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Abstract Agglomerative clustering is a well established strategy for identifying
communities in networks. Communities are successively merged into larger com-
munities, coarsening a network of actors into a more manageable network of
communities. The order in which merges should occur is not in general clear,
necessitating heuristics for selecting pairs of communities to merge. We describe a
hierarchical clustering algorithm based on a local optimality property. For each edge
in the network, we associate the modularity change for merging the communities it
links. For each community vertex, we call the preferred edge that edge for which
the modularity change is maximal. When an edge is preferred by both vertices that
it links, it appears to be the optimal choice from the local viewpoint. We use the
locally optimal edges to define the algorithm: simultaneously merge all pairs of
communities that are connected by locally optimal edges that would increase the
modularity, redetermining the locally optimal edges after each step and continuing
so long as the modularity can be further increased. We apply the algorithm to model
and empirical networks, demonstrating that it can efficiently produce high-quality
community solutions. We relate the performance and implementation details to
the structure of the resulting community hierarchies. We additionally consider a
complementary local clustering algorithm, describing how to identify overlapping
communities based on the local optimality condition.

Keywords Complex networks • Communities • Agglomerative clustering

1 Introduction

A prominent theme in the investigation of networks is the identification of their
community structure. Informally stated, network communities are subnetworks
whose constituent vertices are strongly affiliated to other community members and
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comparatively weakly affiliated with vertices outside the community; several for-
malizations of this concept have been explored (for useful reviews, see Refs. [1, 2]).
The strong internal connections of community members is often accompanied by
greater homogeneity of the members, e.g., communities in the World Wide Web
as sets of topically related web pages or communities in scientific collaboration
networks as scientists working in similar research areas. Identification of the
network communities thus can facilitate qualitative and quantitative investigation
of relevant subnetworks whose properties may differ from the aggregate properties
of the network as a whole.

Agglomerative clustering is a well established strategy for identifying a hierarchy
of communities in networks. Communities are successively merged into larger
communities, coarsening a network of actors into a more manageable network
of communities. The order in which merges should occur is not in general clear,
necessitating heuristics for selecting pairs of communities to merge.

A key approach to community identification in networks is from Newman [3],
who used a greedy agglomerative clustering algorithm to search for communities
with high modularity [4]. In this algorithm, pairs of communities are successively
merged based on a global optimality condition, so that the modularity increases
as much as possible with each merge. The pairwise merging ultimately produces
a community hierarchy that is structured as a binary tree. The structure of the
hierarchy closely relates to both the quality of the solution and the efficiency of
its calculation; modularity is favored by uniform community sizes [5, 6] while rapid
computation is favored by shorter trees [7], so both are favored when the community
hierarchy has a well-balanced binary tree structure, where the sub-trees at any node
are similar in size. But the greedy algorithm may produce unbalanced community
hierarchies—the hierarchy may even be dominated by a single large community that
absorbs single vertices one-by-one [8], causing the hierarchy to be unbalanced at all
levels.

In this chapter, we describe a new agglomerative clustering strategy for identify-
ing community hierarchies in networks. We replace the global optimality condition
for the greedy algorithm with a local optimality condition. The global optimality
condition holds for communities c and c0 when no other pair of communities could
be merged so as to increase the modularity more than would merging c and c0.
The local optimality condition weakens the global condition, holding when no pair
of communities, one of which is either c or c0, could be merged to increase the
modularity more than would merging c and c0. The essentials of the clustering
strategy follow directly: concurrently merge communities that satisfy the local
optimality condition so as to increase the modularity, re-establishing the local
optimality conditions and repeating until no further modularity increase is possible.
The concurrent formation of communities encourages development of a cluster
hierarchy with properties favorable both to rapid computation and to the quality
of the resulting community solutions.
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2 Agglomerative Clustering

2.1 Greedy Algorithms

Agglomerative clustering [9, 10] is an approach long used [11] for classifying
data into a useful hierarchy. The approach is based on assigning the individual
observations of the data to clusters, which are fused or merged, pairwise, into
successively larger clusters. The merging process is frequently illustrated with a
dendrogram, a tree diagram showing the hierarchical relationships between clusters;
an example dendrogram is shown in Fig. 1. In this work, we will also refer to the
binary tree defined by the merging process as a dendrogram, regardless of whether
it is actually drawn.

Specific clustering algorithms depend on defining a measure of the similarity of
a pair of clusters, with different measures corresponding to different concepts of
clusters. Additionally, a rule must be provided for selecting which merges to make
based on their similarity. Commonly, merges are selected with a greedy strategy,
where the single best merge is made and the similarity recalculated for the new
cluster configuration, making successive merges until only a single cluster remains.
The greedy heuristic will not generally identify the optimal configuration, but can
often find a good one.

2.2 Modularity

Agglomerative clustering has seen much recent use for investigating the community
structure of complex networks (for a survey of agglomerative clustering and other
community identification approaches, see Refs. [1, 2]). The dominant approaches
follow Newman [3] in searching for communities (i.e., clusters) with high modu-
larity Q. Modularity assesses community strength for a partition of the n network

Fig. 1 Dendrogram
representation of a cluster
hierarchy. Clusters of data are
pairwise merged into larger
clusters, with all data
eventually in the same cluster
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vertices into disjoint sets, and is defined [4] as

Q D 1

2m

X
c

X
i;j2c

�
Aij � kikj

2m

	
; (1)

where the Aij are elements of the adjacency matrix for the graph, m is the number of
edges in the graph, and ki is the degree of vertex i, i.e., ki D P

j Aij. The outer sum
is over all clusters c, the inner over all pairs of vertices .i; j/ within c.

With some modest manipulation, Eq. (1) can be written in terms of cluster-level
properties and in a form suitable as well for use with weighted graphs:
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X

c
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c

�
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!�1
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Here, Wc is a weight of edges internal to cluster c, measuring the self-affinity of the
cluster constituents; Kc is a form of volume for cluster c, analogous to the graph
volume; and � is a scaling factor equal to 1=2m for an unweighted graph. Other
choices for � may also be suitable [6], but we will not consider them further.

Edges between vertices in different clusters c and c0 may also be described at the
cluster level; denote this edge by .c; c0/. Edge .c; c0/ has a corresponding symmetric
inter-cluster weight wcc0 , defined by

wcc0 D
X
i2c

X
j2c0

Aij : (6)

Using wcc0 , we can describe the merge process entirely in terms of cluster properties.
When two clusters u and v are merged into a new cluster x, it will have

Wx D Wu C Wv C 2wuv (7)

Kx D Ku C Kv : (8)
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The inter-cluster weights for the new cluster x will be

wxy D wuy C wvy (9)

for each existing cluster y, excluding u and v. The modularity change�Quv is

�Quv D 2� .wuv � �KuKv/ : (10)

From Eq. (10), it is clear that modularity can only increase when wuv > 0 and, thus,
when there are edges between vertices in u and v.

With the above, we can view a partition of the vertices as an equivalent graph
of clusters or communities; merging two clusters equates to edge contraction. The
cluster graph is readily constructed from a network of interest by mapping the
original vertices to vertices representing singleton clusters and edges between the
vertices to edges between the corresponding clusters. For a cluster c derived from a
vertex i, we initialize Wc D 0 and Kc D ki.

2.3 Modularity-Based Greedy Algorithms

Newman [3] applied a greedy algorithm to finding a high modularity partition of
network vertices by taking the similarity measure to be the change in modularity
�Quv . In this approach,�Quv is evaluated for each inter-cluster edge, and a linked
pair of clusters leading to maximal increase in modularity is selected for the
merge. A naive implementation of this greedy algorithm constructs the community
hierarchy and identifies the level in it with greatest modularity in worst-case time
O ..m C n/n/, where m and n are, respectively, the numbers of edges and vertices in
the network.

Finding a partition giving the global maximum in Q is a formally hard, NP-
complete problem, equivalent to finding the ground state of an infinite-range spin
glass [12]. We should thus expect the greedy approach only to identify a high
modularity partition in a reasonable amount of time, rather than to provide us with
the global maximum. Variations on the basic greedy algorithm may be developed
focusing on increasing the community quality, reducing the time taken, or both.

Likely the most prominent such variation is the implementation described by
Clauset et al. [7]. While neither the greedy strategy nor the modularity similarity
measure is altered, the possible merges are tracked with a priority queue imple-
mented using a binary heap, allowing rapid determination of the best choice at each
step. This results in a worst-case time of O .mh log n/, where h is the height of the
resulting dendrogram. Thus, the re-implementation is beneficial when, as for many
empirical networks of interest, the dendrogram is short, ideally forming a balanced
binary tree with height equal to blog2 nc, where bxc denotes the integer part of x. But
the dendrogram need not be short—it may be a degenerate tree of height n, formed
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when all singleton clusters are merged one-by-one into the same cluster. Such a
dendrogram results in O .mn log n/ time, worse than for the naive implementation.

Numerous variations on the use of the change in modularity have been proposed
for use with greedy algorithms, with some explicitly intended to provide a shorter,
better balanced dendrogram. We note two in particular. First, Danon et al. [5]
consider the impact that heterogeneity in community size has on the performance of
clustering algorithms, proposing an altered modularity as the similarity measure for
greedy agglomerative clustering. Second, Wakita and Tsurumi [8] report encoun-
tering poor scaling behavior for the algorithm of Clauset et al., caused by merging
communities in an unbalanced manner; they too propose several modifications to
the modularity to encourage more well-balanced dendrograms. In both papers, the
authors report an improvement in the (unmodified) modularity found, even though
they were no longer directly using modularity to select merges—promoting short,
well-balanced dendrograms can promote better performance both in terms of time
taken and in the quality of the resulting communities.

Alternatively, the strategy by which merges are selected may be changed, while
keeping the modularity as the similarity measure, giving rise to the multistep greedy
(MSG) algorithm [13, 14]. In the MSG approach, multiple merges are made at each
step, instead of just the single merge with greatest increase in the modularity. The
potential merges are sorted by the change in modularity�Quv they produce; merges
are made in descending order of �Quv , so long as (1) the merge will increase
modularity and (2) neither cluster to be merged has already been selected for a merge
with greater �Quv. The MSG algorithm promotes building several communities
concurrently, avoiding early formation of a few large communities. Again, this leads
to shorter, better balanced dendrograms with improved performance both in terms
of time and community quality.

When required for clarity, we will refer to the original greedy strategy as single-
step greedy (SSG). Additionally, we will restrict our attention to an implementation
following Clauset et al. [7].

3 Clustering with Local Optimality

3.1 Local Optimality

The SSG and MSG algorithms are global in scope, pooling information from across
the entire network to identify the clusters to merge that would lead to the greatest
increase in modularity. In contrast, the potential modularity change�Quv is local in
scope and can be calculated (Eq. 10) using only properties of the clusters u and v.
It is thus instructive to consider what else can be said on a local scale about the
possible merges, particularly those selected in the SSG algorithm.

Let us assume that, at some stage in the SSG algorithm, clusters u and v are
identified as those to merge. As noted in Sect. 2.2, there must be an edge between
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the two clusters. Restricting our attention to the edges incident on u, the edge .u; v/
is distinguished from the edge to any other linked cluster x by leading to a greater
modularity change, so that

�Quv � �Qux 8x : (11)

Considering the edges incident on v leads to a similar preference for the edge .u; v/
over that to another linked cluster y, with

�Quv � �Qyv 8y : (12)

Informally, the two clusters each have the other as the best choice of merge.
For any cluster with incident edges, at least one edge will satisfy a condition

analogous to those in Eqs. 11 and 12. Call these the preferred edges for the vertex;
similarly, refer to the corresponding merge as the preferred merge. If an edge is
preferred for both vertices on which it is incident, call it and the corresponding
merge locally optimal. We illustrate preferred and locally optimal edges in Fig. 2.

The local optimality condition is based on softening the global optimality
condition used in the SSG algorithm, replacing a network-wide comparison of
potential merges with an assessment of how clusters relate to their neighbors. As
we will see, locally optimal edges occur frequently and can be used as the basis for
an agglomerative clustering algorithm.
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Fig. 2 Preferred and locally optimal edges. Each edge is labeled with its modularity change�Quv ,
which is the basis for determining the merge preferences shown with arrows. Edges with a single
arrowhead are preferred edges for the vertex at the tail of the arrow, but not for the vertex at the
head of the arrow. Edges with arrowheads at each end are preferred for both vertices; these are
locally optimal edges. Those edges without arrowheads are not preferred by either of the linked
vertices
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3.2 Greedy Clustering Using Local Optimality

We can base an agglomerative clustering algorithm on merging along the locally
optimal edges in the network, determining whether any edges become locally
optimal as a consequence, and repeating this until no locally optimal edges remain.
With such an approach, we discourage the formation of unbalanced dendrograms by
allowing multiple merges to occur concurrently, thus favoring shorter dendrograms
and—given a suitable implementation—more efficient computation. The approach
lies somewhere between SSG and MSG clustering, featuring concurrent formation
of clusters like MSG, but selecting merges with a generalization of the condition in
SSG.

For the most part, it is straightforward to define a precise algorithm from this idea.
One complication is the presence of vertices with multiple locally optimal edges
incident upon them. These edges can lead to, for example, a state where edges .u; v/
and .u;w/ are locally optimal, but .v;w/ is not locally optimal. Thus, if we make
both locally optimal merges, we produce a combined cluster of fu; v;wg which also
includes the locally suboptimal merge. But to exclude merging v and w, we must
then only make one of the locally optimal merges. In this work, we adopt the latter
approach, arbitrarily selecting one of the locally optimal merges.

The resulting algorithm is:

1. For each edge .u; v/, evaluate�Quv .
2. For each vertex v, identify the maximum modularity change �Qmax

v from all
incident edges.

3. For each edge .u; v/, determine if it is locally optimal by testing �Quv D
�Qmax

u D �Qmax
v . If, in addition,�Quv > 0, edge .u; v/ is a candidate merge.

4. If there are no candidate merges, stop. Otherwise, for each candidate, merge the
corresponding clusters, so long as neither cluster has so far been changed in the
current iteration.

5. Begin a new iteration from step 1.

The order of iteration in step 4 will have an effect on the resulting community
hierarchy when vertices have multiple locally optimal edges. In the implementation
used in this work, we iterate through the edges in an arbitrary order that is
uncorrelated with the modularity changes �Quv . As the algorithm greedily selects
edges based on local optimality, we call it GLO clustering—greedy, local optimality
clustering.

When the GLO algorithm terminates, no remaining edge will support a positive
change in modularity; otherwise, one or more edges .u; v/ would have �Quv > 0,
and thus there would be at least one candidate merge—that edge with the greatest
�Quv . The clusters at termination have greater modularity than at any earlier
iteration in the algorithm, since merges are only made when they increase the
modularity.

Note that the GLO algorithm generally terminates only having formed the sub-
trees of the dendrogram for each cluster rather than the full dendrogram with single
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root. If the full dendrogram is needed, additional cluster merges can be made by
using an alternate greedy algorithm. Here, we follow the above steps for GLO
clustering, but drop the requirement that �Quv > 0—all locally optimal edges
become candidate merges. This laxer condition is always satisfied by at least at
least the edge with greatest �Quv , so the merge process continues until all edges
have been eliminated and only a single cluster remains.

Implementing the GLO algorithm presents no special difficulties. The needed
properties of the clusters (Wv , Kv , and wuv) can be handled as vertex and edge
attributes of a graph data structure. Straightforward implementation of the above
steps can be done simply by iterating through the m edges, leading to O .m/
worst-case time complexity for each of the p iterations of the merge process,
or O .mp/ overall worst-case time complexity. A simple optimization of this
basic implementation strategy is to keep track of the �Qmax

v values and a list of
corresponding preferred edges, recalculating these only when merges could lead to
changes; this does not change the worst case time complexity from O .mp/, but does
notably improve the execution speed in practice.

The above estimates of time complexity have the shortcoming that they are given
not just in terms of the size of the network, but also in terms of an outcome of the
algorithm—the number of iterations p. There is no clear a priori relation between p
and the network size, but we may place bounds on p. First, the algorithm merges at
least one pair of clusters in each iteration, so p is bounded above by n. Second, the
algorithm involves any cluster in at most one merge in an iteration, so p must be at
least the height h of the dendrogram. This gives

n > p � h � blog2 nc : (13)

Runtime of the algorithm is thus seen to be dependent on the structure of the cluster
hierarchy found, with better performance requiring a well-balanced dendrogram. We
do have reason to be optimistic that p will be relatively small in this case: a well-
balanced dendrogram results when multiple clusters are constructed concurrently,
which also requires fewer iterations of the algorithm.

3.3 Local Clustering Using Local Optimality

Although all merging decisions in GLO clustering are made using only local
information, the algorithm is nonetheless a global algorithm—the clusters possible
at one point in the graph are influenced by merges concurrently made elsewhere in
the network. Yet we may specify a local clustering algorithm: starting from a single
vertex, successively merge along any modularity-increasing, locally optimal edges
incident upon it, stopping only when no such locally optimal edges remain. In this
fashion, the modularity—an assessment of a partition of the vertices—may be used
to identify overlapping communities.
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This local algorithm functions by absorbing vertices one-by-one into a single
cluster. Unfortunately, this is exactly the behavior corresponding to the worst case
behavior for the SSG and GLO algorithms, producing a degenerate binary tree as the
dendrogram whose height is one less than the number of vertices in the community
and conceivably is one less than the number of vertices in the graph. The expected
time complexity is thus quadratic in the resulting community size. Worse still,
characterizing all local clusters for the graph may require a sizable fraction of the
vertices to be so investigated, giving a worst-case time complexity that is cubic in
the number of vertices of the graph. Such an approach is thus suited for networks of
only the most modest size.

A compromise approach is possible using a hybrid of the agglomerative and local
approaches. First, determine an initial set of clusters using the GLO algorithm.
Second, for each community, expand it using local clustering, treating all other
vertices as belonging to distinct singleton clusters. The hybrid algorithm is still
quite slow (and leaves the worst-case time complexity unchanged), but fast enough
to provide some insight into the overlapping community structure of networks with
tens of thousands of vertices.

4 Results

4.1 Model Networks

To begin, we confirm that the GLO clustering algorithm is able to identify
network communities by applying it to randomly generated graphs with known
community structure. We make use of the model graphs proposed and implemented
by Lancichinetti et al. [15]. We generate 1000 random graphs using the default
parameter settings, where each random graph instance has 1000 vertices with an
average degree of 15.

In Table 1, we show some characteristics of the results of clustering algorithm,
comparing the results to those for SSG and MSG clustering. For the model networks,
GLO produces community solutions that have a greater number of communities,
on average, than either SSG or MSG. The average modularity is greatest with
SSG, with GLO second and MSG lowest. Modularity values are sufficiently high
to indicate that GLO clustering is able to recognize the presence of communities in
the model networks.

While modularity characterizes clustering, it does not directly measure the
accuracy of the clusters. We instead assess accuracy using the normalized mutual
information Inorm. For the joint probability distribution P .X;Y/ over random
variables X and Y, Inorm .X;Y/ is

Inorm .X;Y/ D 2I .X;Y/

H .X/C H .Y/
; (14)



Detecting Hierarchical Communities in Networks: A New Approach 29

Table 1 Algorithm performance with model networks. Values are computed by averaging over
clustering results from 1000 realizations of the random graphs proposed by Lancichinetti et al.
[15], with default parameter settings. Results shown are for the highest modularity clusters in the
generated hierarchies, with the number of clusters in the partition, the corresponding modularity Q,
the normalized mutual information Inorm comparing the algorithm output to the known community
assignments, and the height h of the dendrogram (optimal height would be 9). Uncertainties for
the final significant digits are shown parenthetically. All values in each column differ significantly
( p < 0:001)

Algorithm Clusters Q Inorm h

SSG 16:16.5/ 0:7155.2/ 0:8481.6/ 124:1.5/

GLO 25:55.5/ 0:6904.2/ 0:8379.5/ 38:3.1/

MSG 15:70.5/ 0:5673.5/ 0:6457.8/ 11:94.2/

where the mutual information I .X;Y/ and entropies H .X/ and H .Y/ are defined

I .X;Y/ D
X
x;y

P .X;Y/ log
P .X;Y/

P .X/P .Y/
(15)

H .X/ D �
X

x

P .X/ log P .X/ (16)

H .Y/ D �
X

y

P .Y/ log P .Y/ : (17)

In Eqs. (14), (15), (16), and (17), we use the typical abbreviations P .X D x;Y D y/ D
P .X;Y/, P .X D x/ D P .X/, and P .Y D y/ D P .Y/. The base of the logarithms in
Eqs. (15), (16), and (17) is arbitrary, as the computed measures only appear in the
ratio in Eq. (14).

To assess clustering algorithms with Inorm .X;Y/, we treat the actual community
membership for a vertex as a realization of a random variable X and the community
membership algorithmically assigned to the vertex as a realization of a second
random variable Y. The joint probability P .X;Y/ is defined by the distribution of
paired community membership over all vertices in the graph. We can then evaluate
Inorm .X;Y/, finding a result that parallels the modularity: SSG on average obtains
the greatest normalized mutual information, with GLO second and MSG the lowest.
The high value for Inorm .X;Y/ indicates that GLO clustering assigns most vertices
to the correct communities.

As GLO clustering attempts to improve performance by favoring well-balanced
dendrograms, we also assess the balance of the dendrograms using their height.
Since a dendrogram is a binary tree, the optimal height for a graph with n vertices
is just the integer part of log2 n; the extent to which the dendrogram height exceeds
this value is then indicative of performance shortcomings of the algorithm. The
random graphs considered in this section have 1000 vertices, and therefore the
optimal height is 9. The results are essentially what one would expect: SSG,
which does not attempt to favor merges leading to balanced dendrograms, produces
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the tallest dendrograms on average; MSG, which aggressively makes concurrent
merges, produces the shortest dendrograms; and GLO, which makes concurrent
merges more selectively than MSG, produces dendrograms with heights on average
between those resulting from SSG and MSG.

4.2 Empirical Networks

Based on the model networks considered in the preceding section, it appears that
SSG produces the best community solutions of the three clustering algorithms
considered. But we are ultimately not interested in model networks—it is in the
application to real networks that we are concerned. In this section, we consider
algorithm performance with several commonly used empirical networks.

The networks considered are a network of friendships between members of
a university karate club [16]; a network of frequent associations between dol-
phins living near Doubtful Sound, New Zealand [17]; a network of character
co-appearances in the novel Les Misérables [18]; a network of related purchases
of political books during the 2004 U.S. presidential election [19]; a network of
word adjacency in the novel David Copperfield [20]; a network of American college
football games played during the Fall 2000 season[21]; a network of collaborations
between jazz musicians [22]; a network of the neural connections in the C. elegans
nematode worm [23]; a network of co-authorships for scientific papers concerning
networks [20]; a network of metabolic processes in the C. elegans nematode
worm [24]; a network of university e-mail interactions [25]; a network of links
between political blogs during the 2004 U.S. presidential election[26]; a network
of the western U.S. power grid [23]; a network of co-authorships for scientific
preprints posted to the high-energy theory archive (hep-th) [27]; a network of
cryptographic keys shared among PGP users [28]; a network of co-authorships for
scientific preprints posted to the astrophysics archive (astro-ph) [27]; a network of
the structure of the internet, at the level of autonomous systems [29]; and three
networks of co-authorships for scientific preprints posted to the condensed matter
archive (cond-mat), based on submissions beginning in 1995 and continuing through
1999, 2003, and 2005 [27]. Several networks feature weighted or directed edges;
we ignore these, treating all networks as unweighted, undirected simple graphs.
Not all of the networks are connected; we consider only the largest connected
component from each network. The networks vary considerably in size, with the
number of vertices n and number of edges m spanning several orders of magnitude
(Table 2).

We apply SSG, MSG, and GLO clustering algorithms to each of the empirical
networks. In Table 3, we show properties of the clusterings produced by each
of the algorithms. The properties of the community solutions differ notably from
those for the random model networks. The number of clusters produced by GLO
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Table 2 Empirical networks
under consideration. The
number of vertices n and
edges m in each network are
shown

Network n m

Karate club 34 78

Dolphins 62 159

Les Misérables 77 254

Political books 105 441

Word adjacency 112 425

Football 115 615

Jazz 198 2742

C. elegans neural 297 2148

Network science 379 914

C. elegans metabolic 453 2040

Email 1133 5452

Political blogs 1222 16;717

Power grid 4941 6594

hep-th 5835 13;815

PGP users 10;680 24;316

cond-mat 1999 13;861 44;619

astro-ph 14;845 119;652

Internet 22;963 48;436

cond-mat 2003 27;519 116;181

cond-mat 2005 36;458 171;735

clustering no longer exceeds those for SSG and MSG clustering. Instead, the three
algorithms produce similar numbers of clusters for the smaller networks, with
the SSG algorithm yielding solutions with the greatest number of clusters for
the largest networks. As well, the GLO algorithm tends to produce the greatest
modularity values, exceeding the other approaches for 15 of the 20 empirical
networks considered, including all of the larger networks.

The dendrograms produced for the empirical networks parallel those for the
random networks. The dendrograms resulting from the SSG algorithm are the
tallest, those from the GLO algorithm are second, and those from MSG the shortest.
The SSG algorithm often produces dendrograms far taller than the ideal for a graph
with a given number n of vertices.

The differences between the dendrograms suggests the abundant presence of
locally optimal edges in the empirical networks. We verify this by counting the
number of candidate merges in the network for each iteration of the GLO and SSG
algorithms. In Fig. 3, we show the number of candidate merges for the astro-ph
network; the other empirical networks show similar trends.



32 M.J. Barber

Table 3 Comparative performance of agglomerative clustering algorithms. For each network and
each algorithm, shown are the number of clusters found, the modularity Q, and the dendrogram
height h. Additionally shown for h is the minimum height for a dendrogram for the network

Network Clusters Q h

SSG GLO MSG SSG GLO MSG SSG GLO MSG min

Karate club 3 4 4 0:381 0:387 0:381 9 10 8 6

Dolphins 4 3 4 0:495 0:491 0:492 18 10 7 6

Les Misérables 5 6 6 0:501 0:556 0:536 21 13 11 7

Political books 4 5 4 0:502 0:524 0:506 48 18 8 7

Word adjacency 7 7 8 0:295 0:289 0:252 23 13 8 7

Football 7 8 5 0:577 0:564 0:487 27 14 8 7

Jazz 4 4 4 0:439 0:424 0:363 65 33 10 8

C. elegans neural 5 6 5 0:372 0:388 0:333 110 35 17 9

Network science 19 18 16 0:838 0:843 0:836 47 18 13 9

C. elegans metabolic 11 10 9 0:404 0:428 0:400 121 43 13 9

Email 14 11 10 0:510 0:553 0:487 333 60 16 11

Political blogs 11 7 10 0:427 0:420 0:406 631 316 77 11

Power grid 40 41 39 0:934 0:935 0:930 79 35 27 13

hep-th 76 56 51 0:791 0:815 0:794 816 82 28 13

PGP users 176 120 95 0:855 0:874 0:860 904 181 139 14

cond-mat 1999 165 77 71 0:764 0:827 0:801 2005 115 40 14

astro-ph 138 51 38 0:622 0:708 0:642 3576 279 60 14

Internet 43 32 28 0:630 0:653 0:644 3517 1635 1209 15

cond-mat 2003 316 81 67 0:671 0:740 0:690 5893 297 90 15

cond-mat 2005 472 77 70 0:646 0:704 0:645 6857 570 119 16

We additionally applied the local clustering scheme described in Sect. 3.3,
expanding the clusters found for the empirical network. In each case, some or all
of the clusters are expanded (Table 4), leading to overlapping communities. As a
measure of the degree of cluster expansion, we define a size ratio R as

R D 1

n

X
c

nc ; (18)

where nc is the number of vertices in the expanded cluster c. The size ratio equals the
expected number of clusters in which a vertex is found. Values of R for the empirical
networks are given in the final column of Table 4.

The clusters do not expand uniformly. We illustrate this in Fig. 4 using the
astro-ph network. In this representative example, numerous clusters expand only
minimally or not at all, while others increase in size dramatically.
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Fig. 3 Number of locally optimal edges. For the astro-ph network, we show the number of locally
optimal edges that are candidate merges at each iteration of the algorithm. As the algorithm is not
always able to merge all the candidates, also shown are the actual number of merges made at each
iteration. For comparison, we also show, for the SSG algorithm, the number of locally optimal
edges that would be candidate merges in GLO clustering

Table 4 Cluster expansion
using hybrid algorithm,
consisting of the GLO
clustering algorithm followed
by expansion using the local
clustering algorithm. Shown
are the number of clusters
found in the GLO stage, the
number of those clusters that
increase in size in the local
clustering stage, and the size
ratio R showing an average
expansion

Network Clusters Expanded R

Karate club 4 1 1:18

Dolphins 3 1 1:02

Les Misérables 6 4 1:38

Political books 5 5 1:97

Word adjacency 7 6 1:31

Football 8 7 1:43

Jazz 4 4 1:51

C. elegans neural 6 6 2:33

Network science 18 11 1:33

C. elegans metabolic 10 9 1:96

Email 11 11 2:64

Political blogs 7 3 1:01

Power grid 41 23 1:01

hep-th 56 45 4:48

PGP users 120 43 2:37

cond-mat 1999 77 61 6:83

astro-ph 51 45 8:20

Internet 32 22 2:45

cond-mat 2003 81 63 9:39

cond-mat 2005 77 58 8:31
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Fig. 4 Expansion of astro-ph communities with hybrid algorithm, consisting of the GLO cluster-
ing algorithm followed by expansion using the local clustering algorithm. Each point corresponds
to a single cluster, with the location showing the number of vertices in the cluster as determined
in the GLO stage and after the local clustering stage. The line shown indicates no expansion; all
points necessarily lie on or above the line

5 Conclusion

We have described a new agglomerative hierarchical clustering strategy for detect-
ing high-modularity community partitions in networks; we call this GLO clustering,
for greedy, local optimality clustering. At the core of the approach is a locally
optimality criterion, where merging two communities c and c0 is locally optimal
when no better merge is available to either c or c0. The cluster hierarchy is then
formed by concurrently merging locally optimal community pairs that increase
modularity, repeating this until no further modularity increases are possible. As all
decisions on which communities to merge are based on purely local information, a
natural counterpart strategy exists for local clustering.

The motivation for GLO clustering was to improve the computational perfor-
mance and result quality of community identification by favoring the formation
of a better hierarchy. The performance improvements have been largely achieved.
The hierarchical structure, as encoded in the dendrogram, is considerably better
balanced than that produced by SSG clustering, with corresponding improvements
in computational performance observed for both model and empirical networks. The
hierarchies produced by GLO clustering are moderately worse than those produced
by MSG clustering, which is far more aggressive about making merges.

In terms of the modularity of the community solutions, the best results are found
for the model networks using SSG clustering. But the results with the model are not
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borne out in reality—the highest modularity solution is found with GLO clustering
for 15 of the 20 empirical networks considered, including the eight largest networks.

Overall, the local optimality condition proposed in this paper appears to be a
good basis for forming clusters. We can gain some insight into this from the local
clustering algorithm. For each of the empirical networks considered here, there is
some overlap of the communities, with several networks showing a great deal of
community overlap. The borders between communities are then not entirely well
defined, with the membership of particular vertices depending on the details of the
sequence of merges performed in partitioning the vertices. The concurrent building
of communities in GLO clustering seems to allow suitable cores of communities
to form, with the local optimality condition providing a useful basis for identifying
those cores.

Several directions for future work seem promising. First, the local clustering
algorithm described in Sect. 3.3 has worst-case time complexity O

�
n3
�

and is
thus unsuited to investigation of large networks; a reconsideration of the local
algorithm may lead to a method suited to a broader class of networks. Second, we
observe that nothing about GLO clustering requires that it be used with modularity,
so application of GLO clustering to community quality measures for specialized
classes of networks, such as bipartite networks [30], may prove beneficial. Finally,
we note that GLO clustering need not be used with networks at all; application to
broader classes of data analysis could thus be explored, developing GLO clustering
into a general tool for classifying data into an informative hierarchy of clusters.
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