Chapter 2

Potential Animal Models of Alzheimer Disease
and Their Importance in Investigating

the Pathogenesis of Alzheimer Disease

2.1 Introduction

As stated in Chap. 1, AD is a progressive and irreversible neurodegenerative disease
characterized by progressive loss of memory and cognitive function. Risk factors
for AD include old age, positive family history, unhealthy life style, consumption of
high fat diet, and exposure to toxic environment (Farooqui 2015). Clinically, AD is
characterized by deterioration of memory and cognitive function, progressive
impairment of activities of daily living, and several neuropsychiatric symptoms.
Neuropathologically, AD is characterized by the accumulation of beta-amyloid
(AP) protein that forms plaques and tau protein phosphorylation that promote the
formation and deposition neurofibrillary tangles (NFT) (Farooqui 2010). Many bio-
chemical mechanisms have been proposed to explain the pathogenesis of AD
including production of reactive oxygen species, disruption of calcium homeostasis,
activation of Wnt pathway, excitotoxicity, activation of apoptotic pathways, neuro-
nal degeneration, and neurotransmitter deficits, the precise role of abnormal protein
aggregates in the pathogenesis of AD remains to be clarified (Huang and Jiang
2009; Welsh-Bohmer and White 2009; Querfurth and LaFerla 2010). Human autop-
sies and animal models studies have indicated that both senile plaques and NFT are
co-localized with activated glial cells, supporting the view that reactive gliosis may
be closely associated with the pathogenetic role of AD (Craft et al. 2006; Farooqui
2013). Increased generation of AP peptides not promotes neuroinflammation
through the upregulation of different cytokines, and pro-inflammatory mediators
(Tuppo and Arias 2005). It is well known that astrocytes play an important role in
the controlling the cerebral homeostasis. Accumulation of Af and activation of
astrocytes in AD initially (for a short time) is a neuroprotective response aimed at
removing injurious stimuli. However, uncontrolled and prolonged activation of
astrocytes produces detrimental effects that override the beneficial effects due to
upregulation of different cytokines and proinflammatory mediators leading to neu-
rodegeneration directly as well as in an autocrine/paracrine manner expanding the

© Springer International Publishing Switzerland 2016 77
A.A. Farooqui, Therapeutic Potentials of Curcumin for Alzheimer Disease,
DOI 10.1007/978-3-319-15889-1_2


http://dx.doi.org/10.1007/978-3-319-15889-1_1

78 2 Potential Animal Models of Alzheimer Disease and Their Importance...

neuropathological damage in AD (Mrak and Griffin 2001; Pekny et al. 2014).
Among above mentioned hypothesis, Ap hypothesis has a big support among
researchers. According to AP hypothesis the accumulation of senile plaques and
neurofibrillary tangles is accompanied by neuronal atrophy and progressive synap-
tic failure, which initially appears in the entorhinal region and the temporal lobe,
before progressing to the limbic system and subsequently to major areas of the
neocortex, severely damaging the brain (Braak and Braak 1995). Ap is a peptide
(4 kDa) generated by proteolytic processing of the amyloid precursor protein (APP),
a transmembrane glycoprotein BAPP (~770 amino acids), which has been impli-
cated in the regulation of neuronal cytoarchitecture, synaptic plasticity, axon guid-
ance, and cell—cell interactions in the brain (Hardy and Selkoe 2002; Zhang et al.
2007, 2011; Haass and Selkoe 2007). To explain neurodegeneration in AD, amyloid
cascade hypothesis has been proposed (Tanzi and Bertram 2005). According to this
hypothesis, amyloid precursor protein (APP) is processed either by the non-
amyloidogenic pathway, or the amyloidogenic pathway (Fig. 2.1) (Chow et al.
2010; Zhang et al. 2012a). In the non-amyloidogenic pathway, a-secretase cleaves
APP in the ectodomain within the A region of the APP protein, which precludes
the generation of the A peptide (Chow et al. 2010; Zhang et al. 2012a). In the amy-
loidogenic pathway, APP is processed by the p-site APP-cleaving enzyme (BACE),
releasing a soluble APP fragment (SAPPf), which is secreted outside the cell, leav-
ing behind a membrane-associated C-terminal fragment of 99 or 89 amino acids
[C99 or C89 (CTFpP)]. The CTFp is then broken down by y-secretase, generating the
AP peptide and a cytoplasmic APP intracellular domain (AICD) (Chow et al. 2010;
Zhang et al. 2012b). Ap42 peptide oligomerizes, and readily forms aggregates that
accumulate in the brain to form plaques whose recognition by brain cell microglial
cells instigate a pro-inflammatory microglial response and the release of ROS and
pro-inflammatory cytokines (Small et al. 2001; Fu et al. 2014). In addition, neuro-
degenerative process in AD is associated with alterations in neurogenesis leading to
memory dysfunction (Donovan et al. 2006). Ap accumulation is the consequence of
an altered balance between protein synthesis, aggregation rate, and clearance.
Accumulation of A plaques contributes not only to the alterations in cellular activi-
ties, but also to disrupted communication in the brain, leading to neurotoxic inflam-
mation and neuronal death. NMDA receptors play an important role in the production
of AP42. Activation of synaptic NMDA receptors promotes the non-amyloidogenic
pathway, which not only reduces the generation of Ap42, but also upregulates extra-
cellular signal-regulated kinase (ERK) and Ca?/calmodulin-dependent protein
kinase (CAMK) pathways. These processes promote cyclic AMP (cAMP) signaling
pathway, which is closely associated with the formation of long-term memory
(Lonze and Ginty 2002). The cAMP-dependent protein kinase A (PKA), when allo-
sterically activated by cAMP, can phosphorylate cAMP response element binding
protein (CREB), a basic leucine zipper transcription factor at serine 133 (Gonzalez
and Montminy 1989). Phosphorylated CREB then interacts with the transcription
coactivator CREB-binding protein to initiate the transcription and translation of
CREB target genes, which are required for the synaptic plasticity mediating long-
term memory formation. Recent studies have demonstrated that CREB enhances
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Fig. 2.1 Diagram showing f-Amyloid hypothesis and related molecular events associated with
the pathogenesis of Alzheimer disease. Glutamate (Glu); glutamine (Gln); NMDA receptor
(NMDA-R); phosphatidylcholine (PtdCho); lyso-phosphatidylcholine (lyso-PtdCho); cytosolic
phospholipase A, (cPLA,); arachidonic acid (ARA); a-secretase (a-Sec); B-secretase (-Sec);
y-secretase (y-Sec); amyloid precursor protein (APP); B-Amyloid (Af); Prostaglandins (PGs); leu-
kotrienes (LT’s); thromboxanes (7Xs); 4-hydroxynonenal (4-HNE); and malondialdehyde (MDA)

short-term memory by up-regulating brain-derived neurotrophic factor (BDNF),
suggesting that CREB signaling is involved in the formation of both short- and
long-term memory (Suzuki et al. 2011). CREB-mediated gene expression is
impaired in the brains of both AD mouse models and patients (Gong et al. 2004;
Phillips et al. 1991), as well as in cultured neurons insulted with Af (Tong et al.
2001). Conversely, activation of extrasynaptic NMDA receptors promotes the amy-
loidogenic pathway leading to increased production of AP42 and loss of Ca*
homeostasis. Increased production of Ap42 not only downregulates the phosphory-
lation of CREB and enhances LTD, but also induces mitochondrial dysfunction
leading to apoptotic cell death (Fig. 2.2) (Hardingham et al. 2002; Bordji et al.
2010). Subsequent activation of downstream signal transduction pathways (such as
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Fig. 2.2 Involvement of NMDA receptor and abnormal APP processing in apoptotic cell death
and cognitive decline in Alzheimer disease. Amyloid precursor protein (APP); f-amyloid (Ap);
glutamate (Glu); NMDA receptor (NMDA-R); phosphatidylcholine (PtdCho); phospholipase A,
(PLA)); cyclooxygenase-2 (COX-2); 5-lipoxygenase (5-LOX); arachidonic acid (ARA); prostaglan-
dins (PGs); leukotrienes (LTs); thromboxanes (7Xs); reactive oxygen species (ROS); nuclear
factor-kB (NF-kB); nuclear factor-kB-response element (NF-kB-RE); inhibitory subunit of NF-xB
(I-xB); tumor necrosis factor-a (TNF-a); interleukin-1p (I/L-1p); interleukin-6 (/L-6); inducible
nitric oxide synthase (iNOS); secretory phospholipase A, (sPLA,); death domain (DD); nitric oxide
(NO); long term potentiation (LTP); genes for APP, PS1, and PS2 (APP; PSI, and PS2, respec-
tively); Ca?*/calmodulin-dependent protein phosphatase (calcineurin); protein phosphatase II
(PP2B); cofilin (actin binding and modulating proteins); glycogen synthase kinase 3 beta
(GSK-3p); and cAMP response element-binding protein (CREB)

dephosphorylation and activation of the actin filament severing protein cofilin by
calcineurin) induce a cascade of pathological events causing synaptic disruption
and neuronal loss through mitochondrial dysfunction, induction of oxidative stress,
neuroinflammation and alterations in bioenergetic, leading to dysregulation of syn-
aptic neurotransmission and abnormal neuronal network activity (Fig. 2.2) (De
Felice et al. 2007; Selkoe 2008; Palop and Mucke 2010; Sakono and Zako 2010;
Tomiyama et al. 2010; Farooqui 2010).

Despite of many criticisms against the amyloid cascade hypothesis, it is becom-
ing increasingly evident that this hypothesis can explain not all, but many molecular
and cellular aspects of AD including Af and Tau pathology. As stated in Chap. 1,
most AD cases (more than 95 %) are sporadic with over 65 years old and only less
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than 5 % cases are of genetic (familial, FAD) origin-that is, related to a genetic
predisposition with mutations in the amyloid precursor protein, presenilin 1, and
presenilin 2 genes. Apolipoprotein E (APOE) polymorphisms, sometimes referred
to as familial late-onset AD, are not mutations per se, but are a significant predispos-
ing factor (Adalbert et al. 2007). In particular, the APOE gene has three isoforms
(€2, €3 and €4), with the €4 isoform being the strongest predisposing allele (Bu
2009). APOE €3/e4 heterozygotes have two- to threefold higher risk of developing
AD compared with €3/e3 homozygotes, and €4/e4 homozygotes have more than
twofold the risk of the €3/e4 genotype, while the presence of €2 is somewhat protec-
tive (Aggarwal et al. 2005). Though sporadic and FAD forms of AD reflect similar
pathologies, the underlying causes of pathogenic may vary considerably. As stated
above, FAD is linked to specific mutations in APP or PS1 or PS2, located at chro-
mosomes 21, 14, and 1, respectively leading to accumulation of toxic A species in
the brain by mid-life. Sporadic AD manifests later in life (over the age of 65 years),
and is triggered by more complex neurochemical mechanisms along with genetic
components and lifestyle factors (e.g. diet, exercise, and sleep). The histopathologi-
cal similarity between sporadic and early familial cases has been taken as evidence
for a common etiology of the disease. Because in vitro and in vivo data indicated
that early onset FAD mutations give rise to the generation of more Af peptides and
their accumulation has been proposed to be involved in the pathogenesis of FAD. In
contrast, the pathogenesis of sporadic AD is very complex and multifactorial involv-
ing complex interactions among multiple genetic, epigenetic, and environmental
factors. Clinical and epidemiological studies indicate that aging, stress, long term
consumption of high calorie diet, aluminum, and viral infections may contribute to
the risk of AD (Grant et al. 2002). At the neurochemical level pathogenesis of spo-
radic AD not only involves the accumulation of Af and hyperphosphorylated Tau,
but also excitotoxicity, disruption of intracellular calcium homeostasis, oxidative
stress, neuroinflammation, loss of memory formation along with reduction in the
expression of trophic factors, impairments of axonal transport, and mitochondrial
dysfunction (Leuner et al. 2007; Farooqui 2010).

2.2 Potential Animal Models and Alzheimer Disease

Animal models of AD are needed to study the signal transduction mechanisms
underlying AD pathogenesis and learning about the effect of genetic and environ-
mental risk factors involved in the pathogenesis of AD. In addition, animal models
are also used for developing diagnostic tests and investigating the therapeutic effects
of drugs on neuropathology and cognitive function in AD. Animal models are needed
for the establishment of pharmacodynamics and pharmacokinetic parameters, the
toxicity analysis of new drugs for the treatment of AD. Collective evidence suggests
that animal models of AD are not only a cornerstone for studying the pathogenesis of
AD, but also for developing and studying pharmacokinetics of drugs.
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2.2.1 Invertebrate Models of Alzheimer Disease

Invertebrate models have several advantages over vertebrate models (Link 2005;
Wu and Luo 2005). The genes and pathways of invertebrate organisms are well-
suited to the study of human disease because both pharmacological and genetic
manipulations can be performed easily to understand the function of their orthologs
in vivo (Table 2.1). Invertebrate models also have other advantages. They are inex-
pensive, easy to work with, have short lifespans, and often have very well-
characterized in terms of stereotypical development and behavior. Two invertebrate
model organisms: roundworm (Caenorhabditis elegan) and fruit fly (Drosophila
melanogaster) (Saraceno et al. 2013) qualify for the above criteria. These models
are useful tools for studying human AD not only because genes contributing to
human AD are homologues in invertebrates, but also because many signaling path-
ways are conserved and display similar activities (Li and Le 2013). C. elegans has
been used a fundamental tool for dissecting the pathways that link lifespan to AD.
Specifically, one of the major pathways that regulate lifespan is the insulin/IGF-1
signaling (IIS) pathway—a pathway that has been validated in nematodes, flies and
mice and strongly implicated in humans (Kenyon et al. 1993; Holzenberger et al.
2003). In C. elegans model of AD, knockdown of the insulin/IGF-1 receptor DAF-2
results not only in longevity, but also retardation of A toxicity by delaying the
onset of paralysis, supporting the view that there may be a link between the mecha-
nisms of aging and proteotoxicity (Cohen et al. 2006). Modulation of lifespan by

Table 2.1 Listing of invertebrate orthogenes and vertebrate genes contributing to the pathogenesis
of AD

Caenorhabditis
Protein elegans Drosophila Zebrafish Mouse
APP Apl-1 appl Appa, appb APP
ADAMI10 Sup-17 kuzbanian No a-secretase ADAM 10
gene present
ADAM17 Adm-4 dBACE Absent ADAM 10
B-Secretase Absent Absent Absent [B-secretase
y-Secretase y-Secretase y-Secretase Incomplete Complete
complex complex complex y-Secretase complex y-secretase
Tau Ptl-1 dtau Mapta/maptb Tau
APOE Absent Absent Present APOE
Presenilins Absent Absent Psenl and psen2 PS1 and PS2
APLP2 Absent Absent Absent Present
MAPT Absent Absent Absent Present
PSEN1 Absent Absent Absent Present

Most of the proteins associated with AD are evolutionarily conserved in Drosophila and
Caenorhabditis elegans making these organisms attractive model systems for understand the con-
served molecular functions of these genes linked to AD. zebrafish (Danio rerio) is a promising
model organism for studying molecular events in AD (Saraceno et al. 2013)
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DAF-2 is highly dependent on HSF-1 and DAF-16, two transcription factors, which
have been reported to drive the expression of longevity genes (Hsu et al. 2003).
Both transcription factors block proteotoxicity, but they did so through opposing
effects. HFS-1 promotes disaggregation, while DAF-16 enhances aggregation for-
ward, possibly as a means of sequestering the amyloidogenic protein from the cel-
lular milieu (Cohen et al. 2006). C. elegans model of AD also expresses the tau
homologue Ptl-1. Similarly, in Drosophila, the expression of human wild-type and
mutant forms of Tau and Ap has provided useful information on the role of Tau and
AP proteins under physiological and pathological conditions (Wittmann et al. 2001).
Collective evidence suggests that invertebrate animal models provide an in vivo
system useful for dissecting the molecular mechanisms underlying neurodegenera-
tion in AD. Significantly important information has been obtained on molecular and
neurochemical aspects of AD using Caenorhabditis elegans and Drosophila mela-
nogaster models (Saraceno et al. 2013; Li and Le 2013). Despite of above men-
tioned advantages invertebrate models, transgenic approaches in Caenorhabditis
elegans and Drosophila melanogaster models suffers from several unphysiological
features, such as (a) high protein levels due to the integration of multiple transgene
copies into the genome, (b) alterations in brain area specificity and subcellular
expression pattern of the transgene compared with the endogenous gene because of
the use of an exogenous promoter, and (c) disruption of endogenous gene expres-
sion due to the insertion of transgene into the host genome (Baker and Gotz 2015).
Consequently, alternative strategies such as knock-in approach (P301L mutation of
tau into the murine MAPT locus) and development od senescence-accelerated
SAMP (senescence-accelerated mouse-prone) strain.

2.2.2 Vertebrate Models for Alzheimer Disease

Use of mice (Mus musculus) for the development of animal models offer several
advantages over invertebrate models. Mice are vertebrates, which more closely related
to humans than invertebrate models such as yeast, worms, or flies (Saraceno et al.
2013). Whole genome of mouse has been mapped (Waterston et al. 2002). The pro-
portion of mouse genes with a single identifiable ortholog in the human genome is
~80 %. This makes the mouse an ideal model for investigating environmental and
genetic manipulations, which are not feasible in higher primates and humans. The
small size and short gestation and life span makes mice amenable animals for rapid
breeding in large and, consequently, the feasibility of many studies in a relatively short
period. In addition, preclinical experiments with mice model of human diseases can
thus be performed in relative short time periods, enabling the chronic study on the
effects of drugs in these models. A valid mice model for AD should not only exhibit
progressive AD-like neuropathology and cognitive deficits, but like humans it should
manifest some memory loss and cognitive deficits with advancing age.

Studies on transgenic (Tg) mice have provided useful information into the chro-
nology of events leading to the pathogenesis of AD. For example, double-Tg mice,



84 2 Potential Animal Models of Alzheimer Disease and Their Importance...

which over-express human mutant APP and tau (Tg line APP**-tau"'¥') mimic several
characteristics of the AD phenotype such as deposition of A, hyperphosphorylation
of Tau, formation of NFT, glial cell proliferation, and significant neuronal loss in the
entorhinal cortex (EC) and CA1 subfield of the hippocampus (Perez et al. 2005; Ribe
et al. 2005). All the above phenotypic traits of AD develop in these mice in an age-
dependent manner and are accompanied by progressive hippocampus-dependent
memory impairment. However, neurodegeneration in these mice predates overt
deposition of AP, supporting the view that extracellular fibrillar amyloid may not be
causing neuronal death. Furthermore, the extent of neurodegeneration in these mice
does not correlate well with total immunostained amyloid plaque burden (Ribe et al.
2005). Thus, studies on mice models of AD have provided us an excellent opportu-
nity to track the natural history of oligomeric Af (also known as ADDLs) accumula-
tion in their brains and to study the relationships of these AP species to AD-related
neuropathological changes and cognition (Perez et al. 2005; Ribe et al. 2005).
Oligomeric forms of A have been reported to instigate memory loss through their
ability to target synapses and disrupt synaptic plasticity (Wang et al. 2002), including
inhibition of long-term potentiation (Walsh et al. 2002; Townsend et al. 2006) and
prolonged maintenance of long-term depression (Wang et al. 2002). This suggests
that soluble oligomeric forms, not fibrillar deposits of Af are pathologically impor-
tant for the synaptic dysfunction of AD (Li et al. 2009a; Koffie et al. 2009). Using
microdialysis technique on interstitial fluid (ISF) samples from Alzheimer model
APP/PS1 Tg mice at 3 different age stages of AD-like amyloid plaque development,
it is shown that high molecular weight (HMW) and low-molecular-weight (LMW)
AP oligomers are present in brain ISF samples and that levels of ISF Af oligomers
become elevated with age in the brain of APP/PS1 Tg mice (Takeda et al. 2013). The
clearance of HMW A oligomers is slower than LMW AR after acute inhibition of
y-secretase activity to stop Af synthesis supporting the view that the rate of clearance
of various AP oligomers from the brain is different from each other (Takeda et al.
2013). As stated in Chap. 1, AP oligomers interact with a number of postsynaptic
receptors including ionotropic and metabotropic glutamate receptors, the cellular
prion protein (PrP€), neuroligin, the Wnt receptor, and insulin receptors (Krafft and
Klein 2010; Ferreira and Klein 2011; Viola and Klein 2015). Many neurotoxic effects
have been described as resulting from the interaction of AP oligomers with several
receptors or co-receptors (Velasco et al. 2012).

Extensive investigations on mice models of AD have indicated that unlike the
human AD neuropathology, which displays massive neurodegeneration, only very
few transgenic animal models show neuronal death and on a scale that does not
compare to what is seen on postmortem human brains (Elder et al. 2010). In addi-
tion, the way the genetic manipulation translates into the histological and clinical
recapitulation of the AD highly depends on the promoter used to insert the trans-
gene and on the genetic background of the recipient animal (Elder et al. 2010). This
actually makes any comparison between transgenic mouse models difficult.
Furthermore, many mice models do not show cognitive dysfunction despite overex-
pression of APP (Masliah et al. 2001). The formation of neurofibrillary tangles
(NFT) is not observed in most of the APP overexpressing models (Ribeiro et al.
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2013). Studies on generation of AD transgenic mice models using Tau protein have
revealed that only minor motor impairments with little Tau protein accumulation
(mostly in brain and spinal cord), however classic NFT are not observed (Eriksen
and Janus 2007; Wiedlocha et al. 2012). Another important issue is that many dif-
ferent mice strains or hybrid strains have been used for developing transgenic mice
models (Joseph et al. 2001). The strain heterogeneity makes it difficult to compare
transgenic models, as there are strain specific differences in the performance of
behavioral tasks have been observed (Joseph et al. 2001). Hybrid mouse strains can
also have vision problems that confound any results obtained from behavioral test-
ing (Joseph et al. 2001; Brown 2007). Another aspect of AD pathology, such as the
location of AP plaques and neurofibrillary tangles, vary depending on the promoter
region used for the incorporation of transgene into the animal’s genome (Braidy
et al. 2012; Lecanu and Papadopoulos 2013). Therefore, different models using
similar genetic mutations can produce very different brain pathologies and cogni-
tive deficits. Collective evidence suggests that presently available mice models do
not fulfill above mentioned criteria. Thus, at the present time an ideal animal model
for AD is not available (Cuadrado-Tejedor and Garcia-Osta 2014). It is worth noting
that almost all transgenic models only related to the familial early onset form of AD,
which represents a mere 5 % of AD cases. The remaining 95 % are sporadic late-
onset forms, the causes and pathogenesis of this form remain elusive. Converging
evidence thus suggest that at present mouse models display some neurochemical,
neuropathological, and behavioral alterations of AD. However, they do not recapitu-
late all aspects of human AD. Furthermore, failure of AD immunotherapy in mouse
models indicates that there is a need for developing superior models of the AD
pathology with cognitive dysfunction.

The ideal transgenic model should mimic multiple aspects of the disease includ-
ing its etiology and a time dependent progression of the pathology, involving similar
structures and cells similar to the human pathology. Identifying and targeting the
cognitive deficits that occur early in the course of the human AD are critical for pro-
ducing the maximum impact of treatment on cognitive function and quality of life in
AD patients. Earliest neuropathological changes in human AD occur in hippocampus
and entorhinal cortex, followed by changes in the medial temporal lobe. In human
AD the earliest detectable deficits in cognition are seen in medial temporal lobe-
dependent episodic memory (Schmitt et al. 2000; Smith et al. 2007). These early
deficits in episodic memory are followed closely by deficits in semantic memory, and
both are developed before other deficits in cognitive domains such as attention,
visuospatial memory, or executive function (Bondi et al. 2008). These observations
support the view that cognitive functions such as episodic and semantic memory that
depend heavily on the neural circuitry of the medial and lateral temporal lobes may
be impaired earlier than cognitive abilities depending on the circuitry of other brain
regions. The development of cognitive deficits in mouse models of AD shows simi-
lar, but not identical patterns of progression suggesting that mouse transgenic models
do not fully recapitulate the inevitable neuronal loss. Some transgenic mice fail to
even demonstrate the phenotypic alterations associated with the modeled diseases,
providing further evidence that humans and primates can be more vulnerable than
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rodents to the same triggers inducing neurodegeneration, a phenomenon also
observed in pharmacological models (Przedborski et al. 2001).

Rats offer numerous advantages over mice for the development of animal mod-
els. The rats are physiologically, genetically and morphologically closer to humans
than mice (Jacob and Kwitek 2002). Their larger body and brain size facilitates
intrathecal administration of drugs, microdialysis, multiple sampling of cerebrospi-
nal fluid, in vivo electrophysiology, as well as neurosurgical and neuroimaging pro-
cedures (Tesson et al. 2005). Like humans, the rat contains 6 isoforms of Tau (Hanes
et al. 2009; Tran et al. 2013), although the ratio of 4R/3R Tau isoforms is different
(9:1 in rats; 1:1 in humans). In addition, rats not only share a good homology with
humans in apoE amino acid sequences (73.5 % with human apoE3, 73.9 % with
apoE4), but also show finer and more accurate motor coordination than mice and
exhibit a richer behavioral display (McLean et al. 1983). Based on these advantages,
it is suggested that rats can be used for developing better animal models of AD than
mice (Carmo and Claudio Cuello 2013).

The earliest transgenic rat models of AD show accumulation of intracellular Ap
but no senile plaques. Lack of senile plaques may be due to inadequate A levels,
since higher concentrations are required to initiate the Ap deposition. Some of these
models also show synaptic dysfunction supporting the view that cognitive deficits
are independent of plaque formation but correlate better with AP oligomers and
other A species (Millington et al. 2014). In contrast, UKUR25 and UKUR2S8 trans-
genic rat strains show an accumulation of intracellular AB-immunoreactive material
in pyramidal neurons of the neocortex and in CA2 and CA3 regions of the hippo-
campus. These rat models not only support the role of A in the amyloid cascade at
the early and pre-plaque phase of the amyloid pathology, but also show dysregula-
tion of ERK2 activation in the brain (Echeverria et al. 2004a) (Table 2.2).
Furthermore, it is also reported that accumulation of Af is sufficient to trigger the
initial steps of the tau-phosphorylation cascade, which may be responsible for
impairments in learning and alterations in the MWM task (Echeverria et al. 2004a).
Collective evidence suggests that rat models of AD in rats show significant changes
in synaptic proteins and memory formation (Vercauteren et al. 2004).

Tab!e 2.2 Animal models of Name of animal models | Reference

AD in rat that have been used McGill-R-Thyl-APP | Leon et al. (2010)

for obtaining information on -

AD pathogenesis UKUR25 Echeverria et al. (2004b)
UKUR28 Echeverria et al. (2004b)
Tg6590 Kloskowska et al. (2010)
Tgd78 Flood et al. (2009)
Tgll16 Flood et al. (2009)
Tgl1587 Liu et al. (2008)
APP21 Agca et al. (2008)

APP31 Agca et al. (2008)
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Several transgenic mouse models expressing mutated forms of human Tau
containing neurofibrillary degeneration have also been developed (Mocanu et al.
2008; Ramsden et al. 2005). Transgenic mouse model only show minor motor
impairments and tau protein accumulation (mostly in brain and spinal cord), how-
ever classic NFT are not observed. Behavior analysis of mice and rat models has
indicated that rats not only show more progressive cognitive decline in spatial
navigation, but also display disturbances in sensorimotor and reflex responses
(Hrnkova et al. 2007) than mice. These impairments correlate with the progressive
accumulation of argyrophilic NFTs, mature sarcosyl-insoluble Tau complexes, and
extensive axonal damage in the brain stem and spinal cord. Although, hyperphos-
phorylated Tau is present in cortex and hippocampus, but no neuronal loss or
occurrence of neurofibrillary tangles has been observed in the brain (Hrnkova et al.
2007). These rats also show a decrease in lifespan (Zilka et al. 2006; Koson et al.
2008).

Infusion of low doses of LPS into rat brain ventricular system results in an animal
model with neuroinflammation. This animal model has several parallels character-
istics of human AD, including increase in microglial cell activation, onset of astro-
gliosis, and elevation in tissue levels of IL-1/ and TNF-q, elevation in levels of APP
(Hauss-Wegrzyniak et al. 1998; Wenk, et al. 2000), along with deficit in the working
memory (Hauss-Wegrzyniak et al. 1998, 1999a, b). Above mentioned neurochemi-
cal and immunochemical changes have been quantified by Magnetic Resonance
Imaging (MRI) in the animal model and AD patients (Bobinski et al. 1999; Forloni
etal. 1992). It is also reported that like human AD, the chronic LPS infusion into the
ventral forebrain in animal model also results in chronic IL-14 or TNF-a increase
and selectively degeneration of cholinergic cells in a time- but not dose-dependent
manner (Wenk and Willard 1998; Willard et al. 1999). In the LPS infusion animal
model, behavioral, biochemical, and pathological deficits induced by chronic LPS
infusion are reversible with chronic administration of either an NSAID
(Hauss-Wegrzyniak et al. 1999a, b) or an IL-1RA (Bluthe et al. 1992).

It should be noted that NSAID-mediated beneficial effect is observed only in
young rats, with no significant attenuation of the deficits in old rats (Hauss-Wegrzyniak
et al. 1999b). NSAID therapy does not have any effect in human AD patients.

There are fundamental differences gene expression, neural circuitry, brain size,
proportions of gray and white matters, and neurochemical responses between rodent
and human brains. Nonhuman primates (great apes, baboons, macaques, and mar-
mosets) due to genetic lineages share many structural and functional features with
humans. So they may provide better animal model for AD than rodents (Finch and
Austad 2012). It is realized that the management and care of nonhuman primates are
more complicated and the related costs are much higher. Despite of these complica-
tions, use of nonhuman primate animal models may provide information on higher
intellectual functions such as planning of complex cognitive behaviors, personality
expression, decision-making and moderating social behavior (Sutcliffe and
Hutcheson 2012).
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2.3 Neurotoxin-Based Animal Models for Alzheimer Disease

Neurotoxin-based models involve the disruption of multiple neurotransmitter systems,
which partially contribute to the pathophysiology of neurochemical, cognitive, and
behavioral disturbances associated with AD. The majority of animal models within this
category are based Aon the cholinergic hypothesis of AD (Craig et al. 2011), which
states that loss of cholinergic function in the brain contributes significantly to the cog-
nitive decline associated with advanced age and AD (Bartus 2000). Degeneration of
cholinergic neurons in the nucleus basalis of Meynert, situated in the basal forebrain
and primarily projecting to the neocortex, occurs early in the course of AD (Whitehouse
et al. 1982; Dournaud et al. 1995). Intraparenchymal or intracerebroventricular micro-
injections of glutamate analogs (quinolic, kainic, N-methyl-p-aspartic, ibotenic and
quisqualic acids) and the cholinotoxin (AF64A) have been used to generate animal
models for AD (Fig. 2.3) (Toledana and Alvarez 2010). Glutamate analogs induce
degeneration of glutamatergic neurons, where as AF64A preferentially triggers degen-
eration of cholinergic neurotransmission (Stephens et al. 1987; Nakahara et al. 1988).
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Fig. 2.3 Chemical structures of neurotoxins used for developing animal models of Alzheimer
disease
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2.3.1 Cholinergic and Glutamatergic Signaling Animal Models
of Alzheimer Disease

It is well known that both cholinergic and glutamatergic neurons are located in the
hippocampus and in the frontal, temporal and parietal cortex are severely affected in
AD, whereas similar neurons in the motor and sensory cortex are relatively spared
(Francis 2003). Since the hippocampus and cortex are essential for learning and
memory, it is possible that degeneration of cholinergic and glutamatergic neurons
may be an early event in the pathogenesis of AD (Kar et al. 2004; Morris 2002).
Studies on animal models of AD have indicated that upregulation of cholinergic
presynaptic boutons occurs before the involvement of glutamatergic terminals, thus
raising the possibility that a compromised cholinergic system may affect the
functioning/survival of glutamatergic neurons in the brain (Bell and Cuello 2006).
Indeed, pyramidal neurons of the cortex that use glutamate as their primary trans-
mitter are known to possess both cholinergic and glutamatergic receptors and
receive inputs from the basal forebrain cholinergic neurons (Francis 2003).

Neurochemical investigations on tissues from biopsy and autopsy of the brains
of individuals with AD have indicated that a profound reduction in the activity of
the ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the neocortex,
which correlates positively with the severity of dementia (Geula and Mesulam
1994; Lander and Lee 1998; Davies and Maloney 1976). Reduced choline uptake,
ACh release and loss of cholinergic neurons from the basal forebrain region further
indicate a selective presynaptic cholinergic deficit in the hippocampus and neocor-
tex of brains of individuals with AD. ACh exerts effects on the central nervous
system by interacting with G-protein-coupled muscarinic and ligand-gated cation
channel nicotinic receptors. It is generally believed that M2 receptors, most of
which are located on presynaptic cholinergic terminals, are reduced in the brains of
individuals with AD (Lander and Lee 1998; Nordberg, et al. 1992). The density of
postsynaptic M1 receptors remains unaltered, but there is some evidence for disrup-
tion of the coupling between the receptors, their G-proteins and second messengers
(Nordberg et al. 1992; Warpman et al. 1993). Administration of acetylcholine ago-
nists (pilocarpine and nicotine) increases learning and memory levels, but acetyl-
choline antagonists (scopolamine and succinylcholine) decreases learning and
memory. Some studies have shown that during learning, the level of acetylcholine is
increased in the amygdala, which plays an important role in memory consolidation
(McGaugh 2004). It appears that the cholinergic system is involved in mediating
this process (McGaugh 2004). The perfect performance of central cholinergic sys-
tems (nicotinic and muscarinic systems) is important for consolidation with shuttle
box. Administration of acetylcholine agonist and antagonist via ICV affects the con-
solidation, in a dose-dependent manner (Eidi et al. 2000).

Stimulation of glutamate receptor results in breakdown of neural membrane
phospholipids (phosphatidylcholine and plasmalogen) by the stimulation of cyto-
solic phospholipase A, (cPLA,) and plasmalogen-selective phospholipase A,
(PIsEtn-PLA,). Stimulation of cPLA, increases the levels of arachidonate-derived
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Fig. 2.4 Activities of cholinergic and glutamatergic neurons in the pathogenesis of Alzheimer
disease. Amyloid precursor protein (APP); f-amyloid (Af); glutamate (Glu); glutamine (Gin);
NMDA receptor (NMDA-R); plasmalogen (PlsEtn); 4 (plasmalogen-selective phospholipase A,);
lyso- plasmalogen (lyso-PlsEtn); neural membrane phosphatidylcholine (PtdCho); muscarinic M1
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enzymic and non-enzymic lipid mediators (eicosanoids and 4-HNE, malonaldehyde,
respectively), whereas activation of PIsEtn-PLA, catabolizes plasmalogen, which
are major component of synaptic plasma membrane leading to the loss of synapse
(Figs. 2.1 and 2.4). These observations support the view that there is a neurochemi-
cal basis of interactions between cholinergic and glutamatergic systems and their
potential implications in triggering pathological abnormalities in Alzheimer disease
(Revett et al. 2013).

Overstimulation of NMDA receptors for longer time period (i.e., more than 24 h)
increases amyloidogenic APP processing and formation of high levels of A (Bordji
et al. 2010; Lesné et al. 2005). In AD, the accumulation of AP not only enhances
neuronal sensitivity to glutamate, but also increases the activity of synaptic networks,
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resulting in excitatory potentials and Ca** influx (Brorson et al. 1995). Ap-mediates
its toxic effect either by facilitating Ca** influx into neurons leading to the activation
of Ca?*-dependent enzymes or by forming an oligomeric pore in the membrane.
These processes may stimulate more glutamate release from glutamatergic axon ter-
minals and/or increase intracellular calcium concentration in dendrites, thus render-
ing neurons vulnerable to excitotoxicity (Bobich et al. 2004; Bezprozvanny and
Mattson 2008). Ap oligomers can also promote the generation of ROS, which may
trigger membrane-associated oxidative stress leading to impairment in the functions
of ion-motive ATPases and glutamate and glucose transporters rendering neurons
vulnerable to excitotoxicity (Camandola and Mattson 2011). Overstimulation of glu-
tamate receptors may not only result in the collapse of mitochondrial potential and
deregulation of calcium homeostasis, but also production of high levels of ROS,
4-hydroxynonenal (4-HNE), and other arachidonic acid-derived lipid mediators
(Farooqui and Horrocks 2006). 4-HNE forms adducts with membrane proteins
including those crucial for maintaining ATP levels, resting membrane potential and
extracellular glutamate levels (Esterbauer et al. 1991; Farooqui 2011).

Changes in Tau metabolism are also related with NMDA receptor function. Tau
has a dendritic function in postsynaptic targeting of the Src kinase Fyn, which phos-
phorylates the NMDA receptor (Suzuki and Okumura-Noji 1995). Missorting of
Tau in transgenic mice expressing truncated Tau or absence of Tau in Tau knockout
mice disrupt postsynaptic targeting of Fyn. Reduced expression of Tau uncouples
NMDA-mediated excitotoxicity and mitigates AP toxicity (Ittner et al. 2010).
Reducing endogenous Tau levels prevent behavioral deficits in transgenic mice
expressing human APP, and protect both transgenic and nontransgenic mice against
excitotoxicity (Roberson et al. 2007). Collective evidence suggests that chronic
neuronal excitotoxicity may contribute to AD via promoting abnormal hyperphos-
phorylation of tau (Liang et al. 2009).

2.3.2 Aluminum in the Development of Animal Models
of Alzheimer Disease

Aluminum is the most common metal and the third most abundant element in the
earth’s crust (Exley 2012). Humans get exposed to toxic levels of aluminum via
common products such as antiperspirants, antacids, food, water, aluminum-based
household products, cosmatics, and vaccines. In vitro and in vivo studies have indi-
cated that aluminum produces oxidative stress though it is devoid of redox capacity
in biological systems (Sharma et al. 2013; Satoh et al. 2005). Aluminum produces
apoptotic cell death through the involvement of mitochondrial and endoplastic
reticulum-mediated oxidative stress processes associated with caspase 9, caspase
12, and caspase 3 activation (Rizvi et al. 2014).

Levels of aluminum are significantly increased in brains of patients with AD. The
molecular mechanisms associated with neurotoxic action of aluminum in AD are
not fully understood. However, in vitro studies indicate that at low levels aluminum
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Fig. 2.5 Contribution of aluminum in the pathogenesis of Alzheimer disease. Amyloid precursor
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induces Tau aggregation (Mizoroki et al. 2007). Aluminum may also modulate A
aggregation, oligomerization, and ROS-mediated neurotoxicity (Fig. 2.5) (Bharathi
et al. 2008; Rondeau et al. 2009a, b; Rodella et al. 2008; Walton and Wang 2009;
Yumoto et al. 2009). Aluminum not only alters normal processing of Af precursor
protein (Drago et al. 2008), but also stimulates amyloidogenesis. In addition, alumi-
num inhibits the proteolytic degradation of AP peptide via cathepsin D, triggering
the intracellular accumulation of AP peptide (Sakamoto et al. 2006). Therefore,
many primary therapeutic goals are targeted at reducing the metal-induced Ap
aggregation into toxic components. One of the therapeutic strategies is development
of the agents that can chelate metal ions (Zatta et al. 2009) and to prevent the metal
ions from the interaction with AP peptide as well as to attenuate the metal-induced
redox activity and neurotoxicity of the peptides (Rodriguez-Rodriguez et al. 2009).

Chronic intragastric (i.g.) administration of aluminium gluconate (AI** 200 mg/
kg per day) not only results in significant increase of hippocampal metal ion levels
(Al, Fe, Mn, Cu and Zn), but also causes learning and memory function disorders in
rats (Yu et al. 2014). Aluminium gluconate administration-mediated chronic brain
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damage in rats can be prevented by meloxicam, a COX-2 inhibitor (Su et al. 2009)
suggesting that the over-expression of COX-2 may play an important role in the
neurodegeneration, and the inhibitors of COX-2 may prevent the acute and chronic
brain damages mediated by aluminium gluconate. In addition, aluminum stimulates
NF-kB, which is involved in IL-1 receptor-associated kinase (IRAK)-mediated neu-
roinflammation (Zhao et al. 2014). Aluminum has also been reported to inhibit
brain carbohydrate metabolizing enzymes and utilization of carbohydrates. This
may be one potential mechanism by which aluminum may act as a neurotoxicant
(Lai and Blass 1984). Contribution of aluminum in the pathogenesis of AD is sup-
ported by several recently described observations: (a) aluminum promotes inflam-
matory signaling through the activation of NF-xB (Bondy 2013; Walton 2013) and
(b) aluminum induces strikingly similar messenger RNA (mRNAs) and micro
RNAs (miRNAs) to those found to be increased in AD. These miRNAs (miRNA-9,
miRNA-34a, miRNA-125b, miRNA-146a, and miRNA-155) are under transcrip-
tional control by the pro-inflammatory transcription factor NF-kB. Among these
miRNAs subfamily, miRNA-125b occurs abundantly in human brain. Bioinformatics
analysis has demonstrated that an up-regulated miRNA-125b may potentially target
the 3’ untranslated region (3’-UTR) of the messenger RNA (mRNA) encoding (a) a
15-lipoxygenase (15-LOX) (Zhao et al. 2014), the enzyme that oxidizes and facili-
tates the conversion of docosahexaneoic acid into neuroprotectin D1 (NPD1), a
docosanoid, which is closely associated with neuroprotective effects of docosa-
hexaenoic acid (Farooqui 2009, 2011). In addition, dietary aluminum enhances lipid
peroxidation, oxidative stress, apoptosis, and gene expression deficits in transgenic
animal models of AD (Pratico et al. 2002; Bharathi et al. 2008; Zhang et al. 2012b).
Finally, like human AD, the administration of aluminum in animal models contrib-
utes to alterations in chromatin, impairment in ATP production and utilization
(Lukiw and Pogue 2007; Pogue et al. 2012; Bhattacharjee et al. 2013). Furthermore,
in aged rats, aluminum treatment alters levels of copper, zinc, and manganese in
certain brain regions and results in an enlargement of hippocampal mossy fibers
(Fattoretti et al. 2004). In rat brain, aluminum -induced damages to the brain include
neuropathological, neurochemical, neurophysiological, and neurobehavioral altera-
tions. Among the alterations, the most notable are poor learning and behavioral
functions, which involve changes in acetylcholinesterase, an enzyme, which is
closely associated with deterioration of the learning ability of rats (Kawahara and
Kato-Negishi 2011). The animal models show that subcutaneous injections of alu-
minum hydroxide induce apoptotic neuronal death, decrease in motor function, and
increase in anxiety in mice (Shaw et al. 2013). Rabbits have been reported to very
sensitive to aluminum exposure, with intracerebral and intravenous infusions repro-
ducing some of the pathological features consistent with AD (Savory et al. 2006).
However, oral administration of aluminum has proven less successful in inducing
pathological features of AD. AD models mentioned above have been used to gain
knowledge not only on molecular mechanism of action of neurotoxins, but also on
the neural mechanisms underlying memory dysfunction caused by neurotoxins.
This has resulted in better understanding of cholinergic innervations in the aetiology
and treatment of AD. The suitability of neurotoxin models has been questioned
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because conflicting and controversial results due to the chemical nature of
lesion-inducing neurotoxins, concentration of neurotoxin used, and even the mor-
phological, histochemical, biochemical and cognitive methods used to produce phe-
notypes in the model (Toledana and Alvarez 2010). Neurotoxin-based models
produce neurodegeneration in hippocampus and cortical areas in animal, but neuro-
toxin models have failed to replicate the classic pathological hallmarks and the
insidious and progressive nature of the human AD (Toledana and Alvarez 2010).

2.3.3 Transgenic Models of Alzheimer Disease

Most transgenic mouse models are generated by microinjecting complementary
DNA (cDNA), containing a transgene of interest into the pronuclef of a large num-
ber of zygotes (Cho et al. 2009). Resulting embryos are then implanted into pseudo-
pregnant dams for normal gestation. Generating gene targeted mice is a complex
process (Cho et al. 2009; Platt et al. 2013). Creating viable mice takes many attempts,
and consumes a significant amount of resources. After the initial genetic modifica-
tion has been introduced, a new mouse line can be crossed into a pre-existing mouse
line that already displays one or more other aspects of the disease neuropathology.
Hence, given sufficient time, funding, and resources one can build increasingly com-
plex mice models of the AD. Using transgenic mice many AD models have been
developed. These mice not only overexpress mutant forms of human APP, presenil-
ins, and/or tau protein in the brain, but also show many neurochemical characteris-
tics. Thus, knockout mice have been designed and developed for alterations in APP,
secretases, i.e., BACE, PSEN1 and PSEN2, ADAMI10 (Shen et al. 1997; Luo et al.
2001; Lee et al. 2003) as well as for APP and Tau proteins. Examples these models
are Tg2576, PDAPP, TgAPP23, Tg-APPswe/PS1dE9, 3xTg-AD, and SXFAD mice.
The list of transgenic AD models is available at the web site of the Alzheimer
Research Forum (http://www.alzforum.org/res/com/tra/default.asp). Many of the
transgenic AD models show accumulation of Af, plaque pathogenesis, gliosis, neu-
ronal loss, Tau pathology, and/or cognitive impairments, but no single transgenic AD
model recapitulates all aspects of AD neurochemistry and pathology. Using above
mouse transgenic models, most investigators have focused their attention on under-
standing the molecular mechanism related to suppression of genes that encode pro-
teins that contribute to the pathogenesis AD along with neurobehavioral and
pathological changes. The comparative analysis of these AD models suggests that
AD models can be classified into two distinct plaque deposition groups. Early plaque
depositing models such as APPswe/PS1dE9, 3xTg-AD and 5XFAD, which may be
useful to study the biochemical aspects of APP metabolism, whereas late plaque
depositing models such as Tg2576, PDAPP, and TgAPP23, which can provide useful
information on physiological and environmental aspects of AD pathogenesis, which
occur on a longer time scale (Shen et al. 1997; Luo et al. 2001; Lee et al. 2003; Lee
and Han 2013). More than 20 autosomal dominant APP mutations linked to AD have
been discovered (http://www.molgen.ua.ac.be/ADMutations). These mutations
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show enhancement in the aggregation of AP by several mechanisms such as Swedish
mutation, Arctic mutation, and a mutation near the y-secretase site. Swedish muta-
tion promotes APP cleavage near the p-secretase site (Mullan et al. 1992) leading to
enhancement in overall production of all forms of AB. The Arctic mutation (a muta-
tion within AP) enhances protofibril formation (Nilsberth et al. 2001). Several muta-
tions near the y-secretase site increase the relative production of the Ap42 (Goate
etal. 1991; Murrell et al. 2000). The impact of p-secretase deletion in wild-type mice
produces subtle changes in anxiety and sensorimotor abilities (Kobayashi et al. 2008)
leading to enhancement in long-term depression (Wang et al. 2008). In contrast,
[-secretase manipulations in APP overexpression models not only prevent amyloid
pathology, neurodegeneration, and astrogliosis, but also restore cognitive deficits
(Ohno et al. 2007). Restoration of long-term potentiation and improved cognitive
performance are also reported after partial reduction of B-secretase in SxXFAD ani-
mals (Kimura et al. 2010). Conversely, human bacel (hbacel) coexpression in mice
carrying human app,,. (Mohajeri et al. 2004) or appses (Chiocco et al. 2004) elevates
APP processing and the release of toxic Ap42, sSAPPf, C99, and C89 terminal frag-
ments. These findings support the view that 3-secretase is the key enzyme in amyloi-
dosis, and its inhibition can be used as a target for the treatment of AD.

To avoid the complications of transgenic protein overexpression, attempts have
also been to generate more physiologically relevant animal models of AD. Thus, AD
knock-in models are generated by introducing human APP and/or PSENI FAD
mutations and humanized Ap to the endogenous mouse gene (Guo et al. 2012; Flood
et al. 2002; Kohler et al. 2005). Knock-in mice with human APP have several advan-
tages over the traditional transgenic models. Due to the presence of native promoter
control mice containing human APP show physiological levels of protein expression
without any changes in the temporal and spatial expression patterns. In contrast to
transgenic models in which the existence of mouse proteins may complicate the
phenotypes, the mouse gene products are replaced with the humanized mutant pro-
teins in knock-in models. In contrast to human AD, Knock-in mice show the expres-
sion of human A, but no tau abnormality has been reported. Duplications of the APP
gene also lead to the induction of all forms of Af (Sleegers et al. 2006). Recently, an
autosomal recessive mutation involving the deletion of glutamate at AP residue 22
has been discovered in a woman with dementia who apparently lacks amyloid
plaques imaged with PiB (Tomiyama et al. 2008). This discovery raises possibility
that amyloid plaques may not be required for the onset of neurodegeneration in
AD. Studies on the effect of genetic ablation of Nrf2 on APP/Af processing and/or
aggregation as well as changes in autophagic dysfunction in APP/PS1 mice indicate
that there is a significant increase in inflammatory response in APP/PS1 mice lacking
Nrf2. These changes are accompanied by increase in intracellular levels of APP, Ap
(1-42), and AP (1-40) without a change in the total full-length APP. APP/PS1 mouse
with Nrf2 deficiency not only displays a shift in APP and Ap levels in the insoluble
fraction, but also show an increase in poly-ubiquitin conjugated proteins. APP/PS1-
mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally,
neurons in the APP/PS1/Nrf2-/- mice display an increase in the accumulation of
multivesicular bodies, endosomes, and lysosomes (Joshi et al. 2015).
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In vitro and in vivo studies strongly indicate that high level of A peptide is the
primary causative agents in the pathogenesis of AD (Tanzi and Bertram 2005).
Reduction in A clearance and its deposition is one potential mechanism leading to
increased cerebral Af levels in AD. However, it is also possible that small increases
in AP production over time may tip the balance toward Af accumulation. APP
mutant mice show an age-dependent extracellular plaque deposition primarily in
neocortex and hippocampus, accompanied by severe gliosis. Most APP mutants
contain no neurofibrillary tangles. However, they do contain amyloid deposits and
hyperphosphorylated Tau but without tangles (Tiraboschi et al. 2004). One excep-
tion is the transgenic model expressing APP, PS1, and Mapt (3xTg-AD) character-
ized by AP plaques and neurofibrillary tangles (Oddo et al. 2003). The number of
CAL neurons is inversely correlated with CA1l plaque load and neuron loss was
observed primarily in the vicinity of extracellular plaques. The molecular mecha-
nisms linking A and tau pathologies remain elusive. According to the AP cascade
hypothesis, excessive amount of AP peptides generated by abnormal APP metabo-
lism initiates the pathogenesis of AD, which leads to AP plaque formation, tau
hyperphosphorylation, and neurodegeneration (Karran et al. 2011). This hypothesis
is supported by AD genetics (Golde et al. 2011), but not by mouse AD model stud-
ies. In APP transgenic line J20 model the aggressive deposition of Af} is not accom-
panied by enhanced Tau phosphorylation (Roberson et al. 2007). Ap and Tau
hyperphosphorylation coexist but in an independent manner in a double transgenic
mouse model of human mutant APP (APP23) and wild type tau (ALZ17) (Clavaguera
et al. 2013). Thus, more studies are needed on mechanisms linking Ap and Tau
pathologies. Collective evidence suggests that transgenic models have provided
some valuable information on the molecular mechanism and understanding of AD
progression, but they still do not recapitulate all aspects of human AD (Zheng et al.
1996; Takei et al. 2000).

Presenilin knockout mice have also been reported to display marked neurode-
generation in cerebral cortex along with loss of memory and induction of synaptic
dysfunction (Shen et al. 1997; Saura et al. 2004). Thus far, over 200 autosomal
dominant mis-sense mutations have been reported in the genes for APP and pre-
senilin (the y-secretase catalytic subunit). These mutations may contribute to
FAD, which are found very near to the - and y-secretase cleavage sites. They
may not only contribute to increase APP processing, but also mediate the eleva-
tion in levels of total AP as well as Ap42. BACE is the exclusive p-secretase,
which controls the production of AP and has an essential role in the etiology of
AD. Knockout mice for -secretase have also been generated. They do not pro-
duce Af and are perfectly viable tool for understanding the neurochemical mecha-
nisms of pathogenesis of AD (Luo et al. 2001; Roberds et al. 2001). However,
BACE knockout mice show significant decrease in the intensity of myelination
and reduction in myelin thickness (Hu et al. 2006; Willem et al. 2006), supporting
the view that BACE may play an important role in myelinogenesis and brain
development.
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Several transgenic or gene-targeted mouse lines expressing human apoE3 or
apoE4 have also been developed, without co-expression of mutant hAPP. Transgenic
mice expressing apoE4 in neurons on a murine Apoe knockout background show
age- and female gender-dependent spatial learning and memory deficits, which are
not seen in neuron-specific apoE3 mice (Raber et al. 2000). Morphological studies
have shown that neuronal apoE3, but not apoE4, retards the age-dependent neuronal
death in apoE-null mice (Buttini et al. 1999, 2010). ApoE4 not only impairs synap-
togenesis, but also decreases dendritic spine density in vivo in apoE transgenic and
gene-targeted mice as well as in primary neuronal cultures (Brodbeck et al. 2011;
Dumanis et al. 2009). In addition, neural stem cells in adult mice express apoE and
apoE4 impairs adult hippocampal neurogenesis (Li et al. 2009b), which may con-
tribute to apoE4-mediated impairment in learning and memory and cognitive func-
tion. Since there is no AP accumulation in any of these apoE4 mouse models, which
support the view that an Af-independent role of apoE4 in inducing neuronal and
behavioral deficits in vivo. While many of the above mentioned transgenic mice
accumulate A and develop A plaque pathology along with cognitive impairment,
they are unable to induce NFT formation. To determine the contribution of tau pro-
tein hyperphosphorylation in the pathogenesis of AD, several mouse models have
been established that overexpress either wild-type or mutated human tau protein. It
is reported that Tau protein mutations are associated with frontotemporal dementia,
but not with AD (Duyckaerts et al. 2008). Introduction of human Tau proteins con-
taining FTD mutations result in NFT formation (Gotz et al. 2001; Lewis et al. 2000;
Tanemura et al. 2002; Allen et al. 2002). Tau protein containing G272V and P301S
mutations produce both NFT formation and severe cognitive deficits (Schindowski
et al. 2006). In an effort to model NFT pathology that is relevant to AD rather than
FTD, tau knockout mice were crossed with mice expressing human genomic tau
protein, resulting in mice expressing human but not murine tau protein (hTau).
However, these mice express minimal NFT pathology (Andorfer et al. 2003).

It is becoming increasingly evident that type 2 diabetes mellitus and metabolic
syndrome are risk factors for stroke, AD, and depression (Farooqui et al. 2012;
Farooqui 2013). Due to improved treatments, type 2 diabetes mellitus patients are
living longer, putting them at increased risk for age-related complications along
with risk of stroke, AD, and depression. Recent studies have described the genera-
tion of a novel mouse model combining the key features of obesity, diabetes, and
AD. In these studies, the obese and diabetic db/db mouse (Srinivasan and Ramarao
2007) is crossed with the APPANV/ANL ¢ PS ] P264L/P264L knock-in model of AD (Reaume
et al. 1996; Siman et al. 2000; Niedowicz et al. 2014). The resulting mice are called
db/AD. These mice are morbidly obese, have glucose intolerant, show insulin
resistance, and display parenchymal amyloid plaques similar to the parental lines.
In addition, these mice show profound cognitive impairment and marked cerebro-
vascular abnormalities, which are Af/tau-independent mechanism. Long term con-
sumption of high-fat diet is known to induce the accumulation of Af not only in the
brain of wild type rabbits, rodents, and APP Tg mice (Sparks et al. 1994; Refolo
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et al. 2000; Ho et al. 2004), but also in humans (Farooqui 2015). The molecular
mechanisms associated with high-fat mediated AP accumulation in the brain are not
fully understood. However, autophagosome-mediated enhancement in amyloido-
genic APP processing (Son et al. 2012) or up-regulation of BACE1 (Guglielmotto
et al. 2012) may increase high-fat induced AP generation by above mentioned
mechanisms. Furthermore, soluble Ap itself is believed to reduce endothelial
function and vascular reactivity in mice (Niwa et al. 2000) and humans (Dumas
etal. 2012; den Abeelen et al. 2014). Collective evidence suggests that db/AD model
is a unique. It can be used to study overlap among molecular mechanisms of obe-
sity, type 2 diabetes mellitus, and AD in old animals.

2.4 Animal Models of Alzheimer Disease in Cell Culture

Attempts have been to establish AP-pathologies such as production, secretion,
oligomerization and aggregation of AP peptides utilizing a novel platform to model
the pathological processing of mutant human APPswe protein for AP genesis,
oligomerization and aggregation, the initial events of AD pathogenesis (Ghate
et al. 2014). Neurosphere cultures have been prepared from AD transgenic
(APPswe, PSENIAE9) mice embryos. These cultures not only show positive
expression for both transgenes at the mRNA level and express humanized APP and
its proteolytic products including AP peptides. Analysis of Tg+ve neurosphere
lysates the presence of both monomeric and various oligomeric A peptides simi-
lar to an 18-month old Tg+ve mouse brain homogenate. Tg+ve neurosphere cul-
tures secrete a large amount of human Ap peptides that consist of Ap40 and Ap42
with a very high AB42/Ap40 ratio comparable to that of human AD brain homog-
enates and more than any cellular model of AD. Tg+ve culture supernatants also
contain monomeric and various pathogenic AP peptide oligomers (ranging from
2-mer to 12-mer; the AP star oligomer) (Ghate et al. 2014). In addition, conforma-
tion-dependent immunocytochemistry demonstrated the presence of intracellular
and extracellular AP peptides within neurospheres. The neurosphere culture sys-
tem has many advantages over existing cellular models. Thus, (a) neurosphere
cultures contain both brain stem and progenitor like cells, which can differentiate
towards mature brain cells like neurons and astrocytes that are not possible in
transformed cell lines, (b) these cultures can synthesize and secrete both Ap pep-
tides, (c) these cultures show high AB42/Ap40 ratio, (d) produce pathogenic Ap
peptide oligomerization, which is comparable with the animal models of AD and
much higher than existing cellular models of AD, including iPSC based models of
AD (Israel et al. 2012) and (e) demonstrate intracellular and extracellular aggrega-
tion of AP peptides. It is proposed that studies with neurosphere cell culture may
advance not only our understanding of pathogenesis of AD, but may provide better
understanding of therapeutic agents on decreasing the beta amyloid synthesis and
aggregation within neural cells (Ghate et al. 2014).
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2.5 The Gap Between Mouse Models and Human Patients
of Alzheimer Disease

The lack of an ideal animal model and specific biomarkers for AD progression
makes it not only difficult to learn molecular mechanism associated with the patho-
genesis of AD, but also complicate to discover the drugs that can prevent neurode-
generation in AD. At present mice models of AD mimic only few aspects of the
disease, which are neither enough to learn about the molecular mechanism, specific
biomarkers, and develop new treatment (Elder et al. 2010). Another possibility is
that senile plaques and neurofibrillary tangles are endpoints for different disease-
driving mechanisms. Thus, achieving a successful inhibition of AP and tau patholo-
gies may not result in the successful for treating AD. AD is a multifactorial disease
so its treatment may require a multitarget approach. To generate better animal mod-
els for AD, one has to develop better understanding of the molecular neuropatho-
logical mechanisms not only associated with neurodegeneration, but also behavioral
and memory losses. Another important point is either the lack or low of neurode-
generation in animal models compared to human subjects, who show slow and con-
tinuous neurodegeneration with the progression of the disease. This is tempting to
speculate that more research breakthroughs in development of animal models are
needed for the development of models reflecting the heterogeneity of the disease
(Cuadrado-Tejedor and Garcia-Osta 2014). Also, discovery of specific biomakers is
necessary not only to identify AD progression in a large population, but also for
monitoring clinical trials and responses to medication.

2.6 Conclusion

AD is a multifactorial disease characterized by the accumulation of senile plaques,
which are composed of oligomers of AP and neurofibrillary tangles and hyperphos-
phorylated Tau protein. In addition, neurochemical changes in AD include slow
excitotoxicity, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Neurotoxin-induce animal models of AD show very little neuropathological
changes, but they induce mitochondrial dysfunction, oxidative stress, and neuroin-
flammation. Animal models for AD have been developed in both invertebrates (fruit
flies and roundworms) and vertebrates (mice, rats, and rabbits). Most mice models
are based on familial AD mutations of genes involved in the amyloidogenic process,
such as the APP, MAPT, PS1, PS2 tau protein and apoE. Some models also incor-
porate Tau mutations, which are known to cause frontotemporal dementia, a condi-
tion, which shares some elements of neuropathology with AD. Transgenic mice
develop several lesions similar to those of AD, including diffuse and neuritic amy-
loid deposits, cerebral amyloid angiopathy, dystrophic neurites and synapses, and
amyloid-associated neuroinflammation. However, other features of AD, such as
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neurofibrillary tangles, nerve cell loss, and significant memory deficits are not
satisfactorily reproduced in these models. This suggests that despite various modi-
fications specific to AD in the genome of animals, investigators have failed to create
an ideal animal model, which can be fully characterized by all the pathological and
neurochemical changes that can occur in AD. Nevertheless, the role of transgenic
animals is undeniable, both in research on AD neuropathology and for testing new
therapies, such as immunotherapy. It is well understood that it is difficult to repro-
duce all anatomical characteristics and cognitive ability of humans in mice because
of lower-order of cognition found in mice. In addition, there are substantial ana-
tomical differences between mouse and human brains, particularly that the mouse
brain has a higher gray-to-white matter ratio. Still, transgenic mice have provided
valuable genetic, neurochemical, and neuropathological information on AD. Better
transgenic models of AD are needed for future research in higher animals, which are
closer to humans not only in anatomy, but also in cognitive function, behavior and
social responses.
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