Chapter 2
Invertible Mappings

2.1 Injective, Surjective and Bijective Mappings

Giventhe map f : A — B,and I C A, the set

I ={fx):xel}

is called the image of I under f.If I = A, then f(A) is called the image of f, or
the range of f, and denoted Im(f). Observe that f(A) C B but that, in general,

f(A) #B.

Definition 2.1 The map f : A — B is called surjective if f(A) = B, that is, if
for every b € B there exists a € A such that f(a) = b, and it is called injective
if it never sends distinct points into the same point, that is, if f(a;) # f(ay) for
any a;, a, € A with a; # a,. Finally, f is called bijective if it is both injective and
surjective.

From the definition of injective map it follows at once that f is not injective whenever
there exist a;, a, € A witha; # a such that f(a;) = f(a»). Hence, even functions,
defined on symmetric subsets of R, are never injective. Similarly, f is not surjective
if there exists b € B that is not in the image of f.

Definition 2.2 Let f : A — B be a map and take a subset / C B. The inverse
image, or preimage, of J under f is the set of points of A that are sent by f into J,
that is

flW)={aecA: f(a) e J}C A.

Evidently, f is injective exactly when the inverse image of any singleton (that is, a
set of the form J = {b}, for some b € B) is either a singleton (a set of the form {a},
for some a € A) or empty, and is surjective when the inverse image of any singleton
is not empty.

It is possible and useful to interpret the notions of injectivity and surjectivity for
maps that are defined on subsets of R into R in terms of their graphs. Take such a
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30 2 Invertible Mappings
map f : I € R — R and denote as usual by I"(f) its graph. For any yy € R,

F o) ={x el :(x,y0) € T'(f)}.

Therefore, the preimage of a point is found by considering the horizontal line y = yy
and then by collecting all the abscissae of the points that lie on the intersection
between the horizontal line and I'(f). It follows in particular that f is injective
if and only if every horizontal line intersects I"(f) in at most one point and it is
surjective if and only if every horizontal line intersects I"(f) in at least one point.
Therefore, f is bijective if and only if every horizontal line intersects I" () in exactly
one point.

If one considers a function f : I C R — J, where J is a prescribed subset of
R, then the previous graphical interpretations must be modified by taking horizontal
lines of the form y = yy only for the values y that belong to J. For example, the
function f : [0, 1] — [0, 1] defined by x — x is bijective, as well as x — x" for any
positive integer n. Indeed, for any positive integer n, and every horizontal line with
equation y = yo with yg € [0, 1] intersects the graph of the function x +— x" in the
single point xo = /yo € [0, 1]. Further, the mapping ¢ : [—n/2, n /2] — [—1, 1]
defined by ¢(x) = sin x is also bijective, as the reader is urged to check with a simple
drawing and then appealing to elementary trigonometry, whereas themap ¢ : R — R
defined by ¥ (x) = sin x is neither injective (because sin x = sin(x + 2km) for any
k € Z) nor surjective (because 2 € R is not in the image of ).

The property of being injective is somehow intrinsic to a map, whereas the prop-
erty of being surjective can always be achieved by suitably changing the codomain.
Indeed, given f : A — B, the new map

fiA—= f(A), f@=f@ Q2.1

is defined by the same law and on the same set as f, and is automatically surjective.
Occasionally, f will be referred to as the surjective map naturally associated with f.

2.2 Inversion of a Map

Definition 2.3 Take any set A. The map id4 : A — A defined by id4(a) = a for
every a € A is called the identity mapping of A.

Definition 2.4 Themap f : A — Biscalled invertible if thereisamapg : B — A
such that:

() go f=ida;
(i) f og =1idp.
In this case, the map g, necessarily unique, is called the inverse map of f and is
denoted g = f~ 1.
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Proposition 2.1 The map f : A — B is invertible if and only if it is bijective.

Although Proposition 2.1 clarifies that only the bijective maps are invertible, it is
customary to relax the notion of invertibility in view of the fact that surjectivity can
always be achieved, as discussed at the end of the previous section. In what follows,
the notion of invertible map is used to mean that f is injective. If this is the case,
the surjective map f naturally associated with f by (2.1) is actually bijective and
hence invertible in the strict sense. This slight ambiguity is best circumvented by
requiring to explicitly determine the image of f, which coincides with the domain
of the inverse (whenever f is injective), and then, with slight abuse of notation, to
identify f with f.

Another issue that often occurs naturally is local invertibility. By this it is meant
that a function f might fail to be injective on its domain, for example f (x) = x2isnot
injective on R, but perhaps its restriction to a proper subset of its domain is injective
and thus, in the broader sense just discussed, invertible. For example the restriction
of f(x) = x? to [0, +-00) is injective. This justifies the following definition.

Definition 2.5 If f : A — Bisamapand I C A is a subset of A such that the
restriction f|; is injective, then f is said to be invertible on I (onto its image).

A map f : A — B is invertible on [ onto its image if and only if for any b in f (1)
the equation f(a) = b has a unique solutiona € I.

2.3 Monotone Functions

Definition 2.6 The function f : I C R — R is called:

(i) increasing if, whenever x1, x, € I are such that x; < x;, then f(x;) < f(x2);

(i1) mnondecreasing if, whenever x;, x, € [ are such that x; < x;, then f(x;) <
Sf(x2);

(iii) decreasing if, whenever x1, x, € I are such that x; < x;, then f(x1) > f(x2);

(iv) nonincreasing if, whenever x;, x, € I are such that x; < x;, then f(x;) >

f(x2).

If f satisfies either of the above conditions, then it is called monotone or monotonic.
If it satisfies either (a) or (c), then it is called strictly monotone, or strictly monotone.
The strictly monotone functions are those that either preserve or invert the order
relations. Sometimes the increasing functions are called strictly increasing and the
decreasing functions are called strictly decreasing.

Observe that the composition of monotone maps is always monotone. The point is
that, loosely speaking, a monotone map either preserves or inverts the order, either
in the strong sense (strictly monotone maps) or in the weak sense (kinds (ii) and (iv)
in the definition), so that in the end the order is either preserved or reversed (strongly
or weakly), according to which kind of monotoneities were involved. The reader is
urged to check which compositions lead to which monotone maps.
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Table 2.1 monotoneity of f + g with f, g : I - R

2 Invertible Mappings

f g fteg

Increasing Increasing Increasing

Decreasing Decreasing Decreasing

Table 2.2 monotoneity of fg with f, g : I — R

f Sign of f g Sign of g fg

Increasing Positive Increasing Positive Increasing

Increasing Positive Decreasing Negative Decreasing

Increasing Negative Decreasing Positive Increasing

Decreasing Positive Increasing Negative Increasing

Decreasing Negative Increasing Positive Decreasing

Decreasing Negative Decreasing Negative Increasing

;a: t iz?th?rﬁ?(g);ogegi;f( S — LR fo8
Increasing Increasing Increasing
Increasing Decreasing Decreasing
Decreasing Decreasing Increasing
Decreasing Increasing Decreasing

Proposition 2.2 If f : I C R — R is strictly monotone, then f is injective.

Notice that the reverse implication is false, for example the function f(x) = 1/x
is injective but not monotone on its natural domain R \ {0}. Observe also that the
inverse of a strictly monotone map is again a strictly monotone map, with the same
type of monotoneity.

Monotoneity of sums, products and compositions of functions can be inferred,
but not always. The results are summarized in Tables2.1, 2.2 and 2.3 in the cases
in which a conclusion can be drawn. In each of the remaining cases it is possible to
produce examples with different behaviours.

2.4 Guided Exercises on Invertible Mappings

X

2.1 Consider the function f : [0, +00)— [0, 7 /4) defined by f(x) = arctan

Prove that f is invertible and write the explicit expression of its inverse.

x+1
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Answer. Consider the auxiliary maps # : [0, +00) — [0,1) and g : [0,1) —
[0, 7 /4) defined by

h(x) = g(x) = arctan x.

X
x+1
Then f is the composition f(x) = g(h(x)) = goh(x). Now, both h and g are strictly
increasing maps, so that f is also strictly increasing, hence invertible. Indeed, the
arctangent map is monotone, being the inverse map of a strictly increasing map (the
restriction of the tangent to (—m /2, m/2)), whereas to see that 4 is monotone just
observe that

x+1-1 1

h = =1- .
*) x+1 x+1

In order to find the expression of the inverse, for any given y € [0, 7 /4) one must
find x € [0, +00) such that f(x) = y. Now

X
arctan = > tany = ——
x+1 Y Y x+1
— x(1—tany)=tany
tan y

= xX=-—""
1 —tany

Therefore f~' : [0, m/4) — [0, +-00) is defined by f~'(y) = tan y/(1 — tan y).

This exercise is a direct application of two properties: the composition of strictly
monotone maps is strictly monotone and a strictly monotone map is invertible. In
the case at hand, the search of the inverse map leads to an answer by “undoing” each
operation, in the correct order, or, more technically, observing that

f=goh = fl=htog™"

Evidently, here g~!(x) = tanx and A~ (x) = x/(1 — x).

2.2 Determine if the function

—x2-1 x<0
fx)=10 x=0
x+1 x>0

is invertible and, if yes, find an explicit expression of its inverse.

Answer. The restriction f; = f|(7C><j o~ (—o00, —1) U {0} is a bijection. Indeed, if
X1, X € (—00, 0) are such that x; < X, then

F(x1) = f(xa) = —xf +x3 = (xa — x1)(x1 +x2) # 0,
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and, more precisely, fi(x;) — fi(x2) < 0, so that f; is strictly increasing. Take now
y € (—oo, —1). Then y € Im(f;) because the negative number x = —/—1 —y

satisfies
—x*—1= —(—\/—1 —y)2 —1l=y.

Observe further that f;(0) = 0, so that f; is a bijection.

Next, f, = f‘(o to) (1, +00), which is defined by f>(x) = x + 1, is clearly
also a bijection and hence f : R — (—o0, 1) U {0} U (1, 4+00) is a bijection, with
inverse

—/—1—-x x<-1
') =10 x=0
x—1 x > 1.

In this exercise the given function has different expressions in different intervals
and therefore needs to be analyzed in each of them separately. Now, O goes to 0,
and it is rather clear that in fact the negative real numbers are sent to negative real
numbers and likewise for the positive real numbers, so that in the end the map is a
bijection. All remains to be done is to write the explicit inverse mappings.

2.3 Prove that the map f : [1,+00) — [1, +00) defined by f(x) = elog’x jg
invertible, and write the explicit expression of f~!.

Answer. Take x| and x, with 1 < x; < x,. Then

0 <logx; <logx, = elog’ s _ glog’n fx) < f(x2).

Therefore f is strictly increasing, hence invertible. Take now y > 1. The pointx > 1
satisfies f(x) = y provided that

elog’ ¥ _ y=e8Y — Jog?x=logy = logx=./logy = x= evioey,
Evidently +/Tog y > 0 and hence its exponential is in [1, +00). Therefore the image
of fis[l,+oo)and f~!:[1,400) — [1, +00) is given by f~!(y) = eVigy,

This exercise is standard and simply requires to see that the given function actually
maps the set [1, 4-00) bijectively onto itself. For injectivity, it is immediately seen
that f is increasing. For surjectivity, it is easy to find the solution of f(x) = y, that
is, to find the inverse map.

1

2.4 Consider the function g(x) = ——.
4arcsinx —
(a) Find the domain of g.

(b) Determine the image of g.

(c) Prove that the restriction of g to (—1, 1/ «/5) is invertible and write its inverse.
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Answer. (a) Put f(x) = arcsinx and h(y) = 1/(4y — m), sothat g = h o f. The
domain of g is therefore:

Dom(g) = {x € R: x € Dom(f), f(x) € Dom(h)}
={xeR:x e[—1,1], arcsinx # %}

={xeR:xe[—1,1],x;ﬁ§}

V2. N2
=[-1, ) U (510,

(b) The image of g consists of those y € R for which there exists x € Dom(g)
such that y = g(x). Thus

y € Im(g) <= there exists x € Dom(g) such that: y = (4arcsinx — )~
<= there exists x € Dom(g) such that: 4y arcsinx — 7y = 1.

From the latter it follows that

1
y#0andy € Im(g) < there exists x € Dom(g) such that: arcsinx = rcy4+
y
Ty +1 V2 T b4
I — )i =l-% = -
emM\ (£ =1-3. 31\ {F)

where again f(x) = arcsin x. Hence, if y # 0 and y € Im(g), then

mry+1
4y

T d #n
— an —.
-2 4

It follows that y € (—oo, —1/(3m)] U [1/7, +00) and hence

1 1
Im(g) = (—o0, —3—] U[—, 4+00).
T T

(c) The function f(x) = arcsin x is increasing. Hence

b1 1 b4
—3=Ien<rw<i(5)=7

namely f(x) € (—n/2, w/4),foreveryx € (—1, 1/+/2). Further, h(y) is decreasing
in (—m /2, w/4). Since g is the composition of f and A, which are both strictly
monotone but with opposite monotoneity, g is decreasing on (—1, 1/ V/2) and hence
invertible on this interval. Finally, from (b) it follows that
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wy+1 er—i—l6

-=. I
4y 4y 2° 27

y =g(x) <= arcsinx =

From this it follows that x = sin((wy + 1)/(4y)), and finally

_ . (my+1
g '(y) =sin ( )
4
In this exercise, the basic idea is again to view g as a composite function. Once this is
done, then finding the domain and the image is achieved by carefully following what

each map (f and &) does. Most of the effort actually goes into finding the image of
g. Inversion is done by inverting each of f and h.

2.5 Consider the function f(x) = |x| 4+ x> — 1.

(a) Establishif —5/4 € Im(f).
(b) Find the largest neighborhood of xo = 1 on which the function is invertible, and
write the explicit analytic expression of the inverse.

Answer. (a) Observe that —5/4 € Im( f) if and only if the equation

5
—Z=|x|—|—x2—1

has a solution in R, the domain of f. However, for every x € R
2 5
fx) =lx|+x —12—1>—Z,

so that —5/4 ¢ Im(f).

(b) Since f is an even function, itis not injective, hence not invertible. Consider the
restriction of f to the interval [0, +00) and denote it by g, explicitly g (x) = x+x>—1.
It is easy to see that g is increasing in its domain, for if 0 < x; < x,, then x12 < x%
and hence

g(xl)lez—i—xl —1<x§+x2—1=g(x2).

Therefore g is invertible. In order to find the explicit analytic expression of the
inverse of (the surjective map naturally associated with) g, the second order equation
y = x + x2 — 1 must be solved for x as a function of y. The roots of the polynomial
x> 4+x—1—yare

1-/5¥4y I RVAR S
[>Ty -—

xi(y) = — 5 . ()
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Clearly, x;(y) < 0, whereas x,(y) > 0 because y > —1. Therefore

- —1+./5+4y
g =x0))= —

and it follows that Dom(g~") = Im(g) = [—1, +00).

This is a basic exercise on invertible mappings, where it is required to show that
globally the function is not invertible but it is so if properly restricted. The presence
of both an absolute value and a quadratic term imply that f is actually even, hence
non invertible. But if one looks at one of the “branches” of f, namely [0, +00),
then f is monotone hence invertible. The explicit expression comes from taking the
appropriate square root.

1

—_— — 1.
log 3(x —2)

2.6 Consider the function f(x) =

(a) Find the domain of f.

(b) Establish if f is invertible for x > 3 and, if yes, find the explicit analytic
expression of the inverse g~!, where g = f|3.1o0), Specifying its domain.

Answer. (a) In order for log, 5(x — 2) to be well defined, it must be x —2 > 0,
that is x > 2. Further, log, 5(x —2) # 0if x — 2 # 1. Therefore Dom(f) =
(2,3) U (3, +00).

(b) For x > 3, f is increasing. Indeed, x +— log, 5(x — 2) is decreasing and
positive. Hence x +— 1/log, ;5(x — 2) is increasing and such is also the function
x = (1/1log;;3(x —2)) — 1. As f is increasing on (3, +00), the restriction g of f to
this interval is invertible. Since x > 3, one has log, /3 (x—2)<0and f(x) < —1.
Therefore, f((3, +00)) C (—oo, —1). Furthermore, if y < —1, then the equation
y = f(x) has a solution if and only if

1 1
— =y = — =y +1
10g1/3(x —2) 10g1/3(x —-2)

1
< lo xX—2)= ——
g1/3( ) vEl

1

1 y+1
— x—2=|3
' (3)
()
= x=2+ 3
Since y < —1, it follows that (1/3)$ > 1 and x > 3, that is (—o0, —1) C
F((3, +00)). Hence g~ ! (x) = 2 + (1/3)+1.
Here the proof that the appropriate restriction of f is increasing can be carried out

by viewing f as a composition of functions. The final formula is obtained undoing
each of the several functions in the correct order.

i+
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2.5 Problems on Invertible Mapings

2.7 Consider the function f(x) = 1/(1 — 3%).

(a) Find the domain and the image of f.
(b) Study the monotoneity of f and establish if f is invertible.
(c) Write f~!, if it exists, and specify both its domain and its image.

2.8 Consider the function f(x) = —1/(log, |x| + 1).

(a) Find the domain and the image of f.

(b) Study the monotoneity of f and establish if f is invertible.

(c) Denote by g the restriction of f to (1/2, 4+00). Determine whether g is invertible
and, if yes, write g~! explicitly, specifying its domain.

2.9 Consider the function f(x) = log (x* — 3x + 1).

(a) Find the domain of f.

(b) Find the largest interval I containing xo = 3 on which f is injective.
(c) Determine J = f(I) and compute the inverse (f|;)~': J — I.

2.10 Consider the function

1 3

=T

U if it exists, and

and denote by g the restriction of f to [1/2, 400). Determine g~
specify its domain.

2.11 Consider the function f : R — [—1, 1] defined by

% x € (=00, —1]
_]x x €(—1,0)
A F
_l XG[I,—‘,—oo)‘
X

(a) Draw the graph of f.

(b) Establish whether f is injective and/or surjective.
(c) Establish in which intervals f is increasing.

(d) Draw the graph of f(|x]).

1

2.12 Consider the function f(x) =

(a) Find the domain of f.

(b) Check if f is invertible for x > 2 and, if yes, find the inverse function g~! of
the restriction g = f|(2,+00)-

(c) Find the even and odd parts of F(x) = f(x + 2).
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2.13 On which maximal intervals, if any, is f(x) = injective?

1

/1 —logx
1

2.14 Show that the restriction of f(x) = x — — to (0, +00) is invertible and find
X

an explicit expression of the inverse.

eX
et —1

invertible and write the explicit expression of (f|;)~".

2.15 Consider the function f(x) = . Find an interval 7/ on which f is

2.16 Consider the function f : (—oo, +00) — (—m /2, w /2] defined by

arctanx x € (—oo, —Z]U[F, 4+00)
T
fx) = 2x+§ x e (=%,0]
—2x x € (0, 2).

(a) Draw the graph of f.
(b) Establish whether f is injective and/or surjective.
(c) Establish in which intervals f is increasing.
e—X
2.17 On which intervals, if any, is the function f(x) = ﬁ injective?
ogx —

X

2.18 Consider the function f(x) = ——.
e +e' +k

(a) For which values of the real parameter k the function f is defined on R?
(b) Put k = 1. Find a neighborhood of xo = —1 in which f is invertible and write
an explicit analytic expression of the inverse.

2y, ! o
2 [\3 1| *7
2x+3
x+1

2.19 Is the function

fx) =

x < —1

invertible in its domain?

2.20 Consider the function g(x) = \/logz x —log,(x — 1)

(a) Find the domain of g.
(b) Establish if g is invertible in its domain.
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2.21 Consider the function

f(x):[zvx x<0

—% cos(2arctanx) x > 0.

(a) Find the image of f.
(b) Put I = (-1, 1). Establish if g = f/|; is invertible and, if yes, find g~'.
(c) Determine a neighborhood of xo = —2 in which f is invertible.
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