
Chapter 2
Invertible Mappings

2.1 Injective, Surjective and Bijective Mappings

Given the map f : A → B, and I ⊂ A, the set

f (I ) = { f (x) : x ∈ I }

is called the image of I under f . If I = A, then f (A) is called the image of f , or
the range of f , and denoted Im( f ). Observe that f (A) ⊂ B but that, in general,
f (A) �= B.

Definition 2.1 The map f : A → B is called surjective if f (A) = B, that is, if
for every b ∈ B there exists a ∈ A such that f (a) = b, and it is called injective
if it never sends distinct points into the same point, that is, if f (a1) �= f (a2) for
any a1, a2 ∈ A with a1 �= a2. Finally, f is called bijective if it is both injective and
surjective.

From the definition of injectivemap it follows at once that f is not injective whenever
there exist a1, a2 ∈ A with a1 �= a2 such that f (a1) = f (a2). Hence, even functions,
defined on symmetric subsets of R, are never injective. Similarly, f is not surjective
if there exists b ∈ B that is not in the image of f .

Definition 2.2 Let f : A → B be a map and take a subset J ⊆ B. The inverse
image, or preimage, of J under f is the set of points of A that are sent by f into J ,
that is

f −1(J ) = {a ∈ A : f (a) ∈ J } ⊆ A.

Evidently, f is injective exactly when the inverse image of any singleton (that is, a
set of the form J = {b}, for some b ∈ B) is either a singleton (a set of the form {a},
for some a ∈ A) or empty, and is surjective when the inverse image of any singleton
is not empty.

It is possible and useful to interpret the notions of injectivity and surjectivity for
maps that are defined on subsets of R into R in terms of their graphs. Take such a
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map f : I ⊆ R → R and denote as usual by Γ ( f ) its graph. For any y0 ∈ R,

f −1({y0}) = {x ∈ I : (x, y0) ∈ Γ ( f )}.

Therefore, the preimage of a point is found by considering the horizontal line y = y0
and then by collecting all the abscissae of the points that lie on the intersection
between the horizontal line and Γ ( f ). It follows in particular that f is injective
if and only if every horizontal line intersects Γ ( f ) in at most one point and it is
surjective if and only if every horizontal line intersects Γ ( f ) in at least one point.
Therefore, f is bijective if and only if every horizontal line intersectsΓ ( f ) in exactly
one point.

If one considers a function f : I ⊂ R → J , where J is a prescribed subset of
R, then the previous graphical interpretations must be modified by taking horizontal
lines of the form y = y0 only for the values y0 that belong to J . For example, the
function f : [0, 1] → [0, 1] defined by x �→ x is bijective, as well as x �→ xn for any
positive integer n. Indeed, for any positive integer n, and every horizontal line with
equation y = y0 with y0 ∈ [0, 1] intersects the graph of the function x �→ xn in the
single point x0 = n

√
y0 ∈ [0, 1]. Further, the mapping ϕ : [−π/2, π/2] → [−1, 1]

defined by ϕ(x) = sin x is also bijective, as the reader is urged to check with a simple
drawing and then appealing to elementary trigonometry,whereas themapψ : R → R

defined by ψ(x) = sin x is neither injective (because sin x = sin(x + 2kπ) for any
k ∈ Z) nor surjective (because 2 ∈ R is not in the image of ψ).

The property of being injective is somehow intrinsic to a map, whereas the prop-
erty of being surjective can always be achieved by suitably changing the codomain.
Indeed, given f : A → B, the new map

f̃ : A → f (A), f̃ (a) = f (a) (2.1)

is defined by the same law and on the same set as f , and is automatically surjective.
Occasionally, f̃ will be referred to as the surjective map naturally associated with f .

2.2 Inversion of a Map

Definition 2.3 Take any set A. The map idA : A → A defined by idA(a) = a for
every a ∈ A is called the identity mapping of A.

Definition 2.4 The map f : A → B is called invertible if there is a map g : B → A
such that:

(i) g ◦ f = idA;
(ii) f ◦ g = idB .

In this case, the map g, necessarily unique, is called the inverse map of f and is
denoted g = f −1.
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Proposition 2.1 The map f : A → B is invertible if and only if it is bijective.

Although Proposition 2.1 clarifies that only the bijective maps are invertible, it is
customary to relax the notion of invertibility in view of the fact that surjectivity can
always be achieved, as discussed at the end of the previous section. In what follows,
the notion of invertible map is used to mean that f is injective. If this is the case,
the surjective map f̃ naturally associated with f by (2.1) is actually bijective and
hence invertible in the strict sense. This slight ambiguity is best circumvented by
requiring to explicitly determine the image of f , which coincides with the domain
of the inverse (whenever f is injective), and then, with slight abuse of notation, to
identify f with f̃ .

Another issue that often occurs naturally is local invertibility. By this it is meant
that a function f might fail to be injective on its domain, for example f (x) = x2 is not
injective on R, but perhaps its restriction to a proper subset of its domain is injective
and thus, in the broader sense just discussed, invertible. For example the restriction
of f (x) = x2 to [0,+∞) is injective. This justifies the following definition.

Definition 2.5 If f : A → B is a map and I ⊂ A is a subset of A such that the
restriction f |I is injective, then f is said to be invertible on I (onto its image).

A map f : A → B is invertible on I onto its image if and only if for any b in f (I )
the equation f (a) = b has a unique solution a ∈ I .

2.3 Monotone Functions

Definition 2.6 The function f : I ⊂ R → R is called:

(i) increasing if, whenever x1, x2 ∈ I are such that x1 < x2, then f (x1) < f (x2);
(ii) nondecreasing if, whenever x1, x2 ∈ I are such that x1 < x2, then f (x1) ≤

f (x2);
(iii) decreasing if, whenever x1, x2 ∈ I are such that x1 < x2, then f (x1) > f (x2);
(iv) nonincreasing if, whenever x1, x2 ∈ I are such that x1 < x2, then f (x1) ≥

f (x2).

If f satisfies either of the above conditions, then it is called monotone or monotonic.
If it satisfies either (a) or (c), then it is called strictly monotone, or strictly monotone.
The strictly monotone functions are those that either preserve or invert the order
relations. Sometimes the increasing functions are called strictly increasing and the
decreasing functions are called strictly decreasing.

Observe that the composition of monotone maps is always monotone. The point is
that, loosely speaking, a monotone map either preserves or inverts the order, either
in the strong sense (strictly monotone maps) or in the weak sense (kinds (ii) and (iv)
in the definition), so that in the end the order is either preserved or reversed (strongly
or weakly), according to which kind of monotoneities were involved. The reader is
urged to check which compositions lead to which monotone maps.
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Table 2.1 monotoneity of f + g with f, g : I → R

f g f + g

Increasing Increasing Increasing

Decreasing Decreasing Decreasing

Table 2.2 monotoneity of f g with f, g : I → R

f Sign of f g Sign of g f g

Increasing Positive Increasing Positive Increasing

Increasing Positive Decreasing Negative Decreasing

Increasing Negative Decreasing Positive Increasing

Decreasing Positive Increasing Negative Increasing

Decreasing Negative Increasing Positive Decreasing

Decreasing Negative Decreasing Negative Increasing

Table 2.3 monotoneity of
f ◦ g, with Im(g) ⊂ Dom( f )

f g f ◦ g

Increasing Increasing Increasing

Increasing Decreasing Decreasing

Decreasing Decreasing Increasing

Decreasing Increasing Decreasing

Proposition 2.2 If f : I ⊂ R → R is strictly monotone, then f is injective.

Notice that the reverse implication is false, for example the function f (x) = 1/x
is injective but not monotone on its natural domain R \ {0}. Observe also that the
inverse of a strictly monotone map is again a strictly monotone map, with the same
type of monotoneity.

Monotoneity of sums, products and compositions of functions can be inferred,
but not always. The results are summarized in Tables2.1, 2.2 and 2.3 in the cases
in which a conclusion can be drawn. In each of the remaining cases it is possible to
produce examples with different behaviours.

2.4 Guided Exercises on Invertible Mappings

2.1 Consider the function f : [0,+∞)→[0, π/4) defined by f (x) = arctan
x

x + 1
.

Prove that f is invertible and write the explicit expression of its inverse.
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Answer. Consider the auxiliary maps h : [0,+∞) → [0, 1) and g : [0, 1) →
[0, π/4) defined by

h(x) = x

x + 1
, g(x) = arctan x .

Then f is the composition f (x) = g(h(x)) = g◦h(x). Now, both h and g are strictly
increasing maps, so that f is also strictly increasing, hence invertible. Indeed, the
arctangent map is monotone, being the inverse map of a strictly increasing map (the
restriction of the tangent to (−π/2, π/2)), whereas to see that h is monotone just
observe that

h(x) = x + 1 − 1

x + 1
= 1 − 1

x + 1
.

In order to find the expression of the inverse, for any given y ∈ [0, π/4) one must
find x ∈ [0,+∞) such that f (x) = y. Now

arctan
x

x + 1
= y =⇒ tan y = x

x + 1
=⇒ x(1 − tan y) = tan y

=⇒ x = tan y

1 − tan y

Therefore f −1 : [0, π/4) → [0,+∞) is defined by f −1(y) = tan y/(1 − tan y).
This exercise is a direct application of two properties: the composition of strictly

monotone maps is strictly monotone and a strictly monotone map is invertible. In
the case at hand, the search of the inverse map leads to an answer by “undoing” each
operation, in the correct order, or, more technically, observing that

f = g ◦ h =⇒ f −1 = h−1 ◦ g−1.

Evidently, here g−1(x) = tan x and h−1(x) = x/(1 − x).

2.2 Determine if the function

f (x) =

⎧
⎪⎨

⎪⎩

−x2 − 1 x < 0

0 x = 0

x + 1 x > 0

is invertible and, if yes, find an explicit expression of its inverse.

Answer. The restriction f1 = f
∣
∣
(−∞,0] → (−∞,−1) ∪ {0} is a bijection. Indeed, if

x1, x2 ∈ (−∞, 0) are such that x1 < x2, then

f (x1) − f (x2) = −x21 + x22 = (x2 − x1)(x1 + x2) �= 0,
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and, more precisely, f1(x1) − f1(x2) < 0, so that f1 is strictly increasing. Take now
y ∈ (−∞,−1). Then y ∈ Im( f1) because the negative number x = −√−1 − y
satisfies

−x2 − 1 = −(−√−1 − y
)2 − 1 = y.

Observe further that f1(0) = 0, so that f1 is a bijection.
Next, f2 = f

∣
∣
(0,+∞)

→ (1,+∞), which is defined by f2(x) = x + 1, is clearly
also a bijection and hence f : R → (−∞, 1) ∪ {0} ∪ (1,+∞) is a bijection, with
inverse

f −1(x) =

⎧
⎪⎨

⎪⎩

−√−1 − x x < −1

0 x = 0

x − 1 x > 1.

In this exercise the given function has different expressions in different intervals
and therefore needs to be analyzed in each of them separately. Now, 0 goes to 0,
and it is rather clear that in fact the negative real numbers are sent to negative real
numbers and likewise for the positive real numbers, so that in the end the map is a
bijection. All remains to be done is to write the explicit inverse mappings.

2.3 Prove that the map f : [1,+∞) → [1,+∞) defined by f (x) = elog
2 x is

invertible, and write the explicit expression of f −1.

Answer. Take x1 and x2 with 1 ≤ x1 < x2. Then

0 ≤ log x1 < log x2 =⇒ elog
2 x1 < elog

2 x2 =⇒ f (x1) < f (x2).

Therefore f is strictly increasing, hence invertible. Take now y ≥ 1. The point x ≥ 1
satisfies f (x) = y provided that

elog
2 x = y = elog y =⇒ log2 x = log y =⇒ log x = √

log y =⇒ x = e
√
log y .

Evidently
√
log y ≥ 0 and hence its exponential is in [1,+∞). Therefore the image

of f is [1,+∞) and f −1 : [1,+∞) → [1,+∞) is given by f −1(y) = e
√
log y .

This exercise is standard and simply requires to see that the given function actually
maps the set [1,+∞) bijectively onto itself. For injectivity, it is immediately seen
that f is increasing. For surjectivity, it is easy to find the solution of f (x) = y, that
is, to find the inverse map.

2.4 Consider the function g(x) = 1

4 arcsin x − π
.

(a) Find the domain of g.
(b) Determine the image of g.
(c) Prove that the restriction of g to (−1, 1/

√
2) is invertible and write its inverse.
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Answer. (a) Put f (x) = arcsin x and h(y) = 1/(4y − π), so that g = h ◦ f . The
domain of g is therefore:

Dom(g) = {
x ∈ R : x ∈ Dom( f ), f (x) ∈ Dom(h)

}

= {
x ∈ R : x ∈ [−1, 1], arcsin x �= π

4

}

= {
x ∈ R : x ∈ [−1, 1], x �=

√
2

2

}

= [−1,

√
2

2
) ∪ (

√
2

2
, 1].

(b) The image of g consists of those y ∈ R for which there exists x ∈ Dom(g)
such that y = g(x). Thus

y ∈ Im(g) ⇐⇒ there exists x ∈ Dom(g) such that: y = (4 arcsin x − π)−1

⇐⇒ there exists x ∈ Dom(g) such that: 4y arcsin x − πy = 1.

From the latter it follows that

y �= 0 and y ∈ Im(g) ⇐⇒ there exists x ∈ Dom(g) such that: arcsin x = πy + 1

4y

⇐⇒ πy + 1

4y
∈ Im( f ) \ {

f
(
√
2

2

)} = [−π

2
,
π

2
] \ {π

4

}
,

where again f (x) = arcsin x . Hence, if y �= 0 and y ∈ Im(g), then

−π

2
≤ πy + 1

4y
≤ π

2
and

πy + 1

4y
�= π

4
.

It follows that y ∈ (−∞,−1/(3π)] ∪ [1/π,+∞) and hence

Im(g) = (−∞,− 1

3π
] ∪ [ 1

π
,+∞).

(c) The function f (x) = arcsin x is increasing. Hence

−π

2
= f (−1) < f (x) < f

( 1√
2

)
= π

4
,

namely f (x) ∈ (−π/2, π/4), for every x ∈ (−1, 1/
√
2). Further, h(y) is decreasing

in (−π/2, π/4). Since g is the composition of f and h, which are both strictly
monotone but with opposite monotoneity, g is decreasing on (−1, 1/

√
2) and hence

invertible on this interval. Finally, from (b) it follows that
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y = g(x) ⇐⇒ arcsin x = πy + 1

4y
,

πy + 1

4y
∈ [−π

2
,
π

2
].

From this it follows that x = sin((πy + 1)/(4y)), and finally

g−1(y) = sin
(πy + 1

4y

)
.

In this exercise, the basic idea is again to view g as a composite function. Once this is
done, then finding the domain and the image is achieved by carefully following what
each map ( f and h) does. Most of the effort actually goes into finding the image of
g. Inversion is done by inverting each of f and h.

2.5 Consider the function f (x) = |x | + x2 − 1.

(a) Establish if −5/4 ∈ Im( f ).
(b) Find the largest neighborhood of x0 = 1 on which the function is invertible, and

write the explicit analytic expression of the inverse.

Answer. (a) Observe that −5/4 ∈ Im( f ) if and only if the equation

−5

4
= |x | + x2 − 1

has a solution in R, the domain of f . However, for every x ∈ R

f (x) = |x | + x2 − 1 ≥ −1 > −5

4
,

so that −5/4 /∈ Im( f ).
(b) Since f is an even function, it is not injective, hence not invertible. Consider the

restrictionof f to the interval [0,+∞) anddenote it by g, explicitly g(x) = x+x2−1.
It is easy to see that g is increasing in its domain, for if 0 ≤ x1 ≤ x2, then x21 < x22
and hence

g(x1) = x21 + x1 − 1 < x22 + x2 − 1 = g(x2).

Therefore g is invertible. In order to find the explicit analytic expression of the
inverse of (the surjective map naturally associated with) g, the second order equation
y = x + x2 − 1 must be solved for x as a function of y. The roots of the polynomial
x2 + x − 1 − y are

x1(y) = −1 − √
5 + 4y

2
, x2(y) = −1 + √

5 + 4y

2
.
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Clearly, x1(y) < 0, whereas x2(y) > 0 because y > −1. Therefore

g−1(y) = x2(y) = −1 + √
5 + 4y

2

and it follows that Dom(g−1) = Im(g) = [−1,+∞).
This is a basic exercise on invertible mappings, where it is required to show that

globally the function is not invertible but it is so if properly restricted. The presence
of both an absolute value and a quadratic term imply that f is actually even, hence
non invertible. But if one looks at one of the “branches” of f , namely [0,+∞),
then f is monotone hence invertible. The explicit expression comes from taking the
appropriate square root.

2.6 Consider the function f (x) = 1

log1/3(x − 2)
− 1.

(a) Find the domain of f .
(b) Establish if f is invertible for x > 3 and, if yes, find the explicit analytic

expression of the inverse g−1, where g = f |(3,+∞), specifying its domain.

Answer. (a) In order for log1/3(x − 2) to be well defined, it must be x − 2 > 0,
that is x > 2. Further, log1/3(x − 2) �= 0 if x − 2 �= 1. Therefore Dom( f ) =
(2, 3) ∪ (3,+∞).

(b) For x > 3, f is increasing. Indeed, x �→ log1/3(x − 2) is decreasing and
positive. Hence x �→ 1/ log1/3(x − 2) is increasing and such is also the function
x �→ (1/ log1/3(x −2))−1. As f is increasing on (3,+∞), the restriction g of f to
this interval is invertible. Since x > 3, one has log1/3(x − 2) < 0 and f (x) < −1.
Therefore, f ((3,+∞)) ⊂ (−∞,−1). Furthermore, if y < −1, then the equation
y = f (x) has a solution if and only if

1

log1/3(x − 2)
− 1 = y ⇐⇒ 1

log1/3(x − 2)
= y + 1

⇐⇒ log1/3(x − 2) = 1

y + 1

⇐⇒ x − 2 =
(
1

3

) 1
y+1

⇐⇒ x = 2 +
(
1

3

) 1
y+1

.

Since y < −1, it follows that (1/3)
1

x+1 > 1 and x > 3, that is (−∞,−1) ⊂
f ((3,+∞)). Hence g−1(x) = 2 + (1/3)

1
x+1 .

Here the proof that the appropriate restriction of f is increasing can be carried out
by viewing f as a composition of functions. The final formula is obtained undoing
each of the several functions in the correct order.
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2.5 Problems on Invertible Mapings

2.7 Consider the function f (x) = 1/(1 − 3x ).

(a) Find the domain and the image of f .
(b) Study the monotoneity of f and establish if f is invertible.
(c) Write f −1, if it exists, and specify both its domain and its image.

2.8 Consider the function f (x) = −1/(log2 |x | + 1).

(a) Find the domain and the image of f .
(b) Study the monotoneity of f and establish if f is invertible.
(c) Denote by g the restriction of f to (1/2,+∞). Determine whether g is invertible

and, if yes, write g−1 explicitly, specifying its domain.

2.9 Consider the function f (x) = log
(
x2 − 3x + 1

)
.

(a) Find the domain of f .
(b) Find the largest interval I containing x0 = 3 on which f is injective.
(c) Determine J = f (I ) and compute the inverse ( f |I )−1 : J → I .

2.10 Consider the function

f (x) = 1

x2 − x + 3
− 3

11

and denote by g the restriction of f to [1/2,+∞). Determine g−1, if it exists, and
specify its domain.

2.11 Consider the function f : R → [−1, 1] defined by

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

x
x ∈ (−∞,−1]

x x ∈ (−1, 0)

1 − x x ∈ [0, 1)
−1

x
x ∈ [1,+∞).

(a) Draw the graph of f .
(b) Establish whether f is injective and/or surjective.
(c) Establish in which intervals f is increasing.
(d) Draw the graph of f (|x |).
2.12 Consider the function f (x) = 1

1 + √|x − 2| .
(a) Find the domain of f .
(b) Check if f is invertible for x > 2 and, if yes, find the inverse function g−1 of

the restriction g = f |(2,+∞).
(c) Find the even and odd parts of F(x) = f (x + 2).
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2.13 On which maximal intervals, if any, is f (x) = 1√
1 − log x

injective?

2.14 Show that the restriction of f (x) = x − 1

x
to (0,+∞) is invertible and find

an explicit expression of the inverse.

2.15 Consider the function f (x) = ex√
ex − 1

. Find an interval I on which f is

invertible and write the explicit expression of ( f |I )−1.

2.16 Consider the function f : (−∞,+∞) → (−π/2, π/2] defined by

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

arctan x x ∈ (−∞,−π
4 ] ∪ [π

4 ,+∞)

2x + π

2
x ∈ (−π

4 , 0]
−2x x ∈ (0, π

4 ).

(a) Draw the graph of f .
(b) Establish whether f is injective and/or surjective.
(c) Establish in which intervals f is increasing.

2.17 On which intervals, if any, is the function f (x) = e−x

√
log x − 5

injective?

2.18 Consider the function f (x) = ex

e2x + ex + k
.

(a) For which values of the real parameter k the function f is defined on R?
(b) Put k = 1. Find a neighborhood of x0 = −1 in which f is invertible and write

an explicit analytic expression of the inverse.

2.19 Is the function

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2

[(
2

3

)x

+ 1

x + 1

]

x ≥ 0

2x + 3

x + 1
x < −1

invertible in its domain?

2.20 Consider the function g(x) = √
log2 x − log4(x − 1)2.

(a) Find the domain of g.
(b) Establish if g is invertible in its domain.
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2.21 Consider the function

f (x) =
{
2

x2+1
x x < 0

− 1
5 cos(2 arctan x) x ≥ 0.

(a) Find the image of f .
(b) Put I = (−1, 1). Establish if g = f |I is invertible and, if yes, find g−1.
(c) Determine a neighborhood of x0 = −2 in which f is invertible.
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