
Chapter 2
Review of Vector Calculus

Abstract This chapter sets the ground for the derivation of the conservation
equations by providing a brief review of the continuum mechanics tools needed for
that purpose while establishing some of the mathematical notations and procedures
that will be used throughout the book. The review is by no mean comprehensive
and assumes a basic knowledge of the fundamentals of continuum mechanics.
A short introduction of the elements of linear algebra including vectors, matrices,
tensors, and their practices is given. The chapter ends with an examination of the
fundamental theorems of vector calculus, which constitute the elementary building
blocks needed for manipulating and solving these conservation equations either
analytically or numerically using computational fluid dynamics.

2.1 Introduction

The transfer phenomena of interest here can be mathematically represented by
equations involving physical variables that fall under three categories: scalars,
vectors, and tensors [1–3]. Throughout this book scalars are designated by lightface
italic, vectors by lower boldface Roman, and tensors by boldface Greek letters. In
addition, matrices are identified by upper boldface Roman letters.

A scalar represents a quantity that has magnitude such as volume V , pressure p,
temperature T , time t, mass m, and density q. A vector represents a quantity of a
given magnitude and direction such as velocity v, momentum L ¼ mv, and force F.
A matrix is a rectangular array of quantities ordered along rows and columns.
A tensor is a mathematical object analogous to but more general than a vector,
represented by an array of components, such as the shear stress tensor. Moreover,
the conservation equations are composed of terms that represent the product of two
or more variables. The multiplication involved may be of various types to be
detailed later and the variables could be a combination of the three types described
above. Whenever the multiplication results in a scalar, the product will be enclosed
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by parentheses “(product)”, if it results in a vector it will be enclosed by square
brackets “[product]”, and if it results in a tensor it will be enclosed by curly brackets
“{product}”.

2.2 Vectors and Vector Operations

The most frequently used vector in fluid dynamics is the velocity vector that will be
designated by v. The components of the velocity vector in a three-dimensional
Cartesian coordinate system will be denoted by u; v; and w in the x; y; and z
direction, respectively (Fig. 2.1). In Cartesian coordinates, v is written as

v ¼ uiþ vjþ wk ð2:1Þ

where i; j; and k are unit vectors in the x; y; and z direction, respectively. A vector is
usually presented in a column format with its transpose, denoted with a superscript T,
in a row format as

v ¼
u
v
w

2
4

3
5 vT ¼ u v w½ � ð2:2Þ

The magnitude of a vector is given by

vk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
ð2:3Þ

The sum of two vectors v1 and v2 is the sum of their components, i.e.,

v1 ¼ u1iþ v1jþ w1k
v2 ¼ u2iþ v2jþ w2k

�
) v1 þ v2 ¼ u1 þ u2ð Þiþ v1 þ v2ð Þjþ w1 þ w2ð Þk ð2:4Þ

x

y

z

u

v

w

v

Fig. 2.1 The components of
a vector v in a
three-dimensional Cartesian
coordinate system
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or

v1 ¼
u1
v1
w1

2
4

3
5 v2 ¼

u2
v2
w2

2
4

3
5) v1 þ v2 ¼

u1 þ u2
v1 þ v2
w1 þ w2

2
4

3
5 ð2:5Þ

The multiplication of a vector v by a scalar s results in the vector sv such that

sv ¼ s uiþ vjþ wkð Þ

¼ suiþ svjþ swk ¼
su

sv

sw

2
64

3
75 ð2:6Þ

The product of two vectors is not as straightforward. When multiplying a vector v1 by
another vector v2 two types of multiplications arise [4–6]. The first is denoted by the
scalar or dot product, v1 � v2ð Þ, and the second by vector or cross product v1 � v2½ �.

2.2.1 The Dot Product of Two Vectors

By definition, the dot product of two vectors v1 and v2 is a scalar quantity given by

v1 � v2 ¼ v1k k v2k kcos v1; v2ð Þ ð2:7Þ

where cos v1; v2ð Þ denotes the cosine of the angle between v1 and v2. From the
definition of the vector dot product, it follows that

i � i ¼ j � j ¼ k � k ¼ 1
i � j ¼ i � k ¼ j � i ¼ j � k ¼ k � i ¼ k � j ¼ 0

ð2:8Þ

In terms of orthonormal Cartesian components, the dot product of the two vectors
v1 and v2 can be calculated as

v1 � v2 ¼ u1iþ v1jþ w1kð Þ � u2iþ v2jþ w2kð Þ
¼ u1u2 þ v1v2 þ w1w2

ð2:9Þ

2.2.2 Vector Magnitude

From Eq. (2.9) it follows that the magnitude of a vector v can be obtained as

vk k ¼ ffiffiffiffiffiffiffiffiffi
v � vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2

p
ð2:10Þ
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2.2.3 The Unit Direction Vector

A unit vector ev in the direction of v can be derived from the definition of the dot
product as

v � v ¼ vk k vk k cos v; vð Þ
zfflfflfflfflffl}|fflfflfflfflffl{¼1

¼ vk k2 ) v � v
kvk ¼ vk k

v � ev ¼ vk k evk k|{z}
¼1

cos v; evð Þ|fflfflfflfflffl{zfflfflfflfflffl}
¼1

¼ vk k ) v � ev ¼ vk k

9>>>>=
>>>>;

) ev ¼ v
vk k ð2:11Þ

Therefore the component of a vector in the direction of another vector (i.e., mag-
nitude of the projected length) can be viewed as the dot product of the vector to be
projected with the unit direction of the other vector as shown in Fig. 2.2a, b.

2.2.4 The Cross Product of Two Vectors

Whereas the dot product of two vectors v1 and v2 is a scalar quantity, their cross or
vector product is a vector v3 normal to the plane formed by the vectors v1 and v2, of
magnitude calculated as

v3k k ¼ v1 � v2k k ¼ v1k k v2k k sin v1; v2ð Þj j; ð2:12Þ

and of direction given by the right hand rule. As shown in Fig. 2.3, the magnitude
of the cross product of two vectors represents the area of the parallelogram spanned
by the two vectors. Since, in addition, the resulting vector is normal to the plane

v1

v2

v1

v 2

v 2

= v1
cos ( )

v1

v2

v 2
v 1

v 1
=
v 2
co
s (

)(a) (b)

Fig. 2.2 a Projection of vector v1 onto the unit direction of vector v2; b Projection of vector v2
onto the unit direction of vector v1
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formed by the vectors, the cross product of two vectors represents their surface
vector.

It is then clear that the cross product of two collinear vectors is zero as they
define no area, and that the cross product of two orthogonal unit vectors is a unit
vector perpendicular to the two unit vectors. Adopting the right hand rule to define
the direction of the resulting vector, the following cross product operations hold:

i� i ¼ j� j ¼ k� k ¼ 0 i� j ¼ k ¼ �j� i
j� k ¼ i ¼ �k� j k� i ¼ j ¼ �i� k

ð2:13Þ

Using the above relations, the cross product of two vectors in terms of their
Cartesian components is given by

v1 � v2 ¼ u1iþ v1jþ w1kð Þ � u2iþ v2jþ w2kð Þ
¼ u1u2i� iþ u1v2i� jþ u1w2i� k

þ v1u2j� iþ v1v2j� jþ v1w2j� k

þ w1u2k� iþ w1v2k� jþ w1w2k� k

¼ u1u20þ u1v2kþ u1w2 �jð Þ
þ v1u2 �kð Þ þ v1v20þ v1w2i

þ w1u2jþ w1v2 �ið Þ þ w1w20

¼ v1w2 � v2w1ð Þi� u1w2 � u2w1ð Þjþ u1v2 � u2v1ð Þk ð2:14Þ

which can be written using determinant notation as

v1 � v2 ¼
i j k
u1 v1 w1

u2 v2 w2

������
������ ¼

v1w2 � v2w1

u2w1 � u1w2

u1v2 � u2v1

2
4

3
5 ð2:15Þ

v3 = v1 v2

v1

v2

area

v3 = v1 v2 sin( )

×

Fig. 2.3 The cross product of two vectors
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Example 1
Compute the area of the triangle formed by points (Fig. 2.4):
P1 0; 0; 0ð Þ;P2 1; 0; 0ð Þ and P3 0:5; 1; 0ð Þ:

Solution
The surface defined by the triangle P1;P2;P3ð Þ can be computed using the
cross product of two sides as

S123 ¼ 0:5 P1P2
��!� P1P3

��!
P1P2
��! ¼ x2 � x1ð Þiþ y2 � y1ð Þjþ z2 � z1ð Þk ¼ i

P1P3
��! ¼ x3 � x1ð Þiþ y3 � y1ð Þjþ z3 � z1ð Þk ¼ 0:5iþ j

S123 ¼ 0:5i� 0:5iþ jð Þ ¼ 0:5k ) S123k k ¼ 0:5

2.2.5 The Scalar Triple Product

In addition, combined products of three vectors v1, v2, and v3 may arise such as
v1 � v2 � v3½ �ð Þ, which can be calculated using the following determinant (to be
explained later):

v1 � v2 � v3½ �ð Þ ¼
u1 v1 w1

u2 v2 w2

u3 v3 w3

������
������ ð2:16Þ

As shown in Fig. 2.5, the absolute value of the scalar triple product represents
the volume of the parallelepiped formed by the vectors v1, v2, and v3.

S123

P1 P2

P3

Fig. 2.4 Example 1

v1

v2

v3

volume

v 1
v 2

v3 v1 v2( )
Fig. 2.5 Geometric
representation of scalar triple
product
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Example 2
Compute the volume of the pyramid defined by the points:
P1 0; 0; 0ð Þ;P2 1; 0; 0ð Þ;P3 0:5; 1; 0ð Þ, and P4 0:5; 0:5; 1ð Þ
shown in Fig. 2.6.

Solution
The volume of the pyramid can be computed using
the scalar triple product as

V ¼ 0:25 P1P4
��! � P1P2

��!� P1P3
��!� �

¼ 0:25 0:5iþ 0:5jþ kð Þ � k
¼ 0:25

2.2.6 Gradient of a Scalar and Directional Derivatives

An important vector operator, which arises frequently in fluid dynamics, is the “del”
(or “nabla”) operator defined as

r ¼ @

@x
iþ @

@y
jþ @

@z
k ð2:17Þ

When the “del” operator is applied on a scalar variable s it results in the gradient of s
[7, 8] given by

rs ¼ @s
@x

iþ @s
@y

jþ @s
@z

k ð2:18Þ

Thus the gradient of a scalar field is a vector field indicating that the value of s
changes with position in both magnitude and direction.

The projection of rs in a certain direction of unit vector el is given by

ds
dl

¼ rs � el ¼ rsk k cos rs; elð Þ ð2:19Þ

and is called the directional derivative of s along the direction of the unit vector el,
as schematically depicted in Fig. 2.7. The maximum value of the directional
derivative is rsk k and is obtained when cos rs; elð Þ ¼ 1, that is in the direction of
rs. Therefore, it can be stated that the gradient of a scalar field s indicates the
direction and magnitude of the largest change in s at every point in space.
Moreover, rs is normal to the constant s surface that passes through that point.

P1 P2

P3

P4

C

Fig. 2.6 Example 2
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Example 3
Let f x; y; zð Þ ¼ x2yþ y2zþ z2x

(a) find rf at point 3; 2; 0ð Þ.
(b) find the derivative at point 3; 2; 0ð Þ along the direction 1; 2; 2ð Þ:

Solution

(a)
@f
@x

¼ 2xyþ z2
@f
@y

¼ x2 þ 2yz
@f
@z

¼ y2 þ 2xz

rf ¼ 2xyþ z2
	 


iþ x2 þ 2yz
	 


jþ y2 þ 2xz
	 


k

Thus

rf j 3;2;0ð Þ ¼ 12iþ 9jþ 4k

(b) The unit vector along direction 1; 2; 2ð Þ is

el ¼ 1iþ 2jþ 2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 22 þ 22

p ¼ 1iþ 2jþ 2k
3

directional 
derivative

i
j

k

e
l

s = s x, y, z( )
l

s

= ds

dl
= s e

l

x y

z

C

Fig. 2.7 The rate of change of s x; y; zð Þ in the direction of vector el
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The derivative along the direction 1; 2; 2ð Þ is

df
dl

����
3;2;0ð Þ

¼ rf j 3;2;0ð Þ � el

¼ 12iþ 9jþ 4kð Þ � 1iþ 2jþ 2k
3

¼ 12þ 18þ 8ð Þ=3 ¼ 38=3

2.2.7 Operations on the Nabla Operator

The dot product of the del operator with a vector v of components u; v; and w in the
x; y; and z direction, respectively, results in the divergence of the vector [7, 8],
which is a scalar quantity written as

r � v ¼ @u
@x

þ @v
@y

þ @w
@z

ð2:20Þ

Physically the divergence of a vector field over a region is a measure of how much
the vector field points into or out of the region.

The divergence of the gradient of a scalar variable s is denoted by the Laplacian
of s and is a scalar given by

r � rsð Þ ¼ r2s ¼ @2s
@x2

þ @2s
@y2

þ @2s
@z2

ð2:21Þ

The Laplacian of a vector follows from the above definition of the Laplacian
operator and is a vector computed as

r2v ¼ r2u
	 


iþ r2v
	 


jþ r2w
	 


k ð2:22Þ

Example 4
Find the divergence of v ¼ u; v; wð Þ ¼ 3x; 2xy; 4zð Þ

Solution
Then divergence of v is obtained as

r � v ¼ @u
@x

þ @v
@y

þ @w
@z

¼ 3þ 2xþ 4

¼ 7þ 2x
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Another quantity of interest is the curl of a vector field [7, 8] formed between the
“del” operator and the vector v, resulting in the following vector:

r� v ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
� uiþ vjþ wkð Þ

¼
i j k
@

@x
@

@y
@

@z
u v w

��������

�������� ¼
@w
@y

� @v
@z

� �
iþ @u

@z
� @w

@x

� �
jþ @v

@x
� @u

@y

� �
k

ð2:23Þ

Examples of the divergence and curl of a vector field are schematically displayed
in Fig. 2.8. The radial vector field shown in Fig. 2.8a has only divergence with zero
curl. In fluid mechanics this vector field represents the velocity field of a sink/source
flow. On the other hand Fig. 2.8b depicts a rotational vector field which has only
curl with zero divergence (i.e., a divergence free vector field). Such a field corre-
sponds to the velocity field of a vortex flow.

The divergence of a vector v with its gradient also arises in the equations of
interest in this book and is computed as

v:rð Þv½ � ¼ uiþ vjþ wkð Þ � @

@x
iþ @

@y
jþ @

@z
k

� �
uiþ vjþ wkð Þ

¼ u
@

@x
þ v

@

@y
þ w

@

@z

� �
uiþ vjþ wkð Þ

¼ u
@u
@x

þ v
@u
@y

þ w
@u
@z

� �
iþ u

@v
@x

þ v
@v
@y

þ w
@v
@z

� �
jþ u

@w
@x

þ v
@w
@y

þ w
@w
@z

� �
k

ð2:24Þ

(a) (b)

Fig. 2.8 a A radial vector field, b a solenoidal vector field
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Example 5
Determine for the flow fields shown in Fig. 2.9a, b, c which is divergence free
(i.e., neither expanding nor compressing) and which is irrotational (i.e., does
not undergo a rotation)

2.2.8 Additional Vector Operations

If s is a scalar function, and v1; v2 and v3 are vector fields, then the following
relations, which are listed without proof, apply:

r � r � vð Þ ¼ 0 ð2:25Þ

r � rsð Þ ¼ 0 ð2:26Þ

r � svð Þ ¼ sr � vþ v � rs ð2:27Þ

r � svð Þ ¼ sr� vþrs� v ð2:28Þ

r v1 � v2ð Þ ¼ v1 � r� v2ð Þ þ v2 � r� v1ð Þ þ v1 � rð Þv2 þ v2 � rð Þv1 ð2:29Þ

r � v1 � v2ð Þ ¼ v2 � r � v1ð Þ � v1 � r � v2ð Þ ð2:30Þ

r � v1 � v2ð Þ ¼ v1 r � v2ð Þ � v2 r � v1ð Þ þ v2 � rð Þv1 � v1 � rð Þv2 ð2:31Þ

r � r� vð Þ ¼ r r � vð Þ � r2v ð2:32Þ

r � vð Þ � v ¼ v � rvð Þ � r v � vð Þ ð2:33Þ

(a) (b) (c)

Fig. 2.9 Example 5

a r � F ¼ 0 r� F ¼ 0iþ 0jþ 2k
b r � F ¼ 0 r� F ¼ 0iþ 0jþ 0k
c r � F ¼ 2þ 2 ¼ 4 r� F ¼ 0iþ 0jþ 0k
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2.3 Matrices and Matrix Operations

A matrix A of order M � N is a rectangular array of quantities (numbers or
expressions) arranged in M rows and N columns [9–11]. An element of A located
on the ith row and jth column is denoted by aij. For example, element a32 of the
4� 3 matrix shown in Fig. 2.10 is 12.

Based on this definition it follows that a column vector v of dimensionality N is
a matrix of order N � 1 and a scalar s is a matrix of order 1� 1.

The transpose of a matrix A of order M � N is another matrix denoted by AT of
order N �M for which the rows of A are the columns of AT and the columns of A
are the rows of AT. Mathematically, this can be written as

A ¼ aij

 �) AT ¼ aji


 � ð2:34Þ

Two matrices of the same order are equal if their corresponding elements are
equal. Two matrices of the same order can be added or subtracted element by
element. For example, if A and B are given by

A ¼ 1 2 4
3 �1 7

� �
B ¼ �2 1 4

�3 1 6

� �

then Aþ B and A� B are found to be

Aþ B ¼ �1 3 8
0 0 13

� �
A� B ¼ 3 1 0

6 �2 1

� �

If a matrix is multiplied by a scalar s than all its elements are multiplied by s.
Mathematically this is written as

A ¼ aij

 �) sA ¼ saij


 � ð2:35Þ

To multiply two matrices A and B, the number of columns of A must be equal to
the number of rows of B. Therefore, if A is of size M � X for the product P ¼ AB

i j 1 2 3

1
2
3
4

1 2 4
5 4 7
0 12 2
3 6 3

=

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

a
41

a
42

a
43

= a
ij

Fig. 2.10 Example of a 4� 3 matrix
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to be possible, B must be of size X � N. The size of P will be M � N with its
element pij obtained as

pij ¼
XX
k¼1

aikbkj ð2:36Þ

If A is a 3� 2 matrix and B a 2� 4 matrix given by

A ¼
1 2
�1 3
2 �5

2
4

3
5 B ¼ 2 �1 0 4

�3 0 3 2

� �

then P ¼ AB will be a 3� 4 matrix computed as

P ¼
1 2

�1 3

2 �5

2
64

3
75 2 �1 0 4

�3 0 3 2

� �
¼

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

2
64

3
75

p11 ¼ 1 � 2þ 2 � �3ð Þ ¼ �4

p12 ¼ 1 � �1ð Þ þ 2 � 0 ¼ �1

p13 ¼ . . .

..

.

9>>>>=
>>>>;

) P ¼
�3 �1 6 8

�11 1 9 2

19 �2 �15 �2

2
64

3
75

2.3.1 Square Matrices

If the number of columns N of matrix A is equal to its number of rows, then A is a
square matrix of order N. The elements aii of a square matrix A form its main
diagonal which stretches from top left to bottom right. The diagonal composed of
elements aij for which iþ j ¼ N þ 1 is called the cross diagonal and it extends from
the bottom left to top right.

Square matrices possess properties that are not applicable to other types of
matrices such as symmetry and antisymmetry. In addition, many operations such as
taking determinants and calculating eigenvalues are only defined for square matrices.

The result of multiplying a square matrix of order N by itself is a square matrix
of order N. Therefore a square matrix can be multiplied by itself as many times as
needed and the notation Ak designates A multiplied by itself k times, i.e.,

Ak ¼ A� A� A. . .� A|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

ð2:37Þ
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A square matrix A is symmetric if aij ¼ aji i.e.,AT ¼ A
	 


, and antisymmetric if
aij ¼ �aji. An example of a symmetric square matrix of order 3 is

5 3 �2
3 2 7
�2 7 �1

2
4

3
5

and of an antisymmetric square matrix of order 4 is

0 3 �2 4
�3 0 1 �3
2 �1 0 �2
�4 3 2 0

2
664

3
775

A diagonal square matrix D is one for which all elements off the main diagonal are
zero while elements on the main diagonal are arbitrary. An example of a square
diagonal matrix of order 3 is

5 0 0
0 0 0
0 0 �2

2
4

3
5

A diagonal matrix of order N for which all elements on the main diagonal are 1 (i.e.,
aii ¼ 1) is called an identity matrix of order N and is designated by I. An identity
matrix of order 4 is given by

I ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

The inverse of a square matrix A of order N is the square matrix A�1 of order N
satisfying

A�1A ¼ AA�1 ¼ I ð2:38Þ

An upper triangular matrix U is a square matrix in which all elements below the
main diagonal are zero. Mathematically this can be expressed as

U ¼ uij i � j
0 i [ j

�
ð2:39Þ
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A lower triangular matrix L is a square matrix in which all elements above the
main diagonal are zero. Using mathematical notation, this is written as

L ¼ ‘ij i � j
0 i\ j

�
ð2:40Þ

Examples of upper and lower triangular square matrices of order 3 are

U ¼
1 2 6
0 4 5
0 0 �7

2
4

3
5 L ¼

3 0 0
�1 2 0
�9 �2 4

2
4

3
5

2.3.2 Using Matrices to Describe Systems of Equations

Matrices can be used to compactly describe systems of equations [12]. A system of
N equations in N unknowns can be written as

a11/1 þ a12/2 þ a13/3 þ . . .þ a1N/N ¼ b1
a21/1 þ a22/2 þ a23/3 þ . . .þ a2N/N ¼ b2
a31/1 þ a32/2 þ a33/3 þ . . .þ a3N/N ¼ b3
..
. ..

. ..
. ..

. ..
.

aN1/1 þ aN2/2 þ aN3/3 þ . . .þ aNN/N ¼ bN

ð2:41Þ

In matrix notation, this system of equations is equivalent to

a11 a12 a13 � � � � � � a1N
a21 a22 a23 � � � � � � a2N
a31 a32 a33 � � � � � � a3N
..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
.

aN1 aN2 aN3 � � � � � � aNN

2
66666664

3
77777775

/1
/2
/3

..

.

..

.

/N

2
66666664

3
77777775
¼

b1
b2
b3
..
.

..

.

bN

2
66666664

3
77777775

ð2:42Þ

or in compact form as

A/ ¼ b ð2:43Þ

2.3.3 The Determinant of a Square Matrix

A determinant is a value associated with a square matrix A that can be computed
from the elements of the matrix through a mathematical procedure and is denoted by
det Að Þ or Aj j (which should not be confused with the absolute value notation) [13].
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The calculation of the determinant of a matrix of order 2 is straightforward and is
the product of the elements in the main diagonal minus the product of the elements
in the cross diagonal. If A is a square matrix of order 2 then,

A ¼ a11 a12
a21 a22

� �
) det Að Þ ¼ a11a22 � a21a12 ð2:44Þ

For higher order matrices the procedure is more involved and is based on the
notion of minors and cofactors.

A minor mið Þij for an element aij is the determinant that results when the ith row
and jth column are deleted. The cofactor coð Þij of an element aij is the value of the
minor multiplied by either a positive or a negative sign depending on whether
iþ jð Þ is even or odd, respectively. The mathematical relation between cofactors
and minors can be written as

coð Þij ¼ �1ð Þiþj mið Þij ð2:45Þ

The determinant of a square matrix A of order N is computed by finding the
cofactors of one of its rows or its columns, multiplying each cofactor by the
corresponding element, and adding the results. Mathematically this is given by

det Að Þ ¼

PN
i¼1

aij coð Þij for any j

orPN
j¼1

aij coð Þij for any i

8>>>>><
>>>>>:

ð2:46Þ

It should be clarified that the calculation of the cofactors may require further
decomposition of the minor determinants. This decomposition may give rise to
further decompositions until a determinant with a size of 2 is reached. Moreover,
based on the above discussion it is easily demonstrated that the determinant of an
upper, a lower, or a diagonal matrix A of order N is the product of the elements

along its main diagonal, i.e., det Að Þ ¼ QN
i¼1

aii.

Example 6
Calculate the determinant of matrix A of order 4 given by

A ¼
1 0 1 0
1 2 0 5
2 3 �2 0
4 1 �5 3

2
664

3
775
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Solution
As mentioned above, the determinant can be calculated based on the cofactors
of any selected row or column. A smart choice would be a row or a column
with the largest number of zeros. Therefore computations will be reduced by
selecting either the first row or the last column. The determinant will be
calculated using both to further show that the end results will be the same.

The signs of cofactors are

þ � þ �
� þ � þ
þ � þ �
� þ � þ

2
664

3
775

The determinant using cofactors of row 1 is computed as

det Að Þ ¼ 1 � coð Þ11 þ 1 � coð Þ13 ¼
2 0 5
3 �2 0
1 �5 3

������
������þ

1 2 5
2 3 0
4 1 3

������
������

The first new determinant is calculated using the cofactors of row 1 while the
second determinant is calculated using cofactors of column 3 as

det Að Þ ¼ 2
�2 0

�5 3

����
����þ 5

3 �2

1 �5

����
����þ 5

2 3

4 1

����
����þ 3

1 2

2 3

����
����

¼ 2 �6� 0ð Þ þ 5 �15þ 2ð Þ þ 5 2� 12ð Þ þ 3 3� 4ð Þ
¼ �12� 65� 50� 3

det Að Þ ¼ �130

The determinant using cofactors of column 4 is calculated as

det Að Þ ¼ 5 � coð Þ24 þ 3 � coð Þ44 ¼ 5
1 0 1
2 3 �2
4 1 �5

������
������þ 3

1 0 1
1 2 0
2 3 �2

������
������

The first and second new determinants are calculated using the cofactors of
row 1 as

det Að Þ ¼ 5
3 �2

1 �5

����
����þ 5

2 3

4 1

����
����þ 3

2 0

3 �2

����
����þ 3

1 2

2 3

����
����

¼ 5 �15þ 2ð Þ þ 5 2� 12ð Þ þ 3 �4� 0ð Þ þ 3 3� 4ð Þ
¼ �65� 50� 12� 3

det Að Þ ¼ �130

As expected, the same value is obtained.

2.3 Matrices and Matrix Operations 25



2.3.4 Eigenvectors and Eigenvalues

Consider a square matrix A and a vector v. The vector v is an eigenvector of A if
the product Av results in a vector that has the same direction as v [14–19].
Therefore an eigenvector of a matrix is a nonzero vector that does not rotate when is
applied to it. As shown in Fig. 2.11, the only effects may be to change its length
and/or reverse its direction. Thus, there exist a scalar k such that Av ¼ kv. The
value of k is an eigenvalue of A. It is clear that for any constant a the vector av is
also an eigenvector of A because A avð Þ ¼ aAv ¼ akv ¼ k avð Þ. Thus, a scaled
eigenvector is also an eigenvector.

If A is symmetric of order N, then it can be shown that A has a set of linearly
independent eigenvectors denoted v1; v2; v3; . . .; vN . As proved above this set is
not unique. However the corresponding set of their eigenvalues, denoted
k1; k2; k3; . . .; kN , which may or may not be equal to each other, is unique. The
eigenvalues of the identity matrix are all ones, and every nonzero vector is an
eigenvector of I.

In general the eigenvalues of a square matrix A of order N are obtained from
solving the following equation:

Av ¼ kv ) Av ¼ kIv ) A� kIð Þv ¼ 0 ð2:47Þ

Since, by definition, eigenvectors are nonzero, then

A� kI ¼ 0 ) det A� kIð Þ ¼ 0 ð2:48Þ

The expanded form of Eq. (2.48) is given by

det

a11 � k a12 a13 � � � � � � a1N
a21 a22 � k a23 � � � � � � a2N
a31 a32 a33 � k � � � � � � a3N
..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
.

aN1 aN2 aN3 � � � � � � aNN � k

2
66666664

3
77777775
¼ 0 ð2:49Þ

Av Avv

Fig. 2.11 Effects of multiplying a matrix A by one of its Eigenvectors v
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As an example, the eigenvalues of the following square matrix of order 2 are
found as:

A ¼ 3 1

8 1

� �
) k� 3 1

8 k� 1

����
���� ¼ 0 ) k� 3ð Þ k� 1ð Þ � 8 ¼ 0

) k2 � 4k� 5 ¼ 0 ) kþ 1ð Þ k� 5ð Þ ¼ 0 ) k1 ¼ �1 or k2 ¼ 5

2.3.5 A Symmetric Positive-Definite Matrix

A symmetric matrix A ¼ aij

 �

of order N is positive-definite if for all column
vectors p in RN the following inequality holds:

pTAp[ 0 ð2:50Þ

For example, if A is an order 3 symmetric matrix given by

A ¼
5 3 1
3 7 4
1 4 8

2
4

3
5

then Eq. (2.50) for any column vector p of order 3 gives

pTAp ¼ a b c½ �
5 3 1

3 7 4

1 4 8

2
64

3
75 a

b

c

2
64
3
75

¼ 3 aþ bð Þ2 þ aþ cð Þ2 þ 4 bþ cð Þ2 þ a2 þ 4b2 þ 3c2 [ 0

which is positive-definite.
If A is a symmetric positive-definite matrix given by

A ¼

a11 a12 a13 � � � � � � a1N
a21 a22 a23 � � � � � � a2N
a31 a32 a33 � � � � � � a3N
..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
.

aN1 aN2 aN3 � � � � � � aNN

2
66666664

3
77777775

ð2:51Þ
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then, among others, the following properties apply:

1. Any sub-matrix P of A of order M 1�M�Nð Þ of the form

P ¼
a11 a12 � � � a1M
a21 a22 � � � a2M
..
. ..

. ..
. ..

.

aM1 aM2 � � � aMM

2
6664

3
7775 ð2:52Þ

is also positive-definite.
2. The N eigenvalues of A, λ1, λ2, λ3,..., λN are positive.
3. If all the eigenvalues of a matrix A are positive, then A is positive-definite.
4. A has a unique decomposition of the form A ¼ LLT, where L is a lower

triangular matrix. This decomposition is known as the Cholesky decomposition.

2.3.6 Additional Matrix Operations

If s1 and s2 are scalar functions, I an identity matrix, and A; B, and C are matrices,
then the various matrix operations, addition, subtraction, scalar multiplication, and
matrix multiplication, have the following properties listed without proof:

Aþ Bþ Cð Þ ¼ Aþ Bð Þ þ C ð2:53Þ

Aþ B ¼ Bþ A ð2:54Þ

s1 Aþ Bð Þ ¼ s1Aþ s1B ð2:55Þ

s1 þ s2ð ÞA ¼ s1Aþ s2A ð2:56Þ

A BCð Þ ¼ ABð ÞC ð2:57Þ

AI ¼ IA ¼ A ð2:58Þ

A Bþ Cð Þ ¼ ABþ AC ð2:59Þ

Aþ Bð ÞC ¼ ACþ BC ð2:60Þ

Aþ Bð ÞT¼ AT þ BT ð2:61Þ

s1Að ÞT¼ s1AT ð2:62Þ

ABð ÞT¼ BTAT ð2:63Þ

ABð Þ�1¼ B�1A�1 ð2:64Þ
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2.4 Tensors and Tensor Operations

Tensors can be thought of as extensions to the ideas already used when defining
quantities like scalars and vectors [2, 20, 21]. A scalar is a tensor of rank zero, and a
vector is a tensor of rank one. Tensors of higher rank (2, 3, etc.) can be developed
and their main use is to manipulate and transform sets of equations. Since within the
scope of this book only tensors of rank two are needed, they will be referred to
simply as tensors.

Similar to the flow velocity vector v, the deviatoric stress tensor s (Fig. 2.12) will
be referred to frequently in this book and is used here to illustrate tensor operations.

Let x; y; and z represent the directions in an orthonormal Cartesian coordinate
system, then the stress tensor s and its transpose designated with superscript T sTð Þ
are represented in terms of their components as

s ¼
sxx sxy sxz
syx syy syz
szx szy szz

2
4

3
5 sT ¼

sxx syx szx
sxy syy szy
sxz syz szz

2
4

3
5 ð2:65Þ

Similar to writing a vector in terms of its components, defining the unit vectors i, j,
and k in the x; y; and z direction, respectively, the tensor s given by Eq. (2.65) can be
written in terms of its components as

s ¼ iisxx þ ijsxy þ iksxz þ jisyx þ jjsyy þ jksyz þ kiszx þ kjszy þ kkszz ð2:66Þ

Equation (2.66) allows defining a third type of vector product for multiplying
two vectors, known as the dyadic product, and resulting in a tensor with its com-
ponents formed by ordered pairs of the two vectors. In specific, the dyadic product

xx

yy

zz

xy

xz

yx

yz

zx

zy

Fig. 2.12 Schematic of a
stress tensor field

2.4 Tensors and Tensor Operations 29



of a vector v by itself, arising in the formulation of the momentum equation of fluid
flow, gives

vvf g ¼ uiþ vjþ wkð Þ uiþ vjþ wkð Þ
¼ iiuuþ ijuvþ ikuwþ
jivuþ jjvvþ jkvwþ
kiwuþ kjwvþ kkww

9>>>=
>>>;) vvf g ¼

uu uv uw
vu vv vw
wu wv ww

2
4

3
5 ð2:67Þ

The gradient of a vector v is a tensor given by

rvf g ¼ @

@x
iþ @

@y
jþ @

@z
k

� �
uiþ vjþ wkð Þ

¼ ii
@u
@x

þ ij
@v
@x

þ ik
@w
@x

þ

ji
@u
@y

þ jj
@v
@y

þ jk
@w
@y

þ

ki
@u
@z

þ kj
@v
@z

þ kk
@w
@z

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

) rvf g ¼

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

2
6666664

3
7777775

ð2:68Þ

The sum of two tensors r and s is a tensor R whose components are the sum of
the corresponding components of the two tensors, i.e.,

R ¼ rþ s ¼
rxx þ sxx rxy þ sxy rxz þ sxz
ryx þ syx ryy þ syy ryz þ syz
rzx þ szx rzy þ szy rzz þ szz

2
4

3
5 ð2:69Þ

Multiplying a tensor s by a scalar s results in a tensor whose components are
multiplied by that scalar, i.e.,

ssf g ¼
ssxx ssxy ssxz
ssyx ssyy ssyz
sszx sszy sszz

2
4

3
5 ð2:70Þ

The dot product of a tensor s by a vector v results in the following vector:

s � v½ � ¼ iisxx þ ijsxy þ iksxz þ jisyx þ
jjsyy þ jksyz þ kiszx þ kjszy þ kkszz

� �
� uiþ vjþ wkð Þ ð2:71Þ
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which upon expanding becomes

s � v½ � ¼ ii � isxxuþ ii � jsxxvþ ii � ksxxwþ ij � isxyuþ ij � jsxyv
þ ij � ksxywþ ik � isxzuþ ik � jsxzvþ ik � ksxzwþ ji � isyxu
þ ji � jsyxvþ ji � ksyxwþ jj � isyyuþ jj � jsyyvþ jj � ksyyw
þ jk � isyzuþ jk � jsyzvþ jk � ksyzwþ ki � iszxuþ ki � jszxv
þ ki � kszxwþ kj � iszyuþ kj � jszyvþ kj � kszywþ kk � iszzu
þ kk � jszzvþ kk � kszzw ð2:72Þ

Using Eq. (2.8), Eq. (2.72) reduces to

s � v½ � ¼ sxxuþ sxyvþ sxzw
	 


iþ syxuþ syyvþ syzw
	 


jþ szxuþ szyvþ szzw
	 


k

ð2:73Þ

The above equation can be derived using matrix multiplication as

s � v½ � ¼
sxx sxy sxz
syx syy syz
szx szy szz

2
4

3
5 u

v
w

2
4

3
5 ¼

sxxuþ sxyvþ sxzw
syxuþ syyvþ syzw
szxuþ szyvþ szzw

2
4

3
5 ð2:74Þ

In a similar way the divergence of a tensor s is found to be a vector given by

r � s½ � ¼ @sxx
@x

þ @syx
@y

þ @szx
@z

� �
iþ @sxy

@x
þ @syy

@y
þ @szy

@z

� �
j

þ @sxz
@x

þ @syz
@y

þ @szz
@z

� �
k ð2:75Þ

The double dot product of two tensors s and rvf g is a scalar computed as

s : rvð Þ ¼
iisxx þ ijsxy þ iksxz þ
jisyx þ jjsyy þ jksyz þ
kiszx þ kjszy þ kkszz

0
@

1
A :

ii
@u
@x

þ ij
@v
@x

þ ik
@w
@x

þ

ji
@u
@y

þ jj
@v
@y

þ jk
@w
@y

þ

ki
@u
@z

þ kj
@v
@z

þ kk
@w
@z

0
BBBBBB@

1
CCCCCCA ð2:76Þ

The final value is obtained by expanding the above product and performing the
double dot product on the various terms. For example,

ijsxy : ji
@u
@y

¼ i j : j|{z}
¼1

isxy
@u
@y

¼ i � i|{z}
¼1

sxy
@u
@y

¼ sxy
@u
@y

ð2:77Þ
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Performing the same steps on every term in the expanded product, the final form
of ðs : rvÞ is obtained as

s : rvð Þ ¼ sxx
@u
@x

þ sxy
@u
@y

þ sxz
@u
@z

þ syx
@v
@x

þ syy
@v
@y

þ syz
@v
@z

þ szx
@w
@x

þ szy
@w
@y

þ szz
@w
@z

ð2:78Þ

2.5 Fundamental Theorems of Vector Calculus

All mathematical formulations presented in this book will be performed using
vectors. Therefore a good knowledge of the fundamental theorems of vector cal-
culus is helpful. A brief review of some of these theorems is presented next.

2.5.1 Gradient Theorem for Line Integrals

The gradient theorem for line integrals relates a line integral to the values of a
function at its endpoints [22]. It states that if C is a smooth curve, as shown in
Fig. 2.13, described by the vector r tð Þ ¼ r x tð Þ; y tð Þ; z tð Þ½ � for a� t� b, and s is a
scalar function whose gradient, rs, is continuous on C, thenZ

C

rs � dr ¼ s r bð Þð Þ � s r að Þð Þ ð2:79Þ

where a and b are the endpoints of C. It follows that the value of the integral over a
closed contour is zero.

r(a)
r(b)

C

r(t)

y

x

zFig. 2.13 A schematic
depiction of a curve C of a
scalar function s showing its
end points and the position
vector r tð Þ
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2.5.2 Green’s Theorem

Green’s theorem expresses the contour integral of a simple closed curve C in terms
of the double integral of the two dimensional region R bounded by C [23–26].

Let C denotes the closed contour (Fig. 2.14) of a two dimensional region R. If
u x; yð Þ and v x; yð Þ are functions of continuous partial derivatives defined on R, thenI

C
udxþ vdyð Þ ¼

ZZ
R

@v
@x

� @u
@y

� �
dxdy ð2:80Þ

In Eq. (2.80) the contour integral along C is taken positive in the counter-
clockwise direction.

dr

dS

C

R

Fig. 2.14 Schematic of a region R and its closed contour C

Green’s theorem can be written in a more compact form using vectors. For that
purpose defining dr; v and the area vector dS as

dr ¼ dxiþ dyj v ¼ uiþ vj dS ¼ dxdyk ð2:81Þ

then the vector form of Green’s theorem is given byI
C

v � dr ¼
ZZ
R

r� v½ � � dS ð2:82Þ

Green’s theorem is helpful for computing line integrals arising in two-dimen-
sional flows.

Example 7
Compute

H
C
2y3 dxþ 3xy2 dy where C is the CCW-oriented boundary of the

region R shown in Fig. 2.15.

The vector field in the above integral is u; vð Þ ¼ 2y3; 3xy2ð Þ. The line integral
can be computed directly. But, it is more easily computed using Green’s
theorem using a double integral. Applying Green’s theorem the integrand is
obtained as
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@v
@x

� @u
@y

¼ 3y2 � 6y2 ¼ �3y2

Since the line integral is over a semi circle, the region R is mathematically
given by

� 1� x� 1

0� y�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p

The value of the integral is obtained as

I
C

2y3 dxþ 3xy2 dy ¼
ZZ
D

@v
@x

� @u
@y

� �
dA ¼ �3

Z1
�1

Zffiffiffiffiffiffiffiffi1�x2
p

0

y2 dydx

¼ �3
Z1
�1

y3

3

����y¼
ffiffiffiffiffiffiffiffi
1�x2

p

y¼0

 !
dx ¼ �

Z1
�1

1� x2
	 
3=2

dx

Let x ¼ cos h ) dx ¼ � sin hdh
Thus

I
C

2y3 dxþ 3xy2 dy ¼ �
Zp
0

sin2 hdhþ
Zp
0

sin2 h cos2 hdh

¼ � h
2
� sin 2h

4

� �p
0
þ h

8
� sin 4h

32

� �p
0

¼ � 3p
8

2.5.3 Stokes’ Theorem

Stokes’ theorem is a higher dimensional version of Green’s theorem [27–29].
Whereas Green’s theorem relates a line integral to a double integral, Stokes theorem
relates a line integral to a surface integral. Let v be a vector field, S an oriented
surface, and C the boundary curve of S, oriented using the right-hand rule, as
depicted in Fig. 2.16. Stokes’ theorem states the following:

R C

Fig. 2.15 Example 7
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Z
S

r� v½ � � dS ¼
I
C

v � dr ð2:83Þ

where r is such that dr=ds is the unit tangent vector and s the arc length of C. The
curve of the line integral, C, must have positive orientation, meaning that dr points
counterclockwise when the surface normal, dS, points toward the viewer, following
the right-hand rule.

2.5.4 Divergence Theorem

Let V represents a volume in three-dimensional space (Fig. 2.17) of boundary S. Let
n be the outward pointing unit vector normal to S. If v is a vector field defined on V ,
then the divergence theorem [30, 31] (also known as Gauss’ theorem) states thatZ

V

r � vð ÞdV ¼
I
S

v � n dS ð2:84Þ

The divergence theorem implies that the net flux of a vector field through a
closed surface is equal to the total volume of all sources and sinks (i.e., the volume
integral of its divergence) over the region inside the surface. It is an important
theorem for fluid dynamics.

S

C

v

x

z

dS

Fig. 2.16 A surface S in a
three-dimensional space of
contour C
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The divergence theorem can be used in different contexts to derive many other
useful identities (corollaries) [32]. In specific it can be applied to the product of a scalar
function, s, and a non-zero constant vector, to derive the following important relation:Z

V

rs½ �dV ¼
I
S

sdS ð2:85Þ

The divergence theorem is equally applicable to tensors, in which case it is
written as Z

V

r � s½ �dV ¼
I
S

s � n½ �dS ð2:86Þ

Example 8
Use the divergence theorem to evaluateZZ

	
@V

F � dS

where F ¼ 3xþ z5
	 


iþ y2 � sin x2zð Þð Þjþ xzþ yex
5

� �
k

and V is a box defined by

0� x� 1 0� y� 3 0� z� 2

with an outward pointing surface

v
V

x

z

dS = ndS

dS

S

y

Fig. 2.17 A volume in
three-dimensional space with
a piecewise smooth
boundary S
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Solution
This is a difficult field to integrate however using the divergence theorem it
can be transformed to ZZ

	
@V

F � dS ¼
ZZ
V

Z
r � Fð ÞdV

where the divergence of F is obtained as

r � F ¼ 3þ 2yþ x

integrating over the box, the integral is evaluated as

ZZ
	
@V

F � dS ¼
Z1
0

Z3
0

Z2
0

3þ 2yþ xð Þdzdydx ¼
Z1
0

Z3
0

6þ 4yþ 2xð Þdydx

¼
Z1
0

18þ 18þ 6xð Þdx ¼ 36þ 3 ¼ 39

2.5.5 Leibniz Integral Rule

The Leibniz integral rule gives a formula for differentiating a definite integral
whose limits are functions of the differential variable [33–36]. Let / x; tð Þ represents
a function that depends on a space variable x and time t. Then Leibniz integral rule
can be stated as follows

d
dt

Zb tð Þ

a tð Þ

/ x; tð Þdx ¼
Zb tð Þ

a tð Þ

@/
@t

dx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Term I

þ / b tð Þ; tð Þ @b
@t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Term II

�/ a tð Þ; tð Þ @a
@t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Term III

ð2:87Þ

The meaning of the various terms in Eq. (2.87) can be inferred from Fig. 2.18.
The first term on the right side gives the change in the integral because / is
changing with time t, while the second and third terms accounts for the gain and
loss in area as the upper and lower bounds are moved, respectively.
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The three-dimensional form of this formula applied to a volume V tð Þ enclosed by
a surface S tð Þ with its surface elements moving with a velocity vs can be written as

d
dt

Z
V tð Þ

/dV ¼
Z
V tð Þ

@/
@t

dV þ
Z
S tð Þ

/ vs � nð ÞdS ð2:88Þ

where / t; xð Þ is a scalar function of space and time. For a non-moving volume V ,
the equation reduces to

d
dt

Z
V

/dV ¼
Z
V

@/
@t

dV ð2:89Þ

The above equations are also applicable to vectors and tensors.

2.6 Closure

The chapter offered a brief review of vector and tensor operations. In addition the
fundamental theorems of vector calculus were presented. The next chapter will rely
on information presented in this chapter to derive the conservation equations
governing the transfer phenomena of interest in this book.

a t( ) a t + t( ) b t + t( )b t( )

Term I

Term IITerm III

x,t( )

x,t + t( )

t

Fig. 2.18 Curves showing the spatial distribution of a function at times t and t þ Dt
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2.7 Exercises

Exercise 1
Let v1; v2 and v3 be three vectors given by

v1 ¼
1
2
�5

2
4

3
5 v2 ¼

�1
�1
10

2
4

3
5 v3 ¼

8
�5
�2

2
4

3
5

Find:

a. v1 þ v2; v1 þ 2v2; 3v2 � 4v3
b. v1j j; v2j j; v3j j
c. v1 � v2; v3 � v2; v2 � v1 � v3ð Þ
d. A unit vector in the direction of v1 þ v2 þ v3ð Þ

Exercise 2
Let i; j and k be unit vectors in the x; y; and z direction, respectively, and let v be
any vector, which in a Cartesian coordinate system is given by

v ¼ uiþ vjþ wk

Prove that

v ¼ C i� v� ið Þ þ j� v� jð Þ þ k� v� kð Þ½ �

where C is a constant to be determined.

Exercise 3
Find rs if s is the scalar function given by

a. s ¼ y2e2x�3z

b. s ¼ Ln xþ y2 þ z3ð Þ
c. s ¼ tan�1 x

yz

� �
Exercise 4
If s is a scalar function and v is a vector function, prove the following identities:

a. r� rsð Þ ¼ 0
b. r � svð Þ ¼ sr � vþ v � rs
c. r� svð Þ ¼ sr� vþrs� v
d. r � v1 � v2ð Þ ¼ v2 � r � v1ð Þ � v1 � r � v2ð Þ
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Exercise 5
Use Green’s theorem to calculate the area enclosed by an ellipse of semi-major and
semi-minor axes a and b, respectively.

Exercise 6
Find the Laplacian of the scalar s r2sð Þ for the cases when s is given by:

a. s ¼ x3 þ z2e2y�3x

b. s ¼ zþ Ln xþ yð Þ
c. s ¼ sin�1 xþ yþ zð Þ

Exercise 7
Verify the divergence theorem for the parallelepiped with centre at the origin and
faces in the planes x ¼ 
2; y ¼ 
1; z ¼ 
4 and v given by

a. v ¼ 5iþ 7j� 3k
b. v ¼ i y� zð Þ þ j x� zð Þ þ k x� yð Þ
c. v ¼ iy2zþ jxz2 þ kx2y

Exercise 8
For a surface S representing the upper half of a cube centered at the origin, with one
of its vertices at 1; 1; 1ð Þ, and with edges parallel to the axes, verify Stokes’s
theorem for the case when the curve C is the intersection of S with the xy plane and
the vector v is given by

v ¼ i yþ zð Þ þ j xþ zð Þ þ k xþ yð Þ
Exercise 9
Find a function F for which the divergence is the given function K in the following
cases:

a. K x; y; zð Þ ¼ p.
b. K x; y; zð Þ ¼ z2x.
c. K x; y; zð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2ð Þp
Exercise 10
Use the divergence theorem to evaluate the integral

RR
@F

6xiþ 4yjð Þ � dF where the

surface is a sphere defined as @F ! x2 þ y2 þ z2 ¼ 10.
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Exercise 11
Let F be a radial vector field defined as F ¼ xiþ yjþ zk and let C to be a solid
cylinder of radius r and height h with its axis coinciding with the x-axis and its
bottom and top faces located along the x ¼ 0 and x ¼ b plane, respectively. Verify
Gauss theorem in both flux and divergence forms.

Exercise 12
Given a square matrix A defined as

A ¼
a11 a12 � � �
a21 . .

. ..
.

� � � � � � � � �

0
B@

1
CA

decompose it as

A ¼ 1
2

Aþ AT	 
þ 1
2

A� AT	 

and show that

a.
1
2

Aþ AT	 

is symmetric

b.
1
2

A� AT	 

is anti-symmetric

Exercise 13
Given two tensors A and B defined as

A ¼
a11 a12 � � �
a21 . .

. ..
.

� � � � � � � � �

0
B@

1
CA B ¼

b11 b12 � � �
b21 . .

. ..
.

� � � � � � � � �

0
B@

1
CA

a. Calculate the double inner product A : B.
b. Prove that Aþ Bð ÞT¼ AT þ BT and ABð ÞT¼ BTAT

c. Evaluate r � Aþr � B.
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