
77© Springer International Publishing Switzerland 2016 
A.A. Farooqui, Therapeutic Potentials of Curcumin for Alzheimer Disease, 
DOI 10.1007/978-3-319-15889-1_2

    Chapter 2   
 Potential Animal Models of Alzheimer Disease 
and Their Importance in Investigating 
the Pathogenesis of Alzheimer Disease                     

2.1                 Introduction 

 As stated in Chap.   1    , AD is  a   progressive and irreversible neurodegenerative disease 
characterized by progressive loss of memory and cognitive function.    Risk factors 
for AD include old age, positive family history, unhealthy life style, consumption of 
high fat diet, and exposure to toxic environment (Farooqui  2015 ). Clinically, AD is 
 characterized   by deterioration of memory and cognitive function, progressive 
impairment of activities of daily living, and several neuropsychiatric symptoms. 
Neuropathologically, AD is characterized by the accumulation of  beta-amyloid 
(Aβ)   protein that forms plaques and tau protein phosphorylation that promote the 
formation and deposition neurofi brillary tangles (NFT) (Farooqui  2010 ). Many bio-
chemical mechanisms have been proposed to explain  the   pathogenesis of AD 
including production of reactive oxygen species, disruption of calcium homeostasis, 
activation of Wnt pathway, excitotoxicity, activation of apoptotic pathways, neuro-
nal degeneration, and neurotransmitter defi cits, the precise role of abnormal protein 
aggregates in the pathogenesis of AD remains to be clarifi ed (Huang and Jiang 
 2009 ; Welsh-Bohmer and White  2009 ; Querfurth and LaFerla  2010 ). Human autop-
sies and animal models studies have indicated that both senile plaques and NFT are 
co-localized with activated glial cells, supporting the view that reactive gliosis may 
be closely associated with the pathogenetic role of AD (Craft et al.  2006 ; Farooqui 
 2013 ). Increased generation of  Aβ peptides   not promotes neuroinfl ammation 
through  the   upregulation of  different   cytokines, and pro-infl ammatory mediators 
(Tuppo and Arias  2005 ). It is well known  that   astrocytes play an important role in 
the controlling the cerebral homeostasis. Accumulation of Aβ and activation of 
astrocytes in AD initially (for a short time) is a neuroprotective response aimed at 
removing injurious stimuli. However, uncontrolled and prolonged activation of 
astrocytes produces detrimental effects that override the benefi cial effects due to 
upregulation of different cytokines and proinfl ammatory mediators leading to neu-
rodegeneration directly as well as in an autocrine/paracrine manner expanding the 
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neuropathological damage in AD (Mrak and Griffi n  2001 ; Pekny et al.  2014 ). 
Among above mentioned hypothesis, Aβ hypothesis has a big support among 
researchers. According to Aβ hypothesis the accumulation of senile plaques and 
neurofi brillary tangles is accompanied by neuronal atrophy and progressive synap-
tic failure, which initially appears in the entorhinal region and the temporal lobe, 
before progressing to the limbic system and subsequently to major areas of the 
neocortex, severely damaging the brain (Braak and Braak  1995 ). Aβ is a peptide 
(4 kDa) generated by proteolytic processing of the amyloid precursor protein ( APP), 
  a transmembrane glycoprotein βAPP (~770 amino acids), which has been impli-
cated in the regulation of neuronal cytoarchitecture, synaptic plasticity, axon guid-
ance, and cell–cell interactions in the brain (Hardy and Selkoe  2002 ; Zhang et al. 
 2007 ,  2011 ; Haass and Selkoe  2007 ). To explain neurodegeneration in AD, amyloid 
cascade hypothesis has been proposed (Tanzi and Bertram  2005 ). According to this 
hypothesis, amyloid precursor protein (APP) is processed either by the non- 
 amyloidogenic pathway, or the   amyloidogenic pathway (Fig.  2.1 ) (Chow et al. 
 2010 ; Zhang et al.  2012a ). In the non-amyloidogenic pathway, α-secretase cleaves 
APP in the ectodomain within the Aβ region of the APP protein, which precludes 
the generation of  the   Aβ peptide (Chow et al.  2010 ; Zhang et al.  2012a ). In the amy-
loidogenic pathway, APP is processed by the β-site APP-cleaving enzyme (BACE), 
releasing a soluble APP fragment (sAPPβ), which is secreted outside the cell, leav-
ing behind a membrane-associated C-terminal fragment of 99 or 89 amino acids 
[C99 or C89 (CTFβ)]. The CTFβ is then broken down by γ-secretase, generating the 
Aβ peptide and a cytoplasmic APP intracellular domain (AICD) (Chow et al.  2010 ; 
Zhang et al.  2012b ). Aβ42 peptide oligomerizes, and readily forms aggregates that 
accumulate in the brain to form plaques whose recognition by brain cell microglial 
cells instigate a pro-infl ammatory microglial response and the release of  ROS   and 
pro- infl ammatory   cytokines (Small et al.  2001 ; Fu et al.  2014 ). In addition, neuro-
degenerative process in AD is associated with alterations in neurogenesis leading to 
memory dysfunction (Donovan et al.  2006 ). Aβ accumulation is the consequence of 
an altered balance between protein synthesis, aggregation rate, and clearance. 
Accumulation of Aβ plaques contributes not only  to   the alterations in cellular activi-
ties, but also to disrupted communication in the brain, leading to neurotoxic infl am-
mation and neuronal death.    NMDA receptors play an important role in the production 
of Aβ42. Activation of synaptic NMDA receptors promotes the non-amyloidogenic 
pathway, which not only reduces the generation of Aβ42, but also upregulates extra-
cellular signal-regulated kinase (ERK) and Ca 2+ /calmodulin-dependent protein 
kinase (CAMK) pathways. These processes promote cyclic AMP (cAMP) signaling 
pathway, which is closely associated with the formation of long-term memory 
(Lonze and Ginty  2002 ). The cAMP-dependent protein kinase A (PKA), when allo-
sterically activated by cAMP, can phosphorylate cAMP response element binding 
protein (CREB), a basic leucine zipper transcription factor at serine 133 (Gonzalez 
and Montminy  1989 ). Phosphorylated  CREB   then interacts with the transcription 
coactivator CREB-binding protein to initiate the transcription and translation of 
CREB target genes, which are required for the synaptic plasticity mediating long- 
term memory formation. Recent studies have demonstrated that CREB enhances 
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short-term memory by up-regulating brain-derived neurotrophic factor (BDNF), 
suggesting that CREB signaling is involved in the formation of both short- and 
long-term memory (Suzuki et al.  2011 ).    CREB-mediated gene expression is 
impaired in the brains of both AD mouse models and patients (Gong et al.  2004 ; 
Phillips et al.  1991 ), as well as in cultured neurons insulted with Aβ (Tong et al. 
 2001 ). Conversely, activation of  extrasynaptic   NMDA receptors promotes the amy-
loidogenic pathway leading to increased production of Aβ42 and loss of Ca 2+  
homeostasis. Increased production of Aβ42 not only downregulates  the   phosphory-
lation of  CREB   and enhances LTD, but also induces mitochondrial dysfunction 
leading to apoptotic cell death (Fig.  2.2 ) (Hardingham et al.  2002 ; Bordji et al. 
 2010 ). Subsequent activation of downstream signal transduction pathways (such as 
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  Fig. 2.1    Diagram showing β-Amyloid hypothesis and related molecular events associated with 
the pathogenesis of Alzheimer disease. Glutamate ( Glu ); glutamine ( Gln ); NMDA receptor 
( NMDA-R ); phosphatidylcholine ( PtdCho ); lyso-phosphatidylcholine ( lyso-PtdCho ); cytosolic 
phospholipase A 2  ( cPLA   2  ); arachidonic acid ( ARA ); α-secretase ( α-Sec ); β-secretase ( β-Sec ); 
γ-secretase ( γ-Sec ); amyloid precursor protein ( APP ); β-Amyloid ( Aβ ); Prostaglandins ( PGs ); leu-
kotrienes ( LTs ); thromboxanes ( TXs ); 4-hydroxynonenal ( 4-HNE ); and malondialdehyde ( MDA )       
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dephosphorylation and activation of the actin fi lament severing protein cofi lin by 
calcineurin) induce a cascade of pathological events causing synaptic disruption 
and neuronal loss through mitochondrial dysfunction, induction of  oxidative stress  , 
 neuroinfl ammation   and alterations in bioenergetic, leading to dysregulation of  syn-
aptic   neurotransmission and abnormal neuronal network activity (Fig.  2.2 ) (De 
Felice et al.  2007 ; Selkoe  2008 ; Palop and Mucke  2010 ; Sakono and Zako  2010 ; 
Tomiyama et al.  2010 ; Farooqui  2010 ).

    Despite of many criticisms against the amyloid cascade hypothesis, it is becom-
ing increasingly evident that this hypothesis can explain not all, but many molecular 
and cellular aspects of AD including Aβ and Tau pathology. As stated in Chap.   1    , 
most AD cases (more than 95 %) are sporadic with over 65 years old and only less 
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  Fig. 2.2    Involvement  of   NMDA receptor and abnormal APP processing in apoptotic cell death 
and cognitive decline in Alzheimer disease. Amyloid precursor protein ( APP ); β-amyloid ( Aβ ); 
glutamate ( Glu ); NMDA receptor ( NMDA-R ); phosphatidylcholine ( PtdCho ); phospholipase A 2  
( PLA   2  ); cyclooxygenase-2 ( COX-2 ); 5-lipoxygenase ( 5-LOX ); arachidonic acid ( ARA ); prostaglan-
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nitric oxide synthase ( iNOS ); secretory phospholipase A 2  ( sPLA   2  ); death domain ( DD ); nitric oxide 
( NO ); long term potentiation ( LTP ); genes for APP, PS1, and PS2 ( APP; PS1, and PS2 , respec-
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( PP2B ); cofi lin (actin binding and modulating proteins); glycogen synthase kinase 3 beta 
( GSK-3β ); and cAMP response element-binding protein ( CREB )       
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than 5 % cases are of genetic (familial, FAD) origin-that is, related to a genetic 
predisposition with mutations in the amyloid precursor protein, presenilin 1, and 
presenilin 2 genes.     Apolipoprotein E (APOE)   polymorphisms, sometimes referred 
to as familial late-onset AD, are not mutations per se, but are a signifi cant predispos-
ing factor (Adalbert et al.  2007 ). In particular, the  APOE  gene has three isoforms 
(ε2, ε3 and ε4), with the ε4 isoform being the strongest predisposing allele (Bu 
 2009 ). APOE ε3/ε4 heterozygotes have two- to threefold higher risk of developing 
AD compared with ε3/ε3 homozygotes, and ε4/ε4 homozygotes have more than 
twofold the risk of the ε3/ε4 genotype, while the presence of ε2 is somewhat protec-
tive (Aggarwal et al.  2005 ).  Though   sporadic and FAD forms of AD refl ect similar 
pathologies, the underlying causes of pathogenic may vary considerably. As stated 
above, FAD is linked to specifi c mutations in APP or PS1 or PS2, located at chro-
mosomes 21, 14, and 1, respectively leading to accumulation of toxic Aβ species in 
the brain by mid-life. Sporadic AD manifests later in life (over the age of 65 years), 
and is triggered by more complex neurochemical mechanisms along with genetic 
components and lifestyle factors (e.g. diet, exercise, and sleep). The histopathologi-
cal similarity between sporadic and early familial cases has been taken as evidence 
for a common etiology of the disease. Because in vitro and in vivo data indicated 
that early onset FAD  mutations   give rise to the generation of more Aβ peptides and 
their accumulation has been proposed to be involved in the pathogenesis of FAD. In 
contrast, the pathogenesis of sporadic AD is very complex and multifactorial involv-
ing complex interactions among multiple genetic, epigenetic, and environmental 
factors. Clinical and epidemiological studies indicate that aging, stress, long term 
consumption of high calorie diet, aluminum, and viral infections may contribute to 
the risk of AD (Grant et al.  2002 ). At the neurochemical level pathogenesis of spo-
radic AD not only involves the accumulation of Aβ and hyperphosphorylated Tau, 
but also excitotoxicity, disruption of intracellular calcium homeostasis,  oxidative 
stress  ,  neuroinfl ammation  , loss of memory formation along with reduction in the 
expression of trophic factors, impairments of axonal transport, and mitochondrial 
dysfunction (Leuner et al.  2007 ; Farooqui  2010 ).  

2.2     Potential Animal Models and Alzheimer Disease 

 Animal models of AD are needed to study the signal transduction mechanisms 
underlying AD pathogenesis and learning about the effect of genetic and environ-
mental risk factors involved in the pathogenesis of AD. In addition, animal models 
are also used for developing diagnostic tests and investigating the therapeutic effects 
of drugs on neuropathology and cognitive function in AD. Animal models are needed 
for the establishment of pharmacodynamics and pharmacokinetic parameters, the 
toxicity analysis of new drugs for the treatment of AD. Collective evidence suggests 
that animal models of AD are not only a cornerstone for studying the pathogenesis of 
AD, but also for developing and studying pharmacokinetics of drugs. 

2.2 Potential Animal Models and Alzheimer Disease
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2.2.1     Invertebrate Models of Alzheimer Disease 

 Invertebrate models  have   several advantages over vertebrate models (Link  2005 ; 
Wu and Luo  2005 ). The genes and pathways of invertebrate organisms are well- 
suited to the study of human disease because both pharmacological and genetic 
manipulations can be performed easily to understand the function of their orthologs 
in vivo (Table  2.1 ). Invertebrate models also have other advantages. They are inex-
pensive, easy to work with, have short lifespans, and often have very well- 
characterized in terms of stereotypical development and behavior. Two invertebrate 
model organisms: roundworm  (Caenorhabditis elegan)  and fruit fl y  (Drosophila 
melanogaster)  (Saraceno et al.  2013 ) qualify for the above criteria. These models 
are useful tools for studying human AD not only because genes contributing to 
human AD are homologues in invertebrates, but also because many signaling path-
ways are conserved and display similar activities (Li and Le  2013 ).  C. elegans  has 
been used a fundamental tool for dissecting the pathways that link lifespan to AD. 
   Specifi cally, one of the major pathways that regulate lifespan is the insulin/IGF-1 
signaling (IIS) pathway—a pathway that has been validated in nematodes, fl ies and 
mice and strongly implicated in humans (Kenyon et al.  1993 ; Holzenberger et al. 
 2003 ). In  C. elegans  model of AD, knockdown of the insulin/IGF-1 receptor DAF-2 
results not only in longevity, but also retardation of Aβ toxicity by delaying the 
onset of paralysis, supporting the view that there may be a link between the mecha-
nisms of aging and proteotoxicity (Cohen et al.  2006 ). Modulation of lifespan by 

   Table 2.1    Listing  of   invertebrate orthogenes and vertebrate genes contributing to the pathogenesis 
of AD   

 Protein 
 Caenorhabditis 
elegans  Drosophila  Zebrafi sh  Mouse 

 APP  Apl-1  appl  Appa, appb  APP 
 ADAM10  Sup-17  kuzbanian  No α-secretase  ADAM 10 

gene present 
 ADAM17  Adm-4  dBACE  Absent  ADAM 10 
 β-Secretase  Absent  Absent  Absent  β-secretase 
 γ-Secretase 
complex 

 γ-Secretase 
complex 

 γ-Secretase 
complex 

 Incomplete 
γ-Secretase complex 

 Complete 
γ-secretase 

 Tau  Ptl-1  dtau  Mapta/maptb  Tau 
    APOE  Absent  Absent  Present  APOE 
 Presenilins  Absent  Absent  Psen1 and psen2  PS1 and PS2 
 APLP2  Absent  Absent  Absent  Present 
 MAPT  Absent  Absent  Absent  Present 
 PSEN1  Absent  Absent  Absent  Present 

  Most of the proteins associated with AD are evolutionarily conserved in  Drosophila  and 
 Caenorhabditis elegans  making these organisms attractive model systems for understand the con-
served molecular functions of these genes linked to AD. zebrafi sh ( Danio rerio ) is a promising 
model organism for studying molecular events in AD (Saraceno et al.  2013 )  
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DAF-2 is highly dependent on HSF-1 and DAF-16, two transcription factors, which 
have been reported to drive the expression of longevity genes (Hsu et al.  2003 ). 
Both transcription factors block proteotoxicity, but they did so through opposing 
effects. HFS-1 promotes disaggregation, while DAF-16 enhances aggregation for-
ward, possibly as a means of sequestering the amyloidogenic protein from the cel-
lular milieu (Cohen et al.  2006 ).  C. elegans  model of AD also expresses the tau 
homologue Ptl-1. Similarly, in  Drosophila , the expression of human wild-type and 
mutant forms of Tau and Aβ has provided useful information on the role of Tau and 
Aβ proteins under physiological and pathological conditions (Wittmann et al.  2001 ). 
Collective evidence suggests that invertebrate animal models provide an in vivo 
system useful for dissecting the molecular mechanisms underlying neurodegenera-
tion in AD. Signifi cantly important information has been obtained on molecular and 
neurochemical aspects of AD using  Caenorhabditis elegans  and  Drosophila mela-
nogaster  models (Saraceno et al.  2013 ; Li and Le  2013 ). Despite of above men-
tioned advantages invertebrate models, transgenic approaches in  Caenorhabditis 
elegans  and  Drosophila melanogaster  models suffers from several unphysiological 
features, such as (a) high protein levels due to the integration of multiple transgene 
copies into the genome, (b) alterations in brain area specifi city and subcellular 
expression pattern of the transgene compared with the endogenous gene because of 
the use of an exogenous promoter, and (c) disruption of endogenous gene expres-
sion due to  the   insertion of transgene into the host genome (Baker and Götz  2015 ). 
Consequently, alternative strategies such as knock-in approach (P301L mutation of 
tau into the murine  MAPT  locus) and development od senescence-accelerated 
SAMP (senescence-accelerated mouse-prone) strain.

2.2.2        Vertebrate Models for Alzheimer Disease 

 Use of mice (  Mus musculus )   for the development of animal models offer several 
advantages over invertebrate models. Mice are vertebrates, which more closely related 
to humans than invertebrate models such as yeast, worms, or fl ies (Saraceno et al. 
 2013 ). Whole genome of mouse has been mapped (Waterston et al.  2002 ).    The pro-
portion of mouse genes with a single identifi able ortholog in the human genome is 
~80 %. This makes the mouse an ideal model for investigating environmental and 
genetic manipulations, which are not feasible in higher primates and humans. The 
small size and short gestation and life span makes mice amenable animals for rapid 
breeding in large and, consequently, the feasibility of many studies in a relatively short 
period. In addition, preclinical experiments with mice model of human diseases can 
thus be performed in relative short time periods, enabling the chronic study on the 
effects of drugs in these models. A valid mice model for AD should not only exhibit 
progressive AD-like neuropathology and cognitive defi cits, but like humans it should 
manifest some memory loss and cognitive defi cits with advancing age. 

 Studies on transgenic (Tg) mice have provided useful information into the chro-
nology of events leading to the pathogenesis of AD. For example, double-Tg mice, 
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which over-express human mutant APP and tau (Tg line APP sw -tau vlw ) mimic  several 
characteristics of the AD phenotype such as deposition of Aβ, hyperphosphorylation 
of Tau, formation of NFT, glial cell proliferation, and signifi cant neuronal loss in the 
entorhinal cortex (EC) and CA1 subfi eld of the hippocampus (Perez et al.  2005 ; Ribe 
et al.  2005 ). All the above phenotypic traits of AD develop in these mice in an age-
dependent manner and are accompanied by progressive hippocampus- dependent 
memory impairment. However, neurodegeneration in these mice predates overt 
deposition of Aβ, supporting the view that extracellular fi brillar amyloid may not be 
causing neuronal death. Furthermore, the extent of neurodegeneration in these mice 
does not correlate well with total immunostained amyloid plaque burden (Ribe et al. 
 2005 ). Thus, studies on mice models of AD have provided us an excellent opportu-
nity to track the natural history of oligomeric Aβ (also known as ADDLs) accumula-
tion in their brains and to study the relationships of these Aβ species to AD-related 
neuropathological changes and cognition (Perez et al.  2005 ; Ribe et al.  2005 ). 
   Oligomeric forms of Aβ have been reported to instigate memory loss through their 
ability to target synapses and disrupt synaptic plasticity (Wang et al.  2002 ), including 
inhibition of long-term potentiation (Walsh et al.  2002 ; Townsend et al.  2006 ) and 
prolonged maintenance of long-term depression (Wang et al.  2002 ). This suggests 
that soluble oligomeric forms, not fi brillar deposits of Aβ are pathologically impor-
tant for the synaptic dysfunction of AD (Li et al.  2009a ; Koffi e et al.  2009 ).  Using 
  microdialysis technique on interstitial fl uid (ISF) samples from Alzheimer model 
APP/PS1 Tg mice at 3 different age stages of AD-like amyloid plaque development, 
it is shown that high molecular weight (HMW) and low- molecular- weight (LMW) 
Aβ oligomers are present in brain ISF samples and that levels of ISF Aβ oligomers 
become elevated with age in the brain of APP/PS1 Tg mice (Takeda et al.  2013 ). The 
clearance of HMW Aβ oligomers is slower than LMW Aβ after acute inhibition of 
γ-secretase activity to stop Aβ synthesis supporting the view that the rate of clearance 
of various Aβ oligomers from the brain is different from each other (Takeda et al. 
 2013 ). As stated in Chap.   1    , Aβ oligomers interact with a number of postsynaptic 
receptors including ionotropic and metabotropic glutamate receptors, the cellular 
prion protein (PrP C ), neuroligin, the Wnt receptor, and insulin receptors (Krafft and 
Klein  2010 ; Ferreira and Klein  2011 ; Viola and Klein  2015 ). Many  neurotoxic effects   
have been described as resulting from the interaction of Aβ oligomers with several 
receptors or co-receptors (Velasco et al.  2012 ). 

 Extensive investigations on mice models of AD have indicated that unlike the 
human AD neuropathology, which displays massive neurodegeneration, only very 
few transgenic animal models show neuronal death and on a scale that does not 
compare to what is seen on postmortem human brains (Elder et al.  2010 ). In addi-
tion, the way the genetic manipulation translates into the histological and clinical 
recapitulation of the AD highly depends on the promoter used to insert the trans-
gene and on the genetic background of the recipient animal (Elder et al.  2010 ). This 
actually makes any comparison between transgenic mouse models diffi cult. 
Furthermore, many mice models do not show cognitive dysfunction despite overex-
pression of APP (Masliah et al.  2001 ). The formation of neurofi brillary tangles 
( NFT)   is not observed in most of the APP overexpressing models (Ribeiro et al. 
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 2013 ). Studies on generation of AD transgenic mice models using Tau protein have 
revealed that only minor motor impairments with little Tau protein accumulation 
(mostly in brain and spinal cord), however classic NFT are not observed (Eriksen 
and Janus  2007 ; Wiedlocha et al.  2012 ). Another important issue is that many dif-
ferent mice strains or  hybrid strains   have been used for developing transgenic mice 
models (Joseph et al.  2001 ). The strain heterogeneity makes it diffi cult to compare 
transgenic models, as there are strain specifi c differences in the performance of 
behavioral tasks have been observed (Joseph et al.  2001 ). Hybrid mouse strains can 
also have vision problems that confound any results obtained from behavioral test-
ing (Joseph et al.  2001 ; Brown  2007 ). Another aspect of AD pathology, such as the 
location of Aβ  plaques   and neurofi brillary tangles, vary depending on the promoter 
region used for the incorporation of transgene into the animal’s genome (Braidy 
et al.  2012 ; Lecanu and Papadopoulos  2013 ). Therefore, different models using 
 similar   genetic mutations can produce very different brain pathologies and cogni-
tive defi cits. Collective evidence suggests that presently available mice models do 
not fulfi ll above mentioned criteria. Thus, at the present time an ideal animal model 
for AD is not available (Cuadrado-Tejedor and García-Osta  2014 ). It is worth noting 
that almost all transgenic models only related to the familial early onset form of AD, 
which represents a mere 5 % of AD cases. The remaining 95 % are sporadic late- 
onset forms, the causes and pathogenesis of this form remain elusive. Converging 
evidence thus suggest that at present mouse models display some neurochemical, 
neuropathological, and behavioral alterations of AD. However, they do not recapitu-
late all aspects of human AD. Furthermore, failure of AD immunotherapy in mouse 
models indicates that there is a need for developing superior models of the AD 
pathology with cognitive dysfunction. 

 The ideal transgenic model should mimic multiple aspects of the disease includ-
ing its etiology and a time dependent progression of the pathology, involving similar 
structures and cells similar to the human pathology. Identifying and targeting  the   
cognitive defi cits that occur early in the course of the human AD are critical for pro-
ducing the maximum impact of treatment on cognitive function and quality of life in 
AD patients. Earliest neuropathological changes in human AD occur in hippocampus 
and entorhinal cortex, followed by changes in the medial temporal lobe. In human 
AD the earliest detectable defi cits in cognition are seen in medial temporal lobe-
dependent episodic memory (Schmitt et al.  2000 ; Smith et al.  2007 ). These early 
defi cits in episodic memory are followed closely by defi cits in semantic memory, and 
both are developed before other defi cits in cognitive domains such as attention, 
visuospatial memory, or executive function (Bondi et al.  2008 ). These observations 
support the view that cognitive functions such as episodic and semantic memory that 
depend heavily on the neural circuitry of the medial and lateral temporal lobes may 
be impaired earlier than cognitive abilities depending on the circuitry of other brain 
regions. The development of cognitive defi cits in mouse models of AD shows simi-
lar, but not identical patterns of progression suggesting that mouse transgenic models 
do not fully recapitulate the inevitable neuronal loss. Some transgenic mice fail to 
even demonstrate the phenotypic alterations associated with the modeled diseases, 
providing further evidence that humans and primates can be more vulnerable than 
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rodents to the same triggers inducing neurodegeneration, a phenomenon also 
observed in pharmacological models (Przedborski et al.  2001 ). 

 Rats offer numerous  advantages   over mice for the development of animal mod-
els. The rats are physiologically, genetically and morphologically closer to humans 
than mice (Jacob and Kwitek  2002 ). Their larger body and brain size facilitates 
intrathecal administration of drugs, microdialysis, multiple sampling of cerebrospi-
nal fl uid, in vivo electrophysiology, as well as neurosurgical and neuroimaging pro-
cedures (Tesson et al.  2005 ). Like humans, the rat contains 6 isoforms of Tau (Hanes 
et al.  2009 ; Tran et al.  2013 ), although the ratio of 4R/3R Tau isoforms is different 
(9:1 in rats; 1:1 in humans). In addition, rats not only share a good homology with 
humans in  apoE   amino acid sequences (73.5 % with human apoE3, 73.9 % with 
apoE4), but also show fi ner and more accurate motor coordination than mice and 
exhibit a richer behavioral display (McLean et al.  1983 ). Based on these advantages, 
it is suggested that rats can be used for developing better animal models of AD than 
mice (Carmo and Claudio Cuello  2013 ). 

 The earliest transgenic rat models of AD show accumulation of intracellular Aβ 
but no senile plaques. Lack of senile plaques may be due to inadequate Aβ levels, 
since higher concentrations are required to initiate the Aβ deposition. Some of these 
models also show synaptic dysfunction supporting the view that cognitive defi cits 
are independent of plaque formation but correlate better with Aβ oligomers and 
other Aβ species (Millington et al.  2014 ). In contrast,    UKUR25 and UKUR28 trans-
genic rat strains show an accumulation of intracellular Aβ-immunoreactive material 
in pyramidal neurons of the neocortex and in CA2 and CA3 regions of the hippo-
campus. These rat models not only support the role of Aβ in the amyloid cascade at 
the early and pre-plaque phase of the amyloid pathology, but also show dysregula-
tion of ERK2 activation in the brain (Echeverria et al.  2004a ) (Table  2.2 ).    
Furthermore, it is also reported that accumulation of Aβ is suffi cient to trigger the 
initial steps of the tau-phosphorylation cascade, which may be responsible for 
impairments in learning and alterations in the MWM task (Echeverria et al.  2004a ). 
Collective evidence suggests that rat models of AD in rats show signifi cant changes 
in synaptic proteins and memory formation (Vercauteren et al.  2004 ).

  Table 2.2    Animal models of 
AD in rat that have been used 
for obtaining information  on 
  AD pathogenesis  

 Name of animal models  Reference 

 McGill-R-Thy1-APP  Leon et al. ( 2010 ) 
 UKUR25  Echeverria et al. ( 2004b ) 
 UKUR28  Echeverria et al. ( 2004b ) 
 Tg6590  Kloskowska et al. ( 2010 ) 
 Tg478  Flood et al. ( 2009 ) 
    Tg1116  Flood et al. ( 2009 ) 
 Tg11587  Liu et al. ( 2008 ) 
 APP21  Agca et al. ( 2008 ) 
 APP31  Agca et al. ( 2008 ) 
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   Several transgenic mouse models expressing mutated forms of human Tau 
 containing neurofi brillary degeneration have also been developed (Mocanu et al. 
 2008 ; Ramsden et al.  2005 ).  Transgenic mouse model only show   minor motor 
impairments and tau protein accumulation (mostly in brain and spinal cord), how-
ever classic NFT are not observed. Behavior analysis of mice and rat models has 
indicated that rats not only show more progressive cognitive decline in spatial 
 navigation, but also display disturbances in sensorimotor and refl ex responses 
(Hrnkova et al.  2007 ) than mice. These impairments correlate with the progressive 
accumulation of  argyrophilic   NFTs, mature sarcosyl-insoluble Tau complexes, and 
extensive axonal damage in the brain stem and spinal cord. Although, hyperphos-
phorylated Tau is present in cortex and hippocampus, but no neuronal loss or 
occurrence of neurofi brillary tangles has been observed in the brain (Hrnkova et al. 
 2007 ). These rats also show a decrease in lifespan (Zilka et al.  2006 ; Koson et al. 
 2008 ). 

 Infusion of low doses of  LPS   into rat brain ventricular system results in an  animal 
model  with   neuroinfl ammation. This animal model has several parallels character-
istics of human AD, including increase in microglial cell activation, onset of astro-
gliosis, and elevation in tissue levels of IL-1 β  and TNF- α , elevation in levels of APP 
(Hauss-Wegrzyniak et al.  1998 ; Wenk, et al.  2000 ), along with defi cit in the working 
memory (Hauss-Wegrzyniak et al.  1998 ,  1999a ,  b ). Above mentioned neurochemi-
cal and immunochemical changes have been quantifi ed by Magnetic Resonance 
Imaging (MRI) in the animal model and AD patients (Bobinski et al.  1999 ; Forloni 
et al.  1992 ). It is also reported that like human AD, the chronic LPS infusion into the 
ventral forebrain in animal model also results in chronic IL-1 β  or TNF- α  increase 
and selectively degeneration of cholinergic cells in a time- but not dose-dependent 
manner (Wenk and Willard  1998 ; Willard et al.  1999 ). In the LPS infusion animal 
model, behavioral, biochemical, and pathological defi cits induced by chronic LPS 
infusion are reversible with chronic administration of either an NSAID 
 (Hauss-Wegrzyniak et al.  1999a ,  b ) or an IL-1RA (Bluthe et al.  1992 ). 

 It should be noted that NSAID-mediated benefi cial effect is observed only in 
young rats, with no signifi cant attenuation of the defi cits in old rats (Hauss- Wegrzyniak 
et al.  1999b ). NSAID therapy does not have any effect in human AD patients. 

 There are fundamental differences gene expression, neural circuitry, brain size, 
proportions of gray and white matters, and neurochemical responses between rodent 
and human brains. Nonhuman primates (great apes, baboons, macaques, and mar-
mosets) due to genetic lineages share many structural and functional features with 
humans. So they may provide better animal model for AD than rodents (Finch and 
Austad  2012 ). It is realized that the management and care  of   nonhuman primates are 
more complicated and the related costs are much higher. Despite of these complica-
tions, use of nonhuman primate animal models may provide information on higher 
intellectual functions such as planning of complex cognitive behaviors, personality 
expression, decision-making and moderating social behavior (Sutcliffe and 
Hutcheson  2012 ).   
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2.3     Neurotoxin-Based Animal Models for Alzheimer Disease 

 Neurotoxin-based  models   involve the disruption of  multiple   neurotransmitter systems, 
which partially contribute to the pathophysiology of neurochemical, cognitive, and 
behavioral disturbances associated with AD. The majority of animal models within this 
category are based Aon the cholinergic hypothesis of AD (Craig et al.  2011 ), which 
states that loss of cholinergic function in the brain contributes signifi cantly to the cog-
nitive decline associated with advanced age and AD (Bartus  2000 ).  Degeneration of 
  cholinergic neurons in the nucleus basalis of Meynert, situated in the basal forebrain 
and primarily projecting to the neocortex, occurs early in the course of AD (Whitehouse 
et al.  1982 ; Dournaud et al.  1995 ). Intraparenchymal or intracerebroventricular micro-
injections of glutamate analogs (quinolic, kainic, N-methyl- D -aspartic, ibotenic and 
quisqualic acids) and the cholinotoxin (AF64A) have been used to generate animal 
models for AD (Fig.  2.3 )    (Toledana and Álvarez  2010 ). Glutamate analogs induce 
 degeneration   of glutamatergic neurons, where as AF64A preferentially triggers degen-
eration of cholinergic neurotransmission (Stephens et al.  1987 ; Nakahara et al.  1988 ).
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  Fig. 2.3    Chemical  structures   of neurotoxins used for developing animal models of Alzheimer 
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2.3.1       Cholinergic and Glutamatergic Signaling Animal Models 
of Alzheimer Disease 

 It is well known that both  cholinergic and glutamatergic neurons   are located in the 
hippocampus and in the frontal, temporal and parietal cortex are severely affected in 
AD, whereas similar neurons in the motor and sensory cortex are relatively spared 
(Francis  2003 ). Since  the   hippocampus and cortex are essential for learning and 
memory, it is possible that degeneration of cholinergic and glutamatergic neurons 
may be an early event in the pathogenesis of AD (Kar et al.  2004 ; Morris  2002 ).    
Studies on animal models of AD have indicated that upregulation of cholinergic 
presynaptic boutons occurs before the involvement of glutamatergic terminals, thus 
raising the possibility that a compromised cholinergic system may affect  the   
functioning/ survival   of glutamatergic neurons in the brain (Bell and Cuello  2006 ). 
Indeed, pyramidal neurons of the cortex that use glutamate as their primary trans-
mitter are known to possess both cholinergic and glutamatergic receptors and 
receive inputs from the basal forebrain cholinergic neurons (Francis  2003 ). 

 Neurochemical investigations on tissues from biopsy and autopsy of the brains 
of individuals with AD have indicated that a profound reduction in the activity of 
the ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the neocortex, 
which correlates  positively   with the severity of dementia (Geula and Mesulam 
 1994 ; Lander and Lee  1998 ; Davies and Maloney  1976 ). Reduced choline uptake, 
ACh release and loss of cholinergic neurons from the basal forebrain region further 
indicate a selective presynaptic cholinergic defi cit in the hippocampus and neocor-
tex of brains of individuals with AD.    ACh exerts effects on the central nervous 
system by interacting with G-protein-coupled muscarinic and ligand-gated cation 
channel nicotinic receptors. It is generally believed that M2 receptors, most of 
which are located on presynaptic cholinergic terminals, are reduced in the brains of 
individuals with AD (Lander and Lee  1998 ; Nordberg, et al.  1992 ). The density of 
postsynaptic M1 receptors remains unaltered, but there is some evidence for disrup-
tion of the coupling between the receptors, their G-proteins and second messengers 
(Nordberg et al.  1992 ; Warpman et al.  1993 ). Administration  of   acetylcholine ago-
nists (pilocarpine and nicotine) increases learning and memory levels, but acetyl-
choline antagonists (scopolamine and succinylcholine) decreases learning and 
memory. Some studies have shown that during learning, the level of acetylcholine is 
increased in the amygdala, which plays an important role in memory consolidation 
(McGaugh  2004 ). It appears that the cholinergic system is involved in mediating 
this process (McGaugh  2004 ). The perfect performance of central cholinergic sys-
tems (nicotinic and muscarinic systems) is important for consolidation with shuttle 
box. Administration of acetylcholine agonist and antagonist via ICV affects the con-
solidation, in a dose-dependent manner (Eidi et al.  2006 ). 

  Stimulation of   glutamate receptor  results   in breakdown of neural membrane 
phospholipids (phosphatidylcholine and plasmalogen) by the stimulation of cyto-
solic phospholipase A 2  (cPLA 2 ) and plasmalogen-selective phospholipase A 2  
(PlsEtn-PLA 2 ). Stimulation of cPLA 2  increases the levels of arachidonate-derived 
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enzymic and non-enzymic lipid mediators (eicosanoids and 4-HNE,  malonaldehyde, 
respectively), whereas activation of PlsEtn-PLA 2  catabolizes plasmalogen, which 
are major component of synaptic plasma membrane leading to the loss of synapse 
(Figs.  2.1  and  2.4 ).    These observations support the view that there is a neurochemi-
cal basis of interactions between cholinergic and glutamatergic systems and their 
potential implications in triggering pathological abnormalities in Alzheimer disease 
(Revett et al.  2013 ).

   Overstimulation of  NMDA receptors   for longer time period (i.e., more than 24 h) 
increases amyloidogenic APP processing and formation of high levels of Aβ (Bordji 
et al.  2010 ; Lesné et al.  2005 ). In AD,    the accumulation of Aβ not only enhances 
neuronal sensitivity to glutamate, but also increases the activity of synaptic  networks, 
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resulting in excitatory potentials and Ca 2+  infl ux (Brorson et al.  1995 ). Aβ-mediates 
its toxic effect either by facilitating Ca 2+  infl ux into neurons leading to the activation 
of Ca 2+ -dependent enzymes or by forming an oligomeric pore in the membrane. 
These processes may stimulate more glutamate release from glutamatergic axon ter-
minals and/or increase intracellular calcium concentration in dendrites, thus render-
ing neurons vulnerable to excitotoxicity (Bobich et al.  2004 ; Bezprozvanny and 
Mattson  2008 ).    Aβ oligomers can also promote the generation of ROS, which may 
trigger membrane-associated  oxidative stress   leading to impairment in the functions 
of ion-motive ATPases and glutamate and glucose transporters rendering neurons 
vulnerable to excitotoxicity (Camandola and Mattson  2011 ). Overstimulation of glu-
tamate receptors may not only result in the collapse of mitochondrial potential and 
deregulation of calcium homeostasis, but also production of high levels of ROS, 
4-hydroxynonenal (4-HNE),    and other arachidonic acid-derived lipid mediators 
(Farooqui and Horrocks  2006 ). 4-HNE forms adducts with membrane proteins 
including those crucial for maintaining ATP levels, resting membrane potential and 
extracellular glutamate levels (Esterbauer et al.  1991 ; Farooqui  2011 ). 

 Changes in Tau metabolism are also related with NMDA  receptor   function. Tau 
has a dendritic function in postsynaptic targeting of the Src kinase Fyn, which phos-
phorylates the NMDA receptor (Suzuki and Okumura-Noji  1995 ).    Missorting of 
Tau in transgenic mice expressing truncated Tau or absence of Tau in Tau knockout 
mice disrupt postsynaptic targeting of Fyn. Reduced expression of Tau uncouples 
NMDA-mediated excitotoxicity and mitigates Aβ toxicity (Ittner et al.  2010 ). 
Reducing endogenous Tau levels prevent behavioral defi cits in transgenic mice 
expressing human APP, and protect both transgenic and nontransgenic mice against 
excitotoxicity (Roberson et al.  2007 ). Collective evidence suggests that chronic 
neuronal excitotoxicity may contribute to AD via promoting abnormal hyperphos-
phorylation of tau (Liang et al.  2009 ).  

2.3.2     Aluminum in the Development of Animal Models 
of Alzheimer Disease 

 Aluminum is the most common metal and the third most abundant element in the 
earth’s crust (Exley  2012 ).    Humans get exposed to toxic levels of aluminum via 
 common   products such as antiperspirants, antacids, food, water, aluminum-based 
household products, cosmatics, and vaccines. In vitro and in vivo studies have indi-
cated that  aluminum    produces   oxidative stress though it is devoid of redox capacity 
in biological systems (Sharma et al.  2013 ; Satoh et al.  2005 ). Aluminum produces 
apoptotic cell death through the involvement of mitochondrial and endoplastic 
reticulum-mediated oxidative stress processes associated with caspase 9, caspase 
12, and caspase 3 activation (Rizvi et al.  2014 ). 

  Levels   of aluminum are signifi cantly increased in brains of patients with AD. The 
molecular mechanisms associated with neurotoxic action of aluminum in AD are 
not fully understood. However, in vitro studies indicate that at low levels aluminum 
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induces Tau aggregation (Mizoroki et al.  2007 ). Aluminum may also modulate Aβ 
aggregation, oligomerization, and ROS- mediated    neurotoxicity   (Fig.  2.5 ) (Bharathi 
et al.  2008 ; Rondeau et al.  2009 a, b; Rodella et al.  2008 ; Walton and Wang  2009 ; 
Yumoto et al.  2009 ). Aluminum not only alters normal processing of Aβ precursor 
protein (Drago et al.  2008 ), but also stimulates amyloidogenesis.    In addition, alumi-
num inhibits the proteolytic degradation of Aβ peptide via cathepsin D, triggering 
the intracellular accumulation of Aβ peptide (Sakamoto et al.  2006 ). Therefore, 
many primary therapeutic goals are targeted at reducing the metal-induced Aβ 
aggregation into toxic components. One of the therapeutic strategies is development 
of the agents that can chelate metal ions (Zatta et al.  2009 ) and to prevent the metal 
ions from the interaction with Aβ peptide as well as to attenuate the metal-induced 
redox activity and neurotoxicity of the peptides (Rodríguez-Rodríguez et al.  2009 ).

   Chronic intragastric (i.g.)    administration of aluminium gluconate (Al 3+  200 mg/
kg per day) not only results in signifi cant increase of hippocampal metal ion levels 
(Al, Fe, Mn, Cu and Zn), but also causes learning and memory function disorders in 
rats (Yu et al.  2014 ).    Aluminium gluconate administration-mediated chronic brain 
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damage in rats can be prevented by meloxicam, a COX-2 inhibitor (Su et al.  2009 ) 
suggesting that the over-expression of COX-2 may play an important role in the 
neurodegeneration, and the inhibitors of COX-2 may prevent the acute and chronic 
brain damages mediated by aluminium gluconate. In addition, aluminum stimulates 
NF-κB, which is involved in IL-1 receptor-associated kinase (IRAK)-mediated neu-
roinfl ammation (Zhao et al.  2014 ). Aluminum has also been reported to inhibit 
brain carbohydrate metabolizing enzymes and utilization of carbohydrates. This 
may be one potential mechanism by which aluminum may act as a neurotoxicant 
(Lai and Blass  1984 ). Contribution of  aluminum in the   pathogenesis of AD is sup-
ported by several recently described observations: (a) aluminum promotes infl am-
matory signaling through the activation of NF-κB (Bondy  2013 ; Walton  2013 ) and 
(b) aluminum induces strikingly similar messenger RNA (mRNAs) and micro 
RNAs (miRNAs) to those found to be increased in AD.  These   miRNAs (miRNA-9, 
miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155) are under transcrip-
tional control by the pro-infl ammatory transcription factor NF-κB. Among these 
miRNAs subfamily, miRNA-125b occurs abundantly in human brain. Bioinformatics 
analysis has demonstrated that an up-regulated miRNA-125b may potentially target 
the 3′ untranslated region (3′-UTR) of the messenger RNA (mRNA) encoding (a) a 
15-lipoxygenase (15-LOX) (Zhao et al.  2014 ), the enzyme that oxidizes and facili-
tates the conversion of docosahexaneoic acid into neuroprotectin D1 (NPD1), a 
docosanoid, which is closely associated with neuroprotective effects of docosa-
hexaenoic acid (Farooqui  2009 ,  2011 ). In addition, dietary aluminum enhances lipid 
peroxidation,    oxidative stress, apoptosis, and gene expression defi cits in transgenic 
animal models of AD (Praticò et al.  2002 ; Bharathi et al.  2008 ; Zhang et al.  2012b ). 
Finally, like human AD, the administration of aluminum in animal models contrib-
utes to alterations in chromatin, impairment in ATP production and utilization 
(Lukiw and Pogue  2007 ; Pogue et al.  2012 ; Bhattacharjee et al.  2013 ). Furthermore, 
in aged rats, aluminum treatment alters levels  of   copper, zinc, and manganese in 
certain brain regions and results in an enlargement of hippocampal mossy fi bers 
(Fattoretti et al.  2004 ). In rat brain, aluminum -induced damages to the brain include 
neuropathological, neurochemical, neurophysiological, and neurobehavioral altera-
tions. Among the alterations, the most notable are poor learning and behavioral 
functions, which involve changes in acetylcholinesterase, an enzyme, which is 
closely associated with deterioration of the learning ability of rats (Kawahara and 
Kato-Negishi  2011 ).    The animal models show that subcutaneous injections of alu-
minum  hydroxide   induce apoptotic neuronal death, decrease in motor function, and 
increase in anxiety in mice (Shaw et al.  2013 ). Rabbits have been reported to very 
sensitive to aluminum exposure, with intracerebral and intravenous infusions repro-
ducing some of the pathological features consistent with AD (Savory et al.  2006 ). 
However, oral administration of aluminum has proven less successful in inducing 
pathological features of AD. AD models mentioned above have been used to gain 
knowledge not only on molecular mechanism of action of neurotoxins, but also on 
the neural mechanisms underlying memory dysfunction caused by neurotoxins. 
This has resulted in better understanding of cholinergic innervations in the aetiology 
and treatment of AD. The suitability of neurotoxin models has been questioned 
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because confl icting and controversial results due to the chemical nature of 
 lesion- inducing neurotoxins, concentration of neurotoxin used, and even the mor-
phological, histochemical, biochemical and cognitive methods used to produce phe-
notypes in the model (Toledana and Álvarez  2010 ). Neurotoxin-based models 
produce neurodegeneration in hippocampus and cortical areas in animal, but neuro-
toxin models have failed to replicate the classic pathological hallmarks and the 
insidious and progressive nature of the human AD (Toledana and Álvarez  2010 ).  

2.3.3     Transgenic Models of Alzheimer Disease 

 Most  transgenic mouse models   are generated by microinjecting complementary 
DNA (cDNA), containing a transgene of interest into the pronucleβ of a large num-
ber of zygotes (Cho et al.  2009 ).  Resulting   embryos are then implanted into pseudo-
pregnant dams for normal gestation. Generating gene targeted mice is a complex 
process (Cho et al.  2009 ; Platt et al.  2013 ). Creating viable mice takes many attempts, 
and consumes a signifi cant amount of resources. After the initial genetic modifi ca-
tion has been introduced, a new mouse line can be crossed into a pre- existing mouse 
line that already displays one or more other aspects of the disease neuropathology. 
Hence, given suffi cient time, funding, and resources one can build increasingly com-
plex mice models of the AD. Using transgenic mice many AD models have been 
developed. These mice not only overexpress mutant forms  of   human APP, presenil-
ins, and/or tau protein in the brain, but also show many neurochemical characteris-
tics. Thus, knockout mice have been designed and developed for alterations in APP, 
secretases, i.e., BACE, PSEN1 and PSEN2, ADAM10 (Shen et al.  1997 ; Luo et al. 
 2001 ; Lee et al.  2003 ) as well as for APP and Tau proteins. Examples these models 
are Tg2576, PDAPP, TgAPP23, Tg-APPswe/PS1dE9, 3xTg-AD, and 5XFAD mice. 
The list of transgenic AD models is available at the web site of the Alzheimer 
Research Forum (  http://www.alzforum.org/res/com/tra/default.asp    ). Many of the 
transgenic AD models show accumulation of Aβ,    plaque pathogenesis, gliosis, neu-
ronal loss, Tau pathology, and/or cognitive impairments, but no single transgenic AD 
model recapitulates all aspects of AD neurochemistry and pathology. Using above 
mouse transgenic models, most investigators have focused their attention on under-
standing  the   molecular mechanism related to suppression of genes that encode pro-
teins that contribute to the pathogenesis AD along with neurobehavioral and 
pathological changes. The comparative analysis of these AD models suggests that 
AD models can be classifi ed into two distinct plaque deposition groups. Early plaque 
depositing models such as APPswe/PS1dE9, 3xTg-AD and 5XFAD, which may be 
useful to study the biochemical aspects of APP metabolism, whereas late plaque 
depositing models such as Tg2576, PDAPP, and TgAPP23, which can provide useful 
information on physiological and environmental aspects of AD pathogenesis, which 
occur on a longer time scale (Shen et al.  1997 ; Luo et al.  2001 ; Lee et al.  2003 ; Lee 
and Han  2013 ). More than  20   autosomal dominant APP mutations linked to AD have 
been discovered (  http://www.molgen.ua.ac.be/ADMutations    ). These mutations 
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show enhancement in the aggregation of Aβ by several mechanisms such as Swedish 
mutation, Arctic mutation, and a mutation near the γ-secretase site. Swedish muta-
tion promotes APP cleavage near the β-secretase site (Mullan et al.  1992 ) leading to 
enhancement in overall production of all forms of Aβ. The Arctic mutation (a muta-
tion within Aβ) enhances protofi bril formation (Nilsberth et al.  2001 ). Several muta-
tions near the γ-secretase site increase the relative production of the Aβ42 (Goate 
et al.  1991 ; Murrell et al.  2000 ). The impact of β-secretase deletion in wild-type mice 
produces subtle changes in anxiety and sensorimotor abilities (Kobayashi et al.  2008 ) 
leading to enhancement in long- term depression (Wang et al.  2008 ). In contrast, 
β-secretase manipulations in APP overexpression models not only prevent amyloid 
pathology, neurodegeneration, and astrogliosis, but also restore cognitive defi cits 
(Ohno et al.  2007 ). Restoration of long-term potentiation and improved cognitive 
performance are also reported after partial reduction of  β-secretase   in 5xFAD ani-
mals (Kimura et al.  2010 ). Conversely, human  bace1  ( hbace1 ) coexpression in mice 
carrying human  app   swe   (Mohajeri et al.  2004 ) or  app   695   (Chiocco et al.  2004 ) elevates 
APP processing and the release of toxic Aβ42, sAPPβ, C99, and C89 terminal frag-
ments. These fi ndings support the view that β-secretase is the key enzyme in amyloi-
dosis, and its inhibition can be used as a target for the treatment of AD. 

 To avoid the complications of transgenic protein overexpression, attempts have 
also been to generate more physiologically relevant animal models of AD. Thus, AD 
knock-in models are generated by introducing human  APP  and/or  PSEN1  FAD 
mutations and humanized Aβ to the endogenous mouse gene (Guo et al.  2012 ; Flood 
et al.  2002 ; Köhler et al.  2005 ). Knock-in mice with human  APP  have several advan-
tages over the traditional transgenic models. Due to the presence of native promoter 
control mice containing human  APP  show physiological levels of protein expression 
without any changes in the temporal and spatial expression patterns. In contrast to 
transgenic models in which the existence of mouse proteins may complicate the 
phenotypes, the mouse gene products are replaced with the humanized mutant pro-
teins in knock-in models. In contrast to human AD, Knock-in mice show the expres-
sion of human Aβ, but no tau abnormality has been reported. Duplications of the APP 
gene also lead to the induction of all forms of Aβ (Sleegers et al.  2006 ). Recently, an 
autosomal recessive mutation involving the deletion of glutamate at Aβ residue 22 
has been discovered in a woman with dementia who apparently lacks amyloid 
plaques imaged with PiB (Tomiyama et al.  2008 ). This discovery raises possibility 
that amyloid plaques may not be required for the onset of neurodegeneration in 
AD. Studies on the effect of genetic ablation of Nrf2 on APP/Aβ  processing and/or 
aggregation as well as changes  in   autophagic dysfunction in APP/PS1 mice indicate 
that there is a signifi cant increase in infl ammatory response in APP/PS1 mice lacking 
Nrf2. These changes are accompanied by increase in intracellular levels of APP, Aβ 
(1-42), and Aβ (1-40) without a change in the total full-length APP. APP/PS1 mouse 
with Nrf2 defi ciency not only displays a shift in APP and Aβ levels in the insoluble 
fraction, but also show an increase in poly-ubiquitin conjugated proteins. APP/PS1-
mediated autophagic dysfunction is also enhanced in Nrf2-defi cient mice. Finally, 
neurons in the APP/PS1/Nrf2-/- mice display an increase in the accumulation of 
multivesicular bodies, endosomes, and lysosomes (Joshi et al.  2015 ). 
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 In vitro and in vivo studies strongly indicate that high level of Aβ peptide is the 
primary causative agents in the pathogenesis of AD (Tanzi and Bertram  2005 ). 
   Reduction in Aβ clearance and its deposition is one potential mechanism leading to 
increased cerebral Aβ levels in AD. However, it is also possible that small increases 
in Aβ production over time may tip the balance toward Aβ accumulation.  APP  
mutant mice show an age-dependent extracellular plaque deposition primarily in 
neocortex and hippocampus, accompanied by severe gliosis. Most  APP  mutants 
contain no neurofi brillary tangles. However, they do contain amyloid deposits and 
hyperphosphorylated Tau but without tangles (Tiraboschi et al.  2004 ). One excep-
tion is the transgenic model expressing  APP, PS1,  and  Mapt  (3xTg-AD) character-
ized by Aβ  plaques   and neurofi brillary tangles (Oddo et al.  2003 ). The number of 
CA1 neurons is inversely correlated with CA1 plaque load and neuron loss was 
observed primarily in the vicinity of extracellular plaques. The molecular mecha-
nisms linking Aβ and tau pathologies remain elusive. According to the Aβ cascade 
hypothesis, excessive amount of Aβ peptides generated by abnormal APP metabo-
lism initiates the pathogenesis of AD, which leads to Aβ plaque formation, tau 
hyperphosphorylation, and neurodegeneration (Karran et al.  2011 ). This hypothesis 
is supported  by   AD genetics (Golde et al.  2011 ), but not by mouse AD model stud-
ies. In APP transgenic line J20 model the aggressive deposition of Aβ is not accom-
panied by enhanced Tau phosphorylation (Roberson et al.  2007 ). Aβ and Tau 
hyperphosphorylation coexist but in an independent manner in a double transgenic 
mouse model of human mutant APP (APP23) and wild type tau (ALZ17) (Clavaguera 
et al.  2013 ). Thus, more studies are needed on mechanisms linking Aβ and Tau 
pathologies. Collective evidence suggests that transgenic models have provided 
some valuable information on the molecular mechanism and understanding of AD 
progression, but they still do not recapitulate all aspects of human AD (Zheng et al. 
 1996 ; Takei et al.  2000 ) .  

  Presenilin   knockout mice have also been reported to display marked neurode-
generation in cerebral cortex along with loss of memory and induction of synaptic 
dysfunction (Shen et al.  1997 ; Saura et al.  2004 ). Thus far, over 200 autosomal 
dominant mis-sense mutations have been reported in the genes for APP and pre-
senilin (the γ-secretase catalytic subunit). These mutations may contribute to 
FAD, which are found very near to the β- and γ-secretase cleavage sites. They 
may not only contribute to increase APP processing, but also mediate the eleva-
tion in levels of total Aβ as well as Aβ42. BACE is the exclusive β-secretase, 
which controls the production of Aβ and has an essential role in the etiology of 
AD. Knockout mice for β-secretase have also been generated. They do not pro-
duce Aβ and are perfectly viable tool for understanding the neurochemical mecha-
nisms of pathogenesis of AD (Luo et al.  2001 ; Roberds et al.  2001 ).    However, 
BACE knockout mice show signifi cant decrease in the intensity of myelination 
and reduction in myelin thickness (Hu et al.  2006 ; Willem et al.  2006 ), supporting 
the view that BACE may play an important role in myelinogenesis and brain 
development. 
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 Several transgenic or gene-targeted mouse lines  expressing   human apoE3 or 
apoE4 have also been developed, without co-expression of mutant hAPP. Transgenic 
mice expressing apoE4 in  neurons   on a murine  Apoe  knockout background show 
age- and female gender-dependent spatial learning and memory defi cits, which are 
not seen in neuron-specifi c apoE3 mice (Raber et al.  2000 ). Morphological studies 
have shown that neuronal apoE3, but not apoE4, retards the age-dependent neuronal 
death in apoE-null mice (Buttini et al.  1999 ,  2010 ). ApoE4 not only impairs synap-
togenesis, but also decreases dendritic spine density in vivo in apoE transgenic and 
gene-targeted mice as well as in primary neuronal cultures (Brodbeck et al.  2011 ; 
Dumanis et al.  2009 ). In addition, neural stem cells in adult mice express apoE and 
apoE4 impairs adult hippocampal neurogenesis (Li et al.  2009b ), which may con-
tribute to apoE4-mediated impairment in learning and memory and cognitive func-
tion. Since there is no Aβ accumulation in any of these apoE4 mouse models, which 
support the view that an Aβ-independent role of  apoE4   in  inducing   neuronal and 
behavioral defi cits in vivo. While many of the above mentioned transgenic mice 
accumulate Aβ and develop Aβ plaque pathology along with cognitive impairment, 
they are unable to induce NFT formation. To determine the contribution of tau pro-
tein hyperphosphorylation in the pathogenesis of AD, several mouse models have 
been established that overexpress either wild-type or mutated human tau protein. It 
is reported that Tau protein mutations are associated with frontotemporal dementia, 
but not with AD (Duyckaerts et al.  2008 ). Introduction of human Tau proteins  con-
taining   FTD mutations result in NFT formation (Gotz et al.  2001 ; Lewis et al.  2000 ; 
Tanemura et al.  2002 ; Allen et al.  2002 ). Tau protein containing G272V and P301S 
mutations produce both NFT formation and severe cognitive defi cits (Schindowski 
et al.  2006 ). In an effort to model  NFT   pathology that is relevant to AD rather than 
FTD, tau knockout mice were crossed with mice expressing human genomic tau 
protein, resulting in mice expressing human but not murine tau protein (hTau). 
However, these mice express minimal NFT pathology (Andorfer et al.  2003 ). 

 It is becoming increasingly evident that  type 2 diabetes mellitus   and  metabolic 
syndrome   are risk factors for stroke, AD, and depression (Farooqui et al.  2012 ; 
Farooqui  2013 ). Due to improved treatments, type 2 diabetes mellitus patients are 
living longer, putting them at increased risk for age-related complications along 
with risk of stroke, AD, and depression. Recent studies have described the genera-
tion of a novel mouse model combining the key features of obesity, diabetes, and 
AD. In these studies, the obese and diabetic  db/db  mouse (Srinivasan and Ramarao 
 2007 ) is crossed with the APP ΔNL/ΔNL  × PS1 P264L/P264L  knock-in model of AD (Reaume 
et al.  1996 ; Siman et al.  2000 ; Niedowicz et al.  2014 ). The resulting mice are called 
 db/AD . These mice are morbidly obese, have glucose intolerant, show insulin 
 resistance, and display parenchymal amyloid plaques similar to the parental lines. 
In addition, these mice show profound cognitive impairment and marked cerebro-
vascular abnormalities, which are Aβ/tau-independent mechanism. Long term con-
sumption of high-fat diet is known to induce the accumulation of Aβ not only in the 
brain of wild type rabbits, rodents, and APP Tg mice (Sparks et al.  1994 ; Refolo 
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et al.  2000 ; Ho et al.  2004 ), but also in humans (Farooqui  2015 ). The molecular 
mechanisms associated with high-fat mediated Aβ accumulation in the brain are not 
fully understood. However, autophagosome-mediated enhancement in amyloido-
genic APP processing (Son et al.  2012 ) or up-regulation of BACE1 (Guglielmotto 
et al.  2012 ) may increase high-fat induced Aβ generation by above mentioned 
mechanisms. Furthermore, soluble Aβ itself is believed to reduce endothelial 
 function and vascular reactivity in mice (Niwa et al.  2000 ) and humans (Dumas 
et al.  2012 ; den Abeelen et al.  2014 ). Collective evidence suggests that  db/AD  model 
is a unique. It can be used to study overlap among molecular mechanisms of obe-
sity, type 2 diabetes mellitus, and AD in old animals.   

2.4     Animal Models of Alzheimer Disease in Cell Culture 

 Attempts have been  to   establish Aβ-pathologies such as production, secretion, 
oligomerization and aggregation of Aβ peptides utilizing a novel platform to model 
the pathological processing of mutant human APPswe protein for Aβ genesis, 
oligomerization and aggregation, the initial events of AD pathogenesis (Ghate 
et al.  2014 ).    Neurosphere cultures have been prepared from AD transgenic 
( APPswe, PSEN1dE9 ) mice embryos.    These cultures not only show positive 
expression for both transgenes at the mRNA level and express humanized APP and 
its proteolytic products including Aβ peptides. Analysis of Tg+ve neurosphere 
lysates the presence of both monomeric and various oligomeric Aβ peptides simi-
lar to an 18-month old Tg+ve mouse brain homogenate. Tg+ve neurosphere cul-
tures secrete a large amount of human Aβ peptides that consist of Aβ40 and Aβ42 
with a very high Aβ42/Aβ40 ratio comparable to that of human AD brain homog-
enates and more than any cellular model of AD. Tg+ve culture supernatants also 
contain monomeric and various pathogenic Aβ peptide oligomers (ranging from 
2-mer to 12-mer; the Aβ star oligomer) (Ghate et al.  2014 ). In addition, conforma-
tion-dependent immunocytochemistry demonstrated the presence of intracellular 
and extracellular Aβ peptides within neurospheres. The neurosphere culture sys-
tem has many advantages over existing cellular models. Thus, (a) neurosphere 
cultures contain both brain stem and progenitor like cells, which can differentiate 
towards mature brain cells like neurons and astrocytes that are not possible in 
transformed cell lines, (b) these cultures can synthesize and secrete both Aβ pep-
tides, (c) these cultures show high Aβ42/Aβ40 ratio, (d) produce pathogenic Aβ 
peptide oligomerization, which is comparable with the animal models of AD and 
much higher than existing cellular models of AD, including iPSC based models of 
AD (Israel et al.  2012 ) and (e) demonstrate intracellular and extracellular aggrega-
tion of Aβ peptides. It is proposed that studies with neurosphere cell culture may 
advance not only our understanding of pathogenesis of AD, but may provide better 
understanding of therapeutic agents on decreasing the beta amyloid synthesis and 
aggregation within neural cells (Ghate et al.  2014 ).  
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2.5     The Gap Between Mouse Models and Human Patients 
of Alzheimer Disease 

 The lack of an ideal animal model and specifi c  biomarkers   for AD progression 
makes it not only diffi cult to learn molecular mechanism associated with the patho-
genesis of AD, but also complicate to discover the drugs that can prevent neurode-
generation in AD. At present mice models of AD mimic only few aspects of the 
disease, which are neither enough to learn about the molecular mechanism, specifi c 
biomarkers, and develop new treatment (Elder et al.  2010 ). Another possibility is 
that  senile plaques   and neurofi brillary tangles are endpoints for different disease- 
driving mechanisms. Thus, achieving a successful inhibition of Aβ and tau patholo-
gies may not result in the successful for treating AD. AD is a multifactorial disease 
so its treatment may require a multitarget approach. To generate better animal mod-
els for AD, one has to develop better understanding of the molecular neuropatho-
logical mechanisms not only associated with neurodegeneration, but also behavioral 
and memory losses.    Another important point is either the lack or low of neurode-
generation in animal models compared to human subjects, who show slow and con-
tinuous neurodegeneration with the progression of the disease. This is tempting to 
speculate that more research breakthroughs in development of animal models are 
needed for the development of models refl ecting the heterogeneity of the disease 
(Cuadrado-Tejedor and García-Osta  2014 ). Also, discovery of specifi c biomakers is 
necessary not only to identify AD progression in a large population, but also for 
monitoring clinical trials and responses to medication.  

2.6     Conclusion 

 AD is a multifactorial disease characterized by the accumulation of senile plaques, 
which are composed of oligomers of Aβ and neurofi brillary tangles and hyperphos-
phorylated Tau protein. In addition, neurochemical changes in AD include slow 
excitotoxicity, mitochondrial dysfunction, oxidative stress, and neuroinfl ammation. 
Neurotoxin-induce animal models of AD show very little neuropathological 
changes, but they induce mitochondrial dysfunction, oxidative stress, and  neuroin-
fl ammation  . Animal models for AD have been developed in both invertebrates (fruit 
fl ies and roundworms) and vertebrates (mice, rats, and rabbits). Most mice models 
are based on familial AD mutations of genes involved in  the   amyloidogenic process, 
such as the APP, MAPT, PS1, PS2 tau protein and apoE. Some models also incor-
porate Tau mutations, which are known to cause frontotemporal dementia, a condi-
tion, which shares some elements of neuropathology with AD. Transgenic mice 
develop several lesions similar to those of AD, including diffuse and neuritic amy-
loid deposits, cerebral amyloid angiopathy, dystrophic neurites and synapses, and 
amyloid- associated neuroinfl ammation. However, other features of AD, such as 
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neurofi brillary tangles, nerve cell loss, and signifi cant memory defi cits are not 
 satisfactorily reproduced in these models. This suggests that despite various modi-
fi cations specifi c to AD in the genome of animals, investigators have failed to create 
an ideal animal model, which can be fully characterized by all the pathological and 
neurochemical changes that can occur in AD. Nevertheless, the role of transgenic 
animals is undeniable, both in research on AD neuropathology and for testing new 
therapies, such as immunotherapy. It is well understood that it is diffi cult to repro-
duce all anatomical characteristics and cognitive ability of humans in mice because 
of lower-order of cognition found in mice. In addition, there are substantial ana-
tomical differences between mouse and human brains, particularly that the mouse 
brain has a higher gray- to- white matter ratio. Still, transgenic mice have provided 
valuable genetic, neurochemical, and neuropathological information on AD. Better 
transgenic models of AD are needed for future research in higher animals, which are 
closer to humans not only in anatomy, but also in cognitive function, behavior and 
social responses.      
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