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This chapter collects the basic terms from probability theory and statistics. It moti-
vates the axiomatic approach for the concept of probability, introduces the concept of a
random variable, describes the key properties of the main distributions of random vari-
ables occurring when modelling observational uncertainties and testing hypotheses, and
provides an introduction to stochastic processes. We give the key methods for determining
the uncertainty of derived entities, especially for explicit and implicit functions of single
and multiple variables. The reader who has had a basic course on statistics may take a
quick look at the notation used and the lines of thought employed. The concepts can be
found in the excellent textbooks by Papoulis (1965) and Papoulis and Pillai (2002) and
online at http://www.math.uah.edu/stat/index.html.

2.1 Notions of Probability

Probability theory is the most powerful tool for working with uncertainty. The notion of
probability has changed over the last two centuries.

• The classical definition of probability P according to Laplace is the ratio of the number
n+ of favourable to the number n of possible cases of an event E ,

P (E)
.
=
n+
n
. (2.1)

When modelling the outcome of throwing a die, e.g., this definition leads to the usually
assumed probability 1/6 for each possible event.
But when modelling the outcome of a modified die, e.g., one that yields more sixes,
we encounter difficulties with this definition. We would need to define conditions for
the different events under which they occur with the same probability, thus requiring
the notion of probability.
In the case of alternatives which are not countable, e.g., when the event is to be
represented by a real number, we have difficulties in defining equally probable events.
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This is impressively demonstrated by Bertrand’s paradox (Fig. 2.1), which answers theBertrand’s paradox
question: What is the probability of an arbitrarily chosen secant in a circle longer than
the side of an inscribing equilateral triangle? We have three alternatives for specifying
the experiment:

1. Choose an arbitrary point in the circle. If it lies within the concentric circle with
half the radius, then the secant having this point as centre point is longer than
the sides of the inscribing triangle. The probability is then 1/4.

2. Choose an arbitrary point on the circle. The second point of the secant lies on one
of the three segments inducing sectors of 60◦. If the second point lies in the middle
sector the secant through these points is longer than the side of the inscribing
triangle. The probability is then 1/3.

3. Choose an arbitrary direction for the secant. If its centre point lies in one of the
two centre quarters of the diameter perpendicular to this direction the secant is
longer than the side of the inscribing triangle. The probability is then 1/2.

Fig. 2.1 Bertrand’s paradox: Three alternatives for choosing an arbitrary secant in a circle. Left:
choosing an arbitrary point in the small circle with half radius, and interpreting it as the middle of the
secant; Middle: by first choosing a point on the boundary, then the second point must lie in a certain
range of the boundary, namely in between the secants belonging to an equilateral triangle; Right: choosing
an arbitrary point on a diameter, in the middle range of the secant

Obviously the definition of the notion arbitrarily chosen, i.e., an equal probability, is
not simple. However, this definition is often used, as it follows the classical logic under
certain conditions.
• The definition of probability as relative frequency following von Mises. This definition

follows the empirical finding that the empirical relative frequency seems to converge
to a limiting value

P (E)
.
= lim
n→∞

n+
n
. (2.2)

This plausible definition fails in practice, as the number of experiments will not be
sufficiently large and the conditions for an experiment cannot be held stable over a
long enough time.
• Probability as the degree of subjective certainty, e.g., in the sentence: “There is a large
probability this statement, A, is correct.”
Due to its subjectivity, this definition is not suitable as a basis for a theory. However,
sometimes we use subjective probabilities, which then requires a rigorous definition of
the concept.

All three definitions are plausible and form the basis for the following axiomatic definition.

2.2 Axiomatic Definition of Probability

The following axiomatic definition of probability follows Kolmogorov and solves the
issues of the previous definitions (Fig. 2.2).
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Kolmogorov’s Axiomatic Definition of Probability. Basis is a space S of elemen-
tary events Ai ∈ S. Events A are subsets of S. The certain event is S, the impossible event
is ∅. Each combination of events A and B again is an event; thus, the alternative event
A ∪B, the joint event A ∩B and the negated event A = S −A are events.

Each event can be characterized by a corresponding number, P (A), its probability,
which fulfils the following three axioms: axiomatic definition

of probability
1. For any event, we have

P (A) ≥ 0 . (2.3)

2. The certain event has probability 1,

P (S) = 1 . (2.4)

3. For two mutually exclusive events, A ∩B = ∅ (Fig. 2.2, a),

P (A ∪B) = P (A) + P (B) . (2.5)

Conditional Probability. Moreover, we have the conditional probability of an event
A given the event B has occurred. The probability

P (A | B) =
P (A,B)

P (B)
(2.6)

is the ratio of the joint probability P (A,B) = P (A ∩ B) of events A and B occurring
simultaneously and the probability P (B) of only B occurring (Fig. 2.2, b).

Total Probability. The total probability of an event A in the presence of a second event
B =

⋃I
i=1Bi therefore is (Fig. 2.2, c)

P (A) =

I∑
i=1

P (A | Bi)P (Bi) . (2.7)

Independent Events. Two events A and B are called independent (Fig. 2.2, d) if

P (A,B) = P (A)P (B) . (2.8)

Fig. 2.2 Independence, conditional and total probability. (a) Disjoint events A and B, (b) conditional
probability P (A | B) = P (A,B)/P (B), (c) total probability P (A), (d) independent events A and B

These axioms coincide with the classical definition of probability if the definition of
elementary events is unique and can be considered as equally probable.

(c)(b)
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B2 B3

B4

A
A
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BA
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Example 2.2.1: Throwing a die. (1) When throwing a die, we have the set S of elementary events

S = {s1, s2, s3, s4, s5, s6} ,

and for each si
P (si) =

1

6
.

(2) Throwing two dice i, j, we have

S = {(si, sj)} and P ((si, sj)) =
1

36
.

(3) The conditional probability P (s2 | even) of throwing a 2, i.e., event s2, under the condition that we
know that an even number was thrown, and using (2.6) is

P (s2 | {s2, s4, s6}) =
P (s2, {s2, s4, s6})
P ({s2, s4, s6})

=
P (s2)

P ({s2, s4, s6})
=

1/6

1/2
=

1

3
.

(4) The total probability for A = even := {s2, s4, s6} (i.e., throwing an even number) if having thrown a
B1 = small or B2 = large number (with B = {small, large} := {{s1, s2, s3}, {s4, s5, s6}}), is

P (even) = P (even | {s1, s2, s3})P ({s1, s2, s3}) + P (even | {s4, s5, s6})P ({s4, s5, s6}) =
1

3

1

2
+

2

3

1

2
=

1

2
.

(5) The events A = s1 to first throw 1 and B = {s2, s4, s6} to secondly throw even are independent;

P (1, even) = P ({(s1, s2), (s1, s4), (s1, s6)}) =
3

36

= P (1)P (even) =
1

6

1

2
=

1

12
.

�
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For experiments with a nonnumerical outcome, e.g., a colour, it is useful to map therandom variables for
unifying numerical
and nonnumerical
experimental
outcomes

experimental outcome to a real value and describe the probabilistic properties of the
experiment using a real-valued random variable.

Since such a mapping in a natural way can be defined for experiments with discrete or
continuous outcome, random variables in a unifying manner play a central role in stochastic
modelling.

2.3.1 Characterizing Probability Distributions

With each outcome s ∈ S of an experiment, we associate a real number x(s) ∈ IR. The
function x

x : S → IR x = x(s) (2.9)

is called a random variable. In order to specify the randomness of the experiment, thus,
instead of characterizing the possible outcomes s, we characterize the function x (cf. Pa-
poulis and Pillai, 2002). Observe: we distinguish between a sample value x(s) (without
underscore) depending on the outcome s of a specific experiment and the random vari-
able x(s) (with underscore) which describes the experiment as a whole, for all s ∈ S. We
regularly denote the random variable by x, omitting the dependency of s.
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Specifically, the experiment is characterized by what is called the distribution or prob-
ability function,

Px(x) = P (x < x) . (2.10)

The argument x < x is the set of all possible outcomes for which x(s) < x holds. This
definition assumes that there exists an event for all x ∈ IR.

The index x in the probability function Px(x) refers to the associated random variable,
whereas the argument in Px(x) is the variable of the function. For simplicity, we sometimes
omit the index.

We will regularly characterize the statistical properties of an observation process by observation process
characterized by
random variables

one or more random variables, catching that aspect of the concrete observation procedure
which is relevant for the analysis task.

We can now derive the probability of a random variable to be in an interval,

P (x ∈ [a, b]) = Px(b)− Px(a) . (2.11)

Obviously, a probability function must fulfil

• Px(−∞) = 0,
• Px(x) is not decreasing, and
• Px(∞) = 1.

Example 2.3.2: Throwing a coin. When throwing a coin, we assume that

x(heads) = 0 x(tails) = 1 . (2.12)

In the case of equal probability of each outcome, we obtain the probability function

Pc(x) =


0 if x ≤ 0

1/2 if 0 < x ≤ 1

1 else
. (2.13)

Observe, the index c in Pc is part of the name Pc of the probability function, here referring to throwing a
coin. For the range x ∈ (−∞, 0], the corresponding event is the empty set ∅: it is unlikely that throwing
a coin leads to neither heads nor tails. For the range x ∈ (0, 1], the corresponding event is heads as
P (x(heads) < x) = 1/2. For the range x ∈ (1,∞), the corresponding event is the certain event S. The
probability of the event tails is given by P (tails) = P (¬heads) = 1 − P (heads) = 1/2, as the events heads

and tails are mutually exclusive. Thus the event tails cannot be represented by some interval. �

Using the unit-step function s(x) (Fig. 2.3), unit step function

s(x) =

{
0 if x ≤ 0,

1 else
(2.14)

the probability function Pc can be written as

Pc(x) =
1

2
s(x) +

1

2
s(x− 1) . (2.15)

Fig. 2.3 Probability function Pc(x) and density function pc(x) for throwing a coin

0 1 0 1

0.5

1

0.5

1

x x

P (x) p (x)cc
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2.3.2 Probability Density Function

For experiments with continuous outcomes, e.g., a length measurement, we usually choose1
x(x) = x. We characterize the experiment by the first derivative of the probability function,
which is called the probability density function or just density functionprobability density

function
or density function

px(x) =
dPx(x)

dx
. (2.16)

Since integrating px(x) yields Px(x) (cf. (2.10), p. 25)

Px(x) =

∫ x

t=−∞
px(t) dt . (2.17)

The function Px(x) is also is called the cumulative distribution function or just cumulative
distribution. It is the same function as in (2.10), p. 25.

Example 2.3.3: Rounding errors. Rounding errors e lie in the interval [− 1
2
, 1
2

]. The probability
of a rounding error to lie in the subinterval [a, b] ⊂ [− 1

2
, 1
2

] is proportional to the ratio of the length b− a
to the length 1 of the complete interval. Therefore the probability density is

pe(x) = r

(
x
∣∣− 1

2
,

1

2

)
.
=

1 if x ∈
[
−

1

2
,

1

2

]
0 otherwise.

(2.18)

This is the density of the uniform distribution in the interval [− 1
2
, 1
2

], see Fig. 2.4. �

Fig. 2.4 Probability distribution Pe(x) and probability density function pe(x) of the rounding error e

2.3.3 Continuous and Discrete Random Variables

Random variables are called continuous if their probability distribution is continuous or,
equivalently, if their density function is bounded. A random variable is called discrete if the
probability function contains only steps or, equivalently, if the probability density function
is either zero or infinite at a countable number of values x.

Example 2.3.4: Discrete probability density function. The probability density function of the
random variable x of tossing a coin is

px(x) =
1

2
δ(x) +

1

2
δ(x− 1) ,

where δ(x) is Dirac’s delta function. �

Dirac’s delta function is the first derivative of the unit step function

δ(x)
.
=

ds(x)

dx
(2.19)

and is defined by a limiting process, e.g., by:

1 The random variable depends on the unit in which x is measured, e.g., m or cm.

x x1/2-1/2 1/2-1/2

11
P  (x) p  (x)e e
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δ(x) = lim
d→0

r(x| − d,+d) (2.20)

with the rectangle function

r(x|a, b) .
=


1

b− a
if x ∈ [a, b]

0 else
. (2.21)

The Dirac function has the following properties: The area under the delta function is 1:∫ ∞
t=−∞

δ(t)dt = lim
x→0

∫ x

t=−x
δ(t)dt = lim

x→0
(s(x)− s(−x)) = 1 . (2.22)

Therefore,∫ ∞
t=−∞

f(x− t)δ(t)dt t→x−t
=

∫ ∞
t=−∞

f(t)δ(x− t)dt (2.23)

δ(x)=0 for x6=0
= lim

d→0

∫ x+d

t=x−d
f(t)r(x|t− d, t+ d)dt (2.24)

ξ∈[t−d,t+d]
= lim

d→0

∫ x+d

t=x−d

1

2d
f(ξ)dt = f(x), (2.25)

the second last step using the mean value theorem for integration. The delta function can
thus be used to select a certain value of a function f(x).

In graphs, the delta function is visualized as an arrow with the height indicating the
local area under the function. For discrete random variables, therefore, we draw the heights
of these arrows, i.e., the probabilities that one of the countable number of events occurs.
Instead of the density function px(x) = 1/2 δ(x) + 1/2 δ(x− 1) for tossing a coin, e.g., we
give the two probabilities P (x = 0) = P (x = 1) = 1/2.

The distribution of a random variable is often given a name, e.g., H , and we write
x ∼ H or, if the distribution depends on parameters p,

x ∼ H (p) . (2.26)

2.3.4 Vectors and Matrices of Random Variables

We often have experiments with multiple outcomes. The corresponding I random variables
xi are usually collected in a vector called a random vector,

x = [x1, ..., xi, ..., xI ]
T . (2.27)

The experiment is then characterized by the multi-dimensional probability function

Px1,...,xi,...,xI (x1 ≤ x1, ..., xi ≤ xi, ..., xI) = P (x1, ..., xi, ..., xI) (2.28)

or
Px(x ≤ x) = P (x), (2.29)

or by the multi-dimensional probability density function

px(x) =
∂IP (x)

∂x1...∂xi...∂xI
. (2.30)

We will regularly use random matrices, e.g., when dealing with uncertain transforma- random matrices
tions. Let the N ×M matrix X = [Xnm] contain NM random variables. Then it is of
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advantage to vectorize the matrix,

x
NM×1

= vecX = [X11, X21, ..., XN1, X12, ..., XNM ]T (2.31)

and represent the uncertainty by the joint probability of the random NM -vector x.

2.3.5 Statistical Independence

If two random variables x and y are statistically independent, their joint probability func-
tion and their joint probability density function are separable functions, i.e.,

Pxy(x, y) = Px(x)Py(y) or pxy(x, y) = px(x)py(y) . (2.32)

2.4 Distributions

2.4.1 Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Exponential and Laplace Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.4 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.5 Chi-Square Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.6 Wishart Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.7 Fisher Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.8 Student’s t-Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

We now list a number of distributions relevant for statistical reasoning.

2.4.1 Binomial Distribution

A discrete random variable n follows a binomial distribution,

n ∼ Bin(N, p), (2.33)

if its discrete density function is

P (n) =

(
N

n

)
pn(1− p)N−n n = 0, 1, ..., N 0 ≤ p ≤ 1 (2.34)

where
(
N
n

)
are binomial coefficients. It models the probability of n successes if an experi-

ment for which the probability of success p is repeated N times.
For p = 1

2 , we obtain the probability P (n) of observing n heads when tossing a coin N
times (Table 2.1).

2.4.2 Uniform Distribution

A continuous random variable follows the general uniform distribution,

x ∼ U(a, b) a, b ∈ IR b > a, (2.35)
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Table 2.1 Probability P (n) of obtaining n heads when tossing a coin N times

n = 0 1 2 3 4 5 6

N = 1 1
2

1
2

2 1
4

1
2

1
4

3 1
8

3
8

3
8

1
8

4 1
16

1
4

3
8

1
4

1
16

5 1
32

5
32

5
16

5
16

5
32

1
32

6 1
64

3
32

15
64

5
16

15
64

3
32

1
64

if it has the density r(x|a, b) ((2.21), p. 27). For example, rounding errors e have uniform
distribution e ∼ U(− 1

2 ,
1
2 ).

Two random variables x and y jointly follow a uniform distribution,

(x, y) ∼ U(a, b; c, d), (2.36)

if they have the density function

rxy(x, y | a, b; c, d) = r(x | a, b) r(y | c, d) , (2.37)

where x ∈ [a, b] and y ∈ [c, d]. Due to (2.37) the random variables x and y are independent.

2.4.3 Exponential and Laplace Distribution

A random variable x follows an exponential distribution with real parameter µ > 0 if its
density function is given by

px(x) =
1

µ
e
−x
µ , x ≥ 0, µ > 0 . (2.38)

This is also called the Rayleigh distribution. Rayleigh distribution
A random variable x is Laplacian distributed with real parameter σ > 0,

x ∼ Lapl(σ), (2.39)

if its density function is given by

px(x) =
1√
2 σ

e
−
√

2
∣∣∣x
σ

∣∣∣
, σ > 0 . (2.40)

2.4.4 Normal Distribution

2.4.4.1 Univariate Normal distribution

A random variable x is normally or Gaussian distributed with real parameters µ and σ > 0,

x ∼ N (µ, σ2), (2.41)

if its density function is given by
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px(x) = g(x | µ, σ2) =
1√

2π σ
e
−

1

2

(
x− µ
σ

)2

, σ > 0 . (2.42)

The density function is symmetric with respect to µ, there having the value 1/(
√

2π σ) ≈
0.4/σ; the inflection points are at µ− σ and µ+ σ, there having the value 1/(

√
2πeσ) ≈

0.24/σ, hence 3/5th of the value at the mean. The tangents at the inflection points intersect
the x-axis at µ± 2σ.

Large deviations from the mean value µ are unlikely:

P (x ∈ [µ− σ, µ+ σ]) =

∫ x=µ+σ

x=µ−σ
g(x | µ, σ2) dx ≈ 0.6827 , (2.43)

P (x ∈ [µ− 2σ, µ+ 2σ]) =

∫ x=µ+2σ

x=µ−2σ
g(x | µ, σ2) dx ≈ 0.9545 , (2.44)

P (x ∈ [µ− 3σ, µ+ 3σ]) =

∫ x=µ+3σ

x=µ−3σ
g(x | µ, σ2) dx ≈ 0.9973 . (2.45)

Thus the probability of a value lying outside the interval [µ−3σ, µ+3σ] is very low, 0.3 %.
The standard normal distribution or normalized Gaussian distribution is given by µ = 0standard normal

distribution,
normalized Gaussian
distribution

and σ = 1 (Fig. 2.5)

φ(x) = g(x | 0, 1) =
1√
2π

e−x
2/2 . (2.46)

Its cumulative distribution is

Φ(x) =

∫ x

t=−∞
φ(t) dt . (2.47)

Fig. 2.5 Left: normal or Gaussian density function φ(x). Inflection points at x = +1 and x = −1. The
ratio of the function values on the symmetry axis and at the inflection point is

√
e = 1.6487... ≈ 5/3; the

tangent in the inflection point intersects the x-axis at x = 2, such that the x-coordinate of the inflection
point is in the middle of this intersection point and the line of symmetry. Right: cumulative distribution
function Φ(x). 75th percentile at x = Φ−1(0.75) = 0.6745

The normal distribution is the most important distribution. This follows from the centralcentral limit theorem
limit theorem: The sum of a large number of independent, identically distributed random
variables with bounded variance is approximately normally distributed (cf. Papoulis, 1965,
Sect. 8–6).

∼π ∼
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2.4.4.2 Multi-dimensional Normal Distribution

If two independent random variables are normally distributed according to

x ∼ N (µx, σ
2
x) y ∼ N (µy, σ

2
y), (2.48)

their joint density function is

pxy(x, y) = gx(x | µx, σ2
x) gy(y | µy, σ2

y) (2.49)

=
1

2πσxσy
e
−1

2

((
x− µx
σx

)2

+

(
y − µy
σy

)2
)
. (2.50)

With the vectors
x =

[
x
y

]
µ =

[
µx
µy

]
(2.51)

and the 2× 2 matrix,

Σ =

[
σ2
x 0

0 σ2
y

]
, (2.52)

this can be written as

gxy(x | µ,Σ) =
1

2π
√
|Σ|

e
−

1

2
(x− µ)TΣ−1(x− µ)

. (2.53)

If the 2× 2 matrix Σ is a general symmetric positive definite matrix

Σ =

[
σ2
x σxy

σxy σ2
y

]
, (2.54)

the two random variables are dependent. The correlation coefficient,

ρxy =
σxy
σxσy

∈ [−1, 1], (2.55)

measures the degree of linear dependency. If ρxy = 0, the two random variables are uncor- uncorrelated,
independent
random variables

related, and if they are normally distributed, they are independent, due to (2.32), p. 28.
The 2D normal distribution is an elliptic bell-shaped function and can be visualized by
one of its contour lines, cf. Fig. 2.6. The standard ellipse, sometimes also called standard standard ellipse
error ellipse, is defined by

(x− µ)TΣ−1(x− µ) = 1 . (2.56)

The standard ellipse allows the visualization of important properties of the uncertain
point:

• The standard ellipse is centred at µx.
• The bounding box has size 2σx × 2σy.
• The semi-axes are the square roots of the eigenvalues λi of the covariance matrix,

namely σmax =
√
λ1 and σmin =

√
λ2, which are the square roots of the eigenvalues of

Σ,

σ2
max,min =

1

2
(σ2
x + σ2

y)± 1

2

√
(σ2
x − σ2

y)2 + 4σ2
xy . (2.57)

• If the two coordinates are correlated, the major axis is not parallel to the coordinate
system. The angle α is given by
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Fig. 2.6 General 2D normal or Gaussian distribution, centred at the origin. Left: density function.
Right: standard ellipse. Actual values: µx = µy = 0, σx = 4.9, σy = 3.2, ρ = 0.7

α =
1

2
atan2 (2σxy, σ

2
x − σ2

y) ∈ (−π/2,+π/2] (2.58)

using a two-argument version of the arctan function.
The sign of the angle follows the sign of the correlation coefficient ρxy or the covariance
σxy.
• The standard deviation σs of a distance s between the point µx and a fixed point

in an arbitrary direction, indicated here by an arrow, is given by the distance of µx
from the tangent to the standard ellipse perpendicular to that direction. This shows
that the minor and the major axes of the standard ellipse give the minimum and the
maximum of the directional uncertainty of the point.

In higher dimensions, (2.56) represents an ellipsoid or a hyper-ellipsoid E . The probability
S = P (x ∈ E) that a random point lies within the standard ellipsoid depends on the
dimension as shown in the first line of Table 2.2, and rapidly diminishes with the dimension.

Instead of showing the standard ellipse or standard ellipsoid, we therefore can show the
confidence ellipse or confidence ellipsoid. The confidence ellipsoid is the k-fold standardconfidence ellipse
ellipsoid, such that the probability P (x ∈ E(k)) that a sample lies within the ellipsoid is
a certain prespecified value S

E(k) : (x− µ)TΣ−1(x− µ) = k2 , P (x ∈ E(k)) = S . (2.59)

The standard ellipse is identical to the confidence ellipse for k = 1: E = E(1). For the
dimension d = 1 and a probability P (x ∈ E(k)) = S = 0.9973, we would obtain k = 3, as
shown in (2.45), p. 30. Here the ellipse reduces to the interval [−kσx,+kσx].

For S = 95%, S = 99% and S = 99.9%, the values k(S) determined from the right
equation in (2.59) are given in Table 2.2 for different dimensions.

Table 2.2 Confidence regions. First row: Probabilities P (x ∈ E) for different dimensions d of a random
vector x. Other rows: Factor k(S) for the confidence ellipsoids E(k(S)) for S = 0.95, 0.99, 0.999 and for
different dimensions d.

d 1 2 3 4 5 10 20 50 100
P (x ∈ E) 0.68 0.40 0.20 0.09 3.7 · 10−2 1.7 · 10−4 1.7 · 10−10 1.2 · 10−33 1.8 · 10−80

k(0.95) 1.96 2.45 2.80 3.08 3.33 4.28 5.60 8.22 11.2
k(0.99) 2.58 3.03 3.37 3.64 3.88 4.82 6.13 8.73 11.6
k(0.999) 3.29 3.72 4.03 4.30 4.53 5.44 6.73 9.31 12.2

Matrices of Gaussian distributed random variables can be represented using their vector
representation, (2.31), p. 28. Let the N ×M matrix X contain NM random variablesGaussian distributed

matrix which are normally distributed; we represent its uncertain covariance matrix using the
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random vector
x = vecX : x ∼ N (µx,Σxx) . (2.60)

Or we may keep the matrix representation for the mean matrix and write

X ∼ N (µX ,Σxx) . (2.61)

Sometimes we will refer to Σxx as the covariance matrix of the random matrix X .

2.4.4.3 Normal Distribution with Zero or Infinite Variance

When representing fixed values, such as the third component in a homogeneous vector
[x, y, 1]T, we might track this property through the reasoning chain, which is cumbersome,
or just treat the value 1 as a stochastic variable with mean 1 and variance 0. The second
alternative has implicitly been chosen by Kanatani (1996) and Criminisi (2001). This
method needs some care, as the density function for a Gaussian random variable is not
defined for zero variance.

The distribution of a random variable y ∼ N (µy, 0) can be defined in a limiting process
((2.22), p. 27), by a δ-function:

py(y) = lim
σy→0

g(y;µy, σ
2
y) = δ(y − µy) . (2.62)

Now a 2-vector can be constructed with a singular 2 × 2 covariance matrix. Assume
that x ∼ N(µx, 1) and y ∼ N(µy, 0) are independent stochastic variables; thus,[

x
y

]
∼ N

([
µx
µy

]
,

[
1 0
0 0

])
. (2.63)

As x and y are stochastically independent, their joint generalized probability density func-
tion is ((2.32), p. 28)

gxy = gx(x;µx, 1) δ(y − µy) . (2.64)

Obviously, working with a product of Gaussians and δ-functions will be cumbersome in
cases when stochastic variables are not independent.

In most cases, reasoning can be done using the moments (cf. Sects. 2.5); therefore, the
complicated distribution is not of primary concern. The propagation of uncertainty with
second moments (cf. Sect. 2.7, p. 40) only relies on the covariance matrices, not on their
inverses, and can be derived usng what is called the moment generating function (Papoulis,
1965), which is also defined for generalized probability density functions. Thus uncertainty
propagation can also be performed in mixed cases.

Similar reasoning can be used to allow random variables with zero weights 1/σ2, or
infinite variance, or, more general, singular weight matrices W = Σ−1 (Dempster, 1969).

2.4.5 Chi-Square Distribution

A random variable y is χ2
n-distributed with n degrees of freedom,

y ∼ χ2
n , or y ∼ χ2(n), (2.65)

if it has the density function

py(y, n) =
y(n/2)−1e−y/2

2n/2Γ
(
n
2

) , n ∈ IN , y > 0 (2.66)
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with the Gamma function Γ(.) (cf. Koch, 1999, Sect. 2.6.1). This distribution is used for
testing quadratic forms. In particular, the sum

y =
n∑
i=1

z2i (2.67)

of n independent random variables zi, which follow a standard normal distribution (zi ∼
N (0, 1)), is χ2

n distributed. For n = 2, we obtain the exponential distribution

py(y, 2) =
1

2
e−y/2 y ≥ 0 . (2.68)

Given the n mutually independent random variables which follow noncentral normal
distributions zi ∼ N (µi, 1), then the random variablenoncentral

χ′2 distribution

y =
n∑
i=1

z2i ∼ χ′2d (δ2) with zi ∼ N (µi, 1) (2.69)

has a noncentral chi-square distribution χ′2n (δ) with n degrees of freedom and noncentrality
parameter δ2 =

∑n
i=1 µ

2
i .

Sometimes we need the distribution of the square root s =
√
y and thus of the length

s = |x| of a random vector x ∼ N (0, In). The resulting distribution is the χ distribution,
having densityExercise 2.28

χ distribution
ps(s, n) =

21−n/2sn−1e−s
2/2

Γ (n/2)
. (2.70)

2.4.6 Wishart Distribution

A symmetric positive definite p × p matrix V is Wishart distributed, W(n,Σ), with n
degrees of freedom and matrix parameter Σ if its density function is (cf. Koch, 1999, Sect.
2.8.1)

pW (V |n,Σ) = kW · |V |(n−p−1)/2e
−tr

(
Σ−1V

)
/2
, n ∈ IN , |V | > 0 , |Σ| > 0 (2.71)

with some normalization constant kW . This distribution is useful for evaluating empirical
covariance matrices. Let N mutually independent random vectors xn of length p be given
which follow a multivariate central normal distribution, xn ∼ N (0,Σ). Then the matrix

V =

N∑
n=1

xnx
T
n ∼ W(n,Σ) (2.72)

follows a Wishart distribution. For Σ = 1 the Wishart distribution reduces to the χ2

distribution.Exercise 2.29

2.4.7 Fisher Distribution

A random variable F is Fisher-distributed or F-distributed,

F ∼ F (m,n), (2.73)

with m and n degrees of freedom if its density is
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pF (x|m,n) = kF · s(x) · xm2 −1(mx+ n)−
m+n

2 (2.74)

with the step function s(x) and a normalization constant kF .
If two independent random variables y

1
and y

2
are χ2 distributed, namely

y
1
∼ χ2

m y
2
∼ χ2

n , (2.75)

then the random variable

F =
y
1
/m

y
2
/n
∼ F (m,n) (2.76)

is Fisher distributed with (m,n) degrees of freedom. This distribution is used for testing
results of estimation processes.

2.4.8 Student’s t-Distribution

A random variable is t-distributed,
t ∼ t (n), (2.77)

with n degrees of freedom, if its density is given by

pt(x|n) = kt ·
(

1 +
x2

n

)−n+1
2

, (2.78)

with some normalization constant kt. If two independent random variables z and y are
distributed according to

z ∼ N (0, 1) y ∼ χ2
n , (2.79)

the random variable

t =
z√
y/n

∼ t (n) n ∈ IN (2.80)

follows Student’s t-distribution with n degrees of freedom. This distribution may be used
for testing residuals of observations after parameter estimation.

The relationships among the different distributions is given in Fig. 2.7. The normal
distribution N is a special case of Student’s tn distribution and of the χ2

m distribution,
which themselves are special cases of the Fisher Fm,n distribution, obtained by setting one
or both parameters to infinity.

Fig. 2.7 Fisher’s Fm,n and Wishart distribution W(m,Σ) and its specializations: χ2
m, Student’s tn and

normal distribution N (0, 1). For example, taking the square root of a random variable, which is F1,n

distributed can be shown to be tn-distributed

oo

oo

oo

=1m
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2.5 Moments

2.5.1 General Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Central Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 Moments of Normally Distributed Variables . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Moments of the Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 39

Moments are used to characterize probability distributions. They are mathematically
equivalent to moments in physics, if the probability density function is interpreted as a
mass density function.

2.5.1 General Moments

With the density functions px(x) or pxy(x, y), general moments are defined as

mr =

∫ +∞

x=−∞
xrpx(x) dx r ≥ 0 (2.81)

or

mr,s =

∫ +∞

x=−∞

∫ +∞

y=−∞
xryspxy(x, y) dx dy r, s ≥ 0 . (2.82)

The values mk and mr,k−r, with r ≤ k, are called kth-order moments. For discrete random
variables with probabilities Px(x = x) and Pxy(x = x, y = y), general moments are defined
as

mr =

∞∑
i=1

xriPx(x = xi) r ≥ 0 (2.83)

or

mr,s =
∞∑
i=1

∞∑
j=1

xri y
s
jPxy(x = xi, y = yj) dxdy r, s ≥ 0 . (2.84)

We will restrict the derivations to continuous variables. The moment of the order zero is
always 1. The moments m1 or m1,0 and m0,1 are the mean values or the expected values
E(x),

µx
.
= m1 =

∫
xpx(x) dx , (2.85)

or

µx
.
= m1,0 =

∫
xpxy(x, y) dx dy , (2.86)

µy
.
= m0,1 =

∫
ypxy(x, y) dx dy , (2.87)

respectively, omitting the boundaries of the integrals.
The higher-order moments can be interpreted more easily if they refer to the mean

values.
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2.5.2 Central Moments

The central moments are defined as2

µr =

∫
(x− µx)rpx(x) dx (2.88)

and, for random d-vectors,

µr,s =

∫
(x− µx)r(y − µy)spxy(x, y) dx dy . (2.89)

In general, we have

µ0 = 1 µ1 = 0 µ0,0 = 1 µ1,0 = µ0,1 = 0 . (2.90)

The central moments of a random variable yield their variance,

σ2
x
.
= µ2 =

∫
(x− µx)2px(x) dx , (2.91)

σ2
x
.
= µ2,0 =

∫
(x− µx)2pxy(x, y) dx dy , (2.92)

and
σ2
y
.
= µ0,2 =

∫
(y − µy)2pxy(x, y) dx dy . (2.93)

We can easily show that the following relation holds, which in physics is called Steiner’s
theorem: Steiner’s theorem

µ2 = m2 −m2
1 or σ2

x = m2 − µ2
x . (2.94)

Therefore, the central moments can be easily derived from the noncentral moments. The
positive square root of the variance is called the standard deviation,

σx = +
√
σ2
x, (2.95)

of the random variable x. The mixed second central moment of two random variables is
their covariance

σxy
.
= µ1,1 =

∫
(x− µx)(y − µy)pxy(x, y) dx dy . (2.96)

As it is difficult to interpret, it is usually related to the standard deviations σx and σy via
the correlation coefficient (2.55) by

σxy = ρxyσxσy . (2.97)

The second central moments of a vector x of several random variables x = [xi] usually are
collected in its covariance matrix

Σxx = [σxixj ] . (2.98)

Similarly, the covariances σxiyj of the random variables collected in two vectors x = [xi]
and y = [y

j
] are collected in their covariance matrix

Σxy = [σxiyj ] . (2.99)

Due to the symmetry of covariance matrices we have

2 Not to be confused with the mean value µx.
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Σxy = ΣT
yx . (2.100)

With the diagonal matrices

Sx = Diag([σxi) Sy = Diag([σyj ]) (2.101)

containing the standard deviations, we can also express the covariance matrix as

Σxy = SxRxySy (2.102)

using the correlation matrix

Rxy = [ρxiyj ] =

[
σxiyj
σxiσyj

]
. (2.103)

In the case of two random variables x and y we have their covariance matrix

Σ =

[
σ2
x σxy

σxy σ2
y

]
=

[
σx 0
0 σy

] [
1 ρxy
ρxy 1

] [
σx 0
0 σy

]
. (2.104)

We can show that covariance matrices always are positive semidefinite and the correlation
coefficients ρij always lie in [−1,+1].

We use the expectation operator or mean operator E(.) as an abbreviation. It yields
the mean value of a random variable x or of a random vector x,expectation E(.)

E(x) =

∫ ∞
x=−∞

xpx(x) dx (2.105)

and, for a d-vector x,

E(x) =

∫ ∞
x=−∞

xpx(x) dx . (2.106)

The kth moments therefore are the expected or mean values of the kth power of the
random variable,

mk = E(xk) mr,s = E(xrys) with k = r + s . (2.107)

The central moments thus are the expected mean values of the kth power of the difference
of the random variable and its expected or mean value,

µk = E([x− µx]k) µr,s = E([x− µx]r[y − µy]s) . (2.108)

The expectation operator is linear,linearity of E(.)

E(ax+ b) = aE(x) + b or E(Ax+ b) = AE(x) + b , (2.109)

which results from the linearity of the integration, a property which we often use.
Based on the expectation operator we also can define the dispersion operator D(.) or

V(.) and the covariance operator Cov(., .), which operates on one or two vectors of random
variables, respectively. The dispersion operator leads to the variance–covariance matrix of
a random variable:variance V(.)

dispersion D(.)
D(x) = V(x) = Σxx = E[{x− E(x)}{x− E(x)}T] . (2.110)

The covariance operator leads to the covariance matrix of two random variables:covariance Cov(., .)

Cov(x,y) = Σxy = E
[{
x− E(x)}{y − E(y)

}T
]

= ΣT
yx = Cov(y,x)T , (2.111)
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thus
D(x) = V(x) = Cov(x,x) . (2.112)

Observe the convention for scalar random variables xi and yj :

Σxixi = σ2
xi Σxiyj = σxi,yj . (2.113)

For single variables, the dispersion operator is often replaced by the variance operator,
e.g., V(x) = σ2

x.

2.5.3 Moments of Normally Distributed Variables

A variable following a one-dimensional normal distribution N (µ, σ2) has the first moments,

m0 = 1 , m1 = µ , m2 = µ2 + σ2 , m3 = µ3 + 3µσ2 (2.114)

and
m4 = µ4 + 6µ2σ2 + 3σ4 (2.115)

and the corresponding central moments

µ0 = 1 , µ1 = 0 , µ2 = σ2 , µ3 = 0 , µ4 = 3σ4 . (2.116)

In general, the odd central moments are zero due to the symmetry of the density func-
tion. The even central moments, µ2k, k = 0, 1, ... , of the normal distribution with density
g(x | µ, σ2) only depend on the variance

µ2k =

∫
(x− µ)2kg(x | µ, σ2) dx = 1 · 3 · ... · (2k − 1)σ2k . (2.117)

The parameters µ and σ2 of the one-dimensional normal distribution are the mean and
the variance. The two parameters µ and Σ of the multi-dimensional normal distribution
are the mean vector and the covariance matrix.

The second (central) moment of a multi-dimensional normal distribution is the covari-
ance matrix Σ. It exists even if the covariance matrix is singular and the density function
is not a proper function.

2.5.4 Moments of the Uniform Distribution

The moments of the uniform distribution U(a, b) are

mk =
1

k + 1

bk+1 − ak+1

b− a
. (2.118)

We obtain the even central moments µ0 = 1 and

µ2 = σ2 =
1

12
(b− a)2 µ4 =

1

80
(b− a)4 . (2.119)

Thus, the standard deviation of the rounding error, modelled as r ∼ U
(
− 1

2 ,
1
2

)
, is rounding error

σr =
√

1/12 ≈ 0.28 (2.120)

of the last and rounded digit.
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2.6 Quantiles of a Distribution

We are often interested in the value x such that the value of the cumulative distribution
Px(x) = P (x < x) is a prespecified probability α

Px(x) =

∫ x

t=−∞
px(t) dt = α . (2.121)

This α-quantile can be determined using the inverse cumulative distribution

x = P−1x (α) . (2.122)

If the random variable follows a certain distribution, e.g. x ∼ Fm,n, the α-quantile can be
written as x = Fm,n;α.

The median is the 0.5-quantile or 50th percentilemedian

med(x) = P−1x (0.5) . (2.123)

For normally distributed random variables, it coincides with the mean, thus Nµx,σ2
x;0.5

=
med(x) = µx.

Instead of the standard deviation, it is also possible to use the median of the absolutemedian absolute
difference differences (MAD) from the median to characterize the spread of the random variable. It

is given by
MADx = med(|x−med(x)|) . (2.124)

For normally distributed random variables, it is related to the standard deviation by

MADx = Φ−1(0.75) σx ≈ 0.6745 σx (2.125)

and

σx =
1

Φ−1(0.75)
MADx ≈ 1.4826 MADx , (2.126)

(Fig. 2.5, p. 30, right).

2.7 Functions of Random Variables

2.7.1 Transformation of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.2 Distribution of the Sum of Two Random Variables . . . . . . . . . . . . . . 42
2.7.3 Variance Propagation of Linear Functions . . . . . . . . . . . . . . . . . . . . . . 42
2.7.4 Variance Propagation of Nonlinear Functions . . . . . . . . . . . . . . . . . . . 43
2.7.5 Implicit Variance Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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Propagation of uncertainty can be formalized as follows: Given one or several random
variables collected in the random vector x, together with its probability density function
px(x), and a function y = f(x), derive the probability density function of the random
vector y.

There are several methods for solving this problem (cf. Papoulis and Pillai, 2002). We
want to present two important cases with one and two random variables having arbitrary
distribution and then discuss linear and nonlinear functions of Gaussian variables.
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2.7.1 Transformation of a Random Variable

We first discuss the case of a monotonically increasing function y = f(x) of a single
variable x with its given probability density function px(x). The unknown probability
density function of the random variable y is py(y).

Fig. 2.8 Transformation of a random variable x with a monotonic function y = f(x)

With Fig. 2.8 we have py(y) dy = px(x) dx as P (y ∈ [y, y + dy]) = P (x ∈ [x, x + dx])
for differential dx and dy. Thus, with monotonic f(x), we obtain

py(y) =
px(x)∣∣∣∣dydx

∣∣∣∣ =
px(x)

|f ′(x)|
. (2.127)

With the inverse function x = f−1(y), we finally obtain the density py(y) of y as a function
of y,

py(y) =
px
(
f−1(y)

)∣∣f ′ (f−1(y)
)∣∣ . (2.128)

This result generalizes to vector-valued variables (cf. Papoulis and Pillai, 2002, p. 142). Exercise 2.28
Example 2.7.5: Linear transformation of a random variable. For the linear transformation

y = f(x) = k +mx, we use the first derivative f ′(x) = m and the inverse function

f−1(y) =
y − k
m

to obtain the density

py(y) =

px

(
y − k
m

)
|m|

. (2.129)

Obviously, the original density function px(x) is translated by k and scaled bym in the y- and py-directions
in order to obtain the area 1 under py(y).

A Gaussian random variable x ∼ N (µ, σ2) thus can be transformed into a normalized Gaussian random
variable z = N (0, 1) by

z =
x− µ
σ

. (2.130)

This can be generalized to a normally distributed random d-vector x ∼ N (µ,Σ). The vector whitening

z = Σ−1/2(x− µ) ∼ N (0, Id) (2.131)

follows a normalized multivariate normal distribution. The inverse square root of the matrix Σ with
eigenvalue decomposition RΛRT can be determined by Σ−1/2 = RDiag([1/

√
λi])RT. As a vector whose

elements zi ∼ N (0, 1) are mutually independent with zero mean is called white, the operation (2.131) is
called whitening. �

y

d f(x)

d x

h  (x)x

h  (y)
y

y

x
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2.7.2 Distribution of the Sum of Two Random Variables

The density of the sum z = x + y of two independent random variables with densities
px(x) and py(y) is

pz(z) =

∫
px(z − y)py(y) dy (2.132)

pz = px ∗ py (2.133)

and is thus identical to the convolution px ∗ py of the two densities px and py (Castleman,
1996).

In many cases, we have several random variables xi which follow a joint normal distri-
bution and which are possibly mutually correlated, x ∼ N (µx,Σxx). We are interested in
the distribution of new random variables y = f(x) = [fi(x)]. Due to the nonlinearity of
the functions fi, the resulting density py(y) is complicated.

2.7.3 Variance Propagation of Linear Functions

Probability functions often are smooth and thus may be locally approximated by a linear
function. Moreover, the relative precision of the quantities involved (the random variables
x) is high; thus, their standard deviations are small compared to the curvature of the func-
tions. Under these conditions, we may approximate the resulting distribution by a normal
distribution and characterize it by its first two moments, the mean and the covariance
matrix.

We first give the distribution of linear functions, for which the variance propagation
follows.

Given random variables x ∼ N (µx,Σxx) and the linear function y = Ax + b, the
random vector y is normally distributed as

y ∼ N (Aµx + b,AΣxxAT) , (2.134)

or
E(y) = AE(x) + b , D(y) = AD(x)AT . (2.135)

The proof for the preservation of the distribution uses the result of the transformation of
random variables.

The proof for the first two moments uses the linearity of the expectation operator, which
allows us to exchange the expectation and matrix multiplication E(y) = E(Ax + b) =
AE(x) + b = Aµx + b with a similar proof for the second central moments.

Comments:

• As the variance V(y
i
) = σ2

yi of an arbitrary element y
i
for arbitrary matrices A needs

to be nonnegative, the covariance matrix Σxx needs to be positive semi-definite.
• Though the density function of the normal distribution is not defined for singular

covariance matrices, the probability function exists. Variance propagation uses only
the moments, so it is allowed for singular covariance matrices as well. If A does not
have full rank, then Σyy is singular.

• The proof only uses the moments. It is thus valid for arbitrary distributions
Mx(µx,Σxx) for which we only use the first two moments, µx and Σxx. Therefore,
we have the following law of variance propagation:variance propagation

x ∼Mx(µx,Σxx) and y = Ax+ b → y ∼My(Aµx + b,AΣxxAT) . (2.136)
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• The inverse W xx of a regular covariance matrix Σxx is sometimes called a weight
matrix or the precision matrix (cf. Bishop, 2006), weight matrix,

precision matrix
W xx = Σ−1xx , (2.137)

as random variables with smaller variances have higher weights and higher precision
when performing an estimation (Sect. 4.1.4, p. 79).
If A is invertible, we also have a propagation law for weight matrices,

W yy = A−1W xxA−T . (2.138)

• We can transfer the result to linear functions of random matrices. Given the random
matrix X ∼ M (E(X ),D(vecX )) and the linear function Y = AXB + C , the random
matrix Y is normally distributed since

Y ∼M (AE(X )B + C , (BT ⊗ A)Σxx(BT ⊗ A)T) . (2.139)

Using the vectors x = vecX and y = vecY this result immediately follows from the
vectorized function y = (BT ⊗ A)x+ vecC (cf. (A.95), p. 775).

2.7.4 Variance Propagation of Nonlinear Functions

In the case of nonlinear functions y = f(x), we first perform a Taylor series expansion,

y = y(0) + dy = f(x(0)) + Jdx+O(|dx|2), (2.140)

with the Jacobian
J = [Jij ] =

[
∂fi(x)

∂xj

]∣∣∣∣
x=x(0)

, (2.141)

where – to simplify notation – the subscript x = x(0) refers to the vector x. If we use
x(0) = µx with y(0) = f(x(0)), we obtain

dy = J dx, (2.142)

and therefore in a first-order approximation

E(y) ≈ µ(1)
y = f(µx) , D(y) ≈ Σ(1)

yy = JΣxxJT (2.143)

since, up to a first-order approximation,

Σyy = Σdy dy (2.144)

due to y ≈ y(0) + dy.
It can be shown that with relative errors rxj = σxj/µxj of the variables xi, the error in

the standard deviations σyj due to linearization is less than rxjσyi , and is thus negligible
in most practical applications; cf. Sect. 2.7.6, p. 44.

2.7.5 Implicit Variance Propagation

If we have an implicit relation
f(x,y) = 0 (2.145)
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between two stochastic variables x and y, the variance propagation can be performed with
the Jacobians

A =
∂f(x,y)

∂x

∣∣∣∣
x=µx,y=µy

B =
∂f(x,y)

∂y

∣∣∣∣
x=µx,y=µy

(2.146)

if B is invertible. From df = A dx + B dy = 0 we obtain dy = −B−1A dx with given
Σxx, again, in a first-order approximation,

Σyy = B−1AΣxxATB−T . (2.147)

This allows the derivation of the covariance matrix of y even if the procedure for deriving
y from x is very complicated.

2.7.6 Bias Induced by Linearization

Moment propagation (2.143) of nonlinear functions using only the first-order Taylor series
of the nonlinear function leads to a systematic deviation from the true value, also called
bias. Analysing higher-order terms yields expressions for the bias due to linearization.bias: deviation from

the true value For a scalar function y = f(x) of a scalar x, it is based on the Taylor expansion of the
stochastic variable at f(µx),

y = f(x) = f(µx) + f ′(µx)(x− µx) +
1

2
f ′′(µx)(x− µx)2 (2.148)

+
1

6
f ′′′(µx)(x− µx)3 +

1

24
f (4)(µx)(x− µx)4 +O((x− µx)n) .

We therefore obtain the following result: if the density function of a stochastic variable x
is symmetrical, the mean for y = f(x) can be shown to be

E(y) = µy = f(µx) +
1

2
f ′′(µx)σ2

x +
1

24
f (4)(µx)µ4x +O(f (n),mn) n > 4. (2.149)

For normally distributed variables we take its central fourth moment µ4x = 3σ4
x. Using the

expression V(y) = E(y2)− [E(y)]2 from (2.94), p. 37 we can derive a similar expression for
the variance. Restricting to even moments up to the fourth-order for Gaussian variables,
we haveExercise 2.30

V(y) =
[
σ(2)
y

]2
= f ′2(µx) σ2

x +

(
f ′(µx)f ′′′(µx) +

1

2
f ′′2(µx)

)
σ4
x +O(f (n),mn) . (2.150)

Obviously the bias, i.e., the second term, depends on the variance and the higher-order
derivatives: the larger the variance and the higher the curvature or the third derivative,
the higher the bias. Higher-order terms again depend on derivatives and moments of order
higher than 4.

For a stochastic vector x with symmetrical density function, the mean of the scalarexpectation of
function of stochastic
vector

function y = f(x) can be shown to be

Exercise 2.31 E(y) = µ(2)
y = f(µx) +

1

2
trace(H |x=µx · Σxx) +O(f (n),mn), n ≥ 3 , (2.151)

with the Hessian matrix H = (∂f2/∂xi∂xj) of the function f(x). This is a generalization
of (2.149).

We now discuss two cases in more detail which regularly occur in geometric reasoning,
the bias of a product and the bias of normalizing a vector to length 1.
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Bias of a Product. The product z = xy of two random variables is part of all geometric
constructions when using homogeneous coordinates for representing geometric entities. For
the product

z = x y (2.152)

of two possibly correlated normal random variables[
x
y

]
∼ N

([
µx
µy

]
,

[
σ2
x ρxyσxσy

ρxyσxσy σ2
y

])
, (2.153)

we obtain the first and second approximation for the mean value Exercise 2.32

µ[1]
z = µxµy µ[2]

z = µ[1]
z + ρxyσxσy . (2.154)

Thus we obtain the bias of the mean,

bµz
.
= µ[2]

z − µ[1]
z = σxy = ρxyσxσy, (2.155)

and the relative bias of the mean of the product,

rµz
.
=
bµz
µz

= ρxy
σx
µx

σy
µy

. (2.156)

The relative bias of the mean is the product of the relative accuracies σx/µx and σy/µy
multiplied with the correlation coefficient. The bias is zero if the random variables are
uncorrelated, which is often the case when constructing a geometric entity from two others.
The proof of (2.154), p. 45 uses Exercise 2.33

E((x− µx)2(y − µy)2) = (1 + 2ρxy)σ2
xσ

2
y . (2.157)

Similarly, we have the first- and second-order approximation for the standard deviation,
Exercise 2.34

σ[1]
z = µ2

yσ
2
x + µ2

xσ
2
y + 2µxµyσxy σ[2]

z = σ[1]
z + (1 + ρ2xy)σ2

xσ
2
y . (2.158)

The bias of the variance is

bσ2
z

= σ2[2]
z − σ2[1]

z = σ2
xσ

2
y + σ2

xy = (1 + ρ2xy)σ2
xσ

2
y , (2.159)

and therefore the relative bias of the variance,

rσ2
z

=
bσ2
z

σ2
z

=
(1 + ρ2xy)σ2

xσ
2
y

µ2
yσ

2
x + µ2

xσ
2
y + 2µxµyσxy

, (2.160)

does not vanish for uncorrelated random variables.
If the variables are uncorrelated and have the same relative precision, i.e., σx/µx ≈

σy/µy ≈ σ/µ, we obtain the relative bias

rσ2
z

=
bσ2
z

σ2
z

≈ 1

2

(
σ

µ

)2

. (2.161)

Thus, the relative bias rσ2
z
of the variance is approximately half of the square of the relative

precision σ/µ.

Bias of Normalization. The normalization of an n-vector x to unit length, which we
will apply to homogeneous coordinates regularly (Sect. 5.1, p. 195), is given by

xs =
x

|x|
or xsi =

xi
|x|

. (2.162)
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We assume x has covariance matrix Σxx = σ2
xIn. This leads to the following expression

for the mean when taking terms up to the fourth-order into account:Exercise 2.35

E(xs) =
µx
|µx|

(
1− 1

2

σ2
x

|µx|2

)
. (2.163)

Here too, the relative bias, since it is identical to the bias, is approximately half of the
square of the relative accuracy.

The bias of the variance behaves in a similar manner as for the product of two entities:
the relative bias of the variance follows quadratically with the relative precision of the
given entities; cf. (2.161).

In nearly all cases which are practically relevant when geometrically analysing images,
the relative precision results from the observation process in images, which is below one
pixel (see the following example). Even for wide-angle cameras, the focal length is far
beyond 100 pixels. The directional uncertainty is therefore much better than one percent.
As a consequence, the relative bias when determining the mean value or the variance using
only the first-order approximation is significantly smaller than 0.01%.

2.7.7 On the Mean and the Variance of Ratios

Care has to be taken when deriving Euclidean coordinates, x, from homogeneous ones, x,
e.g., using the ratios

x =
u

w
y =

v

w
(2.164)

if the denominator w is uncertain. If w ∼ N (µw, σ
2
w), the mean and the variance of x and

y are not defined (cf. Hartley and Zisserman, 2000, App. 3). The reason is that with aExercise 2.36
possibly very small probability the denominator w will be zero; thus, the variable x will
be infinite, making the integral µx =

∫∞
−∞ xp(x)dx vanish.

However, the first-order approximation for deriving the mean µx = µu/µw and the
variance is still useful due to the practical procedure of preprocessing the observed data
x: they are usually checked for outliers, and only the inliers are used in further processing.
This preprocessing limits the range of possible random perturbations for the inlying ob-
servations, and would make it necessary to work with a distribution with limited support,
say ±4σw:

w | inlier ∼ pw|inlier(w|inlier) =

{
k · g(w | µw, σ2

w), if w ∈ [µw − 4σw, µw + 4σw]
0, else

(2.165)
with an adequate normalization constant k for the truncated Gaussian density g. This
distribution has approximately the same first and second moments as the corresponding
Gaussian but does not cause infinite mean or variance if |µw| is far enough from zero, i.e.,
|µw| > 4σw. Therefore, the classical determination of the mean and the variance by using
variance propagation is sufficiently accurate.

In order to be able to handle outliers as well, we model the causing gross error as a
shift bw of the mean,

w | outlier ∼ pw|inlier(w − bw) , (2.166)

which also allows variance propagation and is consistent with the model of classical hy-
pothesis testing (Sect. 3.1.1, p. 62), which is the basis for outlier detection, e.g., in a
RANSAC procedure (Sect. 4.7.7, p. 153).

We therefore recommend using variance propagation based only on the linearized rela-
tions. The example on p. 48 supports the recommendation.



Section 2.7 Functions of Random Variables 47

2.7.8 Unscented Transformation

Classical variance propagation of nonlinear functions only uses the first-order terms of the
Taylor series. The bias induced by omitting higher-order terms in many practical cases is
irrelevant.

We now discuss a method which uses terms up to the fourth-order and in many cases
yields results which are accurate up to the second-order. It is called unscented transfor-
mation (cf. Julier and Uhlmann, 1997).

It is based on the idea of representing the distribution of the given random N -vector
x by 2N + 1 well-selected points xi and of deriving the weighted mean vector and the
covariance matrix from the nonlinearly transformed points yn = f(xn).

The selected points depend on the square root

Sxx =
√

Σxx = [sn] , Σxx = SxxST
xx (2.167)

of the covariance matrix of the given random variable. Its columns are sn. For numerical
reasons, Sxx is best determined by Cholesky decomposition (Rhudy et al., 2011). Now we
have

Σxx = [s1, ..., sn, ...sN ]


sT
1

...
sT
n

...
sT
N

 =
N∑
n=1

sns
T
n . (2.168)

The 2N + 1 points xn and their weights wn then are:

x1 = µx , w1 =
κ

N + κ
(2.169)

xn = µx +
√
N + κ sn , wn =

1

2(N + κ)
n = 2, ..., N + 1

xn+N = µx −
√
N + κ sn , wn =

1

2(N + κ)
n = N + 2, ..., 2N + 1 .

They depend on a free parameter κ. The weights add to 1. For Gaussian random variables,
we best use

κ = 3−N (2.170)

in order to obtain minimum bias. As a result, some of the weights may be negative.
Determining the mean and covariance matrix of y is performed in three steps:

1. transforming the points

yn = f(xn) n = 1, ..., 2N + 1 , (2.171)

2. determining the mean vector

µy =
2N+1∑
n=1

wnyn , (2.172)

and
3. determining the covariance matrix

Σyy =
2N+1∑
n=1

wn(yn − µy)(yn − µy)T =

(
2N+1∑
n=1

wnyny
T
n

)
− µyµT

y . (2.173)

Example 2.7.6: Unscented transformation of a linear function. In the case of a linear function
y = Ax+ a, we obtain the same mean and covariance matrix as with the classical variance propagation.

Proof: The mean value µy is obviously identical to f(µx). For the covariance matrix, we use the
transformed points y1 − µy = 0 and yn − µy = ±

√
N + κ Asn. Then (2.173) yields
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Σyy =

N∑
n=1

1

2(N + κ)

(
(
√
N + κ)2AsnsT

nAT) + (
√
N + κ)2(−Asn)(−sT

nAT)
)

= AΣxxAT .

�
Example 2.7.7: Square of a standard Gaussian random variable. Here we have x ∼ N (0, 1)

and the function y = f(x) = x2. The mean and the variance can be derived from the general properties of
the χ2 distribution. For the sum z ∼ χ2

N of N squared independent random variables un ∼ N (0, 1), the
mean and variance are

E(z2) = N D(z2) = 2N . (2.174)

In our special case, n = 1, the mean is

E(x2) = 1 , D(x2) = 2 . (2.175)

The classical variance propagation leads to completely wrong results µ(1)y = 0 and σ(1)
y = 0, as y(0) =

y′(0) = 0.
With the unscented transformation, with N = 1 we use the 2N + 1 = 3 points and weights:

x1 = 0 , w1 =
2

3
, x2 =

√
3 , w2 =

1

6
, x3 = −

√
3 , w3 =

1

6
. (2.176)

Therefore we obtain

1. the transformed points y1 = 0, y2 = y3 = 3 ,
2. the weighted mean

µy =
2

3
· 0 +

1

6
· 3 +

1

6
· 3 = 1 , (2.177)

3. the weighted sum of the squares
∑3
n=1 wny

2
n = 3 and therefore the variance

σ2
y =

3∑
n=1

wny
2
n − µ2y = 2 . (2.178)

Comparison with (2.175) shows that the unscented transformation in this highly nonlinear case yields the
correct result. �
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In this section we discuss sequences of random variables and their statistical properties.
We will use such processes for modelling surface profiles in Chap. 16, p. 727. We address
two types of models: (1) using (auto-) covariance functions,3 which specify the process by
its second-order statistics, and (2) using autoregressive processes, which refer to the first-
order statistics. Both models allow the generation of sample processes and the estimation
of the underlying parameters. They differ in the efficiency for interpolation and the ease
of generalizing the concept from one to two dimensions.

2.8.1 Notion of a Stochastic Process

Following the introduction of random variables in Sect. 2.3, p. 24, a stochastic process
associates to a certain outcome s ∈ S of an experiment a function x(t, s) depending onstochastic process
the independent variable t (Papoulis and Pillai, 2002): The function

3 This is in contrast to crosscovariance functions between two different processes.
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x(t) : S → IF x(t) = x(t, s) (2.179)

is called a stochastic process. The range IF of functions is to be specified. This notion
naturally can be generalized to more functions of more than one variable if the scalar t
is replaced by a d-dimensional vector. We start with functions of one variable t as they
naturally occur as time series.

Depending on whether we fix t or s, we can interpret x(t, s) as

1. a stochastic process x(t, s), if t and s are variables ,
2. a sampled function x(t), if s is fixed,
3. a random variable x(s), if t is fixed and s is variable, and
4. a sampled value x at time t, if s and t are fixed.

A stochastic process is completely specified by the distribution function

P (x1, ..., xn; t1, ..., tn) = P (x(t1) ≤ x1, ..., x(tn) ≤ xn) (2.180)

for arbitrary n and t1, ..., tn. A stochastic process is called stationary in the strict sense if strict stationarity
the distribution function is invariant to a shift of the parameters tn by a common delay.

We distinguish between continuous and discrete processes, depending on whether t is
taken from a continuous domain D ⊆ IR or whether t is taken from a discrete domain,
e.g., D ⊆ ZZ. If a process is discrete, we use n as an independent variable and write

x(n) = x(n, s) , n ∈ ZZ (2.181)

where x depends on a discrete parameter n. Such processes can be interpreted as sequences
of random variables, e.g., x(n), n = 1, ..., N .

Furthermore, we only address Gaussian processes. They are fully characterized by their
first and second moments

µx(t) = E(x(t)) and σxx′(t, t
′) = Cov(x(t), x(t′)) (2.182)

µx(n) = E(x(n)) and σxx′(n, n
′) = Cov(x(n), x(n′)) . (2.183)

In the following paragraphs we refer to continuous and discrete processes using t as an
argument.

A stochastic process is called weakly stationary if the first and second moments do not weak stationarity
depend on time. Then we have µx(t) = µx(t′) or

µx = Ex(x(t)) =

∫
x p(x, t) dx for all t (2.184)

and σ(t + u, t′ + u) = σ(t, t′). With the difference between two variables, which is called
the lag, lag

d = t′ − t, (2.185)

we obtain
σxx′(d) = σxx′(t, t+ d) = σxx′(−d) , (2.186)

the last relation resulting from the symmetry of the covariance of two random variables.
The function σxx′(d) is the covariance function of the stationary process and often written covariance function
as

Cxx(d) = Cov(x(t), x(t+ d)) . (2.187)

A stationary stochastic process is therefore characterized by its mean µx and its covariance
function Cxx(d).

We first discuss continuous processes specified by their covariance function, and then a
special class of models which define the sequence of the random variables recursively.



50 2 Probability Theory and Random Variables

2.8.2 Continuous Gaussian Processes

A stationary continuous Gaussian process is characterized by the mean value µx and the
covariance function Cxx(d). We discuss the main properties of covariance functions.

Stationary One-Dimensional Gaussian Processes. The covariance function Cxx
needs to guarantee that, for any i, the vector x = [x(ti)], i = 1, ..., I , the covariance matrix

Σxx = D(x) =


Cov (x(t1), x(t1)) . . . Cov (x(t1), x(ti)) . . . Cov (x(t1), x(tI))

. . . . . . . . . . . . . . .
Cov (x(ti), x(t1)) . . . Cov (x(ti), x(ti)) . . . Cov (x(ti), x(tI))

. . . . . . . . . . . . . . .
Cov (x(tI), x(t1)) . . . Cov (x(tI), x(ti)) . . . Cov (x(tI), x(tI))



=


Cxx (0)) . . . Cxx (t1 − ti) . . . Cxx (t1 − tI)
. . . . . . . . . . . . . . .

Cxx (ti − t1) . . . Cxx (0) . . . Cxx (ti − tI)
. . . . . . . . . . . . . . .

Cxx (tI − t1) . . . Cxx (tI − ti) . . . Cxx (0)

 (2.188)

is positive semi-definite. This can be achieved if we choose a positive semi-definite function.
Following Bochner’s theorem (cf. Rasmussen and Williams, 2005, Sect. 4.2.1), a positivepositive semi-definite

and positive definite
functions

definite function is a function whose Fourier transform is positive, or which can be written
as

Cxx(d) =
∞∑
k=0

ck cos(2πkd) (2.189)

with

σ2
x =

∞∑
k=0

ck <∞ and ck > 0, for all k . (2.190)

If the coefficients fulfil ck ≥ 0, the function is called positive semi-definite. Observe that
the diagonal elements of the covariance matrix are identical to the variance of the process:
Cxx(0) = σ2

x. Similarly we have positive semi-definite correlation functions using (2.103),
p. 38,

Rxx(d) =
Cxx(d)

Cxx(0)
=
Cxx(d)

σ2
x

. (2.191)

Examples of correlation functions are

R1(d) =

{
1, if d = 0
0, else (2.192)

R2(d) = exp

(
− |d|
|d0|

)
(2.193)

R3(d) = exp

(
−1

2

(
d

d0

)2
)

(2.194)

R4(d) =
1

1 +

(
d

d0

)2 (2.195)

with some reference distance d0.
Linear combinations h(d) = af(d) + bg(d) with positive coefficients a and b and prod-

ucts h(d) = f(d)g(d) of two positive functions f(d) and g(d) again are positive definite
functions.
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Figure 2.9 shows three samples of a Gaussian process x(tk), k = 1, 2, 3. The standard
deviation of the processes is σx = 1. The covariance function is Cxx(d) = exp

(
− 1

2 (d/20)2
)
,

cf. R3 in (2.194). The method for generating such sequences is given in Sect. 2.9, p. 55.

Fig. 2.9 Three samples of size 300 of a Gaussian process with mean 0, standard deviation σx = 1, and
correlation function R3(d) with d0 = 20

Homogeneous and Isotropic Higher Dimensional Gaussian Processes. The con-
cept of stationary Gaussian processes can be generalized to functions depending on two or
more variables, collected in a vector, say u. They usually are applied to represent spatial
stochastic processes. We refer to a two-dimensional stochastic process x(u, s) in the fol-
lowing. It will be used to describe the random nature of surfaces, where x represents the
height and u = [u, v] the position.

For spatial processes the concept of invariance to translation is called homogeneity,
which is equivalent to the notion of stationarity for time processes. Moreover, the char- homogeneous

stochastic processacteristics of spatial processes may be also invariant to rotation. A higher dimensional
stochastic process is called isotropic if the covariance between two values x(u1) and
x(u2) does not depend on a rotation of the coordinate system: Cov(x(u1), x(u2)) =
Cov(Rx(u1),Rx(u2)) for an arbitrary rotation matrix R . isotropic

stochastic processNow, homogeneous and isotropic Gaussian processes can again be characterized by their
mean µx and their covariance function

Cxx(d(u,u′)) = Cov(x(u), x(u′)) (2.196)

where the distance d = d(u,u′) = |u′−u| is the Euclidean distance between the positions
u and u′. Again, an arbitrary covariance matrix Σxx must be positive semi-definite.

Remark: If the distance d = |u′−u| is replaced by a weighted distance, say d =
√

(u′ − u)TW (u′ − u),
with a constant positive definite matrix W , the stochastic process still is homogeneous, but anisotropic.
Generalizing the concept to nonhomogeneous anisotropic processes is out of the scope of this book. �

Representing stochastic processes using covariance functions can be seen as charac-
terizing the second moments of vectors of random variables, where the index refers to a
parameter, say t, of a continuous or discrete domain. This has the advantage of generalizing
the concept to more dimensions. Next we discuss a class of models for stochastic processes
which are based on a generative model for the process itself, which has the advantage of
leading to more efficient computational schemes.
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2.8.3 Autoregressive Processes

An autoregressive model AR(P ) of order P is characterized by P parameters ap, p =
1, ..., P , and a variance σ2

e . It uses a sequence en ∼ M (0, σe) of identically and indepen-
dently distributed (iid) random variables. This sequence controls the stochastic develop-
ment of the stochastic process xn; therefore, it is often called the driving process. Starting
from a set of P random variables xn, with E(xn) = 0, the elements xn, n > P , of the
random sequence linearly and deterministically depend on the previous P values, xn−p of
the sequence and the nth element, en, of the driving process, in the following manner:

xn =
P∑
p=1

ap xn−p + en , en ∼M
(
0, σ2

e

)
, n > P . (2.197)

Since E(en) = 0, we have
E(xn) = 0 . (2.198)

If this condition is not fulfilled, the process model may be modified by adding the mean
value c:

xn = c+

P∑
p=1

ap(xn−p − c) + en , en ∼M
(
0, σ2

e

)
(2.199)

The stochastic process is stationary if the generally complex zeros of the polynomial
1 −

∑P
p=1 apz

p are outside the unit circle (cf. Box and Jenkins, 1976). We illustrate the
situation for the autoregressive model AR(1).

AR(1) Processes. An AR(1) model, using a := a1 for simplicity, is given by:

xn = axn−1 + en , en ∼M
(
0, σ2

e

)
and |a| < 1 . (2.200)

We choose the initial value x0 ∼M (0, 0) and

e1 ∼M
(

0,
1

1− a2
σ2
e

)
(2.201)

intentionally in order to obtain a stationary process, as can be seen immediately. We
recursively obtain

x1 = e1 σ2
x1

=
1

1− a2
σ2
e (2.202)

x2 = ae1 + e2 σ2
x2

=

(
a2

1− a2
+ 1

)
σ2
e (2.203)

x3 = a2e1 + ae2 + e3 σ2
x3

=

(
a4

1− a2
+ a2 + 1

)
σ2
e (2.204)

... ... (2.205)

xn = an−1e1 + an−2e2 + ...+ en σ2
xn =

(
a2(n−1)

1− a2
+ a2(n−2) + ...+ 1

)
σ2
e . (2.206)

As can be checked easily, we therefore have

σ2
x =

σ2
e

1− a2
(2.207)

independent of n. Obviously, only values |a| < 1 lead to stationary sequences with limited
variance:
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1. For a = 0 we have a white noise process.
2. For a ∈ (0, 1) the process is randomly deviating from zero while keeping close to 0.
3. For a ∈ (−1, 0) the process is oscillating while staying close to 0.
4. For |a| > 1 and first increment e1 ∼M (0, σ2

e) the process xn is quickly diverging with
σ2
xn = (a2n − 1)/(a2 − 1)σ2

e .

Furthermore, from (2.202)ff. we obtain the covariance function, i.e., the covariance between
neighbouring random variables xn and xn+d,

Cxx(d) = Cov(xn, xn+d) = ad σ2
xn , (2.208)

which is an exponential function of the lag d. Thus the correlation (2.55), p. 31 between
neighbouring variables

ρd = ρxn,xn+d
= ad (2.209)

decays exponentially with the distance d for |a| < 1. The covariance matrix of a sequence
{xn} with N values, collected in the N -vector x, therefore is

D(x) =
σ2
e

1− a2


1 a a2 . . . aN−2 aN−1

a 1 a . . . aN−3 aN−2

a2 a 1 . . . aN−4 aN−3

. . . . . . . . . . . . . . . . . .
aN−2 aN−3 aN−4 . . . 1 a
aN−1 aN−2 aN−3 . . . a 1

 =
σ2
e

1− a2
[
a|i−j|

]
. (2.210)

This matrix has a special structure. Its off-diagonal elements only depend on the distance
|i− j| from the main diagonal. Such matrices are called Toeplitz matrices. Toeplitz matrix

Integrated White Noise Processes. For a = 1 we obtain a special process: It is a
summed white noise process, often called an integrated white noise process,

xn = xn−1 + en , D(en) = σ2
e (2.211)

with starting value x0 = 0. The name of this process results from the sequence

x1 = e1 (2.212)
x2 = e1 + e2 (2.213)
x3 = e1 + e2 + e3 (2.214)
. . . = . . . (2.215)

xn =

n∑
k=1

ek . (2.216)

Two samples for such a process with different standard deviations of the driving noise
process are given in Fig. 2.10, upper row. They are generated using a random number
generator for the sequence ek (cf. .Sect. 2.9). Rewriting the generating equation in the
form

en = xn − xn−1 (2.217)

reveals the driving white noise sequence {en} to represent the discrete approximation
of the first derivative of the discrete function xn. The process is slowly diverging with
σn =

√
nσe. It is not a stationary process.

If we apply a second summation we arrive at the second-order autoregressive process
AR(2) with coefficients a1 = 2 and a2 = −1, a doubly integrated white noise process,

xn = 2xn−1 − xn−2 + en , D(en) = σ2
e (2.218)
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Fig. 2.10 Examples for autoregressive processes. Sequences of 100 points. Integrated and doubly in-
tegrated white noise processes (upper and lower row) with standard deviation of driving noise process
σe = 1.0 and σe = 0.2 (left and right column)

with starting values values x0 = x−1 = 0. Two examples for such a process are given in
Fig. 2.10, lower row. Again solving for en yields

en = xn − 2xn−1 + xn−2 . (2.219)

Thus en measures the second derivative of the sequence xn at position n−1. Again, as the
mean value of the driving noise process en is zero, the variance σ2

e of the AR(2) process
measures the smoothness of the sequence.

2.8.4 Integrated AR Processes

We have discussed two versions of an integrating process, where a white noise process
drives it. This idea can be generalized to situations where the white noise process drives
the first- or higher-order derivatives of the process. When the Dth derivatives of a process
follow an AR(P ) model, the process is called an integrated autoregressive process, and
denoted by ARI(P,D).

As an example, we have an autoregressive model ARI(P ,2) for the sequence of second
derivatives,

xn−1 − 2xn + xn+1 =
P∑
p=1

apxn−p + en , (2.220)

which will turn out to be a good model for terrain profiles. Obviously, this model can be
written as

xn+1 = −(xn−1 − 2xn) +
P∑
p=1

apxn−p + en (2.221)

or as an AR(P + 1)-process. It can be written as

σ e

σeσ

eσ

AR(2),       = 0.2AR(2),       = 1.0

AR(1),       = 0.2AR(1),       = 1.0

e

n n

x

x
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x
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xn = −(xn−2 − 2xn−1) +
P∑
p=1

apxn−p−1 + ēn (2.222)

= 2xn−1 + a1xn−2 + a2xn−3 + ...+ aPxn−(P+1) + ēn (2.223)

=
P+1∑
q=1

bqxn−q + ēn (2.224)

with coefficients

b1 = 2 , b2 = a1 − 1 , bq = aq−1 for q = 3, ..., P + 1 , ēn = en−1 . (2.225)

2.9 Generating Random Numbers

Testing algorithms involving random variables can be based on simulated data. Here we
address the generation of random variables following a certain distribution, which then can
be used as input for an algorithm. Software systems provide functions to generate samples
of most of the distributions given in this chapter. Visualization of the distributions can be
based on scatterplots or histograms.

Take as an example a random variable y ∼ N (µy, σ
2
y). We want to visualize its distri-

bution for given µy and variance σ2
y. Provided we have a routine for generating a random

variable x ∼ N (0, 1), we can derive a sample y of a random variable y using (2.134), p. 42.
We choose the linear function

y = µy + σy x (2.226)

to derive a sample y from a sample x. Repeating the generation process usually provides
statistically independent samples, a property which has to be guaranteed by the random
number generator. Alternatively the provided routine allows us to generate vectors or
matrices of random numbers. As an example, the package Matlab provides the function
x=randn(N,M) to generate an N × M matrix of random variables xnm which follow a
standard normal distribution x ∼ N (0, 1).

The samples for the autoregressive processes in Fig. 2.10, p. 54 have been generated
using a vector e of normally distributed random variables en.

A large sample of N values xn can be taken to visualize the distribution via the his-
togram. The histogram takes a set of K bins [xk, xk+1), which are half open intervals,
and counts the number Nk of samples in the bins. The bins usually are equally spaced. A
useful number K for the bins is K = b

√
Nc, as this is a balance between too narrow and

too few bins. As the probability Pk that a sample value lies in a bin is Pk =
∫ xk+1

x=xk
px(x)dx,

and Nk/N is an estimate for this probability, the form of the histogram can be visually
compared to the theoretical density px(x) by overlaying the histogram by the function
N Pk using the approximation of P (x ∈ [x, x+ dx]) = px(x)dx (cf. (2.16), p. 26, and Fig.
2.11, top right), namely

Pk ≈
1

2
(px(xk) + px(xk+1)) (xk+1 − xk) . (2.227)

If we want to generate a sample of a vector of normally distributed values y ∼
N (µy,Σyy), we can proceed similarly. We start from a vector x = [xn], n = 1, ..., N ,
where the independent samples xn ∼ N (0, 1) follow a standard normal distribution, thus
x ∼ N (0, IN ). We need the square root Syy of the covariance matrix Σyy (cf. (2.167),
p. 47). Then the linear function

y = µy + Syy x (2.228)
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Fig. 2.11 Top row left: One-dimensional scatter plot of a sample of N = 225 normally distributed
random variables y ∼ N (2, 0.25). Top row right: Histogram of the same sample with 15 bins, overlayed
with its probability density. Bottom: 2D scatter plot of N = 500 samples of normally distributed random
vectors overlayed with the standard ellipse (black) and threefold standard ellipse (green) (Fig. (2.6), p. 32).
Approximately 99% of the samples lie in the threefold standard ellipse (Table 2.2, p. 32): d = 2, S = 0.99

of the sample x of the random vector x leads to a sample vector y with distribution
y ∼ N (µy,Σyy).

The Gaussian processes in Fig. 2.9, p. 51 have been realized by (1) specifying a regular
sequence of N = 300 arguments t = 1, ..., N , (2) generating the N ×N covariance matrix
Σxx using the standard deviation σx = 1 and the correlation function R3(d), and (3)
taking samples from a normally distributed vector x ∼ N (0,Σxx).

Samples of other distributions can be generated using similar routines.Exercise 2.37

2.10 Exercises

The number in brackets at the beginning of each exercise indicate its difficulty, cf. Sect.
1.3.2.4, p. 16

Basics

1. (1) How could you randomly choose a month when throwing a die twice? Is the ex-
pected probability of all months the same?

2. (1) Give a probability the sun will shine tomorrow? What are the problems when
giving such a number?

3. (2) Take a die and throw it repeatedly. Determine the probability of the event 1 after
every sixth throw following von Mises’ definition of probability. Describe how the
determined probability evolves over time. When do you expect to be able to prove
that the determined probability converges towards 1/6?

4. (2) You throw a die four times. What is the probability of throwing the sequence
(1, 2, 3, 4)? What is the probability of throwing three even numbers? What is the
probability of throwing 6 at least twice, if the first two throws are (3, 6). What is the
probability of throwing the sum 10?

= 225N
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40

2 40

y
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5. (1) Plot the probability and the density function for throwing the numbers 1 to 6 with
a die. What would change if the die did not show numbers but six different colours?

6. (2) Plot the density function of n times throwing a 6 when throwing a die N = 3 times.
Give the density function p(n) explicitly. What is the probability in this experiment of
throwing a 6 at least once? Show this probability in a plot of the cumulative probability
function.

7. (2) Assume the display of a range sensor can show numbers between 0.000 and 999.999.
The sensor may fail, yielding an outlier. Assume the sensor shows an arbitrary number
s if it fails. Describe the random variable s for the outlier. Is it a discrete or continuous
random variable? How large is the difference between a discrete and a continuous
model for the outlier? What is the probability that s ∈ [100, 110] in the discrete and
the continuous model? What changes if the display shows numbers only up to one
digit after the dot, i.e., in the range 0.0 to 999.0?

8. (2) Plot the density function of random variables x and y following the exponential and
the Laplace distribution, respectively. Give names to the axes. Give the probability
that x ∈ [−1, 2] and y ∈ [−1, 2].

Computer Experiments

9. (3) Use a program for generating M samples of a normal distribution N (0, 1). Deter-
mine the histogram

h(xi|b) = #(x ∈ [xi − b/2, xi + b/2] , xi = ib , b ∈ IR , i ∈ ZZ (2.229)

from M samples. Prespecify the bin size b. Determine the probability p(xi|b) =
h(xi|b)/M that a sample falls in a certain bin centred at xi. Overlay the plot with
the density function of the normalized normal distribution φ(x). How do you need to
scale the axes such that the two functions φ(x) and p(xi|b) are comparable. Vary the
bin size b and the number of samples M . What would be a good bin size if M is given?

10. (2) Repeat the previous exercise for M samples ym of a χ-square distribution with
n degrees of freedom. For this generate y

m
as the sum of the squares of n samples

from a standard normal distribution. Also vary the degrees of freedom n. Describe the
distribution for n = 1, 2, 3 and for large n.

11. (2) Prove that the bounding box for the standard ellipse has size 2σx × 2σy. Hint:
Show the y-coordinate of the highest and lowest point of the ellipse is ±σy based on
the partial derivative of (x− µ)TΣ−1(x− µ) = 1 w.r.t. x, see (2.56), p. 31.

12. (3) Generate a covariance matrix V following a Wishart distribution V ∼ W(n, I 2).
Plot the standard ellipse of V . Repeat the experiment and observe the variation of V .
Vary n = 5, 10, 50 and discuss the result.

13. (2) This and the following exercise show that it is sufficient to determine the noncentral
moments of basic variables, since the central moments and moments of transformed
variables linearly depending on the original variables can be expressed as functions
of the noncentral moments. As an example we have the relation between the second
central moment µ2 and the moments m1 and m2, given by µ2 = m2 −m2

1. This can
be generalized to higher-order moments.
Express the third central moments of a distribution µij , i+ k = 3 as a function of the
third moments mij , i+ j = 3.

14. (3) Let the moments of two variables x and y be denoted by mx := m10, my := m01,
mxx := m20, etc. Derive the central second moments muu, muv, mvv of the rotated
variables u and v, [

u
v

]
=

[
cosφ − sinφ
sinφ cosφ

] [
x
y

]
, (2.230)

as a function of φ and the noncentral moments of x and y.
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15. (1) Given are two correlated random variables x and y with the same standard de-
viation σ. Give the standard deviations and the correlation of their sum and their
difference. How does the result specialize, if (a) the two random variables are uncor-
related, (b) are correlated with 100%, and (c) are correlated with minus 100%?

16. (1) Show that the correlation coefficient ρxy between two stochastic variables x and y
lies in the interval [−1,+1], as the covariance matrix needs to be positive semi-definite.
Show that the covariance matrix is singular if and only if ρ = ±1.

17. (1) Prove E(ax+ b) = aE(x) + b, see (2.109), p. 38.
18. (2) Given are three stochastically independent random variables, x ∼ M (3, 4), y ∼

M (−2, 1), and z ∼M (1, 9).

a. (1) Derive the mean and the standard deviation of the two functions

u = 1 + 2x− y , v = −3 + 2y + 3z . (2.231)

b. (1) What is the correlation coefficient ρuv?
c. (1) Let a further random variable be w = u+ z. What is the variance of w and its

correlation ρxw with x?
d. (1) What is the covariance matrix Cov(u, [v, w]T)?

19. (2) We want to approximate the normal distribution N (µ, σ2) by a uniform distribu-
tion such that the mean and the variance is identical to the normal distribution. Give
the parameters a and b. Especially relate the range r = b − a of the uniform distri-
bution to the standard deviation σ of the normal distribution. Compare the result to
σr =

√
1/12, see (2.120), p. 39.

20. (1) Given a sequence g(i) ∼M (µ(i), σ2), i = 1, 2, 3, ... of random variables representing
a noisy sampled signal g(t), its discrete derivative can be determined from gt(i) =
(g(i+ 1)− g(i− 1))/2. Determine the standard deviation of g

t
(i).

21. (3) We say a random variable z ∼ kχ2
n follows a kχ2

n distribution if z/k ∼ χ2
n. Given

an array g
ij
∼M (µij , σ

2) of random variables, representing a noisy sampled function
g(x, y), the partial derivatives can be derived from

gx(i, j) = (g(i+ 1, j)− g(i− 1, j))/2 , gy(i, j) = (g(i, j + 1)− g(i, j− 1))/2 . (2.232)

Give the standard deviations of the two partial derivatives and their covariance. What
is the distribution of the squared magnitude m2(i, j) := |∇g(i, j)|2 = g2

x
(i, j) + g2

y
(i, j)

of the gradient ∇g = [gx, gy]T? Hint: Which distribution would m2 follow if the two
random variables g

x
and g

y
were standard normally distributed?

22. (1) Let y ∼ χ2
2 be χ-square distributed with two degrees of freedom. Determine the

mean µy. Relate the α-percentile χ2,α to the mean.
23. (2) Given a random variable x ∼ N (0, 1), show that x2 ∼ χ2

1.
24. (2) Given the basis b of two cameras with principal distance c and the x-coordinates

x′ and x′′ of the two image points of a scene point, its distance Z from the camera is
given by

Z =
bc

x′′ − x′
. (2.233)

Assume the variables, namely b, c, x′, and x′′, are uncertain, with individual standard
deviations σb, σc, σx′ , and σx′′ , respectively, and mutually independent. Derive the
standard deviation σZ of Z. Derive the relative precision σZ/µZ of Z as a function of
the relative precision of the three variables b, c, and p = x′′ − x′.

25. (2) Given are two points p = [2, 1]T m and q = [10, 9]T m. Their distances to an
unknown point x = [x, y] are s = 5 m and t = 13 m and have standard deviation
σs = σr = 0.1 m.
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a. (1) Prove that the two intersection points of the circles around p and q are x1 =
[14, 6]T m and x2 = [7, 13]T m.

b. (2) Derive the covariance matrix of the intersection point x1.

26. (3) Given is the function y = f(x) = x4 − x3 and the random variable x ∼ N (0, 1).
Derive the mean and the variance of y = f(x)

a. using variance propagation,
b. using the unscented transformation,
c. using 10, 000 samples of x as reference,

and compare.

Proofs

27. (1) Steiner’s theorem ((2.94), p. 37) relates the noncentral second and the central
second moments of a variable via the mean. Generalize the theorem to multivariate
variables.

28. (1) Prove the expression (2.70), p. 34 for the χ distribution. Hint: Apply (2.128), p. 41
to (2.66), p. 33.

29. (1) Refer to the Wishart distribution ((2.71), p. 34) and prove that for Σ = 1 and
V = y we obtain the χ2 distribution ((2.66), p. 33).

30. (1) Prove the expression (2.150), p. 44 for the second-order approximation for the
variance.

31. (1) Prove the expression (2.151), p. 44 for the second-order approximation of the mean
of a function depending on a vector.

32. (1) Prove the first- and second-order approximation (2.154), p. 45 for the mean of a
product.

33. (2) Prove the expression (2.157), p. 45 for the expectation of (x−µx)2(y−µy)2 of two
correlated Gaussian variables. Hint: Assume µx = µy = 0.

34. (1) Prove the expression (2.158), p. 45 for the second-order approximation of the
expectation of a random vector, which is normalized to length 1.

35. (1) Prove (2.163), p. 46. Hint: use (2.151), p. 44 for each component xi of x.
36. (1) Let the random variable x ∼ N (m,σ2

x) with m > 0 be given. Let the derived
random variable be y = 1/x.
Using (2.149), p. 44 and (2.117), p. 39, derive a general expression for the odd moments
of E(y). Show that the series for odd n begins with

E

(
1

x

)
=

1

µx

(
1 +

σ2
x

µ2
x

+
3σ4

x

µ4
x

+
15σ6

x

µ6
x

+ ...

)
(2.234)

Show that the series diverges.
37. (1) Given the cumulative distribution Px(x) of a random variable x, show that the

random variable P−1x (y) has density px(x) if y is uniformly distributed in the interval
[0, 1].
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