(n k)/ e Flu(dsy) - p(dsy),  neN, (57)

and when f is a deterministic function, Relation (54) shows that

n

= 3 [ennas- / P (s,

P

1,....nga

/ FOIn(d)
X

which recovers (56).
Based on the following version of (57)

B, [Fn)] = Y S00E | [ € e FLis) -+ Lan(s) -+ lds)

(58)

and an induction argument we obtain the following Lemma 6, which can be seen as
an elementary joint moment identity obtained by iteration of Lemma 58.

Lemma 6 For Ay, ...,A, mutually disjoint bounded measurable subsets of X and
Fy, ..., F, bounded random variables we have

E, [(Fin(AN)" -+ (Fon(4,))"]

— Z Z S(nl,k1)~~~S(np,kp)

k=0 k=0

+.. RIN 24 ...
XEM|: / €x 6Xk1+ +hp (Fy' - Fp (]lAlfl ®-® ]lA,k,”)
kit tkp

(V1 s Xy ek, ) () - -+ M(ka1+~~~+k,,)}-

Lemma 6 allows us to recover the following moment identity, which can also be used
for the computation of moments under a probability with density F' with respect to
P,.

n
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Theorem 1 Given F a random variable and u : X x Ng(X) —> R a measurable
process we have

n

E,|F /u(x,n)n(dx) (59

/ S Fupy g D sy - sy |

PIU- UP”—{l .....

provided all terms in the above summations are P, ® w®*-integrable,k = 1,....n

Proof We use the argument of Proposition 4.2 in [5] in order to extend Lemma 6
to (59). We start with u : X x N;(X) — R a simple measurable process of the
form u(x, n) = >_7_, Fi(n)14,(x) with disjoint sets Ay, ..., A,. Using Lemma 6 we
have

n

P n
B (3 / 1, (@) 7(dv) =EM[(ZF,-77(A,-)”
i=1

i=1

n! .
Z o ,Eu[(FIU(Al))”l -~ (Fon(Ap)" ]

np+-tnp=n 1 P

> n.Z 3 S k) ---Sn, ky)

nyt-+tnp=n k1= kp=0
nyenp =0

+ + ny p
E#|: / RS 6X/<1+»-»+k,, (F1 cee Fll7 ﬂAfl R Q ﬂArkIP (g, ... 7xkl+"'+k]7)>
Xkttt

p(dxy) - ﬂ(dxk1+---+kp):|

np.
m=0 nl+m+np=n k1+“‘+kp=m

nyenp=0 1=ky=ny...1=kp=np

E, /e.;f--‘e;,t (Fr e L @ @ L (o) ) () - (ds)
XIP!

| |

R n! L ! 11,
=y > o Yo S L] Sy | ) ——— o

m=0 ny+-+np=n : NU=Ulp={1,+ m}
npsetip 20 [1=ny...lpl<np



70 N. Privault

JEN JEI

E, { / e et (F —F T ml(xj)---]‘[m,,(xj)) u(dxl)-'-uwxm)}
Xm

n 14
S5 T m] fae e )
1

m=0 P{U--UPL={1,...n} il.....im= xm

p(dxy) - M(dxm)i|,

where in (60) we made changes of variables in the integral and, in (60),
we used the combinatorial identity of Lemma 7 below with «;; = 14,(x)),
1 <i <p 1 <j<mand B; = F;. The proof is concluded by using the
disjointness of the A;’s in (60), as follows

p n
E, (Z F / 14, () n(dx))

i=1 X

B, | [efeel (i (A M) -0 (F!”'*’"'IA,.(xm))) i) - p(d,)
i=1

i=1

= > (60)

» I
E, /é;rf;: (ZFilA,-(xl)) (
i=1

Xm

[Py

m

p
FilA,' (xm))
1

i=

The general case is obtained by approximating u(x, ) with simple processes.
O

The next lemma has been used above in the proof of Theorem 1, cf. Lemma 4.3 of
[5], and its proof is given for completeness.
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Lemma 7 Letm,n,p € N, (ij)i<i<pi<j<m and Bi, ..., B, € R. We have

n!
Z nyle-ony Z S i) -+ - S(np. 1))
! D!

ny+-tnp=n I UUlp={1....m}
Y sestip =0 [nl<nj.... \lp\<np
L) - |L)!
—' p . nl . DY np .
X . 1 (l—[al\/) ,Bp (l—[O{pd)
’ j€l Jj€l,
[P \ [P
= X S A 1)
PrUUPL={1,..n} il eensim =1

Proof Observe that (19) ensures

sodp ([Tes) = > TT(@s™)

Jel Uses Pa={1....n} j€l

forall o, j €I, B € R, n € N. We have

n!
Y Y Seudnhe S D)

il
ny+-+np=n N U-Ulp={1,...m}
1yt =0 [ =ny,lipl<np

|11|| l_[alzl)"'ﬁ;p(l_[ap‘i)

J€N J€I,
- mleeemy! m!
ny+etnp=n P Ul ={1,.m}
Aoeetp Z0 [ 1 =ny . llpl <np
3 1P, \ 7 |
. P
l_[ 0‘111,31 § : l—[ (O‘wpﬂp )
Uden PA={1.m}j1€h Uaappg:{l ..... np}ip€lp
n! Z Z
= +§+: nll-..}’l‘p! 1 UUL =11 . U Pl {1 } PPZ
npTeTTap=n 1Y =1l...., m ={1,..., ={1.....
S "ﬂIZO |11|Sn1{}...,|1p|5n17’ ah " U“E’P a={L....np}
|11I' |1 = |P,,\
[TIT (et
=1 j€l;
n!
o Z nil-eony! Z ‘ Z E
ny - tnp=n U Ulp={1,....m} Uaal Plll={l ..... Vll} UaapPg={l """ np}

nynp=0 I =ny....llpl<np
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0 o T T o TTTT 67
Pt iplt ’ B
!
= Z '" 1 Z Z

np: ny:
nyttnp=n 1 P ke thkp=m Iy, =1

A senes n,,zo 1<ky=njy... lfkpfnp

3 3 ﬁ( Wﬁ\P |+ +|P’m\)

1 1 — j=
P{U~UP} ={1,..n} PZ1+~-~+kp—1+1U UPL foqgy ={Lmp}

P
P P
> X BB

PiU-UP,={1,..n} i1,....Im,=1

by a reindexing of the summations and the fact that the reunions of the partitions

P’i, . ,P’W, 1 < j < p, of disjoint p subsets of {1,...,m} run the partition of
J

{1,...,m} when we take into account the choice of the p subsets and the possible

length k;, 1 < j < p, of the partitions. O

As noted in [5], the combinatorial identity of Lemma 7 also admits a probabilistic
proof. Namely given Z)g,, ..., Z),, independent Poisson random variables with
parameters A, . .., Ao, we have

n . n! n k
YA Y T X Stk Skl By

ny+-+np=n 1 P* ke thkp=m
[ rszO kp=<nj.. kpfrzp
"p
— k k, pni
= E 0 E S("l kl)(kal) bees E S(n[hk[))(/’\'ap) pﬂl
np Ay =n | ! k1 =0 k,=0
A senes np>0
Z n! "
- nl...nlE[Zlal ' /10‘1]’3
nytetnp=n 1 r:
A senes np>0
P n

I
=
g
=
N
R

— Xn:km Z Z ,Blp ‘ X ,Blp |O{lm’ (62)
m=0

PiU-UPL={1....n} i1 ....im=

since the moment of order n; of Z,,, is given by (29) as

E[z] = Y00

k=0
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The above relation (62) being true for all A, this implies (61). Next we specialize the
above results to processes of the form u = 14 where A(n) is a random set.

Proposition 6 For any bounded variable F and random set A(n) we have

E, [F(n(A))"]

= ZS(n,k)EM /6;—"'éj,:(FlA(n)(sl)"'lA(n)(sk))M(dsl)"'N(dsk)
k=0 i

Proof We have

n

E. [F(1A)"] = B, | F / L (n(dx)
X

=X B[ el L L (s - plds)

PiU-UP{={1,...n} k

= ZS(",/C)E;L L/ e e (Flagy(s1) - - Lagp (s0) a(dsy) - - pu(dsy)
k=0 ;

We also have

I, [F (n(A)"]

=) Sk Y Eﬂ[ fD@(FlA(,,)(sl)---1A<,7>(sk)m(ds1)---u(dsk)}
k=0

OCH1.... .k} <

n k k
=) Sy ( l) EM[ / Dy Dy (Flagy(s1) - Lagy (s:)) e (dsy) -+ u(dsk)} :
k=0 =0

Xk

When 11(A(n)) is deterministic this yields

E, [(04)] = E, ( / 1A<n><x>n(dx)) }

X

= ZS(n,k)IE}H /GST"‘6‘;1_(1A(n)(51)“‘1A(n)(sk))ﬂ(dsl)“'N(dsk):|

k=0

Lk
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= ZS('L k) Lf Do (Lagy)(s1) -+ - Lagy (sx))u(dsy) - - M(dsk):|

k=0 (~)c{1 .....
n k k
= ZS(H, k) Z (l)E” /Dsl < Dy (agy) (s1) -+ - Lagy) (s6)) ja(dsy) - - - u(dsy)
k=0 =0 ;
= S(n.k)
k=0
“(k
X Z (l) E, |:(M(A))k_I/Ds1 oDy (Qapy(s1) -+ - Lag (s0)) pe(dsy) - “M(dsz):| .
=0 &

4.2 Joint Moment Identities

In this section we derive a joint moment identity for Poisson stochastic integrals with
random integrands, which has been applied to mixing of interacting transformations
in [29].

Proposition 7 Let u : X x Ny (X) —> R be a measurable process and let n =
ny+---+n, p > 1. We have

ni np

E, / e mn@o | - / up e, )7 () 63)

X X

:Z Z I, L/ €. HHM”(XN?) pldxy) -+ pldxy) |
k n}

« j=1i=1

where the sum runs over all partitions P, ... P} of {1,...,n} and the power L} is
the cardinal

l;‘J:z|P;‘ﬂ(n1+---+ni_1,n1+---+ni]|, i=1,...,k, j=1,...,p,

for any n > 1 such that all terms in the right-hand side of (63) are integrable.
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Proof We will show the modified identity
ni np

E, |F / u e () |- / up e, )7 () 64)

X X

n k P .
=2 > B / € (Fl_[l_[u?"‘(xj,n)) fu(dxy) -+ p(dx) |

j=li=1

for F a sufficiently integrable random variable, where n = ny +---+n,. Forp = 1
the identity is Theorem 1. Next we assume that the identity holds at the rank p > 1.
Replacing F with F ( [y up+1(x, n)n(dx))"”*" in (64) we get

ny p+1

B, |F / ey | - / iy (5, ) ()

X X

=y > /u(dxl)---u(dxk)

np+1

k p
I
E, 6;;'1_ ,,,,, Xk F / Up+1(x, n)n(dx) l—[ l_[ u;” (xj, m)
% j=1i=1
n np+1
= Z /E;L|: /6;1— ,,,,, xkup-l-l(-x n)n(dx) + Z Exl ..... xku[’+1(x“ n)
k=1 Pj,.. PZX" X i=1

Fl_[ l_[u (x5, 1) :|,u(dx1) <o p(dg)

j=1i=1

m
f‘-‘r
e

ap

= > > aor:pH' / ..... w1 ()1 (dx)

k=1 P}..P} aot-+ak=n,4;

p n
Fl_[ ( ;f+1(xjv’7)l_[ui”(xjs?7)) ]M(dxl)"',u(dxk)

i=1

=

m
E4
é

e

ao
y s
Cl()! o 'Clk!

k=1 PP} a0+ tak=n,y, Jj=1 stk

I
=
=
=
1
Q
m
Ep
x
+
3
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[¢)
I‘Hi]ll(xtﬂ 77) l_[ ( P-H(xl’ 77) l_[ u; J(xlv 77)) :|M(d~xl) e N(dxk+ao)
q= k+l Jj=1 i=1
+
+
Z ]EM|:/6x1,...,xk
KL prtr  pitet Xk
k 17+1 n+np+1
(Fl_[ [ u’ (. n)) p(dxr) - --M(dxk)}
=1 i=1
where the summation over the partitions PVIH_”” o ,Pz+n” 1 oof {1,...,n+

np+1}, is obtained by combining the partitions of {1
ov, ... ,Q;"’ of {1,...,a0} and ai, ..
counted according to n,1!/(ao! -

.,n} with the partitions
.,ai elements of {1,...,n,41} which are

--ak!),with
L =t da, 1<j<k  D0H =1 410%), k+1<j<k+a.

O

Note that when n = 1, (63) coincides with the classical Mecke [19] identity of
Proposition 1.

Whenn; =--- =

n, = 1, the result of Proposition 7 reads

B, / s (e () -+ / up (e, ()

X X

_Z Z / ..... ]_[]_[ wi(xj,n) | p(dxr) - - pu(dxy)

Pllz ..... Pn " ] 1 leRn
where the sum runs over all partitions Py, ..., P} of {1,...,n}, which coincides with
the Poisson version of Theorem 3.1 of [6].
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4.3 Invariance and Cyclic Condition

Using the relation 6X+ = D, + I, the result

n

E, / (e, ()

X
n |P"| ‘P”‘
= Z Z E, /631—6;: s, ety ) pu(dsy) -+ - pdsi)
k=1 P{U--UP}={1...n} k

of Theorem 1 can be rewritten as

E, Q u(x, n)n(dx)

k

Z Z (I;)EM /Dsl ...D‘w(u“f‘ll "‘M‘lvfg‘):u“(dsl) <+ pu(dsi)

PIU-UPy={1,...n} =0
> [t
[

PIU-UPI={1,....n} 1=0

Pll P” P}’I Pll
XEM|: /Dsl"'Dsz ”Llll"'ul‘z[‘/ul‘z-il-lnu*(dsHl)"'/”ka‘ﬂ(dsk)

X/ X X

p(dsy) -+ M(dsz):|-

Next is an immediate corollary of Theorem 1.
Corollary 2 Suppose that
(a) We have

Dy, -+ Dy (ug, - ttg) = 0, S,...,.€X, k=1,...,n. (65)
(b) fx ukp(ds) is deterministic forallk = 1,...,n.

Then, /u(x, mn(dx) has (deterministic) cumulants /uk(x, nu(dx), £ =
X X

1,...,n.
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Proof We have

n

E, / (e, 1) (dx)

X

k—1
> (I;) / Dy ey a(dsy) - (dse)

PIU-UP!={1,....n} 1=0

1y ) )
(l)EM[ /DSI."DSI u‘lylfl‘---u“qfﬁl‘/ 1Pil w(ds)

PIU-UP!={l....n} 1=0 =1 %

Il
M

wu(dsy)--- M(dsk—l):|,

hence by a decreasing induction on k we can show that

E, | | [ utemn@ -y ¥ [ s utaso

X k=0 P{U-UP={1...n}xx
Z > [l [l s,
U-UP{={L,...n} X

Hence, by a decreasing induction we can show that the needed formula holds for the
moment of order n, and for the moments of lower orders k = 1, ..,n — 1. O

Note that from the relation

Do(u(xi.n)---u(xe.m) = > Deyuxi.n) - Dou(xi. n). (66)
61U~UOy=0
where the above sum runs over all (possibly empty) subsets Oy, ..., & of &, in
particular when ® = {1, ..., k} we get

Dy, -+ Dy (u(x1, 1) - -~ u(xx, 1)) = Do (u(xy, n) - - - u(xx, n))

= > De,u(xi, ) -+ - De,u(xe, n),
O1UUO={1...k}

where the sum runs over the (possibly empty) subsets @, ..., ®, of {1, ..., k}. This
shows that we can replace (65) with the condition

Dg,u(xy,n) -+ Deyu(xi,n) = 0, (67)
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for all x1,...,x; € X and all (nonempty) subsets @1,..., O, C {xi1,...,x,}, such
that ®; U---U O, = {l,...,n}, k = 1,2,...,n. See Proposition 3.3 of [5] for
examples of random mappings that satisfy Condition (67).
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