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This chapter collects the basic terms from probability theory and statistics. It moti-
vates the axiomatic approach for the concept of probability, introduces the concept of a
random variable, describes the key properties of the main distributions of random vari-
ables occurring when modelling observational uncertainties and testing hypotheses, and
provides an introduction to stochastic processes. We give the key methods for determining
the uncertainty of derived entities, especially for explicit and implicit functions of single
and multiple variables. The reader who has had a basic course on statistics may take a
quick look at the notation used and the lines of thought employed. The concepts can be
found in the excellent textbooks by Papoulis (1965) and Papoulis and Pillai (2002) and
online at http://www.math.uah.edu/stat/index.html.

2.1 Notions of Probability

Probability theory is the most powerful tool for working with uncertainty. The notion of
probability has changed over the last two centuries.

e The classical definition of probability P according to Laplace is the ratio of the number
ny of favourable to the number n of possible cases of an event &,

pE) ="t (2.1)

When modelling the outcome of throwing a die, e.g., this definition leads to the usually
assumed probability 1/6 for each possible event.

But when modelling the outcome of a modified die, e.g., one that yields more sixes,
we encounter difficulties with this definition. We would need to define conditions for
the different events under which they occur with the same probability, thus requiring
the notion of probability.

In the case of alternatives which are not countable, e.g., when the event is to be
represented by a real number, we have difficulties in defining equally probable events.
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This is impressively demonstrated by Bertrand’s paradox (Fig. 2.1), which answers the
question: What is the probability of an arbitrarily chosen secant in a circle longer than
the side of an inscribing equilateral triangle? We have three alternatives for specifying
the experiment:

1. Choose an arbitrary point in the circle. If it lies within the concentric circle with
half the radius, then the secant having this point as centre point is longer than
the sides of the inscribing triangle. The probability is then 1/4.

2. Choose an arbitrary point on the circle. The second point of the secant lies on one
of the three segments inducing sectors of 60°. If the second point lies in the middle
sector the secant through these points is longer than the side of the inscribing
triangle. The probability is then 1/3.

3. Choose an arbitrary direction for the secant. If its centre point lies in one of the
two centre quarters of the diameter perpendicular to this direction the secant is
longer than the side of the inscribing triangle. The probability is then 1/2.

Fig. 2.1 Bertrand’s paradox: Three alternatives for choosing an arbitrary secant in a circle. Left:
choosing an arbitrary point in the small circle with half radius, and interpreting it as the middle of the
secant; Middle: by first choosing a point on the boundary, then the second point must lie in a certain
range of the boundary, namely in between the secants belonging to an equilateral triangle; Right: choosing
an arbitrary point on a diameter, in the middle range of the secant

Obviously the definition of the notion arbitrarily chosen, i.e., an equal probability, is
not simple. However, this definition is often used, as it follows the classical logic under
certain conditions.
The definition of probability as relative frequency following von Mises. This definition
follows the empirical finding that the empirical relative frequency seems to converge
to a limiting value

P(E) = lim “F. (2.2)

n—o00 M

This plausible definition fails in practice, as the number of experiments will not be
sufficiently large and the conditions for an experiment cannot be held stable over a
long enough time.

Probability as the degree of subjective certainty, e.g., in the sentence: “There is a large
probability this statement, A, is correct.”

Due to its subjectivity, this definition is not suitable as a basis for a theory. However,
sometimes we use subjective probabilities, which then requires a rigorous definition of
the concept.

All three definitions are plausible and form the basis for the following axiomatic definition.

2.2 Axiomatic Definition of Probability

The following axiomatic definition of probability follows Kolmogorov and solves the

issues of the previous definitions (Fig. 2.2).
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Kolmogorov’s Axiomatic Definition of Probability. Basis is a space S of elemen-
tary events A; € S. Events A are subsets of S. The certain event is S, the impossible event
is (). Each combination of events A and B again is an event; thus, the alternative event
AU B, the joint event AN B and the negated event A = S — A are events.

Each event can be characterized by a corresponding number, P(A), its probability,
which fulfils the following three axioms:

1. For any event, we have
P(A)>0. (2.3)

2. The certain event has probability 1,
P(S)=1. (2.4)
3. For two mutually exclusive events, AN B = () (Fig. 2.2, a),

P(AUB) = P(A) + P(B). (2.5)

Conditional Probability. Moreover, we have the conditional probability of an event
A given the event B has occurred. The probability

P(A, B)

P(A|B) = g

(2.6)

is the ratio of the joint probability P(A,B) = P(A N B) of events A and B occurring
simultaneously and the probability P(B) of only B occurring (Fig. 2.2, b).

Total Probability. The total probability of an event A in the presence of a second event
B= UiI:1 B, therefore is (Fig. 2.2, c)

I
P(A) =Y P(A| B,)P(B,). (2.7)
i=1

Independent Events. Two events A and B are called independent (Fig. 2.2, d) if

P(A,B) = P(A)P(B). (2.8)

(a)
Fig. 2.2 Independence, conditional and total probability. (a) Disjoint events A and B, (b) conditional

probability P(A | B) = P(A, B)/P(B), (c) total probability P(A), (d) independent events A and B

These axioms coincide with the classical definition of probability if the definition of
elementary events is unique and can be considered as equally probable.

aziomatic definition
of probability
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Example 2.2.1: Throwing a die. (1) When throwing a die, we have the set S of elementary events
S = {s1,52,53,54,55,56} ,

and for each s;

(2) Throwing two dice %, j, we have

1
S ={(si,s5)} and P((ss,s5)) = %
(3) The conditional probability P(s2 | even) of throwing a 2, i.e., event sz, under the condition that we
know that an even number was thrown, and using (2.6) is
P P 1/6 1
Plss | {s2,51,50}) = Dozbomsnse) _ Pl ___ 18 _1
P({s2,54,56}) P({s2,s4,56}) 1/2 3
(4) The total probability for A = even := {s2, 54, s6} (i.e., throwing an even number) if having thrown a
B = small or By = large number (with B = {small, large} := {{s1, 52,53}, {s4, s5,86}}), is

11 21 1
P(even) = P(even | {s1,s2,s3})P({s1, s2,s3}) + P(even | {s4, s5, s6}) P ({54, 55,56}) = 33 + 35~ 3"

(5) The events A = s1 to first throw 1 and B = {s2, s4, s} to secondly throw even are independent;

P(1Leven) = P({(s1,52), (51, 50), (51, 50)}) = =
= P(1)P(even) = é% = 1—12 .
o
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For experiments with a nonnumerical outcome, e.g., a colour, it is useful to map the
experimental outcome to a real value and describe the probabilistic properties of the
experiment using a real-valued random variable.

Since such a mapping in a natural way can be defined for experiments with discrete or
continuous outcome, random variables in a unifying manner play a central role in stochastic
modelling.

2.3.1 Characterizing Probability Distributions

With each outcome s € S of an experiment, we associate a real number z(s) € IR. The
function z
z:S—>MR z=uz(s) (2.9)

is called a random variable. In order to specify the randomness of the experiment, thus,
instead of characterizing the possible outcomes s, we characterize the function z (cf. Pa-
poulis and Pillai, 2002). Observe: we distinguish between a sample value z(s) (without
underscore) depending on the outcome s of a specific experiment and the random vari-
able z(s) (with underscore) which describes the experiment as a whole, for all s € S. We
regularly denote the random variable by z, omitting the dependency of s.
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Specifically, the experiment is characterized by what is called the distribution or prob-
ability function,
P.(x) =Pz < z). (2.10)

The argument z < z is the set of all possible outcomes for which z(s) < z holds. This
definition assumes that there exists an event for all x € IR.

The indez x in the probability function P, (z) refers to the associated random variable,
whereas the argument in P, (x) is the variable of the function. For simplicity, we sometimes
omit the index.

We will regularly characterize the statistical properties of an observation process by
one or more random variables, catching that aspect of the concrete observation procedure
which is relevant for the analysis task.

We can now derive the probability of a random variable to be in an interval,

P(z € [a,b]) = Py(b) — Pu(a) . (2.11)

Obviously, a probability function must fulfil

e P.(—o0) =0,
e P,(z) is not decreasing, and
e P (o0)=1.

Example 2.3.2: Throwing a coin. When throwing a coin, we assume that
z(heads) =0 z(tails) = 1. (2.12)

In the case of equal probability of each outcome, we obtain the probability function

0 ifz <0
P(z)=4¢1/2 ifo<x<1. (2.13)
1 else

Observe, the index c in P, is part of the name P. of the probability function, here referring to throwing a
coin. For the range = € (—o0, 0], the corresponding event is the empty set 0: it is unlikely that throwing
a coin leads to neither heads nor tails. For the range = € (0, 1], the corresponding event is heads as
P(z(heads) < x) = 1/2. For the range = € (1,00), the corresponding event is the certain event S. The
probability of the event tails is given by P(tails) = P(—heads) = 1 — P(heads) = 1/2, as the events heads

and tails are mutually exclusive. Thus the event tails cannot be represented by some interval. <

Using the unit-step function s(z) (Fig. 2.3),

0 ifz<0
s(z) = ne=D (2.14)
1 else

the probability function P, can be written as

Pu() = Ss(2) + 2s(@ —1). (2.15)
2 2
AR )
0.5— 0.5
0 1 j 0 1 X

Fig. 2.3 Probability function P.(x) and density function p.(x) for throwing a coin

observation process
characterized by
random variables

unit step function



probability density
function
or density function

26 2 Probability Theory and Random Variables

2.3.2 Probability Density Function

For experiments with continuous outcomes, e.g., a length measurement, we usually choose’

xz(x) = x. We characterize the experiment by the first derivative of the probability function,

which is called the probability density function or just density function

dP,(z)

pe(x) = a4 (2.16)

Since integrating p.(z) yields P, (z) (cf. (2.10), p. 25)
Pu(z) = / pa(t) dt (2.17)
t=—o0

The function P, (z) is also is called the cumulative distribution function or just cumulative
distribution. It is the same function as in (2.10), p. 25.

Example 2.3.3: Rounding errors. Rounding errors e lie in the interval [—%, %] The probability
of a rounding error to lie in the subinterval [a, b] C [—%, %} is proportional to the ratio of the length b — a

to the length 1 of the complete interval. Therefore the probability density is

11 1 ifze [—1 1]
pe(z) =1 (:c| -5 5) = 2’2 (2.18)

0 otherwise.

This is the density of the uniform distribution in the interval [—%, %], see Fig. 2.4. <o
P, (x) 1 Pe(x)
-172 12 -1/2 172 X

Fig. 2.4 Probability distribution Pe(x) and probability density function pe(z) of the rounding error e

2.3.83 Continuous and Discrete Random Variables

Random variables are called continuous if their probability distribution is continuous or,
equivalently, if their density function is bounded. A random variable is called discrete if the
probability function contains only steps or, equivalently, if the probability density function
is either zero or infinite at a countable number of values x.

Example 2.3.4: Discrete probability density function. The probability density function of the
random variable z of tossing a coin is

1 1
pz(z) = 55(95) + 55(95 -1,
where §(x) is Dirac’s delta function. <

Dirac’s delta function is the first derivative of the unit step function

§(z) = (2.19)

and is defined by a limiting process, e.g., by:

I The random variable depends on the unit in which z is measured, e.g., m or cm.
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0(x) = lim r(z| — d,+d) (2.20)
d—0
with the rectangle function
— if b
r(zla,b) =< b—a ifz €l b . (2.21)
0 else

The Dirac function has the following properties: The area under the delta function is 1:

/too 6(t)dt = lim tw 6(t)dt = lim (s(w) = s(~)) = 1. (2.22)

=—00 =—zx

Therefore,

/too fla—t)st)de = /:O F()6(z — t)dt (2.23)

=—o00 =—o00

_ . x+d
5(x)=0 for a#0 lim / FOr(|t — d,t + d)dt (2.24)
d—0 t=r—d

x+d
Jim / L re)dt = f(), (2.25)

d—0 t=x—d 2d

g€lt—d,t-+d)

the second last step using the mean value theorem for integration. The delta function can
thus be used to select a certain value of a function f(z).

In graphs, the delta function is visualized as an arrow with the height indicating the
local area under the function. For discrete random variables, therefore, we draw the heights
of these arrows, i.e., the probabilities that one of the countable number of events occurs.
Instead of the density function p,(z) =1/20(x) + 1/25(x — 1) for tossing a coin, e.g., we
give the two probabilities P(x =0) = P(x =1) =1/2.

The distribution of a random variable is often given a name, e.g., H, and we write
x ~ H or, if the distribution depends on parameters p,

x ~ H(p). (2.26)

2.3.4 Vectors and Matrices of Random Variables

We often have experiments with multiple outcomes. The corresponding I random variables
z,; are usually collected in a vector called a random wvector,

T =[x (2.27)
The experiment is then characterized by the multi-dimensional probability function
Poooowiar (@ <1,z < xyy o, zp) = P21, 00, T4y o 1) (2.28)

" P.(x <x)= P(x), (2.29)

or by the multi-dimensional probability density function

B ol P(x)

We will regularly use random matrices, e.g., when dealing with uncertain transforma-
tions. Let the N x M matrix X = [X,,] contain NM random variables. Then it is of

random matrices
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advantage to vectorize the matrix,

z = veeX = [X 1, Xop, o Xvps Xyoy oo Xwag] (2.31)
NMx1

and represent the uncertainty by the joint probability of the random N M-vector .

2.3.5 Statistical Independence

If two random variables x and y are statistically independent, their joint probability func-
tion and their joint probability density function are separable functions, i.e.,

sz(xhy) = Pz(x)Py(y) or pmy(xvy) = pz(‘r)py(y) : (232)

2.4 Distributions

2.4.1 Binomial Distribution .......... ... ... ... . ... .. . . 28
2.4.2 Uniform Distribution ........ ... ... .. . 28
2.4.3 Exponential and Laplace Distribution ....................... .. 29
2.4.4 Normal Distribution.......... ... ... . . . . . 29
2.4.5 Chi-Square Distribution ........... ... ... . ... .. . .. 33
2.4.6  Wishart Distribution ........... ... ... .. . . ... ... . ... 34
2.4.7 Fisher Distribution.......... ... ... .. . . . . . . . 34
2.4.8 Student’s t-Distribution. ........... ... . ... . 35

We now list a number of distributions relevant for statistical reasoning.

2.4.1 Binomial Distribution

A discrete random variable n follows a binomial distribution,

n ~ Bin(N, p), (2.33)
if its discrete density function is
N n N—n
P(n) = )P (1-p) n=0,1,... N 0<p<1 (2.34)

where (V) are binomial coefficients. It models the probability of n successes if an experi-
ment for which the probability of success p is repeated N times.

For p = %7 we obtain the probability P(n) of observing n heads when tossing a coin N
times (Table 2.1).

2.4.2 Uniform Distribution

A continuous random variable follows the general uniform distribution,

z ~U(a,b) a,beR b>a, (2.35)
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Table 2.1 Probability P(n) of obtaining n heads when tossing a coin N times

n=012 3 4 5 6
4 1 1
N=1 1 1
1 1 1
2 i 2 1
103 3 1
3 5§ 5 8 B
4 | L 13 1 1
16 4 8 4 16
5 | L 5 5 5 5 1
32 32 16 16 32 32
6 | L 3155 15 3 1
64 32 64 16 64 32 64

if it has the density r(z|a,b) ((2.21), p. 27). For example, rounding errors e have uniform
distribution e ~ U(—1,1).
Two random variables z and y jointly follow a uniform distribution,

(z,y) ~U(a,b;c,d), (2.36)

if they have the density function
ray(2,y | a,bic,d) =r(z | a,b) r(y | c,d), (2.37)

where x € [a,b] and y € [c,d]. Due to (2.37) the random variables x and y are independent.

2.4.3 Exponential and Laplace Distribution

A random variable z follows an exponential distribution with real parameter p > 0 if its

density function is given by
x
] —=
pe(x) = —e H | x>0, u>0. (2.38)
W

This is also called the Rayleigh distribution.
A random variable z is Laplacian distributed with real parameter o > 0,

z ~ Lapl(o), (2.39)
if its density function is given by

X
1 —\/iH
e al,

V2o

pe(x) = c>0. (2.40)

2.4.4 Normal Distribution

2.4.4.1 Univariate Normal distribution

A random variable z is normally or Gaussian distributed with real parameters p and o > 0,

x ~ N(p, %), (2.41)

if its density function is given by

Rayleigh distribution
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pe(@) = glw | ,0%) = — e_; (x;u>

V2m o ’

The density function is symmetric with respect to p, there having the value 1/(v/27 o) ~
0.4/0; the inflection points are at 4 — o and u + o, there having the value 1/(v/2me o) ~
0.24/0, hence 3/5th of the value at the mean. The tangents at the inflection points intersect
the z-axis at p &+ 20.

Large deviations from the mean value p are unlikely:

o>0. (2.42)

r=p+o
Plzelp—opu+o])= / g(x | p,o?) do ~ 0.6827, (2.43)
T=p—0o
r=p+20
P(z € [pn—20,u+20]) = / g(x | p,0?) do ~ 0.9545, (2.44)
T=p—20
r=p+30
P(z € [ —30,u+30]) = / g(x | p,o?) do ~ 0.9973. (2.45)
r=p—30

Thus the probability of a value lying outside the interval [u— 30, p+30] is very low, 0.3 %.
The standard normal distribution or normalized Gaussian distribution is given by p =0
and o =1 (Fig. 2.5)

o) = gl | 0,1) = ——e—""/2. (2.46)

Its cumulative distribution is

B(z) = /t i_ o(t) dt . (2.47)

) | ©
1121 ~ 0.3989 1.00-
0751
050/ |
0254 !
f \% v‘| 1 x’x
432101 2 3 4 432101 2 3 4

@ ! (0.75)=0.6744

Fig. 2.5 Left: normal or Gaussian density function ¢(z). Inflection points at z = +1 and x = —1. The
ratio of the function values on the symmetry axis and at the inflection point is y/e = 1.6487... & 5/3; the
tangent in the inflection point intersects the z-axis at x = 2, such that the z-coordinate of the inflection
point is in the middle of this intersection point and the line of symmetry. Right: cumulative distribution
function &(x). 75th percentile at x = #~1(0.75) = 0.6745

The normal distribution is the most important distribution. This follows from the central
limit theorem: The sum of a large number of independent, identically distributed random
variables with bounded variance is approximately normally distributed (cf. Papoulis, 1965,
Sect. 8-6).
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2.4.4.2 Multi-dimensional Normal Distribution

If two independent random variables are normally distributed according to

their joint density function is

Pay(,9) = gu (2 | p,03) 9y(y | 11y, 03) (2.49)
2 2
L{fx—pe Y — My
)
=_——¢e * Y . (2.50)
2moL0y
With the vectors
T fha
W e
and the 2 x 2 matrix,
o2 0
Y= [ 0 o2 (2.52)
this can be written as
| W )
Goy(z [ 1, ) = ——=e 2 ‘ (2.53)
21/ ||
If the 2 x 2 matrix X is a general symmetric positive definite matrix
o7 Ouy
y = A (2.54)
Ozy Oy
the two random variables are dependent. The correlation coefficient,
Ogx

00y

measures the degree of linear dependency. If p,, = 0, the two random variables are uncor-
related, and if they are normally distributed, they are independent, due to (2.32), p. 28.
The 2D normal distribution is an elliptic bell-shaped function and can be visualized by
one of its contour lines, cf. Fig. 2.6. The standard ellipse, sometimes also called standard
error ellipse, is defined by

(x—p)'T N x—p)=1. (2.56)

The standard ellipse allows the visualization of important properties of the uncertain
point:

e The standard ellipse is centred at p,,.
e The bounding box has size 20, x 20y.
e The semi-axes are the square roots of the eigenvalues \; of the covariance matrix,

namely omax = VA1 and omin = VA2, which are the square roots of the eigenvalues of
X,

1 1
Ohemin = 502 +02) £ 5/ (03 = 02)? + 402, (2.57)

e If the two coordinates are correlated, the major axis is not parallel to the coordinate
system. The angle « is given by

uncorrelated,
independent
random variables

standard ellipse
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Fig. 2.6 General 2D normal or Gaussian distribution, centred at the origin. Left: density function.
Right: standard ellipse. Actual values: pz = py =0, 02 =4.9, 0y =3.2, p=0.7

1
o = Satan? (204,02 —0y) € (—7/2,+7/2] (2.58)

using a two-argument version of the arctan function.
The sign of the angle follows the sign of the correlation coeflicient p,, or the covariance
Ogy-

e The standard deviation o, of a distance s between the point p, and a fixed point
in an arbitrary direction, indicated here by an arrow, is given by the distance of p,
from the tangent to the standard ellipse perpendicular to that direction. This shows
that the minor and the major axes of the standard ellipse give the minimum and the
maximum of the directional uncertainty of the point.

In higher dimensions, (2.56) represents an ellipsoid or a hyper-ellipsoid E. The probability
S = P(z € ‘E) that a random point lies within the standard ellipsoid depends on the
dimension as shown in the first line of Table 2.2, and rapidly diminishes with the dimension.

Instead of showing the standard ellipse or standard ellipsoid, we therefore can show the
confidence ellipse or confidence ellipsoid. The confidence ellipsoid is the k-fold standard
ellipsoid, such that the probability P(z € E(k)) that a sample lies within the ellipsoid is
a certain prespecified value S

Ek): (x—p)' TV x—-—p) =k, PlacEk)=S. (2.59)

The standard ellipse is identical to the confidence ellipse for k = 1: £ = E(1). For the
dimension d = 1 and a probability P(z € ‘E(k)) =S = 0.9973, we would obtain k = 3, as
shown in (2.45), p. 30. Here the ellipse reduces to the interval [—koy, +koy].

For S = 95%, S = 99% and S = 99.9%, the values k(S) determined from the right
equation in (2.59) are given in Table 2.2 for different dimensions.

Table 2.2 Confidence regions. First row: Probabilities P(z € E) for different dimensions d of a random
vector z. Other rows: Factor k(S) for the confidence ellipsoids E(k(S)) for S = 0.95, 0.99, 0.999 and for
different dimensions d.

dl 1 2 3 4 5 10 20 50 100
P(z€E)] 068 040 0.20 0.09 3.7-1072 1.7-10-% 1.7-10-10 1.2.10733 1.8.10730
k(0.95) | 1.96 245 2.80 3.08 3.33 4.28 5.60 8.22 11.2
k(0.99) | 2.58 3.03 3.37 3.64 3.88 4.82 6.13 8.73 11.6
k(0.999) | 3.29 3.72 4.03 4.30 4.53 5.44 6.73 9.31 12.2

Matrices of Gaussian distributed random variables can be represented using their vector
representation, (2.31), p. 28. Let the N x M matrix X contain NM random variables
which are normally distributed; we represent its uncertain covariance matrix using the
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random vector

z=vecX: z~N(py, Xoz). (2.60)

Or we may keep the matrix representation for the mean matrix and write
X~Npyx,Zor) - (2.61)

Sometimes we will refer to ¥, as the covariance matriz of the random matriz X.

2.4.4.3 Normal Distribution with Zero or Infinite Variance

When representing fixed values, such as the third component in a homogeneous vector
[z,v,1]T, we might track this property through the reasoning chain, which is cumbersome,
or just treat the value 1 as a stochastic variable with mean 1 and variance 0. The second
alternative has implicitly been chosen by Kanatani (1996) and Criminisi (2001). This
method needs some care, as the density function for a Gaussian random variable is not
defined for zero variance.

The distribution of a random variable y ~ A((p,,0) can be defined in a limiting process
((2.22), p. 27), by a d-function: a

py(y) = lim g(ys py, o) = 0(y — 1) - (2.62)

Now a 2-vector can be constructed with a singular 2 x 2 covariance matrix. Assume
that 2 ~ N(pz,1) and y ~ N(py,0) are independent stochastic variables; thus,

[i] ”N([ﬁﬂ | [5 8]) ' (2.63)

As z and y are stochastically independent, their joint generalized probability density func-
tion is ((2.32), p. 28)
Goy = gx(CU; Mg, 1) 6(3/ - My) . (264)

Obviously, working with a product of Gaussians and J-functions will be cumbersome in
cases when stochastic variables are not independent.

In most cases, reasoning can be done using the moments (cf. Sects. 2.5); therefore, the
complicated distribution is not of primary concern. The propagation of uncertainty with
second moments (cf. Sect. 2.7, p. 40) only relies on the covariance matrices, not on their
inverses, and can be derived usng what is called the moment generating function (Papoulis,
1965), which is also defined for generalized probability density functions. Thus uncertainty
propagation can also be performed in mixed cases.

Similar reasoning can be used to allow random variables with zero weights 1/02, or
infinite variance, or, more general, singular weight matrices W = £~! (Dempster, 1969).

2.4.5 Chi-Square Distribution

A random variable y is x2-distributed with n degrees of freedom,

y~x2, or y~x*(n), (2.65)
if it has the density function

|y

py(y,n)—w, nelN, y>0 (2.66)
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with the Gamma function T'(+) (cf. Koch, 1999, Sect. 2.6.1). This distribution is used for
testing quadratic forms. In particular, the sum

y=>y 2z (2.67)
=1

of n independent random variables z;, which follow a standard normal distribution (z; ~

28]

N(0,1)), is x2 distributed. For n = 2, we obtain the exponential distribution
1
py(y,2) = 5¢ Y y=0. (2.68)

Given the n mutually independent random variables which follow noncentral normal
distributions z; ~ N(u;, 1), then the random variable

y= 2 ~xi(6%) with z~N(ui,1) (2.69)
=1

has a noncentral chi-square distribution x'2(§) with n degrees of freedom and noncentrality
parameter 0% = Y " | u?.
Sometimes we need the distribution of the square root s = /7 and thus of the length
s = |z| of a random vector  ~ N(0, /,,). The resulting distribution is the x distribution,
having density
21—n/28n—1e—52/2

T (n/2)

ps(s,n) = (2.70)

2.4.6 Wishart Distribution

A symmetric positive definite p x p matrix V is Wishart distributed, W(n,X), with n
degrees of freedom and matrix parameter T if its density function is (cf. Koch, 1999, Sect.
2.8.1)

—1
pw (Vn, L) = kw - |V|(n—p—1)/2e*tr(z V)/g

,nmeIN, |[V|>0, >0 (2.71)
with some normalization constant ky, . This distribution is useful for evaluating empirical
covariance matrices. Let N mutually independent random vectors x,, of length p be given
which follow a multivariate central normal distribution, z,, ~ A (0,X). Then the matrix

V=> z.z ~WhI) (2.72)

M=

n=1

follows a Wishart distribution. For ¥ = 1 the Wishart distribution reduces to the x?
distribution.

2.4.7 Fisher Distribution

A random variable F' is Fisher-distributed or F-distributed,

with m and n degrees of freedom if its density is
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m-+n

rlxlm,n) =kp-s(x) -2 Ymz+n)" "2 (2.74)

with the step function s(z) and a normalization constant kp.
If two independent random variables Y, and y, are x? distributed, namely

Y, ~ X2, Y, ~ X2, (2.75)
then the random variable
y,/m
F== ~ F(m,n 2.76
=~ T (2.76)

is Fisher distributed with (m,n) degrees of freedom. This distribution is used for testing
results of estimation processes.

2.4.8 Student’s t-Distribution

A random variable is t-distributed,
t~ t(n), (2.77)
with n degrees of freedom, if its density is given by
22\ "
pilan) = ky (1 n n) , (2.78)

with some normalization constant k;. If two independent random variables z and y are
distributed according to

2~ N(0,1)  y~xg, (2.79)
the random variable
t=—2_~t(n) neN (2.80)
y/n

follows Student’s t-distribution with n degrees of freedom. This distribution may be used
for testing residuals of observations after parameter estimation.

The relationships among the different distributions is given in Fig. 2.7. The normal
distribution N is a special case of Student’s t, distribution and of the x2, distribution,
which themselves are special cases of the Fisher ¥, ,, distribution, obtained by setting one

or both parameters to infinity.

Wmz) —m AL =m, V7,
m=1 n=mw
NV g =07 =

Fig. 2.7 Fisher’s ¥, n and Wishart distribution W(m, X) and its specializations: an, Student’s ¢, and
normal distribution A(0,1). For example, taking the square root of a random variable, which is i,y
distributed can be shown to be &,-distributed
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2.5 Moments
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Moments are used to characterize probability distributions. They are mathematically
equivalent to moments in physics, if the probability density function is interpreted as a
mass density function.

2.5.1 General Moments

With the density functions p,(z) or pa,(x,y), general moments are defined as

+oo
my = / 2"py(x) de r>0 (2.81)
or
+oo +oo
Myrs = / 2"y Py (2, y) dedy r,s > 0. (2.82)
T=—00 =—00

The values my, and m,. j—,, with r < k, are called kth-order moments. For discrete random
variables with probabilities P, (z = x) and Py, (z = 2,y = y), general moments are defined
as

m, = ZJUZPI(Q =x;) r>0 (2.83)
=1
or
oo oo
My s = Z Z xfyjsty(g = z;,y = y;j) dedy r,s>0. (2.84)
i=1 j=1

We will restrict the derivations to continuous variables. The moment of the order zero is
always 1. The moments m; or mq,y and mg ; are the mean values or the expected values
E(z),

Ly =M1 = /xpz(x) dx, (2.85)

or
o =m0 = [[apy () dody, (2.86)
fy = mo,1 = /ypzy(x,y) dzdy, (2.87)

respectively, omitting the boundaries of the integrals.
The higher-order moments can be interpreted more easily if they refer to the mean
values.
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2.5.2 Central Moments

The central moments are defined as®

pr = [ = ) pala) o (2.89)
and, for random d-vectors,
pre = [[@ = ) (0= )Py 2,0) do . (28)
In general, we have
o =1 w1 =0 poo =1 p10 = po1=0. (2.90)

The central moments of a random variable yield their variance,

‘7925 = g = /(x — ,ux)pr(x) do, (2.91)
72 = a0 = [[(@ = ppy (o) dody, (2:92)

and
o) = po2 = /(y — t1y)*pay (2, y) dzdy. (2.93)

We can easily show that the following relation holds, which in physics is called Steiner’s
theorem:
o = mg —m3 or o2 =my — 2. (2.94)

Therefore, the central moments can be easily derived from the noncentral moments. The
positive square root of the variance is called the standard deviation,

op = +\/02, (2.95)

of the random variable z. The mixed second central moment of two random variables is
their covariance

Tay = p11 = [ 12)(0 = 1)y 9) oy, (2.96)

As it is difficult to interpret, it is usually related to the standard deviations o, and o, via
the correlation coefficient (2.55) by

Ozy = PxyOx0y - (297)

The second central moments of a vector & of several random variables = [z;] usually are
collected in its covariance matrix

Similarly, the covariances o,,,, of the random variables collected in two vectors & = [z;]
and y = [yj] are collected in their covariance matrix

Zwy = [Uwiyj] . (299)

Due to the symmetry of covariance matrices we have

2 Not to be confused with the mean value L -

Steiner’s theorem
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Yoy =Y, (2.100)
With the diagonal matrices
S, =Diag([ow,) S, = Diag([o,]) (2.101)

containing the standard deviations, we can also express the covariance matrix as

Yay = SuRazySy (2.102)
using the correlation matrix
Oy
Yy v. T2:0y,

In the case of two random variables x and y we have their covariance matrix
2
y= | % Tzl |0 O b pay e O (2.104)
Ozy Oy 0 oy| |pay 1 0 oy

We can show that covariance matrices always are positive semidefinite and the correlation
coefficients p;; always lie in [—1, +1].

We use the expectation operator or mean operator E(.) as an abbreviation. It yields
the mean value of a random variable z or of a random vector x,

E(z) = / xpy(z) da (2.105)
and, for a d-vector x,
o0
E(z) = / zp,(x) de. (2.106)
T=—00

The kth moments therefore are the expected or mean values of the kth power of the
random variable,

my, = B(z") my s = E(z"y*) with k=r+s. (2.107)

)

The central moments thus are the expected mean values of the kth power of the difference
of the random variable and its expected or mean value,

e =Bz — 1)) prs = B(lz — )"y — py)®)- (2.108)

The expectation operator is linear,
E(az +b) = aE(z) + b or E(Az +b) = AE(z) + b, (2.109)

which results from the linearity of the integration, a property which we often use.

Based on the expectation operator we also can define the dispersion operator D(.) or
V(.) and the covariance operator Cov(., .), which operates on one or two vectors of random
variables, respectively. The dispersion operator leads to the variance—covariance matrix of
a random variable:

D(z) = V(z) = L, = E[{z — E(z) {z — E(z)}']. (2.110)
The covariance operator leads to the covariance matrix of two random variables:

Cov(@,y) =T,y = E [{g — E(z)Hy - E(g)ﬂ =31 = Cov(y,2)T, (2111)
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thus
D(z) = V(z) = Cov(z, ). (2.112)

Observe the convention for scalar random variables x; and y;:
Yo, = Ui,i inyj = Ozyyy; - (2.113)

For single variables, the dispersion operator is often replaced by the variance operator,
_ 2
e.g., V(z) =o02.

2.5.3 Moments of Normally Distributed Variables

A variable following a one-dimensional normal distribution A/ (1, 2) has the first moments,
_ _ 2, 2 _ .3 2
mo=1, mi=u, me=p"+o°, mg=pu +3uc (2.114)

and
my = p* + 6p%0* + 30 (2.115)

and the corresponding central moments
po=1, =0, pp=0%, p3=0, puy=30. (2.116)

In general, the odd central moments are zero due to the symmetry of the density func-
tion. The even central moments, pog, k& = 0,1, ..., of the normal distribution with density
g(z | p,0?) only depend on the variance

Hok = /(a: — gz | pyo?)de=1-3-...- (2k — 1)o*. (2.117)

The parameters u and o2 of the one-dimensional normal distribution are the mean and
the variance. The two parameters g and ¥ of the multi-dimensional normal distribution
are the mean vector and the covariance matrix.

The second (central) moment of a multi-dimensional normal distribution is the covari-
ance matrix X. It exists even if the covariance matrix is singular and the density function
is not a proper function.

2.5.4 Moments of the Uniform Distribution

The moments of the uniform distribution U(a,b) are

1 B+l _ gk+1

= 2.118
TEEF1 b-a (2:118)
We obtain the even central moments po =1 and
7 zazzi(b—a)2 ) :i(b—a)4 (2.119)
2 12 T80 ' '

Thus, the standard deviation of the rounding error, modelled as r ~ U (f%, %), is
or =41/1220.28 (2.120)

of the last and rounded digit.

rounding error
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2.6 Quantiles of a Distribution

We are often interested in the value x such that the value of the cumulative distribution
P,(x) = P(z < z) is a prespecified probability «

Px(x):/: palt) dt = . (2.121)

This a-quantile can be determined using the inverse cumulative distribution

r=P (a). (2.122)

T

If the random variable follows a certain distribution, e.g. £ ~ %, ,, the a-quantile can be
written as © = Iy, n.a-
The median is the 0.5-quantile or 50th percentile

med(z) = P, 1(0.5). (2.123)

For normally distributed random variables, it coincides with the mean, thus N, 205 =
med(x) = . )
Instead of the standard deviation, it is also possible to use the median of the absolute
differences (MAD) from the median to characterize the spread of the random variable. It
is given by
MAD, = med(|z — med(z)|) . (2.124)

For normally distributed random variables, it is related to the standard deviation by
MAD, = & (0.75) o, ~ 0.6745 o, (2.125)

and

1
b=~ MAD, ~ 1.4826 MAD, , 2.126
%e = $-1(0.75) (2.126)

(Fig. 2.5, p. 30, right).
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Propagation of uncertainty can be formalized as follows: Given one or several random
variables collected in the random vector x, together with its probability density function
p(x), and a function y = f(«), derive the probability density function of the random
vector y.

There are several methods for solving this problem (cf. Papoulis and Pillai, 2002). We
want to present two important cases with one and two random variables having arbitrary
distribution and then discuss linear and nonlinear functions of Gaussian variables.
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2.7.1 Transformation of a Random Variable

We first discuss the case of a monotonically increasing function y = f(z) of a single
variable  with its given probability density function p,(x). The unknown probability
density function of the random variable y is p,(y).

y
fy fix)
T
ol edx
h(v) il
h (%)

Fig. 2.8 Transformation of a random variable  with a monotonic function y = f(z)

With Fig. 2.8 we have p,(y)dy = p.(z)dz as P(y € [y,y + dy]) = P(z € [z,v + dz])
for differential dx and dy. Thus, with monotonic f(x), we obtain

Pz(x) _ pa(w)
= = == 2.127
Pn) =190 = ) (2127)
dx
With the inverse function # = f~'(y), we finally obtain the density p,(y) of y as a function
of y,
pe (f7' (W)
py(Y) = T T (2.128)
! ()]

This result generalizes to vector-valued variables (cf. Papoulis and Pillai, 2002, p. 142).

Example 2.7.5: Linear transformation of a random wvariable. For the linear transformation
y = f(z) = k + max, we use the first derivative f'(x) = m and the inverse function

- y—k
) = —

m

to obtain the density
y—k
Pe\Tm”
pyly) = ——2 2. (2.120)
Im|

Obviously, the original density function ps(z) is translated by k and scaled by m in the y- and py-directions
in order to obtain the area 1 under py (y).

A Gaussian random variable z ~ A (y, 02) thus can be transformed into a normalized Gaussian random
variable z = N (0,1) by

L=t (2.130)
o
This can be generalized to a normally distributed random d-vector & ~ N'(u, X). The vector
z2=3""%(@—p) ~ N(0,14) (2.131)

follows a normalized multivariate normal distribution. The inverse square root of the matrix ¥ with
eigenvalue decomposition RART can be determined by ¥~1/2 = RDiag([1/4/A;])RT. As a vector whose
elements z;, ~ N(0,1) are mutually independent with zero mean is called white, the operation (2.131) is

called whitening. <o

Exercise 2.28

whitening
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2.7.2 Distribution of the Sum of Two Random Variables

The density of the sum z = z + y of two independent random variables with densities
pz(x) and py(y) is

p:(z) = /pw(z —y)py(y) dy (2.132)
Pz = Pz * Dy (2133)

and is thus identical to the convolution p, * py of the two densities p, and p, (Castleman,
1996).

In many cases, we have several random variables z, which follow a joint normal distri-
bution and which are possibly mutually correlated, & ~ N (p,,, X,.). We are interested in
the distribution of new random variables y = f(z) = [fi(z)]. Due to the nonlinearity of
the functions f;, the resulting density p, (@ is complicated.

2.7.3 Variance Propagation of Linear Functions

Probability functions often are smooth and thus may be locally approximated by a linear
function. Moreover, the relative precision of the quantities involved (the random variables
) is high; thus, their standard deviations are small compared to the curvature of the func-
tions. Under these conditions, we may approximate the resulting distribution by a normal
distribution and characterize it by its first two moments, the mean and the covariance
matrix.

We first give the distribution of linear functions, for which the variance propagation
follows.

Given random variables £ ~ N(p,,Y.,) and the linear function y = Az + b, the
random vector y is normally distributed as B

y~N(Ap, + b, AL, AT), (2.134)

or

E(y) = AE(z) +b, D(y) = AD(z)A". (2.135)

The proof for the preservation of the distribution uses the result of the transformation of
random variables.

The proof for the first two moments uses the linearity of the expectation operator, which
allows us to exchange the expectation and matrix multiplication E(y) = E(Az 4+ b) =

AE(z) + b = Ap, + b with a similar proof for the second central moments.

Comments:

e As the variance V(gi) = U;i of an arbitrary element Y, for arbitrary matrices A needs

to be nonnegative, the covariance matrix ¥, needs to be positive semi-definite.

e Though the density function of the normal distribution is not defined for singular
covariance matrices, the probability function exists. Variance propagation uses only
the moments, so it is allowed for singular covariance matrices as well. If A does not
have full rank, then ¥, is singular.

e The proof only uses the moments. It is thus valid for arbitrary distributions
M, (pt,, Xyz) for which we only use the first two moments, g, and X,,. Therefore,

variance propagation we have the following law of variance propagation:

T~ Mp(py, o) and y=Azx+b — y~ M(Ap,+b, AL, AT).  (2.136)
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e The inverse W, of a regular covariance matrix ¥ ., is sometimes called a weight
matriz or the precision matriz (cf. Bishop, 2006),

Waw =351 (2.137)

T

as random variables with smaller variances have higher weights and higher precision
when performing an estimation (Sect. 4.1.4, p. 79).
If A is invertible, we also have a propagation law for weight matrices,

Wy, =AW, AT, (2.138)

e We can transfer the result to linear functions of random matrices. Given the random
matrix X ~ M(E(X),D(vecX)) and the linear function Y = AXB + C, the random
matrix Y is normally distributed since

Y ~ M(AEX)B+ C,(B" @ AL (BT @ A)T). (2.139)

Using the vectors z = vecX and y = vecY this result immediately follows from the
vectorized function y = (BT @ A)z 4 vecC (cf. (A.95), p. 775).

2.7.4 Variance Propagation of Nonlinear Functions

In the case of nonlinear functions y = f(x), we first perform a Taylor series expansion,

y =99 +dy = f(=?) + Jdz + O(|dz|*), (2.140)

with the Jacobian

6f”(m)} : (2.141)

J=[Ji;] = [ oz,

where — to simplify notation — the subscript z = z(9) refers to the vector x. If we use
x(© = p_ with y©@ = f(x(©), we obtain

z=x(0)

dy = Jdz, (2.142)
and therefore in a first-order approximation
E(y) ~pl) = f(u,), Dy~ =IrJ" (2.143)
since, up to a first-order approximation,
Yy = Xdydy (2.144)
due to y ~ y© + dy.
It can be shown that with relative errors r,, = oy, / Mg, of the variables z;, the error in

the standard deviations o, due to linearization is less than r;;o,,, and is thus negligible
in most practical applications; cf. Sect. 2.7.6, p. 44.

2.7.5 Implicit Variance Propagation

If we have an implicit relation
flz,y)=0 (2.145)

weight matriz,
precision matrix
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between two stochastic variables  and y, the variance propagation can be performed with
the Jacobians

4 0f(@y) 5 0f(@.y)

Oz T= [y, Y=y dy

(2.146)

T= [l Y=y

if B is invertible. From df = A dz + B dy = 0 we obtain dy = —B7'A da with given
Y .2, again, in a first-order approximation,

Y, =B AL ,ATBTT. (2.147)

This allows the derivation of the covariance matrix of y even if the procedure for deriving
y from x is very complicated.

2.7.6 Bias Induced by Linearization

Moment propagation (2.143) of nonlinear functions using only the first-order Taylor series
of the nonlinear function leads to a systematic deviation from the true value, also called
bias. Analysing higher-order terms yields expressions for the bias due to linearization.

For a scalar function y = f(z) of a scalar z, it is based on the Taylor expansion of the
stochastic variable at f(u,),

y=f(@) = f(pa) + () (& = pa) + %f"(uz)(z — pta)? (2.148)
g )2 1) + 52O a) 2~ 1)+ Ol = o))

We therefore obtain the following result: if the density function of a stochastic variable =
is symmetrical, the mean for y = f(z) can be shown to be

E(y) = My = f(“l) + %fﬁ(uw)ai + if(@ (Uz‘)ﬂ'% + O(f(n)a mn) n>4. (2'149)

For normally distributed variables we take its central fourth moment py, = 3072 Using the
expression V(y) = E(y?) — [E(y)]? from (2.94), p. 37 we can derive a similar expression for
the variance. Restricting to even moments up to the fourth-order for Gaussian variables,
we have

Vi) = o] = 720 02 4 (£ "0+ 5700) ) ok + O m,) . (2150

Obviously the bias, i.e., the second term, depends on the variance and the higher-order
derivatives: the larger the variance and the higher the curvature or the third derivative,
the higher the bias. Higher-order terms again depend on derivatives and moments of order
higher than 4.

For a stochastic vector & with symmetrical density function, the mean of the scalar
function y = f(«) can be shown to be

1
E(y) = p) = f(io) + gtrace(Hlay, - Taz) + O(f™,mn), n23,  (2151)

with the Hessian matrix H = (0f2/0x;0x;) of the function f(z). This is a generalization
of (2.149).

We now discuss two cases in more detail which regularly occur in geometric reasoning,
the bias of a product and the bias of normalizing a vector to length 1.
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Bias of a Product. The product z = xy of two random variables is part of all geometric
constructions when using homogeneous coordinates for representing geometric entities. For
the product

z=zy (2.152)

of two possibly correlated normal random variables

2
ool e
Yy My PxyOxOy gy

we obtain the first and second approximation for the mean value
= ppy p2 =y 4 ooy (2.154)
Thus we obtain the bias of the mean,
b, = ,uE] — ,u[zl] = Opy = Pay0z0y, (2.155)
and the relative bias of the mean of the product,

. Oz Oy
T, = = Poy—— . 2.156)
Iz I Yttty (

The relative bias of the mean is the product of the relative accuracies o/, and o/,
multiplied with the correlation coefficient. The bias is zero if the random variables are
uncorrelated, which is often the case when constructing a geometric entity from two others.
The proof of (2.154), p. 45 uses

E((ﬁ_ﬂw)%y_ py)?) = (1 +2Pwy)‘7i‘7§~ (2.157)
Similarly, we have the first- and second-order approximation for the standard deviation,

oM = p202 + P20 + 2upy0ny o =4 (14 p2,)0202 . (2.158)

The bias of the variance is

_ Uz[l} — 092:0-5 + Uiy = (1 + piy)gio’i , (2.159)

and therefore the relative bias of the variance,

R baz o (1 +p§,y)03,05
o

7= , 2.160
: o2 N?QJU% + /1305 + 240ty Oay ( )

does not vanish for uncorrelated random variables.
If the variables are uncorrelated and have the same relative precision, i.e., 0,/p, =~
oy/ 1y = 0/, we obtain the relative bias

ba2 1 o 2

Thus, the relative bias r,2 of the variance is approximately half of the square of the relative
precision o /.

Bias of Normalization. The normalization of an n-vector x to unit length, which we
will apply to homogeneous coordinates regularly (Sect. 5.1, p. 195), is given by
X ZT;

x' = — or X;=—. (2.162)
| Y

Exercise 2.32
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We assume x has covariance matrix ¥,, = o2/,,. This leads to the following expression
for the mean when taking terms up to the fourth-order into account:

E(x®) = t= (1—; % ) (2.163)

| b |?

Here too, the relative bias, since it is identical to the bias, is approximately half of the
square of the relative accuracy.

The bias of the variance behaves in a similar manner as for the product of two entities:
the relative bias of the variance follows quadratically with the relative precision of the
given entities; cf. (2.161).

In nearly all cases which are practically relevant when geometrically analysing images,
the relative precision results from the observation process in images, which is below one
pixel (see the following example). Even for wide-angle cameras, the focal length is far
beyond 100 pixels. The directional uncertainty is therefore much better than one percent.
As a consequence, the relative bias when determining the mean value or the variance using
only the first-order approximation is significantly smaller than 0.01%.

2.7.7 On the Mean and the Variance of Ratios

Care has to be taken when deriving Euclidean coordinates, x, from homogeneous ones, x,
e.g., using the ratios

(2.164)

if the denominator w is uncertain. If w ~ N (4, 02), the mean and the variance of z and
y are not defined (cf. Hartley and Zisserman, 2000, App. 3). The reason is that with a
possibly very small probability the denominator w will be zero; thus, the variable z will
be infinite, making the integral y, = [~ xp(x)dz vanish.

However, the first-order approximation for deriving the mean u, = p,/p, and the
variance is still useful due to the practical procedure of preprocessing the observed data
x: they are usually checked for outliers, and only the inliers are used in further processing.
This preprocessing limits the range of possible random perturbations for the inlying ob-
servations, and would make it necessary to work with a distribution with limited support,
say +40,,:

9N
w | inlier ~ pw\inlier(w‘inlier) = {]g ’ gl(w | lU’U“Uw)7 ifwe [Nw - 40wvuw + 40111]
, else
(2.165)
with an adequate normalization constant k for the truncated Gaussian density g. This
distribution has approximately the same first and second moments as the corresponding
Gaussian but does not cause infinite mean or variance if |p.,| is far enough from zero, i.e.,
|ttw| > 404, Therefore, the classical determination of the mean and the variance by using
variance propagation is sufficiently accurate.
In order to be able to handle outliers as well, we model the causing gross error as a
shift b,, of the mean,

w | outlier ~ pw|inlier (w - bw) ) (2166)

which also allows variance propagation and is consistent with the model of classical hy-
pothesis testing (Sect. 3.1.1, p. 62), which is the basis for outlier detection, e.g., in a
RANSAC procedure (Sect. 4.7.7, p. 153).

We therefore recommend using variance propagation based only on the linearized rela-
tions. The example on p. 48 supports the recommendation.
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2.7.8 Unscented Transformation

Classical variance propagation of nonlinear functions only uses the first-order terms of the
Taylor series. The bias induced by omitting higher-order terms in many practical cases is
irrelevant.

We now discuss a method which uses terms up to the fourth-order and in many cases
yields results which are accurate up to the second-order. It is called unscented transfor-
mation (cf. Julier and Uhlmann, 1997).

It is based on the idea of representing the distribution of the given random N-vector
x by 2N + 1 well-selected points x; and of deriving the weighted mean vector and the
covariance matrix from the nonlinearly transformed points y,, = f(x,).

The selected points depend on the square root

Ser =V Zpw = [Sn} ) Yop = 51935;0 (2.167)

of the covariance matrix of the given random variable. Its columns are s,,. For numerical
reasons, S, is best determined by Cholesky decomposition (Rhudy et al., 2011). Now we
have

s{
N
Yiw = (81,0, 8n,..8n] | 8} | = Z Spst . (2.168)
. n=1
SN
The 2N + 1 points x,, and their weights w,, then are:
K
= = 2.1
T My w1 N+ ( 69)
1
n — N ns n = “ar .~ :2,...7N 1
x n,+vN—+EKsS w 2N + ) n +
1
n = - VN n n = 37T . .\ =N+2..,2N+1.
TptN = My — VN +KS w. 2N + r) n + +

They depend on a free parameter . The weights add to 1. For Gaussian random variables,

we best use
k=3—-—N (2.170)

in order to obtain minimum bias. As a result, some of the weights may be negative.
Determining the mean and covariance matrix of y is performed in three steps:

1. transforming the points

Yy, = f(xn) n=1,.,2N+1, (2.171)
2. determining the mean vector
2N+1
By = Z WnY,, s (2.172)
n=1
and
3. determining the covariance matrix
2N+1 2N+1
Ty = D walyy — 1)y, — k) = ( > wnynyl> — (2.173)
n=1 n=1

Example 2.7.6: Unscented transformation of a linear function. In the case of a linear function
y = Ax + a, we obtain the same mean and covariance matrix as with the classical variance propagation.

Proof: The mean value K, is obviously identical to f(p,). For the covariance matrix, we use the
transformed points y; — p, = 0 and y,, — pt,, = £V'N + k Asp. Then (2.173) yields
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N
T=3 m (VN T R)?AsnsTAT) + (VI T 7)2(—Asp) (—s]AT)) = AT, AT .

n=1

<&
Example 2.7.7: Square of a standard Gaussian random variable. Here we have z ~ N(0,1)
and the function y = f(z) = 22. The mean and the variance can be derived from the general properties of
the x? distribution. For the sum z ~ X?\, of N squared independent random variables u,, ~ N(0,1), the
mean and variance are

E(z>)=N D% =2N. (2.174)
In our special case, n = 1, the mean is
E@z’) =1, D@®)=2. (2.175)
The classical variance propagation leads to completely wrong results u?(f) =0 and 03(11) =0, as y(0) =
/
y'(0) = 0.
With the unscented transformation, with N = 1 we use the 2N + 1 = 3 points and weights:
2 1 1
1 =0, wlzg, z9 = V3, w2:6, z3 = —V3, 'u)3=6. (2.176)

Therefore we obtain

1. the transformed points y1 =0, y2 =y3 =3,
2. the weighted mean

2
=Z.0+2-3+--3=1, (2.177)

3. the weighted sum of the squares Zi:l wny2 = 3 and therefore the variance
3
05 = Z wny2 — HZ =2. (2.178)
n=1

Comparison with (2.175) shows that the unscented transformation in this highly nonlinear case yields the

correct result. o
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In this section we discuss sequences of random variables and their statistical properties.
We will use such processes for modelling surface profiles in Chap. 16, p. 727. We address
two types of models: (1) using (auto-) covariance functions,® which specify the process by
its second-order statistics, and (2) using autoregressive processes, which refer to the first-
order statistics. Both models allow the generation of sample processes and the estimation
of the underlying parameters. They differ in the efficiency for interpolation and the ease
of generalizing the concept from one to two dimensions.

2.8.1 Notion of a Stochastic Process

Following the introduction of random variables in Sect. 2.3, p. 24, a stochastic process
associates to a certain outcome s € S of an experiment a function z(¢,s) depending on
the independent variable ¢ (Papoulis and Pillai, 2002): The function

3 This is in contrast to crosscovariance functions between two different processes.
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z(t): S =T z(t) = z(t, s) (2.179)

is called a stochastic process. The range IF of functions is to be specified. This notion
naturally can be generalized to more functions of more than one variable if the scalar ¢
is replaced by a d-dimensional vector. We start with functions of one variable ¢ as they
naturally occur as time series.

Depending on whether we fix ¢ or s, we can interpret z(t, s) as

1. a stochastic process z(t, s), if ¢t and s are variables,

2. a sampled function z(t), if s is fixed,

3. a random variable z(s), if ¢ is fixed and s is variable, and
4. a sampled value z at time ¢, if s and ¢ are fixed.

A stochastic process is completely specified by the distribution function

P(x1, .y Tnityy s tn) = Plz(ty) < 21,y z(tn) < 2p) (2.180)
for arbitrary n and tq,...,%,. A stochastic process is called stationary in the strict sense if
the distribution function is invariant to a shift of the parameters ¢, by a common delay.

We distinguish between continuous and discrete processes, depending on whether ¢ is
taken from a continuous domain D C IR or whether ¢ is taken from a discrete domain,
e.g., D CZ If a process is discrete, we use n as an independent variable and write

z(n) = z(n,s), neZ (2.181)

where x depends on a discrete parameter n. Such processes can be interpreted as sequences
of random variables, e.g., z(n),n =1,...,N.

Furthermore, we only address Gaussian processes. They are fully characterized by their
first and second moments

pe(t) = E(z(t)) and 044 (t,t) = Cov(z(t), z(t")) (2.182)
pz(n) =E(z(n)) and oz (n,n’) = Cov(z(n),z(n’)). (2.183)

In the following paragraphs we refer to continuous and discrete processes using ¢ as an
argument.

A stochastic process is called weakly stationary if the first and second moments do not
depend on time. Then we have p(t) = p.(t') or

py = Ex(z(t) = /zp(x,t) dz for all ¢ (2.184)
and o(t + u,t’ + u) = o(t,t'). With the difference between two variables, which is called
the lag,

d=1t —t, (2.185)
we obtain
Opa (d) = Oy (6, + d) = 04y (—d) (2.186)

the last relation resulting from the symmetry of the covariance of two random variables.
The function o,,(d) is the covariance function of the stationary process and often written

as
Crz(d) = Cov(z(t), z(t + d)) . (2.187)

A stationary stochastic process is therefore characterized by its mean pu, and its covariance
function Cy(d).

We first discuss continuous processes specified by their covariance function, and then a
special class of models which define the sequence of the random variables recursively.

strict stationarity

weak stationarity

lag

covariance function
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2.8.2 Continuous Gaussian Processes

A stationary continuous Gaussian process is characterized by the mean value p, and the
covariance function C,,(d). We discuss the main properties of covariance functions.

Stationary One-Dimensional Gaussian Processes. The covariance function C,,
needs to guarantee that, for any ¢, the vector © = [x(¢;)],7 = 1, ..., I, the covariance matrix

[ Cov (x(t1),x(t1)) ... Cov (z(tr),z(t;)) ... Cov(z(ty),z(t))
o = D(@) = | Cov(x(ts),2(tr)) ... Cov(x(t),z(t)) ... Cov(x(t),z(tr))

| Cov (x(tr), #(t1)) ... Cov (a(tr), z(t;)) ... Cov(a(tr),z(tr))

Cow (0)) oo Cog (t1 — i) . Cuw (t1 — t1)
o ti=t1) o Con(0) ... Cow (i —t1) (2.188)
Co(t1—11) oo Con(t1 = 1) . Ca (0)

is positive semi-definite. This can be achieved if we choose a positive semi-definite function.
Following Bochner’s theorem (cf. Rasmussen and Williams, 2005, Sect. 4.2.1), a positive
definite function is a function whose Fourier transform is positive, or which can be written
as

o0
Crz(d) = Z ¢k cos(2mkd) (2.189)
k=0
with -
o2 = ch <oo and ¢ >0, forall k. (2.190)
k=0

If the coefficients fulfil ¢; > 0, the function is called positive semi-definite. Observe that
the diagonal elements of the covariance matrix are identical to the variance of the process:
Cy2(0) = 02. Similarly we have positive semi-definite correlation functions using (2.103),
p- 38,

Copz(d)  Cuz(d)

Raw(d) = 200 = =5 (2.191)

Examples of correlation functions are

(2.192)

Ro(d) = exp (“‘l') (2.193)

Ra(d) = exp (-é (;if) (2.194)

(2.195)

with some reference distance dj.

Linear combinations h(d) = af(d) 4+ bg(d) with positive coefficients a and b and prod-
ucts h(d) = f(d)g(d) of two positive functions f(d) and g(d) again are positive definite
functions.
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Figure 2.9 shows three samples of a Gaussian process z(tx),k = 1,2,3. The standard
deviation of the processes is o, = 1. The covariance function is Cy(d) = exp (—3(d/20)?),
cf. R3 in (2.194). The method for generating such sequences is given in Sect. 2.9, p. 55.

+3 |

Fig. 2.9 Three samples of size 300 of a Gaussian process with mean 0, standard deviation o, = 1, and
correlation function R3(d) with do = 20

Homogeneous and Isotropic Higher Dimensional Gaussian Processes. The con-
cept of stationary Gaussian processes can be generalized to functions depending on two or
more variables, collected in a vector, say u. They usually are applied to represent spatial
stochastic processes. We refer to a two-dimensional stochastic process z(u, s) in the fol-
lowing. It will be used to describe the random nature of surfaces, where x represents the
height and uw = [u, v] the position.

For spatial processes the concept of invariance to translation is called homogeneity,
which is equivalent to the notion of stationarity for time processes. Moreover, the char-
acteristics of spatial processes may be also invariant to rotation. A higher dimensional
stochastic process is called isotropic if the covariance between two values z(u;) and
z(uz2) does not depend on a rotation of the coordinate system: Cov(z(ui),z(us)) =
Cov(Rz(u1), Rz(uz)) for an arbitrary rotation matrix R.

Now, homogeneous and isotropic Gaussian processes can again be characterized by their
mean p, and their covariance function

Crz(d(u,u’)) = Cov(z(u), z(u’)) (2.196)

where the distance d = d(u,u’) = |u’ — u| is the Euclidean distance between the positions
u and u'. Again, an arbitrary covariance matrix ¥, must be positive semi-definite.

Remark: If the distance d = |u/ —wu| is replaced by a weighted distance, say d = 1/(u/ — u)T W (v — u),
with a constant positive definite matrix W, the stochastic process still is homogeneous, but anisotropic.

Generalizing the concept to nonhomogeneous anisotropic processes is out of the scope of this book. o

Representing stochastic processes using covariance functions can be seen as charac-
terizing the second moments of vectors of random variables, where the index refers to a
parameter, say ¢, of a continuous or discrete domain. This has the advantage of generalizing
the concept to more dimensions. Next we discuss a class of models for stochastic processes
which are based on a generative model for the process itself, which has the advantage of
leading to more efficient computational schemes.

homogeneous
stochastic process

isotropic
stochastic process
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2.8.3 Autoregressive Processes

An autoregressive model AR(P) of order P is characterized by P parameters a,,p =
1,..., P, and a variance o2. It uses a sequence e, ~ M (0,0.) of identically and indepen-
dently distributed (iid) random variables. This sequence controls the stochastic develop-
ment of the stochastic process z,,; therefore, it is often called the driving process. Starting

n?
from a set of P random variables z,,, with E(z,) = 0, the elements z,,n > P, of the

=n>

random sequence linearly and deterministically depend on the previous P values, z,,_, of

the sequence and the nth element, e, , of the driving process, in the following manner:
P
gn:Zap@n7p+gn, e, ~M(0,02), n>P. (2.197)
p=1

Since E(e,, ) = 0, we have
E(z,) = 0. (2.198)

If this condition is not fulfilled, the process model may be modified by adding the mean
value c:

P
z, =c+ Zap(gn_p —)te,, €, ~M(0,02) (2.199)
p=1

The stochastic process is stationary if the generally complex zeros of the polynomial
1- 25:1 apzP are outside the unit circle (cf. Box and Jenkins, 1976). We illustrate the
situation for the autoregressive model AR(1).

AR(1) Processes. An AR(1) model, using a := a; for simplicity, is given by:
T, =az,  +e,, e,~M(0,02) and |a|<1. (2.200)

We choose the initial value z, ~ M (0,0) and

1
€1~ M (O, ]_—0,20-2) (2201)

intentionally in order to obtain a stationary process, as can be seen immediately. We
recursively obtain

1
) = ¢ ol = - o2 (2.202)
2
Ty = ae; + ey o2, = <1ia2 + 1) o? (2.203)
2 2 at 2 2
Tq=a‘e; +ae, + €5 ax3:<1a2+a —l—l) o: (2.204)
(2.205)
z,=a""le;+a" ey + .. te 2 _ (0 e 1)o?. (2206
T, = e e+ ...te, 02, =\ T2 +a +..+1)o2. (2.206)
As can be checked easily, we therefore have
2
2 O¢
=€ 2.207
ot =7 (2207)

independent of n. Obviously, only values |a| < 1 lead to stationary sequences with limited
variance:
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For a = 0 we have a white noise process.

For a € (0,1) the process is randomly deviating from zero while keeping close to 0.
For a € (—1,0) the process is oscillating while staying close to 0.

For |a| > 1 and first increment e; ~ M (0,02) the process x,, is quickly diverging with
02n = (a®" —1)/(a®> — 1) o2

=W o=

Furthermore, from (2.202)ff. we obtain the covariance function, i.e., the covariance between
neighbouring random variables z,, and z,,, 4,

Cro(d) = Cov(z,, 2, 4) = a® Jin , (2.208)

which is an exponential function of the lag d. Thus the correlation (2.55), p. 31 between
neighbouring variables

Pd = Py anig = a° (2.209)

decays exponentially with the distance d for |a| < 1. The covariance matrix of a sequence
{z,} with N values, collected in the N-vector x, therefore is

1 a a2 aN—2 oN-1
a 1 a ... aV3 N2
2 2 N—4 N-3 2
D(z) = 106 i a a 1 ... a a == o; - {ali*jl] . (2.210)
—a —a
aV=2 oN-3 gN-4 | 1 a
aV-1 gN-2 gN-=3 a 1

This matrix has a special structure. Its off-diagonal elements only depend on the distance
|i — j| from the main diagonal. Such matrices are called Toeplitz matrices.

Integrated White Noise Processes. For a = 1 we obtain a special process: It is a
summed white noise process, often called an integrated white noise process,

Ly =Lp—1 +§n ’ ID(Qn) = Ug (2211)

with starting value z, = 0. The name of this process results from the sequence

T, =¢ (2.212)
Ty =€ € (2.213)
T3 =€ +ey+eg (2.214)

- (2.215)

2, => e (2.216)
k=1

Two samples for such a process with different standard deviations of the driving noise
process are given in Fig. 2.10, upper row. They are generated using a random number
generator for the sequence ey (cf. .Sect. 2.9). Rewriting the generating equation in the
form

En =Ly —Lp_1 (2217)

reveals the driving white noise sequence {e,} to represent the discrete approximation
of the first derivative of the discrete function z,,. The process is slowly diverging with
on = v/noe. It is not a stationary process.

If we apply a second summation we arrive at the second-order autoregressive process
AR(2) with coefficients a; = 2 and ay = —1, a doubly integrated white noise process,

Ly = Qanl — Ty gt Ey, ]D(Q’I’L) = Ug (2218)

Toeplitz matriz
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Fig. 2.10 Examples for autoregressive processes. Sequences of 100 points. Integrated and doubly in-
tegrated white noise processes (upper and lower row) with standard deviation of driving noise process
oe = 1.0 and 0. = 0.2 (left and right column)

with starting values values z, = z_; = 0. Two examples for such a process are given in
Fig. 2.10, lower row. Again solving for e, yields

Ep =Ty — 2ln—1 T Xy o (2219)

n —n

Thus e,, measures the second derivative of the sequence z,, at position n —1. Again, as the
mean value of the driving noise process e, is zero, the variance o2 of the AR(2) process
measures the smoothness of the sequence.

2.8.4 Integrated AR Processes

We have discussed two versions of an integrating process, where a white noise process
drives it. This idea can be generalized to situations where the white noise process drives
the first- or higher-order derivatives of the process. When the Dth derivatives of a process
follow an AR(P) model, the process is called an integrated autoregressive process, and

denoted by ARI(P, D).
As an example, we have an autoregressive model ARI(P,2) for the sequence of second

derivatives,

P
gn—l - 2£n + gn-&-l = Z apgn—p + Qn ’ (2220)
p=1

which will turn out to be a good model for terrain profiles. Obviously, this model can be
written as

P
£n+1 = _(znfl - 2£n) + Z a‘pgnfp + €n (2221)
p=1

or as an AR(P + 1)-process. It can be written as
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P
Ly = _(gn—Z - 2§n—1) + Z ApLp_p—1 +Eé, (2222)
p=1
=22, 1+ a1Z, o+ a22,_3+ ..+ ap,_(pi1) T &, (2.223)
P+1
- Z Do, _q + En (2.224)
q=1
with coefficients
b1=2, by=a;—1, bg=aq—1forg=3,..,.P+1, e,=¢e,_; (2.225)

2.9 Generating Random Numbers

Testing algorithms involving random variables can be based on simulated data. Here we
address the generation of random variables following a certain distribution, which then can
be used as input for an algorithm. Software systems provide functions to generate samples
of most of the distributions given in this chapter. Visualization of the distributions can be
based on scatterplots or histograms.

Take as an example a random variable y ~ N (s, a,j). We want to visualize its distri-
bution for given u, and variance 05. Provided we have a routine for generating a random
variable z ~ N(0, 1), we can derive a sample y of a random variable y using (2.134), p. 42.
We choose the linear function B

Y= py+o,x (2.226)

to derive a sample y from a sample x. Repeating the generation process usually provides
statistically independent samples, a property which has to be guaranteed by the random
number generator. Alternatively the provided routine allows us to generate vectors or
matrices of random numbers. As an example, the package MATLAB provides the function
x=randn(N,M) to generate an N x M matrix of random variables z,,, which follow a
standard normal distribution z ~ N(0,1).

The samples for the autoregressive processes in Fig. 2.10, p. 54 have been generated
using a vector e of normally distributed random variables e,,.

A large sample of N values z,, can be taken to visualize the distribution via the his-
togram. The histogram takes a set of K bins [xg,zr+1), which are half open intervals,
and counts the number N of samples in the bins. The bins usually are equally spaced. A
useful number K for the bins is K = |v/N|, as this is a balance between too narrow and
too few bins. As the probability P that a sample value lies in a bin is P, = ;:k;; P (z)de,
and Ni/N is an estimate for this probability, the form of the histogram can be visually
compared to the theoretical density p,(z) by overlaying the histogram by the function
N Py, using the approximation of P(z € [z, z + dz]) = p,(z)dx (cf. (2.16), p. 26, and Fig.
2.11, top right), namely

P 3 (palan) + polansa)) (o1 — ). (2.227)

If we want to generate a sample of a vector of normally distributed values y ~
N (g, Zyy), we can proceed similarly. We start from a vector ¢ = [z,],n = 1,...,N,
where the independent samples z,, ~ N (0,1) follow a standard normal distribution, thus
x ~ N(0,/xn). We need the square root S, of the covariance matrix ¥, (cf. (2.167),
p. 47). Then the linear function

y=p,+Sy (2.228)
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~py(y)

Fig. 2.11 Top row left: One-dimensional scatter plot of a sample of N = 225 normally distributed
random variables y ~ N(2,0.25). Top row right: Histogram of the same sample with 15 bins, overlayed
with its probability density. Bottom: 2D scatter plot of N = 500 samples of normally distributed random
vectors overlayed with the standard ellipse (black) and threefold standard ellipse (green) (Fig. (2.6), p. 32).
Approximately 99% of the samples lie in the threefold standard ellipse (Table 2.2, p. 32): d =2, S = 0.99

of the sample x of the random vector x leads to a sample vector y with distribution
Yy~ Ny, Lyy)

The Gaussian processes in Fig. 2.9, p. 51 have been realized by (1) specifying a regular
sequence of N = 300 arguments ¢t = 1,..., N, (2) generating the N x N covariance matrix
Y .. using the standard deviation o, = 1 and the correlation function R3(d), and (3)
taking samples from a normally distributed vector & ~ N (0, X,,).

Samples of other distributions can be generated using similar routines.

2.10 Exercises

The number in brackets at the beginning of each exercise indicate its difficulty, cf. Sect.
1.3.2.4, p. 16

Basics

1. (1) How could you randomly choose a month when throwing a die twice? Is the ex-
pected probability of all months the same?

2. (1) Give a probability the sun will shine tomorrow? What are the problems when
giving such a number?

3. (2) Take a die and throw it repeatedly. Determine the probability of the event 1 after
every sixth throw following von Mises’ definition of probability. Describe how the
determined probability evolves over time. When do you expect to be able to prove
that the determined probability converges towards 1/67

4. (2) You throw a die four times. What is the probability of throwing the sequence
(1,2,3,4)? What is the probability of throwing three even numbers? What is the
probability of throwing 6 at least twice, if the first two throws are (3,6). What is the
probability of throwing the sum 107
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. (1) Plot the probability and the density function for throwing the numbers 1 to 6 with

a die. What would change if the die did not show numbers but six different colours?

. (2) Plot the density function of n times throwing a 6 when throwing a die N = 3 times.

Give the density function p(n) explicitly. What is the probability in this experiment of
throwing a 6 at least once? Show this probability in a plot of the cumulative probability
function.

(2) Assume the display of a range sensor can show numbers between 0.000 and 999.999.
The sensor may fail, yielding an outlier. Assume the sensor shows an arbitrary number
s if it fails. Describe the random variable s for the outlier. Is it a discrete or continuous
random variable? How large is the difference between a discrete and a continuous
model for the outlier? What is the probability that s € [100,110] in the discrete and
the continuous model? What changes if the display shows numbers only up to one
digit after the dot, i.e., in the range 0.0 to 999.07

. (2) Plot the density function of random variables z and y following the exponential and

the Laplace distribution, respectively. Give names to the axes. Give the probability
that z € [-1,2] and y € [-1,2].

Computer Experiments

9.

10.

11.

12.

13.

14.

(3) Use a program for generating M samples of a normal distribution A/(0,1). Deter-
mine the histogram

h(z;|b) = #(z € [x; —b/2,2; +b/2], z,=1ib, beR,ie”Z (2.229)

from M samples. Prespecify the bin size b. Determine the probability p(z;|b) =
h(z;|b)/M that a sample falls in a certain bin centred at z;. Overlay the plot with
the density function of the normalized normal distribution ¢(z). How do you need to
scale the axes such that the two functions ¢(x) and p(z;|b) are comparable. Vary the
bin size b and the number of samples M. What would be a good bin size if M is given?
(2) Repeat the previous exercise for M samples y,, of a x-square distribution with
n degrees of freedom. For this generate y —as the sum of the squares of n samples
from a standard normal distribution. Also vary the degrees of freedom n. Describe the
distribution for n = 1,2, 3 and for large n.

(2) Prove that the bounding box for the standard ellipse has size 20, x 20,. Hint:
Show the y-coordinate of the highest and lowest point of the ellipse is +0, based on
the partial derivative of (x — p)TE " (z — p) = 1 w.r.t. x, see (2.56), p. 31.

(3) Generate a covariance matrix V following a Wishart distribution V. ~ W(n, I2).
Plot the standard ellipse of V. Repeat the experiment and observe the variation of V.
Vary n = 5,10, 50 and discuss the result.

(2) This and the following exercise show that it is sufficient to determine the noncentral
moments of basic variables, since the central moments and moments of transformed
variables linearly depending on the original variables can be expressed as functions
of the noncentral moments. As an example we have the relation between the second
central moment o and the moments m; and meo, given by ps = msy — m%. This can
be generalized to higher-order moments.

Express the third central moments of a distribution ;;,7 + & = 3 as a function of the
third moments m;;,i 4 j = 3.

(3) Let the moments of two variables z and y be denoted by m, := mag, m, = moa,
Mg ‘= Moo, etc. Derive the central second ‘moments M, Muv, Mayy Of the rotated

variables u and v,
u| |cos¢p —sing| |z
[v] o [sinqb cos ¢ } {y}’ (2.230)

as a function of ¢ and the noncentral moments of z and y.
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15.

16.

17.
18.

19.

20.

21.

22.

23.
24.

25.

(1) Given are two correlated random variables z and y with the same standard de-
viation ¢. Give the standard deviations and the correlation of their sum and their
difference. How does the result specialize, if (a) the two random variables are uncor-
related, (b) are correlated with 100%, and (c) are correlated with minus 100%?

(1) Show that the correlation coefficient p,, between two stochastic variables z and y
lies in the interval [—1, +1], as the covariance matrix needs to be positive semi-definite.
Show that the covariance matrix is singular if and only if p = £1.

(1) Prove E(az + b) = alE(z) + b, see (2.109), p. 38.

(2) Given are three stochastically independent random variables, z ~ M (3,4), y ~
M(—2,1), and z ~ M(1,9).

a. (1) Derive the mean and the standard deviation of the two functions
u=1+2z—vy, v=—-3+4+2y+3z. (2.231)

b. (1) What is the correlation coefficient pq,?

c. (1) Let a further random variable be w = u + z. What is the variance of w and its
correlation pg,, with ?

d. (1) What is the covariance matrix Cov(u, [v,w]")?

(2) We want to approximate the normal distribution N (u,0?) by a uniform distribu-
tion such that the mean and the variance is identical to the normal distribution. Give
the parameters a and b. Especially relate the range r = b — a of the uniform distri-
bution to the standard deviation o of the normal distribution. Compare the result to
or = +/1/12, see (2.120), p. 39.

(1) Given a sequence g(i) ~ M (u(i),o?),i = 1,2, 3, ... of random variables representing
a noisy sampled signal g(t), its discrete derivative can be determined from g;(i) =
(9(i+1) — g(i — 1))/2. Determine the standard deviation of g, (7).

(3) We say a random variable z ~ kx?2 follows a kx?2 distribution if z/k ~ x2. Given
an array g, ~ M (15, 0?) of random variables, representing a noisy sampled function
g(z,y), the partial derivatives can be derived from

gw(i?j) = (g(l+ 17j) _g(i_ 17j))/27 gy(ivj) = (g(i7j+1) _g(i’j_ 1))/2' (2'232)

Give the standard deviations of the two partial derivatives and their covariance. What
is the distribution of the squared magnitude m?(i, j) := |Vg(i,5)|* = g2 (i, j) —l—gfj(i, 7)
of the gradient Vg = [g,,g,]"? Hint: Which distribution would m? follow if the two
random variables 9, and g, were standard normally distributed?

(1) Let y ~ x3 be x-square distributed with two degrees of freedom. Determine the
mean /i,. Relate the a-percentile x» , to the mean.
(2) Given a random variable x ~ N(0,1), show that 22 ~ x3.
(2) Given the basis b of two cameras with principal distance ¢ and the z-coordinates
2’ and z” of the two image points of a scene point, its distance Z from the camera is
given by

gt (2.233)

! — !

Assume the variables, namely b, ¢, 2’, and 2"/, are uncertain, with individual standard
deviations o3, 0., 04/, and o, respectively, and mutually independent. Derive the
standard deviation oz of Z. Derive the relative precision oz /uz of Z as a function of
the relative precision of the three variables b, ¢, and p = 2" — 2’.

(2) Given are two points p = [2,1]T m and q = [10,9]T m. Their distances to an
unknown point * = [z,y] are s = 5 m and ¢ = 13 m and have standard deviation
os =0, = 0.1 m.
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26.

a. (1) Prove that the two intersection points of the circles around p and q are ¢ =
[14,6]" m and =5 = [7,13]T m.
b. (2) Derive the covariance matrix of the intersection point ;.

(3) Given is the function y = f(x) = 2* — 23 and the random variable z ~ N(0, 1).
Derive the mean and the variance of y = f(z)

a. using variance propagation,
b. using the unscented transformation,
c. using 10,000 samples of x as reference,

and compare.

Proofs

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

(1) Steiner’s theorem ((2.94), p. 37) relates the noncentral second and the central
second moments of a variable via the mean. Generalize the theorem to multivariate
variables.

(1) Prove the expression (2.70), p. 34 for the x distribution. Hint: Apply (2.128), p. 41
to (2.66), p. 33.

(1) Refer to the Wishart distribution ((2.71), p. 34) and prove that for ¥ = 1 and
V =y we obtain the x? distribution ((2.66), p. 33).

(1) Prove the expression (2.150), p. 44 for the second-order approximation for the
variance.

(1) Prove the expression (2.151), p. 44 for the second-order approximation of the mean
of a function depending on a vector.

(1) Prove the first- and second-order approximation (2.154), p. 45 for the mean of a
product.

(2) Prove the expression (2.157), p. 45 for the expectation of (z — i )%(y — py)? of two
correlated Gaussian variables. Hint: Assume fi; = fty = 0.

(1) Prove the expression (2.158), p. 45 for the second-order approximation of the
expectation of a random vector, which is normalized to length 1.

(1) Prove (2.163), p. 46. Hint: use (2.151), p. 44 for each component z; of x.

(1) Let the random variable z ~ N(m,o2) with m > 0 be given. Let the derived
random variable be y = 1/zx.

Using (2.149), p. 44 and (2.117), p. 39, derive a general expression for the odd moments
of E(y). Show that the series for odd n begins with

1 1 2 30% 1509
]E() =— <1+J;”+Uf+ ZT +) (2.234)

Show that the series diverges.

(1) Given the cumulative distribution P,(x) of a random variable z, show that the
random variable P, '(y) has density p,(z) if y is uniformly distributed in the interval
[0,1].
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