Chapter 2
Review of Vector Calculus

Abstract This chapter sets the ground for the derivation of the conservation
equations by providing a brief review of the continuum mechanics tools needed for
that purpose while establishing some of the mathematical notations and procedures
that will be used throughout the book. The review is by no mean comprehensive
and assumes a basic knowledge of the fundamentals of continuum mechanics.
A short introduction of the elements of linear algebra including vectors, matrices,
tensors, and their practices is given. The chapter ends with an examination of the
fundamental theorems of vector calculus, which constitute the elementary building
blocks needed for manipulating and solving these conservation equations either
analytically or numerically using computational fluid dynamics.

2.1 Introduction

The transfer phenomena of interest here can be mathematically represented by
equations involving physical variables that fall under three categories: scalars,
vectors, and tensors [1-3]. Throughout this book scalars are designated by lightface
italic, vectors by lower boldface Roman, and tensors by boldface Greek letters. In
addition, matrices are identified by upper boldface Roman letters.

A scalar represents a quantity that has magnitude such as volume V, pressure p,
temperature 7, time ¢, mass m, and density p. A vector represents a quantity of a
given magnitude and direction such as velocity v, momentum L. = myv, and force F.
A matrix is a rectangular array of quantities ordered along rows and columns.
A tensor is a mathematical object analogous to but more general than a vector,
represented by an array of components, such as the shear stress tensor. Moreover,
the conservation equations are composed of terms that represent the product of two
or more variables. The multiplication involved may be of various types to be
detailed later and the variables could be a combination of the three types described
above. Whenever the multiplication results in a scalar, the product will be enclosed
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10 2 Review of Vector Calculus

by parentheses “(product)”, if it results in a vector it will be enclosed by square
brackets “[product]”, and if it results in a tensor it will be enclosed by curly brackets
“{product}”.

2.2 Vectors and Vector Operations

The most frequently used vector in fluid dynamics is the velocity vector that will be
designated by v. The components of the velocity vector in a three-dimensional
Cartesian coordinate system will be denoted by u,v, and w in the x,y, and z
direction, respectively (Fig. 2.1). In Cartesian coordinates, v is written as

v =ui+vj+wk (2.1)

where i, j, and Kk are unit vectors in the x, y, and z direction, respectively. A vector is
usually presented in a column format with its transpose, denoted with a superscript T,
in a row format as

v=|v| vi=[u v w (2.2)

The magnitude of a vector is given by

[Vl = V2 + v+ w? (2.3)
The sum of two vectors v; and v; is the sum of their components, i.e.,

vi =ui+vj+wk

vy = I/tzi i V2j i Wzk} =V +Vvy = (Ml + u2)1 + (Vl + VQ)J + (W1 + Wz)k (24)

Fig. 2.1 The components of z
a vector v in a A
three-dimensional Cartesian
coordinate system
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or
uj us Uy + up
Vi= | W Vo= | W | =>V+V= Vi + (25)
w1 i%) w1 + wy

The multiplication of a vector v by a scalar s results in the vector sv such that
sv = s(ui + vj + wk)

C (2.6)
= sui+ svj + swk = | sv

sSw

The product of two vectors is not as straightforward. When multiplying a vector v| by
another vector v, two types of multiplications arise [4—6]. The first is denoted by the
scalar or dot product, (v; - v2), and the second by vector or cross product [v; X va].

2.2.1 The Dot Product of Two Vectors

By definition, the dot product of two vectors v; and v, is a scalar quantity given by
vi V2 = [vill[vallcos(vi, v2) (2.7)

where cos(vy,v,) denotes the cosine of the angle between v, and v,. From the
definition of the vector dot product, it follows that

ii=j j=k- k=1

In terms of orthonormal Cartesian components, the dot product of the two vectors
vy and v, can be calculated as

Vi - V2 = (w1l +vij + wik) - (u2d + v2j + wok)

(2.9)
= Uy +viva +wiwy

2.2.2 Vector Magnitude

From Eq. (2.9) it follows that the magnitude of a vector v can be obtained as

IVl = Vv v=+Vu?+v+w? (2.10)
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Fig. 2.2 a Projection of vector v; onto the unit direction of vector v,; b Projection of vector v,
onto the unit direction of vector v;

2.2.3 The Unit Direction Vector

A unit vector e, in the direction of v can be derived from the definition of the dot
product as

=1
s N 2 \4
v-v = |vll[[v]fcos(v,v) = |[v[|"= v 7= = ||V v

[N Se=—  (211)
Ve, = ] le| cos(v,e,) = [[v]| = v-e, = [|v] ¥l
N ——
=1 =1

Therefore the component of a vector in the direction of another vector (i.e., mag-
nitude of the projected length) can be viewed as the dot product of the vector to be
projected with the unit direction of the other vector as shown in Fig. 2.2a, b.

2.2.4 The Cross Product of Two Vectors

Whereas the dot product of two vectors v; and v, is a scalar quantity, their cross or
vector product is a vector vz normal to the plane formed by the vectors v; and v,, of
magnitude calculated as

13l = [[va > val| = [[vi[[}v2[l|sin(vi, v2)], (2.12)

and of direction given by the right hand rule. As shown in Fig. 2.3, the magnitude
of the cross product of two vectors represents the area of the parallelogram spanned
by the two vectors. Since, in addition, the resulting vector is normal to the plane
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V; =V, XV, area
v [[vl|=[V[[[v.]|sin ()
2
a

\f

Fig. 2.3 The cross product of two vectors

formed by the vectors, the cross product of two vectors represents their surface
vector.

It is then clear that the cross product of two collinear vectors is zero as they
define no area, and that the cross product of two orthogonal unit vectors is a unit
vector perpendicular to the two unit vectors. Adopting the right hand rule to define
the direction of the resulting vector, the following cross product operations hold:

ixi=jxj=kxk=0 ixj=k=-jxi

ixk=i=-kxj kxi=j=—-ixk (2.13)

Using the above relations, the cross product of two vectors in terms of their
Cartesian components is given by

Vi X V2 = (i 4+ vij + wik) x (uai + v2j + wok)

= upupi X i+ upvi X j+ uywoi x k
+vitpj X i+ vivaj X j+ viwaj x k
+ wiupk X 14+ wimk X j+ wiwk x k

= 0 + uyvoK + uywo (—j)
+ viua(—=K) + viv20 + viwsi
+ wiuaj + wiva (—i) + wiw,0

= (viwy — vowy)i — (uywa — upw1)j + (u1va — uavy )k (2.14)

which can be written using determinant notation as
i J k ViWy — VoW

Vi XVy=|Ur VI Wi |= |UW —UW) (215)
U vy wy UV — Uy
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Example 1
Compute the area of the triangle formed by points (Fig. 2.4):
P1(0, 0, 0), P>(1, 0, 0) and P5(0.5, 1, 0).

Solution
The surface defined by the triangle (P;, P,, P3) can be computed using the

cross product of two sides as

S123 =0.5 PP, X P\P3 S

é . . .
PiPo=(—x)i+ (2 —y)j+ (2 —z2)k=1i

PPy = (x3 —x1)i+ (y3 —y1)i+ (23 — 21 )k = 0.5i +
Si23 = 0.5i x (0.5i+ j) = 0.5k = ||S123]| = 0.5

Py

Fig. 2.4 Example 1

2.2.5 The Scalar Triple Product

In addition, combined products of three vectors v;, v,, and v3 may arise such as
(vy - [v2 x v3]), which can be calculated using the following determinant (to be
explained later):

u vy wi
(V] . [V2 X V3]) =|Uy V3 Wy (216)
usz vy ws

As shown in Fig. 2.5, the absolute value of the scalar triple product represents
the volume of the parallelepiped formed by the vectors vy, v,, and v3.

Fig. 2.5 Geometric
representation of scalar triple
product
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Example 2

Compute the volume of the pyramid defined by the points:
P1(0, 0, 0), P>(1, 0, 0), P3(0.5, 1, 0), and P4(0.5, 0.5, 1)
shown in Fig. 2.6.

Solution
The volume of the pyramid can be computed using
the scalar triple product as

V =025P.P, - <P1P2 x P1P3>

= 0.25(0.5i + 0.5j + k) - k
=025

Fig. 2.6 Example 2

2.2.6 Gradient of a Scalar and Directional Derivatives

An important vector operator, which arises frequently in fluid dynamics, is the “del”
(or “nabla”) operator defined as

g, 0, 0

o (2.17)

When the “del” operator is applied on a scalar variable s it results in the gradient of s
[7, 8] given by

Vs =i+ —j+k (2.18)
Z

Thus the gradient of a scalar field is a vector field indicating that the value of s
changes with position in both magnitude and direction.
The projection of Vs in a certain direction of unit vector e; is given by

d.
Ej = Vs - e = ||Vs]| cos(Vs, &) (2.19)

and is called the directional derivative of s along the direction of the unit vector e;,
as schematically depicted in Fig. 2.7. The maximum value of the directional
derivative is ||Vs|| and is obtained when cos(Vs, e;) = 1, that is in the direction of
Vs. Therefore, it can be stated that the gradient of a scalar field s indicates the
direction and magnitude of the largest change in s at every point in space.
Moreover, Vs is normal to the constant s surface that passes through that point.
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directional _ds
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Fig. 2.7 The rate of change of s(x, y, z) in the direction of vector e

Example 3

Let f(x,,2) = ¥y + Yz + 2x

(a) find Vf at point (3,2,0).

(b) find the derivative at point (3,2,0) along the direction (1,2,2).

Solution
0 0 9]
(a) —f:2xy—|—z2 —f=x2+2yz l=y2—|—2xz
Ox Ay 0z
Vf = (20 + 2)i+ (Z +232)j + (0® + 2xz)k
Thus

Vflaz0 = 12i+9j + 4k
(b) The unit vector along direction (1,2,2) is

o li42j42k _ li+25+2%
Vit 2+2 3
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The derivative along the direction (1,2,2) is

d

di; (3,2,0) = WYlazo «

i + 2j + 2k
3

(12 + 18 + 8)/3 = 38/3

= (12i + 9j + 4K) -

2.2.7 Operations on the Nabla Operator

The dot product of the del operator with a vector v of components u, v, and w in the
x, y, and z direction, respectively, results in the divergence of the vector [7, 8],
which is a scalar quantity written as

Ou Ov Ow
Vv=e——+—4+— 2.20
Ox * dy * 0z ( )
Physically the divergence of a vector field over a region is a measure of how much
the vector field points into or out of the region.
The divergence of the gradient of a scalar variable s is denoted by the Laplacian
of s and is a scalar given by

Ps  Ps s

. P 2:_ —_— —
V- (Vs)=V-s 8x2+8y2+822

(2.21)

The Laplacian of a vector follows from the above definition of the Laplacian
operator and is a vector computed as

Vv = (Vu)i+ (V)j+ (VPw)k (2.22)

Example 4
Find the divergence of v = (u, v, w) = (3x, 2xy, 47)

Solution
Then divergence of v is obtained as
Ou OJv Ow
v . = — —_— -
M Ox + dy - 0z
=3+2x+4

=7+ 2x
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Another quantity of interest is the curl of a vector field [7, 8] formed between the
“del” operator and the vector v, resulting in the following vector:

o, 0., 0 .
va-(alﬁ-a—y,]-l-a—zk)X(”1+VJ+Wk)

— 8_W_@ i+ @_8_”} j+ @_% k
~\9dy 0z 0z 8x‘] Ox Oy

(2.23)

= Plo~
T R

i
9
ox

u

Examples of the divergence and curl of a vector field are schematically displayed
in Fig. 2.8. The radial vector field shown in Fig. 2.8a has only divergence with zero
curl. In fluid mechanics this vector field represents the velocity field of a sink/source
flow. On the other hand Fig. 2.8b depicts a rotational vector field which has only
curl with zero divergence (i.e., a divergence free vector field). Such a field corre-
sponds to the velocity field of a vortex flow.

The divergence of a vector v with its gradient also arises in the equations of
interest in this book and is computed as

[(v.V)V] = (ui + vj + wk) - (%1 + a%j + a%k) (ui + vj + wk)
= (ug—i-vg—i-wé)(ui-i-vj—i-wk)
ox Oy 0z
Ou  Ou Oou\. o Ov . ow  Ow ow
= (ua+v<9_y+w8_z)l+ (u(?—x—i- V8_y+wt9_z)']+ (ua—kva—yﬂ-wa—z)k
(2.24)
(a) (b)

Fig. 2.8 a A radial vector field, b a solenoidal vector field
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Example 5

19

Determine for the flow fields shown in Fig. 2.9a, b, ¢ which is divergence free
(i.e., neither expanding nor compressing) and which is irrotational (i.e., does

not undergo a rotation)

(a)

(b)

(©
Wy T
e M \\\\ NONE
S s A SN Jo
Nt e b L e
N ;
. « ¢ 1 —— % o
Il L] N I3
17 Lk Tz T
74 v - LA e DU S
e R
f.. Wi Ty L I/"'/ / ’,r ..\ \ .\‘\\H\"\
Ve e e 3 wA f—4 T\ NN \
F = (y.2.0) 7k L)

V x F = 0i + 0j + 2k
V x F = 0i + 0j + Ok
V x F = 0i + 0j + 0k

2.2.8 Additional Vector Operations

If s is a scalar function, and v;, v, and v3 are vector fields, then the following
relations, which are listed without proof, apply:

V- (Vxv)=0
V x(Vs)=0

V- (sv)=sV-v4+v-Vs

V x (sv) =sV xv+Vsxv

V(vi-v2) =vi X (VX V) + V2 X (VX)) + (v - V)va + (v2- V)vy

V-(vixvy)=vy-(Vxv)—v-(VxW)

VX (vixv)=vi(V-v2)=va(V-v))+ (va- V)vi — (vi - V)V2

Vx(Vxv)=V(V-v)- Vv

(VxVv)xv=v-(Vv)=V(v-V)

(2.25)
(2.26)
(2.27)
(2.28)
(2.29)
(2.30)
(2.31)
(2.32)

(2.33)
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2.3 Matrices and Matrix Operations

A matrix A of order M X N is a rectangular array of quantities (numbers or
expressions) arranged in M rows and N columns [9-11]. An element of A located
on the ith row and jth column is denoted by a;;. For example, element a3, of the
4 x 3 matrix shown in Fig. 2.10 is 12.

Based on this definition it follows that a column vector v of dimensionality N is
a matrix of order N x 1 and a scalar s is a matrix of order 1 x 1.

The transpose of a matrix A of order M x N is another matrix denoted by AT of
order N x M for which the rows of A are the columns of AT and the columns of A
are the rows of AT. Mathematically, this can be written as

A = [ay] = AT = [a] (2.34)
Two matrices of the same order are equal if their corresponding elements are

equal. Two matrices of the same order can be added or subtracted element by
element. For example, if A and B are given by

1 2 4 -2 1 4
A::[3 ~1 7] B::[—3 1 6]
then A + B and A — B are found to be

13 8 31 0
A+B_{o 0 m] A_B_[6-4 J

If a matrix is multiplied by a scalar s than all its elements are multiplied by s.
Mathematically this is written as

A = [g;] = sA = [sa;) (2.35)

To multiply two matrices A and B, the number of columns of A must be equal to
the number of rows of B. Therefore, if A is of size M x X for the product P = AB

i jo> 1 2 3

l
1 1 2 —4 a, 4, dag;
2 5 4 7 _ a, 4, dy =|: :|
3 0o 12 -2 a, a, a, v
4 3 6 3

| Ay 4y Ay ]

Fig. 2.10 Example of a 4 x 3 matrix
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to be possible, B must be of size X x N. The size of P will be M x N with its
element p;; obtained as

X
p,'j = Zaikbkj (236)
k=1

If Ais a3 x 2 matrix and B a 2 x 4 matrix given by

1 2
2 -1 0 4
A=|-1 3 B:[ }
) s -3 0 3 2

then P = AB will be a 3 x 4 matrix computed as

1 2
. 1 > _1 0 4 - P11 P12 P13 P4
= 3 0 3 2| P21 P22 P23 P24
2 =5 P31 P32 P33 D3
pri=1%2+2x%(-3)=-4
pa=1%(=1)+2%0=—1 -3 -1 6 8
=P=|—-11 1 9 2

P13 = ...
19 -2 —-15 -2

2.3.1 Square Matrices

If the number of columns N of matrix A is equal to its number of rows, then A is a
square matrix of order N. The elements a; of a square matrix A form its main
diagonal which stretches from top left to bottom right. The diagonal composed of
elements a;; for which i + j = N + 1 is called the cross diagonal and it extends from
the bottom left to top right.

Square matrices possess properties that are not applicable to other types of
matrices such as symmetry and antisymmetry. In addition, many operations such as
taking determinants and calculating eigenvalues are only defined for square matrices.

The result of multiplying a square matrix of order N by itself is a square matrix
of order N. Therefore a square matrix can be multiplied by itself as many times as
needed and the notation A¥ designates A multiplied by itself k times, i.e.,

AY=AxAxA. .. xA (2.37)

k times
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A square matrix A is symmetric if a; = a;(i.e., AT = A), and antisymmetric if

a; = —a;;. An example of a symmetric square matrix of order 3 is
5 3 =2
3 2 7
-2 7 -1

and of an antisymmetric square matrix of order 4 is

0o 3 -2 4

-3 0 1 -3
2 -1 0 =2
-4 3 2 0

A diagonal square matrix D is one for which all elements off the main diagonal are
zero while elements on the main diagonal are arbitrary. An example of a square
diagonal matrix of order 3 is

50 0
00 O
00 -2
A diagonal matrix of order N for which all elements on the main diagonal are 1 (i.e.,

a;; = 1) is called an identity matrix of order N and is designated by I. An identity
matrix of order 4 is given by

1 0 0O
I:OIOO
0 010
0 0 0 1

The inverse of a square matrix A of order N is the square matrix A~! of order N
satisfying

A'TA=AA" =1 (2.38)

An upper triangular matrix U is a square matrix in which all elements below the
main diagonal are zero. Mathematically this can be expressed as

w1 <
U—{o = (2.39)
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A lower triangular matrix L is a square matrix in which all elements above the
main diagonal are zero. Using mathematical notation, this is written as

iz
L—{o = (2.40)

Examples of upper and lower triangular square matrices of order 3 are
6 30
2

1 2
U=|0 4 5 L=|-1
0 0 -7 -9 -2

2.3.2 Using Matrices to Describe Systems of Equations

Matrices can be used to compactly describe systems of equations [12]. A system of
N equations in N unknowns can be written as

ay ¢, +and, +aind;+ ... +awdy = by

ay ¢y +and, +and; + ...+ awdy = b
a1+ and, +ang; + ...+ awvdy = b3 (2.41)

ani1 ¢y + a2y + anzps + ... + anvdy = by

In matrix notation, this system of equations is equivalent to

fan  ap aiz - o ain ][9] b1
a)y ap a3 -+ - aw || $ by
as1 ayp azy - - asy || ¢3 b3
. = : (2.42)
Layt ana ays -+ -+ anv] Loy L by |
or in compact form as
Ad=b (2.43)

2.3.3 The Determinant of a Square Matrix

A determinant is a value associated with a square matrix A that can be computed
from the elements of the matrix through a mathematical procedure and is denoted by
det(A) or |A| (which should not be confused with the absolute value notation) [13].
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The calculation of the determinant of a matrix of order 2 is straightforward and is
the product of the elements in the main diagonal minus the product of the elements
in the cross diagonal. If A is a square matrix of order 2 then,

A= l:a“ a12:| = det(A) = djidy — dziagn (244)
ax  axp

For higher order matrices the procedure is more involved and is based on the
notion of minors and cofactors.

A minor (mi) ; for an element a;; is the determinant that results when the ith row
and jth column are deleted. The cofactor (co)ij of an element a;; is the value of the
minor multiplied by either a positive or a negative sign depending on whether
(i+) is even or odd, respectively. The mathematical relation between cofactors
and minors can be written as

(co); = (—1) (mi),, (2.45)

The determinant of a square matrix A of order N is computed by finding the
cofactors of one of its rows or its columns, multiplying each cofactor by the
corresponding element, and adding the results. Mathematically this is given by

N
> aj (co); foranyj

i=1
det(A) = < or (2.46)

N

ajj(co); foranyi

J=1

It should be clarified that the calculation of the cofactors may require further
decomposition of the minor determinants. This decomposition may give rise to
further decompositions until a determinant with a size of 2 is reached. Moreover,
based on the above discussion it is easily demonstrated that the determinant of an
upper, a lower, or a diagonal matrix A of order N is the product of the elements

N
along its main diagonal, i.e., det(A) = [] ;.
i=1

Example 6
Calculate the determinant of matrix A of order 4 given by

N S
— W N O

S =
w o L O
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Solution

As mentioned above, the determinant can be calculated based on the cofactors

of any selected row or column. A smart choice would be a row or a column

with the largest number of zeros. Therefore computations will be reduced by

selecting either the first row or the last column. The determinant will be

calculated using both to further show that the end results will be the same.
The signs of cofactors are

_|_

+

_|_

+

A= ==
+ I+ |

The determinant using cofactors of row 1 is computed as

2 0
det(A) = 1% (co);; + 1% (co);3=|3 -2
1 =5

— W N
w S W

1
+ (2
4

W O W

The first new determinant is calculated using the cofactors of row 1 while the
second determinant is calculated using cofactors of column 3 as

2 0 3 2 2 3 1 2
det(A):2‘ ‘ 3' ‘

~5 3 1 -5 4 1 2 3
=2(—6—0)+5(—15+2) +5(2—12) +3(3 — 4)
= —12-65-50—3

det(A) = —130

RE P

The determinant using cofactors of column 4 is calculated as

1 0 1 1 0 1
det(A) =5%(co)y, +3%(co)y=5|2 3 —2|+3|1 2 0
4 1 -5 2 3 =2

The first and second new determinants are calculated using the cofactors of
row 1 as

3 -2 2 3 2 0 1 2
det(4) = RE N

1 -5 41 3 -2 2 3
=5(—15+2)+5(2—12) +3(—4—0) +3(3 — 4)
= —65-50—12-3

det(A) = —130

REMMES

As expected, the same value is obtained.

25
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2.3.4 Eigenvectors and Eigenvalues

Consider a square matrix A and a vector v. The vector v is an eigenvector of A if
the product Av results in a vector that has the same direction as v [14-19].
Therefore an eigenvector of a matrix is a nonzero vector that does not rotate when is
applied to it. As shown in Fig. 2.11, the only effects may be to change its length
and/or reverse its direction. Thus, there exist a scalar A such that Av = Av. The
value of 4 is an eigenvalue of A. It is clear that for any constant o the vector av is
also an eigenvector of A because A(av) = 0Av = aiv = A(av). Thus, a scaled
eigenvector is also an eigenvector.

If A is symmetric of order N, then it can be shown that A has a set of linearly
independent eigenvectors denoted vy, v,, V3, ..., Vy. As proved above this set is
not unique. However the corresponding set of their eigenvalues, denoted
A, 722,43, ..., Ay, which may or may not be equal to each other, is unique. The
eigenvalues of the identity matrix are all ones, and every nonzero vector is an
eigenvector of 1.

In general the eigenvalues of a square matrix A of order N are obtained from
solving the following equation:

Av=Jv=Av=AUv= (A-/Dv=0 (2.47)
Since, by definition, eigenvectors are nonzero, then
A—AI=0=det(A-A) =0 (2.48)
The expanded form of Eq. (2.48) is given by
fai — 4 ap a ay |
a  an—A  ax axn
asy asn asz — A asy
det . =0 (2.49)
L dani anz ans ayy — 2
Av

Fig. 2.11 Effects of multiplying a matrix A by one of its Eigenvectors v
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As an example, the eigenvalues of the following square matrix of order 2 are
found as:

301 -3 1 ﬂ
A= N =02 (-3)(A-1)-8=0
8§ 1 8 2—1

=4l =5=0=(+1)(A=5)=0=> A =—lork=5

2.3.5 A Symmetric Positive-Definite Matrix

A symmetric matrix A = [a,-j] of order N is positive-definite if for all column
vectors p in RY the following inequality holds:

p'Ap >0 (2.50)

For example, if A is an order 3 symmetric matrix given by

A:

— W W

31
7 4
4 8
then Eq. (2.50) for any column vector p of order 3 gives

53 1]fa
p'Ap=1[a b c]|3 7 4||b
1 4 8 c

=3(a+b) + (a+c) +4(b+c)+d* + 40> +3c2 >0

which is positive-definite.
If A is a symmetric positive-definite matrix given by

ap app apz - ot diN
dyy dazxp dz3 -t AN
asy asy das - vt dA3N
A= : : : : : : (2-51)

Layy dn2 ans - -t 4NN
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then, among others, the following properties apply:

1. Any sub-matrix P of A of order M(1 <M < N) of the form

ap ap - adim
azy dxp - Ay

P=| . S (2.52)
ay  amn amm

is also positive-definite.

2. The N eigenvalues of A, A, Ay, A3,..., AN are positive.

If all the eigenvalues of a matrix A are positive, then A is positive-definite.

4. A has a unique decomposition of the form A = LLT, where L is a lower
triangular matrix. This decomposition is known as the Cholesky decomposition.

(98]

2.3.6 Additional Matrix Operations

If 51 and s, are scalar functions, I an identity matrix, and A, B, and C are matrices,
then the various matrix operations, addition, subtraction, scalar multiplication, and
matrix multiplication, have the following properties listed without proof:

A+(B+C)=(A+B)+C (2.53)
A+B=B+A (2.54)
s1(A +B) = 51A + 5,B (2.55)
(s1+ 52)A = 51A + $HA (2.56)
A(BC) = (AB)C (2.57)
AT=TA =A (2.58)
A(B+C)=AB+AC (2.59)
(A+B)C=AC+BC (2.60)
(A+B)"'=AT +B" (2.61)
(51A)T=5,AT (2.62)
(AB)"=B"AT (2.63)

(AB) '=B'A"! (2.64)
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2.4 Tensors and Tensor Operations

Tensors can be thought of as extensions to the ideas already used when defining
quantities like scalars and vectors [2, 20, 21]. A scalar is a tensor of rank zero, and a
vector is a tensor of rank one. Tensors of higher rank (2, 3, etc.) can be developed
and their main use is to manipulate and transform sets of equations. Since within the
scope of this book only tensors of rank two are needed, they will be referred to
simply as tensors.

Similar to the flow velocity vector v, the deviatoric stress tensor 7 (Fig. 2.12) will
be referred to frequently in this book and is used here to illustrate tensor operations.

Let x,y, and z represent the directions in an orthonormal Cartesian coordinate
system, then the stress tensor 7 and its transpose designated with superscript T(z")
are represented in terms of their components as

T Tay Txz Tox Tyx Tax
_ T _
T={Ty Ty Ty| T =Ty Ty Ty (2.65)
T Tzy Tz Txz Tyz Tz

Similar to writing a vector in terms of its components, defining the unit vectors i, j,
and k in the x, y, and z direction, respectively, the tensor 7 given by Eq. (2.65) can be
written in terms of its components as

T = ity + ijtyy + ikty, + jity. + jjt,y + jK1y, + kit + Kj7,, + kk7,,  (2.66)

Equation (2.66) allows defining a third type of vector product for multiplying
two vectors, known as the dyadic product, and resulting in a tensor with its com-
ponents formed by ordered pairs of the two vectors. In specific, the dyadic product

Fig. 2.12 Schematic of a
stress tensor field
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of a vector v by itself, arising in the formulation of the momentum equation of fluid
flow, gives

{vv} = (ui + vj + wk) (ui + vj + wk)

= fiuu + ijuv + ikuw + uu Uy uw
.. J . ={wi=|w w ww (2.67)
Jjivu + jjvv + jkvw + W e ww
Kiwu + Kjwy + kKkww

The gradient of a vector v is a tensor given by

0 0 0
{Vv} = <1+a j+ak)(ui+vj+wk)

Yy < ou Ov Ow
.. Ou v ow ox Ox Ox
=i ik N
vi=|— — —
ou ..0v ow dy 0Oy 9y
gy Tl TG o v ow
0z 0z 0z

.Ou LOv ow

(2.68)

The sum of two tensors ¢ and 7 is a tensor X whose components are the sum of
the corresponding components of the two tensors, i.e.,

Oxx T Txx Oxy T Tay  Oxg + Txg
E=0+T=|0u+Tn 0y+Ty 0+T (2.69)
Op +Tox Oy + Ty O + T

Multiplying a tensor T by a scalar s results in a tensor whose components are
multiplied by that scalar, i.e.,

STye STy STy
{st} = [ 5Ty 8Ty STy (2.70)
STy STy STy

The dot product of a tensor t by a vector v results in the following vector:

[cov] = <iirxx +ijryy + ikt + ity +

.. X . ; - (ui j k 2.71
Jityy + jkty, + kit + Kjr, + kkra) (s +vj + wk) ( )
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which upon expanding becomes

[t V] =1ii-itgu+ii- jrov +ii - krgw +ij - dtgu +ij - jrgv
+ ij - ktyw + ik - itu + ik - jTv 4+ 1k - KTow + i - ityu
+ ji- oy + i Kopow + i - dryu -+ jj - gty + i Kr,w
+ jk-itu + jk - jrv + jk - kryow +Ki - it +Ki- oo
+ ki -kt ow +Kj - itu + Kj - jt,v + Kj - kryw + kK - it u
+ Kk - jr.v+ Kk -kt w (2.72)

Using Eq. (2.8), Eq. (2.72) reduces to

[t V] = (Taclt + Tuyv + Teew)i + (Tt + Ty + 1ew)j 4 (Tartt + Ty + Tow)K

(2.73)
The above equation can be derived using matrix multiplication as
Tw Ty Txz u Tl + TayV + TyeW
[t-vl= |7 Ty Tul|l|Vv]=]|Tut+1v+ 15w (2.74)
T Ty Tz w Tolh + TV + Tw

In a similar way the divergence of a tensor 7 is found to be a vector given by

V-1 = (ar—“ + Oty + 81_“)1 + (a% 1+ 9w Ity 4 a'fzy>j

Ox ady 0z 0 dy 0z
0ty 01y, 014
- k 2.
+<8x+5‘y+8z (2.75)

The double dot product of two tensors T and {Vv} is a scalar computed as

Ou ov ow
ii—+ij—+ik— +
.. . . Ox Bx Ox
ity +ijry, + ikt + ou P Ow
(t:Vv) = | jity +jjty, +jkty + | : jia_y +ij y + jk— By + (2.76)

kit + Kjt;, + Kk, o 5 S
ki— +kj— + kk—
Yo TR T %,

The final value is obtained by expanding the above product and performing the
double dot product on the various terms. For example,

Ou ou

u ou
Tt it = 0 iy = - Tyt = 7 2.77
ey g0 = ij: vy L Ly =gy (2.77)
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Performing the same steps on every term in the expanded product, the final form
of (t: Vv) is obtained as

( -V ) — @ + @ + @ + @
T:VV) =Ty o Ty Dy Txz 2 Tyx pe
ov Ov ow ow ow

Ty T Ty + T
ay ¥z 2x z}ay zzaz

Ty
t Ty 2z T " ox

(2.78)

2.5 Fundamental Theorems of Vector Calculus

All mathematical formulations presented in this book will be performed using
vectors. Therefore a good knowledge of the fundamental theorems of vector cal-
culus is helpful. A brief review of some of these theorems is presented next.

2.5.1 Gradient Theorem for Line Integrals

The gradient theorem for line integrals relates a line integral to the values of a
function at its endpoints [22]. It states that if C is a smooth curve, as shown in
Fig. 2.13, described by the vector r(s) = r[x(¢), y(¢),z(#)] for a<t<b, and s is a
scalar function whose gradient, Vs, is continuous on C, then

/ Vs - dr = s(r(b)) — s(r(a)) (2.79)

where a and b are the endpoints of C. It follows that the value of the integral over a
closed contour is zero.

Fig. 2.13 A schematic Az
depiction of a curve C of a

scalar function s showing its

end points and the position C
vector r(z)

r(1)

r(a) r(b)
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2.5.2 Green’s Theorem

Green’s theorem expresses the contour integral of a simple closed curve C in terms

of the double integral of the two dimensional region R bounded by C [23-26].
Let C denotes the closed contour (Fig. 2.14) of a two dimensional region R. If

u(x,y) and v(x,y) are functions of continuous partial derivatives defined on R, then

7€ (udx + vdy) = //R <% — g—;) dxdy (2.80)

In Eq. (2.80) the contour integral along C is taken positive in the counter-
clockwise direction.

C

ds
dr

Fig. 2.14 Schematic of a region R and its closed contour C

Green’s theorem can be written in a more compact form using vectors. For that
purpose defining dr, v and the area vector dS as

dr = dxi + dyj v = ui+vj dS = dxdyk (2.81)

then the vector form of Green’s theorem is given by

fwdr://[va]-dS (2.82)
C R

Green’s theorem is helpful for computing line integrals arising in two-dimen-
sional flows.

Example 7
Compute § 2y3 dx + 3xy? dy where C is the CCW-oriented boundary of the
C

region R shown in Fig. 2.15.

The vector field in the above integral is (u, v) = (2y?, 3xy?). The line integral
can be computed directly. But, it is more easily computed using Green’s
theorem using a double integral. Applying Green’s theorem the integrand is
obtained as
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ov  Ou
- 7 _ -6 2 = _3 2
P 6}) y y y

Since the line integral is over a semi circle, the region R is mathematically
given by

. . . Fig. 2.15 Example 7
The value of the integral is obtained as 8 P

5 P 1 V1—x2
yfzy3dx+3xy2dy=// A 3// V2 dydx
Ox Oy
C D -1 0

1

:_3/@

—1

1
) / 3/2
y=0 4

Let x = cos 0 = dx = — sin 0d0
Thus

n

j{ 2y> dx + 3xy* dy = — / sin 0d0 + / sin” 0 cos” 0d6
0

c 0
_ [0 sin20 ”+ 0 sin4d T
274 |18 32 |,

2.5.3 Stokes’ Theorem

Stokes’ theorem is a higher dimensional version of Green’s theorem [27-29].
Whereas Green’s theorem relates a line integral to a double integral, Stokes theorem
relates a line integral to a surface integral. Let v be a vector field, S an oriented
surface, and C the boundary curve of S, oriented using the right-hand rule, as
depicted in Fig. 2.16. Stokes’ theorem states the following:
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Fig. 2.16 A surface S in a z
three-dimensional space of
contour C

ds

/[va].dS:jfv-dr (2.83)

N C

where r is such that dr/ds is the unit tangent vector and s the arc length of C. The
curve of the line integral, C, must have positive orientation, meaning that dr points
counterclockwise when the surface normal, dS, points toward the viewer, following
the right-hand rule.

2.5.4 Divergence Theorem

Let V represents a volume in three-dimensional space (Fig. 2.17) of boundary S. Let
n be the outward pointing unit vector normal to S. If v is a vector field defined on V,
then the divergence theorem [30, 31] (also known as Gauss’ theorem) states that

/(v-v)dv - fv-nds (2.84)

Vv S

The divergence theorem implies that the net flux of a vector field through a
closed surface is equal to the total volume of all sources and sinks (i.e., the volume
integral of its divergence) over the region inside the surface. It is an important
theorem for fluid dynamics.
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Fig. 2.17 A volume in z S
three-dimensional space with 'T\

a piecewise smooth
boundary § @\A

dS =ndS

The divergence theorem can be used in different contexts to derive many other
useful identities (corollaries) [32]. In specific it can be applied to the product of a scalar
function, s, and a non-zero constant vector, to derive the following important relation:

/ VsldV = 74 sdS (2.85)
\%4 S

The divergence theorem is equally applicable to tensors, in which case it is
written as

/ V- dav = ]{ fc - n]ds (2.86)

Vv S

Example 8
Use the divergence theorem to evaluate

ff¥-as

ov

where F = (3x + 2°)i+ (y* — sin(x?z))j + (xz + yexs)k
and V is a box defined by

0<x<1 0<y<3 0<zL2

with an outward pointing surface
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Solution
This is a difficult field to integrate however using the divergence theorem it

can be transformed to
ﬂFwZS:///(V F)dv
)% 1%

where the divergence of F is obtained as
V- F=3+4+2y+x
integrating over the box, the integral is evaluated as

13 13

# dS = // 3 4 2y + x)dzdydx :/ (6 + 4y + 2x)dydx

ov 00

(18 + 18 + 6x)dx = 36 + 3 = 39

O\H =

2.5.5 Leibniz Integral Rule

The Leibniz integral rule gives a formula for differentiating a definite integral
whose limits are functions of the differential variable [33-36]. Let ¢(x, ) represents
a function that depends on a space variable x and time ¢. Then Leibniz integral rule
can be stated as follows

%/ ¢xtdx—/ X dxt g(b(0)1 )Z’Z (a(t),t)% (2.87)

N , Term Il Term Il

TermlI

The meaning of the various terms in Eq. (2.87) can be inferred from Fig. 2.18.
The first term on the right side gives the change in the integral because ¢ is
changing with time #, while the second and third terms accounts for the gain and
loss in area as the upper and lower bounds are moved, respectively.
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A
¢ ¢(x.1+Ar)
Terml
q)(x,z‘)
TermIll Term Il
NP
a(r) a(t+ar) h(t) b(t+Az) g

Fig. 2.18 Curves showing the spatial distribution of a function at times ¢ and # + At

The three-dimensional form of this formula applied to a volume V (¢) enclosed by
a surface S(7) with its surface elements moving with a velocity v, can be written as

d B 0¢
V(1) V() S(t)

where ¢(t, ) is a scalar function of space and time. For a non-moving volume V,

the equation reduces to
d 0¢
— dV = [ —dV 2.89
dt / ¢ / ot ( )
4 4

The above equations are also applicable to vectors and tensors.

2.6 Closure

The chapter offered a brief review of vector and tensor operations. In addition the
fundamental theorems of vector calculus were presented. The next chapter will rely
on information presented in this chapter to derive the conservation equations
governing the transfer phenomena of interest in this book.
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2.7 Exercises

Exercise 1
Let vy, v, and v3 be three vectors given by

1 —1 8
vV = 2 Vy = —1 V3 = -5
=5 10 -2

Find:

a vi+vy, Vvi+2vy, 3vy—4v;

. |V1|7 |V2|7 ‘V3|

ViVa, V3XVy Va-(V]XV3)

. A unit vector in the direction of (v; + v, + v3)

oo o

Exercise 2
Let i, j and k be unit vectors in the x, y, and z direction, respectively, and let v be
any vector, which in a Cartesian coordinate system is given by

v =ui+vj+wk
Prove that
v=Clix (vxi)+ jx (vx])+kx(vxk)]

where C is a constant to be determined.

Exercise 3
Find Vs if s is the scalar function given by

A 5= y262x73z

b. s=Ln(x+y*+2°)
c. s=tan"! (i)
Yz

Exercise 4
If s is a scalar function and v is a vector function, prove the following identities:

.V x(Vs)=0

V- (sv)=sV-v4+v-Vs

VX (sv) =sVXxVv+Vsxv
V-(vixv)=v2-(Vxvy)—vy-(Vxw)

o

eow
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Exercise 5
Use Green’s theorem to calculate the area enclosed by an ellipse of semi-major and
semi-minor axes a and b, respectively.

Exercise 6
Find the Laplacian of the scalar s (V2s) for the cases when s is given by:

a s=x 4 72ePH
b. s=z+Ln(x+y)

c. s=sin"(x+y+z)

Exercise 7
Verify the divergence theorem for the parallelepiped with centre at the origin and
faces in the planes x = £2,y = +1,z = £4 and v given by

a. v=>5i+7j—-3k
b. v=i(y —2z) +jlx—2) +k(x—y)
c. v=1iy’z+jx? + kly

Exercise 8

For a surface S representing the upper half of a cube centered at the origin, with one
of its vertices at (1, 1, 1), and with edges parallel to the axes, verify Stokes’s
theorem for the case when the curve C is the intersection of S with the xy plane and
the vector v is given by

v=i(y+2z) +jx+2) +k(x+y)

Exercise 9
Find a function F for which the divergence is the given function K in the following
cases:

a. K(x, y,z) =m.
b. K(x,y, z) = *x.
c. K(x,y,2)=+(**+2?)

Exercise 10

Use the divergence theorem to evaluate the integral [[ (6xi+ 4yj) - dF where the
OF

surface is a sphere defined as OF — x> + > + 72 = 10.
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Exercise 11

Let F be a radial vector field defined as F = xi 4 yj + zk and let C to be a solid
cylinder of radius r and height ~ with its axis coinciding with the x-axis and its
bottom and top faces located along the x = 0 and x = b plane, respectively. Verify
Gauss theorem in both flux and divergence forms.

Exercise 12
Given a square matrix A defined as

apr an
A=|ay
decompose it as
1 Ty 1 T
A:E(A+A )+§(A—A )

and show that
a. (A + AT) is symmetric

b.

R =N —

(A — AT) is anti-symmetric

Exercise 13
Given two tensors A and B defined as

ay ap - b1 by

a. Calculate the double inner product A : B.
b. Prove that (A + B)'= AT + BT and (AB)"= BTA"
c. Evaluate V-A 4V - B.
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