
Chapter 2
Complex Networks

Abstract Complex network comprises an emerging interdisciplinary research area
that triggers much attention from physicists, mathematicians, biologists, engineer-
ing, computer scientists, among many others. Complex network structures describe
a wide variety of systems of high technological and intellectual importance, such as
the Internet, World Wide Web, coupled biological and chemical systems, financial,
social, neural, and communication networks. The desire to understand such inter-
woven systems summed with their inherent complexity are factors that explain the
increasing interest in enhancing complex network tools. The data representation
in complex networks permits us to unify the structural complexity and vertex
and connection diversities. Several relevant questions arise when investigating
dynamics in complex networks, such as learning how large ensembles of dynamical
systems that interact through a complex wiring topology can behave collectively.
In this way, the network topology plays an important role in that it affects the
functions of the represented system. As an example, the structure of social networks
affects the information and disease propagation speeds, the topology of a financial
network may amplify shocks in different manners, and the disposition of power
grids in networks may affect the robustness and stability of power transmission. Due
to the rapid evolution and the large amount of developed theories and techniques, it
becomes prohibitive to make a comprehensive review on this topic. In this chapter,
we present the basic concepts and ideas of complex networks that are useful in
machine learning. We start out by presenting the main concepts of networks. Since
complex networks and graphs share the same definition, we first present the basic
notations of graph theory. Afterwards, we explore the evolution line and milestones
of the complex network research. Following that, a comprehensive list of network
measurements is discussed, which enables us to capture structural features of the
networks in a systematic manner. Finally, we present some well-known dynamical
processes that are defined within the complex networks framework.

2.1 Basic Concepts of Graphs

In this section, we discuss fundamental concepts of the graph theory.
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16 2 Complex Networks

2.1.1 Graph Definitions

We here present the main terminology employed by the literature of graphs or
networks theory. In this book, the words graphs and networks convey the same
type of information and are used interchangeably. In the same spirit, the data
relationships that make up a graph are termed structure, topology, or anatomy of
the network.

In the following, we present the formal definition of a graph [8, 21, 35].

Definition 2.1. Graph: A graph G is defined as an ordered pair hV ;E i, where V is
a finite nonempty set of vertices or nodes and E is the set of edges or links between
the vertices E � f.u; v/ j u; v 2 V g. Some special graphs are defined as follows:

• Graph with no self-loops: When the relation E is irreflexive, meaning that 8v 2
V ; .v; v/ … E , the graph is said to be free of self-loops. This means that there is
no way of traveling to the same vertex in a single transition.

• Graph with self-loops: When the relation E satisfies the following restriction
9v 2 V ; .v; v/ 2 E , the graph is said to have self-loops. This means that one can
travel back to the same vertex through an edge without leaving it.

Moreover, we denote by V D jV j and E D jE j the number of vertices and edges,
respectively, of the graph.

For example, in the graph G portrayed in Fig. 2.1, the vertex set is V D
f1; : : : ; 5g and the edge set is E D f.1; 2/; .1; 3/; .2; 3/; .3; 3/; .3; 4/g. We often
label the edges with letters or numbers. In the same example, another possible edge
labeling is E D fe1; e2; e3; e4; e5g, where e1 D .1; 2/, e2 D .1; 3/, e3 D .2; 3/,
e4 D .3; 3/, e5 D .3; 4/. We can check from Definition 2.1 that the existence of the
edge e4 D .v3; v3/ turns G into a graph with self-loops.

Some well-known graph topologies are discussed in the following.

Definition 2.2. Complete graph: A complete graph is a graph in which links exist
between each pair of vertices. The complete graph with V vertices is denoted by KV .

A complete graph can also be further classified into with or without self-loops,
in accordance with Definition 2.1.

Fig. 2.1 An example of
graph that is undirected,
non-weighted, and with
self-loops
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Fig. 2.2 An example of
complete graph that is
non-weighted and with no
self-loops

Fig. 2.3 An example of null
graph

For example, Fig. 2.2 shows a complete graph K5, where every pair of vertices is
connected by an edge. As there are no self-loops, the graph is considered a complete
graph with no self-loops.

Definition 2.3. Null graph: A null graph is a graph containing no edges, that is,
E D ;.

Figure 2.3 illustrates a null graph with 5 vertices. We highlight that, even though
the edge set is empty, that is, E D ;, the vertex set cannot be empty. Otherwise, we
would not have a formal graph in view of Definition 2.1.

Graphs can also be classified with respect to their edge types. In the next, we
discuss the main edge types encountered in the literature.

Definition 2.4. Undirected graph: When the relation E is symmetric, meaning
that 8.u; v/ 2 E ) .v; u/ 2 E , it is said that the graph is undirected. In other
terms, when there is an edge linking vertices u to v, so there will be a link from
v to u.
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Fig. 2.4 An example of a
graph that is directed
(digraph), non-weighted, and
with self-loops

In the illustrative graph in Fig. 2.1, we note that besides the edge set E1 D
f.1; 2/; .1; 3/; .2; 3/; .3; 3/; .3; 4/g, the set E2 D f.2; 1/; .3; 1/; .3; 2/; .3; 3/; .4; 3/g
is also present. Therefore, the graph in Fig. 2.1 is undirected.

Commonly, when the edge .u; v/ 2 E is drawn with no arrows in its endpoints, it
is assumed that the edge is undirected, implying the existence of the opposite edge
.v; u/ 2 E . This pictorial distinction is made clear with the definition of directed
graphs in the following.

Definition 2.5. Directed graph (digraph): When the relation E satisfies the
following restriction: 9.u; v/ 2 E j .v; u/ … E , it is said that the graph is directed
(digraph). In other terms, this kind of graph must have at least an arbitrary edge
linking u to v, with an absence of the opposite link.

Figure 2.4 gives an example of a directed graph. In this case, each edge has
its direction, which is conveyed by the visual illustration of the graph itself. The
directness of the graph implies that there exists at least one edge .u; v/ 2 E such
that .v; u/ … E . This holds true in Fig. 2.4 for several cases. Among them, we can
see that the edge .1; 2/ 2 E , but .2; 1/ … E .

There is a special type of graph known as weighted graph, whose definition is
given as follows. The same graph categories discussed in Definition 2.1 can be
applied to it [13, 32].

Definition 2.6. Weighted graph: A weighted graph G is defined as a triple G D
hV ;E ; Wi, where V and E are the sets of vertices and edges, respectively, and W is
a matrix that carries the edge weights. For example, the entry Wuv D w; .u; v/ 2 E ,
fixes as w > 0 the weight of the edge linking vertices u to v. If .u; v/ … E )
Wuv D 0.

Figure 2.5 shows an example of a weighted graph where each edge is associated
to a value. Often, when no edge weight is specified, it is assumed that the weight is
unitary.

The weights can convey various types of meanings in different applications. For
example, each value (weight) may represent the distance from vertex (location) i
to j, or it may also represent traffic flow and so on. By setting the edge weight with
large or small values, we are effectively adjusting the importance of that edge for the
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Fig. 2.5 An example of a graph that is weighted, directed (digraph), and with no self-loops

application that we are dealing with. For instance, in graph-based machine learning,
each weight frequently represents the similarity degree between two vertices (data
samples). As such, large values denote a close proximity of those vertices and,
hence, a high importance is given to that relationship in the learning process.

Remark 2.1. When W is a binary matrix, then the weighted graph reduces to a non-
weighted graph, which is the special graph supplied in Definition 2.1.

Definition 2.7. Bipartite graph: A bipartite graph is a graph whose set of vertices
V can be split into two disjoint non-empty subsets V1 and V2, V = V1

S
V2, in such

a way that .u; v/ 2 E ) u 2 V1; v 2 V2. Therefore, no edge exists between pairs
of vertices in the same subsets V1 and V2.

Remark 2.2. Note that, if G is a bipartite graph, then G cannot have self-loops.

Remark 2.3. We say that G is a complete bipartite graph KM;N when jV1j D M and
jV2j D N and 8.v; u/ 2 V1 � V2; .v; u/ 2 E .

When modeling relations between two different classes of objects, bipartite
graphs very often arise naturally. Some examples are:

• The graph of football players and clubs, in which an edge exists between a player
and a club if that player has played for that club, is a natural example of an
affiliation network, a type of bipartite graph used in social network analysis.

• The graph that represents job allocation in a company. A boss must allocate in a
company N open jobs for M workers. Each worker is qualified to do some of the
N jobs, but not others. Links will exist between a worker and his/her specified
qualified jobs.

Figure 2.6 depicts a bipartite graph with V D 5 vertices, where V1 D f1; 2; 3g
and V2 D f4; 5g. Note that the existence of links only occurs between vertices of V1

and V2.
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Fig. 2.6 An example of a
graph that is bipartite,
non-weighted, and directed
(digraph)

2.1.2 Connectivity

In this section, we introduce common terms related to graph connectivity, which are
used throughout this book [8, 13, 21, 32, 35].

Definition 2.8. Adjacent vertices: Two vertices u 2 V and v 2 V are called
adjacent if they share a common edge, in which case the common edge is said to
join the two vertices.

Remark 2.4. In undirected graphs, if u is adjacent to v, then v must be adjacent to
u as well.

Remark 2.5. In digraphs, u adjacent to v does not imply that v is adjacent to u.
Specifically, if .u; v/ 2 E and .v; u/ … E , then v is adjacent to u, but the opposite
does not hold.

For instance, in the undirected graph portrayed in Fig. 2.7a, vertices 1 and 3 are
adjacent to each other. In contrast, vertex 1 is not adjacent to 4. Now, in the directed
graph depicted in Fig. 2.7b, vertex 1 is adjacent to 3, but the converse is not true.

Definition 2.9. Neighborhood of a vertex: The neighborhood of a vertex v 2 V ,
in a graph G is the set of vertices adjacent to v. The neighborhood is denoted by
N .v/ and is formally given by N .v/ D fu W .v; u/ 2 E g.

For illustrative purposes, in the undirected graph shown in Fig. 2.7a, the neigh-
borhood of vertex 1 is N .1/ D f2; 3g. Now, in the directed graph exhibited in
Fig. 2.7b, N .1/ D f2g.

Remark 2.6. Some authors further distinguish the neighborhood of a vertex in open
and closed neighborhoods. The open neighborhood of v never includes v itself. The
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a b

Fig. 2.7 Illustrative non-weighted graphs for exemplifying basic graph concepts. (a) Undirected
graph. (b) Directed graph

closed neighborhood extends the previous one by adding v itself into N .v/, i.e.,
N .closed/.v/ D N .v/

S fvg. In this book, we opt not to discriminate between these
classes of neighborhood, because in some machine learning algorithms, self-loops
are allowed to prevent transition to other vertices. Therefore, if v 2 N .v/ ”
.v; v/ 2 E . That is, the condition of v being neighbor to itself only depends on
the existence of a self-loop in v. We find that this notation is more intuitive and
consistent with the machine learning literature.

Definition 2.10. Degree (valency or connectivity) of a vertex: In an undirected
graph, the degree of a vertex v is the total number of vertices adjacent to v.
The degree of a vertex v is denoted by kv . We can equivalently define the degree
of a vertex as the cardinality of its neighborhood set and say that, for any vertex v,
kv D jN .v/j, i.e.,

kv D jN .v/j D jfu W .v; u/ 2 E gj D
X

u2V
1Œ.v;u/ 2 E �; (2.1)

in which 1ŒK� represents the Kronecker delta or indicator function that yields 1 if the
logical expression K is true; otherwise, it returns 0.

Remark 2.7. The feasible values of kv are within the discrete-valued interval
f0; : : : ; V � 1g if self-loops are not allowed, and in f0; : : : ; Vg if self-loops are
permitted.

Remark 2.8. When kv D 0, then v is said to be a singleton or isolated vertex.

Remark 2.9. When kv assumes relative large values than the remainder of the
vertices in the network, we say that v is a hub.
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In the undirected graph depicted in Fig. 2.7a, vertices 7 and 8 are singleton, for
k7 D k8 D 0. In contrast, vertex 3 is considered as a hub, for its degree is relative
large in relation to the remainder vertices of the network.

We have so far discussed definitions mostly suited to undirected graphs. For
directed graphs, some of the previously defined connectivity measures suffer slight
modifications, mainly due to the fact that distinctions in the edge endpoints must
be brought into consideration. In special, a directed edge has two distinct ends:
an origin and a destination. The measures use these two endpoints independently.
In light of these considerations, we now extend the connectivity definitions to the
case of directed networks.

Definition 2.11. In-degree and out-degree: In a directed graph, the notion of
vertex degree can be further extended into the in-degree, k.in/

v , and out-degree, k.out/
v ,

as follows:

k.in/
v D

X

u2V
1Œv 2 N .u/� D

X

u2V
1Œ.u;v/ 2 E �; (2.2)

k.out/
v D

X

u2V
1Œu 2 N .v/� D

X

u2V
1Œ.v;u/ 2 E �; (2.3)

kv D k.in/
v C k.out/

v : (2.4)

Remark 2.10. The domains of k.out/
v and k.in/

v are f0; : : : ; V � 1g if self-loops are not
allowed, and f0; : : : ; Vg if self-loops are permitted. Therefore, kv may assume the
values f0; : : : ; 2.V � 1/g when no loops are present and f0; : : : ; 2Vg when loops are
allowed.

Remark 2.11. Note that k.out/
v D jN .v/j.

For example, in the directed graph exhibited in Fig. 2.7b, k.out/
3 D 5, k.in/

3 D 0,

and k3 D 5 C 0 D 5. In addition, k.out/
1 D 1, k.in/

1 D 2, and k1 D 1 C 2 D 3.

Definition 2.12. Average network degree: The average degree of the network, or
network connectivity, is given by:

Nk D 1

V

X

v2V
kv D 1

V

X

.v;u/2V 2

1Œ.v;u/ 2 E �: (2.5)

For instance, in the undirected graph exhibited in Fig. 2.7a, the average degree is:

Nk D 1

8
Œk1 C : : : C k8� D 1

8
Œ2 C 2 C 5 C 1 C 1 C 1 C 0 C 0� D 1:5;

i.e., on average, a vertex belonging to that network has 1:5 links.

Definition 2.13. Average in-degree and out-degree: In a directed graph, the aver-
age in-degree and out-degree have the same numerical value and are evaluated as:
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Nk.in/ D Nk.out/ D 1

V

X

v2V
k.in/

v D 1

V

X

v2V
k.out/

v : (2.6)

In the example shown in Fig. 2.7b, the average in- and out-degree are given by:

Nk.in/ D 1

8

h
k.in/

1 C : : : C k.in/
8

i
D 1

8
Œ2 C 2 C 0 C 1 C 1 C 1 C 0 C 0� D 7

8
;

Nk.out/ D 1

8

h
k.out/

1 C : : : C k.out/
8

i
D 1

8
Œ1 C 1 C 5 C 0 C 0 C 0 C 0 C 0� D 7

8
:

In the rest of this section, we define some connectivity measurements that are
useful for weighted graphs.

Definition 2.14. Strength: In an undirected weighted graph, the strength of a
vertex v 2 V , indicated by sv , represents the total sum of weighted connections
of v towards its neighbors.

sv D
X

u2V
Wvu; (2.7)

in which Wvu is the edge weight of v to u, as introduced in Definition 2.6.

In the graph exhibited in Fig. 2.8a, s1 D 3 C 2 D 5, and s2 D 3 C 5 C 10 D 18.

Definition 2.15. In-strength and out-strength: In a directed weighted graph, the
notion of vertex strength can be further extended into the in-strength, s.in/

v , and out-
strength, s.out/

v , as follows:

s.in/
v D

X

u2V
Wuv; (2.8)

s.out/
v D

X

u2V
Wvu; (2.9)

a b

Fig. 2.8 Illustrative weighted graphs for exemplifying basic graph concepts. (a) Undirected graph.
(b) Directed graph
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sv D s.in/
v C s.out/

v ; (2.10)

in which Wvu is the edge weight linking v to u.

In the example supplied in Fig. 2.8b, for vertex 1, we have s.in/
1 D 3 C 2 D 5 and

s.out/
1 D 0. Similarly, for vertex 2, s.in/

2 D 5 C 10 D 15 and s.out/
2 D 3 C 5 D 8.

With the basic connectivity concepts introduced, we present another well-known
graph topology in the following.

Definition 2.16. Regular graph: A graph is regular if all of the graph vertices have
the same degree. In particular, if the degree of each vertex is k, G is said to be
k-regular.

Remark 2.12. If G is a complete graph with V vertices, then it is .V � 1/-regular.
An example is the complete graph in Fig. 2.2, which is 4-regular with 5 vertices.

Examples of regular graphs that are not complete are supplied in Fig. 2.9. In
special, Fig. 2.9a has six vertices and is a 2-regular network, while Fig. 2.9b has ten
vertices and is a 3-regular network.

2.1.3 Paths and Cycles

Definition 2.17. Walk: Let v1; : : : ; vK 2 V , K � 2. A walk W is an ordered
sequence of edges: W D f.v1; v2/; .v2; v3/; : : : ; .vK�1; vK/g, such that 8k 2
f2; : : : ; Kg W .vk�1; vk/ 2 E . In this case, v1 and vk are called the walk’s origin
and destination, respectively. Note that vertices can be revisited in the same walk.

a

b

Fig. 2.9 Examples of regular graphs that are not complete. (a) 2-regular graph. (b) 3-regular graph
(Petersen graph)
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Remark 2.13. A walk is called closed if v1 D vK and open otherwise.

Remark 2.14. A walk consisting of a single vertex is called a trivial walk.

Definition 2.18. Trail: A trail is a walk in which no edge is repeated. Trails can
also be further classified into open and closed trails, according to Remark 2.13.

Definition 2.19. Tour or circuit: A tour is a closed trail.

Definition 2.20. Walk length: The length of a walk W D f.v1; v2/; .v2; v3/; : : : ;

.vK�1; vK/g, K � 2, is the number of edges that the walk traverses, i.e., jW j D
K � 1 � 1.

In the undirected graph portrayed in Fig. 2.10, W1 D f.1; 3/; .3; 4/; .4; 6/; .6; 7/;

.7; 4/g is an open walk. In contrast, W2 D f.1; 3/; .3; 4/; .4; 6/; .6; 7/; .7; 4/; .4; 3/;

.3; 1/g is a closed walk. There are no trivial walks, as the graph in Fig. 2.10 has no
self-loops. W3 D f.5; 8/; .8; 7/g is an open trail and W4 D f.5; 8/; .8; 7/; .7; 5/g is a
closed trail or a tour. The lengths of these walks are: jW1j D 5, jW2j D 7, jW3j D 2,
and jW4j D 3. There are no walks that visit vertex 10.

Definition 2.21. Path: A path P is a non-trivial walk in which all vertices (except
possibly the first and last) are distinct.

Remark 2.15. A path is always a walk.

Definition 2.22. Cycle: A cycle is closed path.

In Fig. 2.10, P1 D f.1; 2/; .2; 5/; .5; 7/g is a path and P2 D f.1; 2/; .2; 5/; .5; 7/;

.7; 4/; .4; 3/; .3; 1/g is a cycle. Note that P3 D f.5; 8/; .8; 7/; .7; 6/; .6; 4/; .4; 7/;

.7; 5/; .5; 8/g is a walk and tour but not a cycle, because it is not even a path.

Definition 2.23. Walk or path distance: The distance d of the walk W D
f.v1; v2/; .v2; v3/; : : : ; .vK�1; vK/g, K � 2 is given by:

Fig. 2.10 Illustrative
undirected graph to introduce
graph traversal measures
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d.W / D
KX

kD2

j.vk�1; vk/j D
KX

kD2

Wk�1;k; (2.11)

in which j.vk�1; vk/j is the edge weight linking vertex vk�1 to vk.

Definition 2.24. Shortest path (geodesic path) between vertices: The shortest
path between u 2 V and v 2 V , denoted here as duv , is given by the path starting
from u and ending at v with the least distance. Mathematically,

duv D min
Wu!v

d.Wu!v/; (2.12)

in which Wu!v represents walks starting from u and ending at v.

Remark 2.16. For measures that require two inputs, such as the shortest path
between vertices, we use duv when the subscripts are variables and d1;2 when they
are numbers. That is, we maintain the notation as succinct as possible. The comma
is employed for clarity when numbers are indexed.

Definition 2.25. Distance between vertices: The distance duv between two ver-
tices u and v is always their shortest path distance.

Remark 2.17. Note that duv is always evaluated from a path. That is, the distance
between u and v cannot be a walk that is not a path.

Remark 2.18. The distance between any vertex and itself is 0.

Remark 2.19. If there is no path from u to v, then duv D 1.

In Fig. 2.10, the distance between 1 and 3 is d1;3 D 1, since the shortest path
from 1 to 3 is f.1; 3/g. The distance from vertex 10 to itself is d10;10 D 0. Moreover,
the distance from vertex 1 to 10 is d1;10 D 1, as no paths nor walks exist between
1 and 10.

2.1.4 Subgraphs

Definition 2.26. Reachability: We say that v2 2 V is reachable from v1 2 V if
dv1v2 is finite. Alternatively, v1 reaches v2 if there is at least a walk that starts from
v1 and ends at v2.

Definition 2.27. Connectedness: Graph G is connected if, for every pair of vertices
v1 and v2, v2 is reachable from v1 or v1 is reachable from v2.

Definition 2.28. Strong connectedness: Graph G is strongly connected if, for
every pair of vertices v1 and v2, v2 is reachable from v1 and v1 is reachable from v2.
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Remark 2.20. Strong connectedness implies connectedness.

Remark 2.21. In undirected graphs, connectedness implies strong connectedness.
This holds true because if v1 reaches v2, then the converse must be true, for edges
are two-way in undirected graphs.

Remark 2.22. In directed graphs, connectedness does not imply strong connected-
ness.

In the undirected graph depicted in Fig. 2.11a, the graph is strongly con-
nected and, hence, each pair of vertices is mutually reachable. In contrast, in the
directed graph exhibited in Fig. 2.11b, the graph is connected but not strongly
connected. For instance, v1 reaches v6 but the converse is not true. The graphs in
Fig. 2.11c, d are not strongly connected nor connected. For example, v1 and v8 are
mutually non-reachable.

a b

c d

Fig. 2.11 Illustrative graphs for exemplifying subgraph concepts. (a) Undirected graph (1 compo-
nent). (b) Directed graph (1 component). (c) Undirected graph (2 components). (d) Directed graph
(2 components)
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Definition 2.29. Graph component: The subgraph GC of G is a component if:

• GC is connected;
• All of the proper subsets of GC are not connected.

Alternatively, GC is a graph component if any two of its vertices are reachable at
least from one to another, and if its vertex members are connected to no additional
vertices in the remainder of the graph.

Remark 2.23. A connected graph has always a single component.

In Fig. 2.11a, b, there is a single component that is the graph itself. In contrast,
in Fig. 2.11c, d, two components exist: G1 D f1; 2; 3; 4; 5; 6; 7g and G2 D f8; 9g.

Definition 2.30. Clique: A clique in an undirected graph is a subset of vertices such
that every two vertices in the subset are connected by an edge. Cliques therefore are
subgraphs or graphs that are complete.

In Fig. 2.11a, there are two cliques: one comprises the vertices f4; 5; 7g, while
the other, f2; 4; 5g.

2.1.5 Trees and Forest

Definition 2.31. Tree graph: A tree is a connected graph that has no cycles. In a
tree, a leaf is a vertex of degree 1. An internal vertex is a vertex of degree at least 2.

Definition 2.32. Forest: A forest is an undirected graph in which all of its
connected components are trees.

Remark 2.24. Note that a forest is a graph consisting of a disjoint union of trees.

Remark 2.25. All trees are forests, but the converse is not always true.

Remark 2.26. Special cases of forests include: a single tree and a graph with only
singleton vertices (empty graph).

Figure 2.12a illustrates a tree, while Fig. 2.12b exemplifies a forest with two
trees.

Definition 2.33. Spanning tree: If G is a connected graph, the spanning tree in G
is a subgraph of G which includes every vertex of G and is also a tree graph.

For example, Fig. 2.13b shows a possible spanning tree from the graph exhib-
ited in Fig. 2.13a. In this transformation process, we have removed the edges
.2; 3/; .2; 4/; .3; 5/; .4; 5/; .6; 7/.
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a b

Fig. 2.12 Examples of special types of graphs: trees and forests. (a) A tree. (b) A forest with two
trees

a b

Fig. 2.13 Transformation of a graph in (a) into a spanning tree in (b)

2.1.6 Graph Representation

Mathematically, a non-weighted graph G D hV ;E i or weighted graph G D
hV ;E ; Wi are frequently represented by an adjacency matrix A that is constructed
from the vertex and edge sets. A formal definition of the adjacency matrix is given
as follows.

Definition 2.34. Adjacency matrix: Let G D hV ;E ; Wi be an weighted graph.
Then, the adjacency matrix A is defined as follows:

• The number of vertices jV j D V serves to establish the dimension of the
adjacency matrix, which is always V � V;

• The edge set contributes to defining the entry values of the adjacency matrix in
the following manner. The .i; j/-th entry of A is denoted as Aij D aij D Wij,
where Wij is the weight of the edge linking i to j. Formally, 8.i; j/ 2 E W aij ¤ 0

and 8.i; j/ … E W aij D 0.
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a b

Fig. 2.14 Illustrative graphs introduced for evaluating their adjacency matrices. (a) Undirected
graph. (b) Directed graph

Usually, the adjacency matrix A takes the following matrix form:

A D

0

B
B
B
@

a1;1 a1;2 : : : a1;V

a2;1 a2;2 : : : a2;V
:::

:::
: : :

:::

aV;1 aV;2 : : : aV;V

1

C
C
C
A

: (2.13)

Remark 2.27. If G is non-weighted, then Aij 2 f0; 1g, 8i; j 2 V .

Remark 2.28. If the graph G is undirected, then A is symmetric. This fact implies
that if Aij D 1, then Aji D 1.

Remark 2.29. Contrasting to the previous Remark, directed graphs may not have
symmetric adjacency matrices, as j can be a neighbor of i and the converse may not
hold.

For instance, the undirected graph shown in Fig. 2.14a has the following adja-
cency matrix:

A D AT D

0

B
B
B
B
B
B
B
@

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

0 1 1 1 0 1

0 0 0 0 1 1

1

C
C
C
C
C
C
C
A

: (2.14)

in which the superscript T denotes the transpose operator.
In addition, note that the matrix in (2.14) is symmetric, i.e., A D AT , as the graph

in Fig. 2.14a is undirected.
In contrast, the directed graph exhibited in Fig. 2.14b has the following adjacency

matrix:
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Fig. 2.15 Illustrative
weighted graph introduced
for evaluating the weighted
matrix

A D

0

B
B
B
B
B
B
B
@

0 1 1 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

1

C
C
C
C
C
C
C
A

: (2.15)

In this case, the matrix in (2.15) is not symmetric.
For weighted graphs, the entries in the adjacency matrix can assume arbitrary

values. For instance, the (weighted) adjacency matrix of the weighted undirected
graph portrayed in Fig. 2.15 is:

A D AT D

0

B
B
B
B
B
@

0 1 2 3 0

1 0 0 0 5

2 0 0 0 0

3 0 0 0 4

0 5 0 4 0

1

C
C
C
C
C
A

: (2.16)

2.2 Complex Network Models

With the expectation of studying topological properties that are linked to real
networks, several network models have been proposed. Some of these models even
have inspired an extensive study due to its features of great interest. As examples
of important categories of networks, one can list: random networks, small-world
networks, clustered random networks, scale-free networks, and core-periphery
networks. In the next sections, we review these models in detail.
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Fig. 2.16 An example of random networks of Erdös and Réyni. (a) A network constructed by
means of the random approach proposed by Erdös e Réyni; and (b) the degree distribution of a
network consisting of V D 15; 000 constructed using the Erdös and Réyni methodology with
p D 0:01

2.2.1 Random Networks

In the article dated back to 1959, Erdös and Réyni [24] developed a model that
generates random networks consisting of V vertices and E edges. Starting from V
vertices completely disconnected (no edges in the network), the network is built
from the gradual addition of L edges randomly created, in such a way that self-
looping is avoided. Another similar model sets V vertices in a network, and there is
a probability p > 0 of connecting each possible pair of vertices. The latter model
is widely recognized as the model of Erdös and Réyni. Figure 2.16a depicts an
example of this type of network. Note that no spacial relation between the vertices
is used. In this network formation, we merely create edges in a uniform probabilistic
way, regardless of the similarity between vertices.

Since, for each vertex i 2 V of the network (a total of V), there are V �1 different
possibilities of connections with other vertices, it follows that the cardinality of
the sample space, j˝j, which quantifies the maximum theoretical number of edges
between the vertices, is given by:

j˝j D V.V � 1/

2
; (2.17)

in which the division by 2 comes from the fact that we are considering that the
graph is undirected, i.e., the edges are always bidirectional in relation to both linked
vertices. In general, the presence of these two edges represents the occurrence of
the same probabilistic event, on account of the inherent coupling (bidirectionally).
Having in mind that an arbitrary edge is present in a random network with
probability p and is absent with probability 1 � p, and remembering that there are
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�V�1
k

�
ways of choosing k vertices over V � 1 in total, and pk denotes the joint

probability of these k vertices to possess exactly k connected vertices,1 then
�V�1

k

�
pk

provides the probability of these k vertices to have exactly k other interconnected
vertices. However, in this analysis, it should be imposed that there are no more
edges beyond these k, i.e., for the reminiscent quantity of vertices, V � 1 � k,
the complementary probabilistic event of existing edges, that is, .1 � p/.V�1�k/,
must happen. In view of this reasoning, the degree distribution follows a Binomial
distribution with parameters Binomial.V � 1; p/, whose equation is governed by the
following expression:

P.k/ D
 

V � 1

k

!

pk.1 � p/.V�1/�k: (2.18)

Given that V ! 1 and p � 1, one can show that a Binomial distribution
parameterized with Binomial.V � 1; p/ asymptotically approximates a Poisson
distribution with parameter Poisson.�/ [52], with the following linking condition:

.V � 1/p D �: (2.19)

Recall from the probability theory that the mean, �, and the variance, �2, of a
Poisson.�/ are given by � D �2 D �. If we construct an artificial random network
using the discussed methodology with V D 15; 000 e p D 0:01, we get the degree

distribution that is displayed in Fig. 2.16b. Note that the resulting degree distribution
really approximates the Poisson distribution with mean (peak) around � D .V �
1/p D .15; 000 � 1/0:01 � 150.

Moreover, the average shortest path hdi is small in random networks. This
quantity increases proportionally to the logarithm of the network size, i.e.,
hdi � ln.V/

ln.hki/ , where hki is given by the average value of the Poisson distribution
(mean degree), meaning that hki D � D .V � 1/p, [20].

The big discovery of Erdös and Réyni was that many important properties
of a random network may be unveiled as one modifies the parameters of a
Binomial.V � 1; p/. In their study, they showed that, for values of the connecting
probability p larger than a critical probability pc, almost all of the random networks
present a specific property Q with probability 1. That same property is not verified
whenever p 	 pc. For example, if p is larger than a certain value of pc, the random
networks can present a single connected component. But, for values below this
critical threshold, the random networks no longer present a single component, but
instead several unconnected subgraphs. Many other interesting properties have been
discussed in the literature and some of them are reviewed in [55].

1The joint probability is evaluated taking into account that the existence or absence of links are
independent from each other in the random network model.
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Fig. 2.17 Network behavior as we increase the parameter p, which is responsible for the relocation
frequency of the edges

2.2.2 Small-World Networks

Several real-world networks exhibit the small-world property, i.e., most vertices can
be reached by others by means of a small number of intermediate steps (edges). This
characteristic is found, for example, in social networks, where virtually everyone in
the world can be reached by a short chain of people [73, 74].

In order to build a network that presents the small-world property, one can use
the following network formation process introduced in [74]:

• Initially, the network is regular, comprising V vertices, as shown in the left-most
network in Fig. 2.17, in which each vertex connects to its k nearest neighbors in
each direction, totalizing 2k connections;

• Then, each edge is randomly relocated, i.e., given an arbitrary vertex i 2 V ,
we randomly choose one of its original 2k connections. The selected edge, say
linking vertices i and j 2 V , is randomly relocated, such that the destination from
j is switched to another vertex u 2 V , j ¤ u, with probability p.

When p D 0, no rearrangements are performed and, therefore, the network
continues to be regular. Conversely, when p ! 1, all of the edges are effectively
relocated [74]. Figure 2.17 brings a schematic of the behavior of the parameter p,
responsible for the relocation frequency of the edges. Note that, for p D 0, the
resulting network is virtually a regular one. As p increases (but still remains small),
the property of small-world becomes apparent. When p D 1, the network turns
out to be random. In this case, the peak of the degree distribution, following this
approach, is situated close to 2k [73, 74].

The immediate implication for networks that have the property of small world
is that the spread of any information, given that it was generated at any arbitrary
vertex of the network, is very fast. For example, in viral contagion networks with
the small-world property, given that a person has contracted some virus, then it is
expected that, in a short time, many people will be infected by this virus due to the
network topology that favors rapid propagation.
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2.2.3 Scale-Free Networks

In a study conducted by Barabási and Albert [5], they noticed that some networks
have a small number of vertices with large degrees, while most of them have very
small degrees. With this observation in mind, in 1999, they proposed a new type of
network denominated scale-free networks, in which the degree distribution obeys a
power-law, as follows:

P.k/ � k�� ; (2.20)

in which � is a scaling exponent. Note that, by setting a fixed value for � , as the
degree k grows, the number of vertices that have degree k decreases. Thus, it is
expected that P.k/ will have a large value for small values of k and a small value for
large values of k, which is consistent with the observation found by Barabási and
Albert.

The scale-free property strongly correlates with the network robustness to failure.
In a scale-free network topology, it turns out that major hubs are closely followed
by smaller ones. These smaller hubs, in turn, are followed by other vertices with an
even smaller degree and so on until we reach peripheral or terminal vertices. This
hierarchy allows for a fault tolerant behavior. If failures occur at random and the vast
majority of vertices are those with small degree, the likelihood that a hub would be
affected is almost negligible. Even if a hub-failure occurs, the network generally
does not lose its connectedness, due to the remaining hubs. On the other hand, if we
choose a few major hubs and take them out of the network, the network is turned
into a set of rather isolated graphs. Thus, hubs are both a strength and a weakness
of scale-free networks. In view of that, the literature often terms scale-free networks
as robust to random attacks yet fragile to intentional attacks. These properties have
been studied analytically using percolation theory by Cohen et al. [16, 17] and by
Callaway et al. [11].

The formation of scale-free networks happens due to preferential attachment
of vertices. This behavior can be understood in terms of network growth. Growth
in this context means that the number of vertices in the network increases over
time. Preferential attachment means that the more connected a vertex is, the more
likely it is to receive new links. Vertices with larger degree have stronger ability
to grab links added to the network. Intuitively, the preferential attachment can be
understood if we think in terms of social networks connecting people. Here a link
from A to B means that person A “knows” or “is acquainted with” person “B.”
Heavily linked vertices represent well-known people with lots of relations. When a
newcomer enters the community, he or she is more likely to become acquainted with
one of those more visible people rather than with a relative unknown. Similarly, on
the web, new pages link preferentially to hubs, i.e., very well-known sites such as
Google or Wikipedia, rather than to pages that hardly anyone knows. If someone
selects a new page to link to by randomly choosing an existing link, the probability
of selecting a particular page would be proportional to its degree. This explains
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the preferential attachment probability rule. Preferential attachment is an example
of a positive feedback cycle where initially random variations are automatically
reinforced, thus greatly magnifying differences.

Albert and Barabási [5] proposed an algorithm to generate scale-free network
with this preferential attachment mechanism. The network begins with an initial
connected network of V0 vertices. New vertices are added to the network one at a
time. Each new vertex is connected to V 	 V0 existing vertices with a probability
that is proportional to the number of links that the existing vertices already have.
Formally, the probability pi that the new vertex is connected to vertex i is:

pi D ki
P

j2V kj
; (2.21)

in which ki is the degree of vertex i. Heavily linked vertices or hubs tend to quickly
accumulate even more links, while vertices with only a few links are unlikely to be
chosen as the destination for a new link. The new vertices have a “preference” to
attach themselves to the already heavily linked vertices.

Figure 2.18 shows an illustrative network that shares the scale-free properties.
Note that there are very few vertices with large degree, while the great majority
(terminal vertices) has small degree.

Fig. 2.18 Schematic of a scale-free network. The hubs (vertices with large degrees) have been
evidenced. Note that there are very few vertices with large degrees, while the great majority
(terminal vertices) has small degrees
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2.2.4 Random Clustered Networks

Some real-world networks, such as social and biological ones, present modular
structures called communities [31]. These communities consist of sets of vertices
that satisfy a simple rule: vertices belonging to the same community have many
interconnecting edges, while different communities share relatively few edges
interconnecting each other. A model for generating such communities was proposed
in [31]. This agglomerative method groups V initially isolated vertices into M
communities. This is managed by creating a link between two vertices with
probability pin, if they belong to the same community, or with probability pout, if
they belong to distinct communities. The values for pin and pout can be arbitrarily
chosen to control the number of intracommunity and intercommunity links, zin and
zout, respectively, for an arbitrary average network degree hki.

High values of pin and low values of pout refer to networks with well-defined
communities, i.e., there is a high concentration of edges confined within each
community and very few edges interconnecting different communities. Conversely,
low values of pin and high values of pout contribute to the appearance of communities
highly mixed with each other. On the basis of these parameters, we can define the
fraction of intracommunity links zin=hki and, likewise, the fraction of intercommunity
links zout=hki. The quantity zout=hki defines the mixture among different communities.
Essentially, as zout=hki increases, the communities become more mixed and harder
to be identified. As we will further see in Sect. 6.2.4, these quantities are usually
employed to compare different competing community detection techniques using
the Girvan-Newman’s benchmark, which adopts the random clustered networks
discussed here.

Empirically, pout � pin must be satisfied in order to guarantee the presence of
communities in the network. Figure 2.19 illustrates a network with four communi-
ties. Observe that the communities in this figure are well-defined, since the number
of edges connecting vertices of the same community is much larger than the number
of edges interconnecting those of different communities.

2.2.5 Core-Periphery Networks

Networks can be described using a combination of local, global, and intermediate-
scale (mesoscale) perspectives. In this aspect, one of the key objectives of network
theory is the identification of statistical summaries for large networks in order
to develop frameworks that serve to analyze and compare complex structures. In
such efforts, the algorithmic identification of mesoscale graph structures makes it
possible to uncover features that might not be apparent neither at the local level of
vertices and edges nor at the global level of statistical summaries.

In particular, several efforts have gone into the algorithmic identification and
investigation of a particular type of mesoscale structure known as community
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Fig. 2.19 Schematic of a random clustered network with four well-defined communities. Each
community is distinguished by a unique color or format

structure, in which cohesive groups called communities consist of vertices that are
densely interconnected and connections between vertices in different communities
are comparatively sparse.

Although researches of community structure have been very successful [28], the
investigation of other types of mesoscale structures—often in the form of different
“block models” [26, 28]—have received much less attention in the literature. In
this section, we deal with another kind of mesoscale network structure known
as core-periphery structure. The qualitative notion that social networks can have
such a structure makes intuitive sense and has a long history in subjects like
sociology [22, 45], international relations [12, 70], and economics [42]. The most
popular quantitative method to investigate core-periphery structure was proposed by
Borgatti and Everett in 1999 [10].

By computing a network core-periphery structure, one attempts to determine
which vertices are part of a densely connected core and which are part of a sparsely
connected periphery. Core vertices should also be reasonably well-connected to
peripheral vertices, but the latter are not well-connected to a core nor to each other.
Hence, a vertex belongs to a core if and only if it is well-connected both to other
core vertices and to peripheral vertices. A core structure in a network is thus not
merely densely connected but also tends to be “central” to the network (e.g., in
terms of short paths through the network). The goal of quantifying various notions
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of “centrality,” which are intended to measure the importance of a vertex or other
network component [58, 72], also helps in distinguishing core-periphery structure
from community structure. Additionally, networks can have nested core-periphery
structure as well as both core-periphery structure and community structure [46], so
it is desirable to develop algorithms that allow one to simultaneously examine both
types of mesoscale structure.

Hubs, which are vertices that have large degree, occur in many real-world
networks and can pose a problem for community detection, as they often are
connected to vertices in many parts of a network and can thus have strong ties
to several different communities. For instance, such vertices might be assigned to
different communities when applying different computational heuristics using the
same notion of community structure [69]. Therefore, it becomes crucial to consider
their strengths of membership across different communities (e.g., by using a method
that allows overlapping communities) [1]. In such situations, the usual notion of
a community might not be ideal for achieving an optimal understanding of the
mesoscale network structure that is actually present, and considering hubs to be
part of a core in a core-periphery structure might be more appropriate [46]. For
example, one can consider communities as tiles that overlap to produce a network
core [68, 75].

Figure 2.20 illustrates a perfect core-periphery network. We observe that core
vertices are strongly interconnected to each other and also considerably connected
to the remainder of the peripheral network. Peripheral vertices, in turn, are only
connected to the core.

Fig. 2.20 Schematic of a
core-periphery network. The
core member are depicted in
square-shaped vertices (cyan
color) and the peripheral
members, in circle-shaped
vertices (yellow color)
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2.3 Complex Network Measures

In this section, we review network measurements that have been proposed in the
complex networks literature.

2.3.1 Degree and Degree-Correlation Measures

Definition 2.35. Density: the network density D measures how strong the vertices
of a graph are connected. It is defined as the fraction of actual connections over the
total possible connections.

For a directed network, the density D is defined as:

D D E

2
�V

2

� D 2E

2V.V � 1/
D E

V.V � 1/
; (2.22)

in which 2
�V

2

�
denotes the total number of possible connections in a directed

graph. In special, the binomial accounts for getting the total number of pairwise
combinations between two vertices in the network. We multiply by two because the
ordering (start and destination vertices) of those pairwise connections matters in a
directed graph.

For an undirected network, the density D is:

D D E
�V

2

� D 2E

V.V � 1/
; (2.23)

in which, in this case, the ordering of the pairwise connections does not matter.
The density assumes values in the interval Œ0; 1�. When D D 0, we say that G is

an empty graph. Conversely, when D D 1, G is said to be a complete or maximal
clique graph.

Remark 2.30. Often in the literature, networks can also be classified as sparse,
when D assumes values near 0, and dense, otherwise. As a rule of thumb, when
the number of edges in the networks is of the order of the number of vertices, i.e.,
E D O.V/, the network is considered sparse. As we will see, the density of networks
has profound implications on the time complexity of the majority of the machine
learning algorithms. As such, it is a common practice in the literature to state the
time complexity of machine learning techniques both in terms of sparse and dense
networks.

Definition 2.36. Network assortativity: The network assortativity captures, in a
structural sense, the preference of vertices to attach to others that are similar or
different in terms of the degree [54]. Assortativity is often operationalized as a
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degree correlation among vertices. The assortativity coefficient r is essentially the
Pearson correlation coefficient of degree between pairs of linked vertices. Hence,
positive values of r indicate a correlation between vertices of similar degree, while
negative values indicate relationships between vertices of different degrees [53].
In general, r lies between �1 and 1. When r D 1, the network is said to have
perfect assortative mixing patterns, while at r D �1 the network is completely
disassortative.

Many studies have been conducted and some conclusions have been drawn
on some types of real-world networks. For example, social networks often have
apparent assortative mixing. On the other hand, the technological, biological, and
financial networks frequently appear to be disassortative [53].

Considering that ue and ve are the degrees of the two vertices at the endpoints of
the e-th edge of a non-empty graph G , and that E D jE j is the number of edges of
G , the network assortativity r is evaluated as follows [53]:

r D
E�1

P
e2E ueve �

h
E�1

2

P
e2E .ue C ve/

i2

E�1

2

P
e2E .u2

e C v2
e / �

h
E�1

2

P
e2E .ue C ve/

i2
: (2.24)

Definition 2.37. Local assortativity: Local assortativity can be used to analyze
assortative or disassortative tendencies at local level [65]. Local assortativity,
denoted by rlocal, has been defined as the individual contribution of each vertex to
the network assortativity. The local assortativity of a vertex u with degree j C 1 is
given by [65, 66]:

rlocal.u/ D .j C 1/.jNk � �2
q/

2E�2
q

; (2.25)

in which Nk is the average remaining degree of the neighbors of u, E is the number of
links in the network, �q and �q are the mean and standard deviation of the remaining
degree distribution of the network. It follows that the network assortativity r can be
retrieved using the following expression:

r D
X

u2V
rlocal.u/: (2.26)

Definition 2.38. Non-normalized rich-club coefficient: The rich-club coefficient
first appeared in the literature as an unscaled metric parametrized by vertex degree
ranks [82]. More recently, this has been updated to be parameterized in terms
of vertex degrees k, indicating a degree cut-off. The rich-club coefficient mea-
sures the structural property of complex networks called “rich-club” phenomenon.
This property refers to the tendency of vertices with large degree (hubs) to be
tightly connected to each other, thus forming clique or near-clique structures.
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This phenomenon has been discussed in several instances in both social and
computer sciences. Essentially, vertices with a large number of links, usually known
as rich vertices, are much more likely to form dense interconnected subgraphs
(clubs) than vertices with small degree. Considering that E>k is the number of edges
among the N>k vertices that have degree larger than a given threshold k � 0, the
scaled version of the rich-club coefficient is expressed as [19, 51, 61]:

�.k/ D 2E>k

N>k .N>k � 1/
; (2.27)

in which the factor N>k.N>k�1/=2 represents the maximum feasible number of edges
that can exist among N>k vertices. We note that, while the network assortativity
captures how connected similar vertices are in terms of degree connectivity, the rich-
club coefficient can be viewed as a more specific notation of associativity, where
we are only concerned with the connectivity of vertices beyond a certain richness
metric. For example, if a network consists of a collection of hub and spokes, where
the hubs are well connected, such a network would be considered disassortative.
However, due to the strong connectedness of the hubs in the network, the network
would demonstrate a strong rich-club effect.

Definition 2.39. Normalized rich-club coefficient: A criticism of the above non-
normalized rich-club coefficient is that it does not necessarily imply the existence
of the rich-club effect, as it is monotonically increasing even for random networks.
This is true because vertices with larger degree are naturally more likely to be more
densely connected than vertices with smaller degree, simply due to the fact that they
have more incident edges. In fact, for certain degree distributions, it is not possible
to avoid connecting hubs with large degrees. As a result, for a proper evaluation of
this phenomenon, we must normalize out this factor. This point was raised in [19],
which derived an analytical expression for the rich-club coefficient of uncorrelated
large-size networks at large degrees. To account for this, it is necessary to compare
the above metric to the same metric on a degree distribution that preserves the
randomized version of the network. This updated metric is defined as [19, 51, 61]:

�norm.k/ D �.k/

�rand.k/
; (2.28)

in which �.k/ is the non-normalized rich-club coefficient of the network under
analysis and �rand.k/ is the non-normalized rich-club coefficient evaluated on a max-
imally randomized network with the same degree distribution P.k/ of the network
under study. This new ratio discounts unavoidable structural correlations that are a
result of the degree distribution, giving a better indicator of the significance of the
rich-club effect. For this metric, if for certain values of k we have �norm.k/ > 1, this
denotes the presence of the rich-club effect.
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Remark 2.31. Networks with strong disassortative mixing patterns that have rich-
club regions composed of vertices with large degrees point for the existence of
core-periphery structures (cf. Sect. 2.2.5). The number of cores, in this case, is
defined as the number of graph components that results when applying the procedure
to evaluate the rich-club coefficient.

2.3.2 Distance and Path Measures

Definition 2.40. Diameter: The diameter of G , T , is the length of the largest
pairwise distance in G . Formally, it is given by:

T D max
u;v2V duv: (2.29)

For a non-weighted graph, the feasible values of T are Œ0; V � 1�. The diameter
can be interpreted as the largest intermediation chain in the network.

Definition 2.41. Vertex eccentricity: The eccentricity of u 2 V , eu, is the largest
distance from u to any other vertex v 2 V nfug, i.e.:

eu D max
v2V nfug

duv: (2.30)

Definition 2.42. Radius: The network radius, �, is its minimum eccentricity, i.e.:

� D min
u2V eu: (2.31)

Definition 2.43. Wiener index: The Wiener index, �, is defined as the sum of
geodesic distances between each pair of vertices in the graph. Mathematically, it
is given by:

� D 1

2

X

u;v2V
u¤v

duv: (2.32)

One problem of this measure is its divergence for disconnected graphs, because at
least one geodesic distance is infinity. Such a problem can be avoided by computing
only pairs of connected vertices. However, it introduces distortion if the graph
has many pairs of disconnected vertices. The following network measures, global
efficiency and average harmony, are defined in a way to solve this problem.

Definition 2.44. Global efficiency: The global efficiency, GE, considers that the
efficiency of sending information between two vertices u and v is inversely
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proportional to the geodesic distance [2], i.e.:

GE D 1

V .V � 1/

X

u;v2V
u¤v

1

duv

: (2.33)

Definition 2.45. Average Harmony: The average harmony, h, is the reciprocal of
the overall global efficiency, i.e.:

h D 1

GE
: (2.34)

The average harmony does not present the problem of divergence shown by
Wiener index, so it is suitable for graphs with unconnected vertices [20].

2.3.3 Structural Measures

Definition 2.46. Clustering Coefficient: The clustering coefficient measure quan-
tifies the degree to which local vertices in a network tend to cluster together.
Evidence suggests that in many real-world networks, and in particular social
networks, vertices tend to create tightly knit groups characterized by a relatively
high density of ties [74]. Several generalizations and adaptations of such measure
have been proposed in the literature [44, 60]. Here, we define the measure originally
proposed by Watts and Strogatz [74]. The local clustering coefficient of a vertex in
a graph quantifies how close its neighbors are to being a clique (complete graph).
Mathematically speaking, the local clustering coefficient of vertex i is given by:

CCi D 2jeij
ki .ki � 1/

; (2.35)

in which jeij the number of links shared by the direct neighbors of vertex i (number
of triangles formed by vertex i and any of its two neighbors) and ki is the degree of
vertex i. By (2.35), we see that CCi 2 Œ0; 1�.

Definition 2.47. Network clustering coefficient: We can also evaluate the network
clustering coefficient, which gives us a sense of quasi-local connectivity between
vertices, as follows:

CC D 1

V

X

i2V
CCi; (2.36)

in which V symbolizes the number of vertices and CC 2 Œ0; 1�. Roughly speaking,
the clustering coefficient tells how well-connected the neighborhood of the vertex is.
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If the neighborhood is fully connected, the clustering coefficient is 1 and a
value close to 0 means that there are hardly any triangular connections in the
neighborhood.

Definition 2.48. Cyclic Coefficient: This coefficient characterizes the degree of
circulation in complex networks by considering cycles of all orders from 3 up to
infinity [39]. The cyclic coefficient 	i of vertex i is the average of the inverse size of
the smallest cycle that connects that vertex and any of two of its neighbor vertices.
Mathematically, it is calculated as follows [39]:

	i D 2

ki .ki � 1/

X

j;k2N .i/

1

Si
jk

; (2.37)

in which Si
jk is the smallest size of the closed shortest path that passes through vertex

i and its two neighbor vertices j and k. Note that the sum goes over all of the neighbor
pairs .j; k/ of i. If vertices j and k are directly linked to each other, then vertices i, j,
and k form a triangle. It is a cycle of order 3 and Si

jk D 3, which is the smallest value
of Si

jk. If no paths exist that connect vertices j and k except for that one that crosses
vertex i, then vertices i, j, and k form a tree structure. In this case, there is no closed
loop passing through the three vertices i, j, and k, in a way that Si

jk D 1.

Definition 2.49. Global cyclic coefficient: The global cyclic coefficient, 	 , is equal
to the average of cyclic coefficients of all of the vertices, as follows [39]:

	 D 1

V

X

i2V
	i: (2.38)

The global cyclic coefficient takes a value between 0 and 1=3, where 0 means the
network has a tree structure in which no cycle can be found, and the opposite case
(	 D 1=3) indicates that there is a connection between all pairs of vertices, in which
case the clustering coefficient is 1.

Definition 2.50. Modularity: The modularity measure quantifies how good a
particular division of a network is [15, 57] and is designed to measure the strength
of division of a network into modules (also called groups, clusters or communities).
Generally, it ranges from 0 to 1. When the modularity is near 0, it means that
the network does not present community structure, suggesting that the links are
disposed at random in the network. As the modularity grows, the community
structure gets more and more defined, that is, the mixture between communities
gets smaller and therefore the fraction of links inside communities is larger than
that between different communities.

Besides the network, the modularity takes as input a hypothesis about the
membership of each vertex towards a community. It then tests how those vertices
inside the given network fit into well-defined communities using the aforementioned
notion. Mathematically, the modularity in non-weighted networks is expressed as:
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Q D 1

2E

X

i;j2V

�

Aij � kikj

2E

�

1ŒciDcj�; (2.39)

in which E represents the total number of edges in the network; ki stands for the
degree of the vertex i; ci is the community of vertex i; and Aij is the edge weight
linking vertex i to j. The summation term is composed of two factors, all of which
are computed only for vertices of the same community due to the indicator function.
That is, cross-community links do not contribute to the modularity measure. The
first term, Aij

2E , counts the fraction of links inside pairs of vertices that are members of

the same community. From that, we subtract kikj

.2E/2 , the second term, which accounts
for removing the fraction of edges that are expected to occur due to randomness,
using a random network model (recall Sect. 2.2.1). Nonzero values of the modularity
index indicate deviations from randomness and values around 0:3 or more usually
indicate good divisions.

We can also define the modularity for weighted networks [56]. In this case, the
terms denoting the degree ki in (2.39) are exchanged for the strength measures si, as
introduced in Definition 2.14, and E is given by:

E D 1

2

X

i2V
si: (2.40)

The main idea of modularity is to calculate the fraction of edges that fall within
the given groups minus the expected value if edges were distributed at random. For
a given division of the network vertices into some modules, modularity reflects the
concentration of vertices within modules compared to a random distribution of links
between all vertices, regardless of modules.

Definition 2.51. Topological overlap: The topological overlap index measures
to what extent two vertices are connected to roughly the same group of other
vertices in the network. In essence, the topological overlap measure evaluates how
similar the direct and indirect neighborhoods of two vertices are. To calculate the
topological overlap of a pair of vertices, their connections to all of the other vertices
in the network are compared. If these two vertices share similar direct and indirect
neighborhoods, then they have a high “topological overlap.” We can adjust the depth
of the neighborhood which is used in the comparison. That is, we can only compare
the direct neighborhood of two vertices, up to the second order neighborhood,
and so on. Specifically, the m-th order topological overlap measure is constructed
by (i) counting the number of m-step neighbors that a pair of vertices share and
(ii) normalizing it to assume a value between 0 and 1. The resulting vertex similarity
measure is a measure of agreement between the m-step neighborhoods of two input
vertices. Such a measure can be applied in a number of ways, for instance, similarity
search, prediction based on k-nearest neighbors, multi-dimensional scaling and
module identification by clustering.
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Let Nm.i/, m > 0, denote the set of vertices (excluding i itself) that is reachable
from i within a shortest path of length m, i.e., Nm.i/ D fj ¤ i j dij 	 mg, where
dij is the geodesic distance (shortest path distance) between i and j. The m-step
topological overlap is given by:

tŒm�
ij D

( jNm.i/
T

Nm.j/jCAij

min ŒjNm.i/j;jNm.j/j�C1�Aij
; if i ¤ j

1; if i D j
; (2.41)

in which Aij denotes the .i; j/-th entry of the adjacency matrix of the graph. Thus,
the m-step topological overlap measures the agreement of the m-step neighborhoods
between two vertices. Note that, even in the case that two vertices have the same
m-step neighborhoods, the topological overlap index only assumes its maximum
value when they are directly connected, i.e., when Aij D 1.

2.3.4 Centrality Measures

Centrality measures quantify how central or how important vertices or edges are
inside a network. The first centrality measure that comes to our mind may be the
degree of a vertex. In this way, it is natural to assume that vertices with large degrees
are central to the network, while vertices with small degrees are usually peripheral
or terminal ones. In spite of its simplicity, degree is widely used as a centrality
measure. In many real networks, vertices with large degree are often called hubs.
Many centrality measures have been reported by the literature. Each one is defined
according to a different heuristics that ultimately lead to different conclusions about
the centrality of vertices or edges.

2.3.4.1 Distance-Based Centrality Measures

We divide these types of centrality measures in two groups that are classified
according to the criterion used to calculate the centrality distance [41].

Definition 2.52. Minimax criterion: The first family consists of those problems
that use a minimax criterion. As an example, consider the problem of determining
the location for an emergency facility such as a hospital. The main objective of such
an emergency facility location problem is to find a site that minimizes the maximum
response time between the facility and the site of a possible emergency.

The aim of the first problem family is to determine a location that minimizes the
maximum distance to any other location in the network. Suppose that a hospital is
located at a vertex u 2 V . We denote the maximum distance from u to a random
vertex v in the network, representing a possible incident, as the eccentricity eu of u.
Recall that the eccentricity is given by eu D maxv2V duv . The problem of finding an
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optimal location can be solved by determining the minimum over all eu with u 2 V .
Therefore, the centrality of vertex u based on the eccentricity is:

cE.u/ D 1

eu
D 1

maxv2V duv

: (2.42)

Definition 2.53. Minisum criterion: The second family of location problems
optimizes a minisum criterion that is used to determine the location of a service
facility like a shopping mall. The aim here is to minimize the total travel time. We
denote the sum of the distances from a vertex u 2 V to any other vertex in a graph
as the total distance

P
v2V duv . The problem of finding an appropriate location can

be solved by computing the set of vertices with minimum total distance as follows:

cC.u/ D 1
P

v2V duv

: (2.43)

In social network analysis, a centrality index based on this concept is called
closeness. The focus lies here, for example, on measuring the closeness of a person
to all other people in the network. People with a small total distance are considered
as more important as those with a high total distance.

2.3.4.2 Path- and Walk-Based Centrality Measures

Centrality measures that are based on paths do not take into consideration the
distances from vertex to vertex, but they consider the flow passing through a vertex.
In essence, a vertex is declared as more important if there are many shortest paths
passing through it.

Definition 2.54. Betweenness: The betweenness measures the extent to which
a vertex lies on the shortest paths between every pair of vertices in a net-
work [29, 30, 58]. Suppose we have a network in which the vertices exchange
messages among themselves. Let us initially make the simple assumption that every
pair of vertices in the network exchanges a message with equal probability per unit
time and that messages always take the shortest (geodesic) path of the network,
or one of such paths, chosen at random, if there are several. Then, let us ask the
following question: if we wait a suitably long time until many messages have passed
between each pair of vertices, how many messages, on average, will have passed
through each vertex en route to their destination? The answer is that, since messages
are passing down each geodesic path at the same rate, the number passing through
each vertex is simply proportional to the number of geodesic paths the vertex lies
on [58]. This number of geodesic paths is what it is called betweenness index.

Given this definition, it follows that vertices with high betweenness may have
considerable influence within a network by virtue of their control ability over
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information passing between others. The vertices with the highest betweenness in
our message-passing scenario are the ones through which the largest number of
messages pass, and if those vertices get to see the messages in question as they pass,
or if they get paid for passing the messages along, they could derive a lot of power
from their position within the network. The vertices with the highest betweenness
are also the ones whose removal from the network will most disrupt communications
between other vertices because they lie on the path of several messages. In real-
world situations, of course, not all vertices exchange communications with the same
frequency, and in most cases, communications do not always take the shortest path,
due to, for example, political or physical reasons.

Mathematically, let 
v
st be 1 if vertex v lies on the geodesic path from s to t and 0

if it does not or if there is no such path (because s and t lie in different components
of the network). Then, the betweenness centrality xv is given by:

Bv D
X

s¤v2V

X

t¤v2V


v
st


st
; (2.44)

i.e., the betweenness of v evaluates the fraction of shortest paths between all pairs of
vertices s and t that passes through v over the total number of shortest paths between
s and t.

Definition 2.55. Communicability [25]: Many topological and dynamical prop-
erties of complex networks are defined by assuming that most of the transport
on the network flows along the shortest paths, such as the betweenness measure.
However, there are different scenarios in which non-shortest paths are used to
reach the network destination. For instance, in air transportation, airplanes may
have to fly through more distant routes between two destinations, because in the
shortest path between them there is a war or no-fly zone. Thus the consideration
of only the shortest paths does not account for the global communicability of a
complex network. Communicability is defined for every pair of vertices p 2 V and
q 2 V . In essence, it quantifies how easily vertex p can communicate with q by
means of a combination of shortest paths and random walks with varying lengths.
Mathematically, the communicability of vertex p to q is given by:

Gpq.M/ D 1

sŠ
Ppq C

X

k>s

1

kŠ
.Ak/pq D .eA/pq; (2.45)

in which Ppq denotes the number of paths with the shortest length from p to q; s is
the length of such paths; and A is the binary adjacency matrix of the network. The
term A.k/

pq is the element .p; q/ of the k-th power of matrix A that gives the number
of walks of length k from p to q along the adjacency matrix A, with k strictly greater
than s steps. The communicability of Gpq and Gqp may be different for directed
graphs. A large Gpq reveals that p can reach q by several routes. Conversely, when
Gpq is small, there are few possibilities for p to reach q.
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2.3.4.3 Vitality

Let Q be the set of all simple, undirected and non-weighted graphs G D hV ;E i
and let f W G ! R be any real-valued function on G 2 Q. A vitality index V.G ; u/,
u 2 V , is then defined as the difference of the values of f on G and on G without
element or vertex u: V.G ; u/ D f .G / � f .G nfug/ [41].

Definition 2.56. Flow betweenness vitality: define the max-flow betweenness
vitality for a vertex u 2 V by:

BV.u/ D
X

s;t2V
u¤s;u¤t

fst.u/

fst
; (2.46)

in which fst.u/ is the amount of flow which must go through u. We determine
fst.u/ by fst.u/ D fst � Qfst where Qfst is the maximal s-t-flow in G nfug. That is, Qfst

is determined by removing u from G and computing the maximal s-t-flow in the
resulting reduced network G nfug.

Definition 2.57. Closeness vitality: Let the distance between two vertices s and t
represent the costs of sending a message from s to t. Then, the closeness vitality of
u denotes how much the transport costs in an all-to-all communication will increase
if the corresponding element u is removed from the network. That is,

CV.u/ D I.G / � I.G nfug/; (2.47)

in which I.G / D P
v;w2V dvw, i.e, the total distance of the network.

Definition 2.58. Dynamical vitality [67]: Consider a network as a directed graph
with V vertices, Au D �u and vTA D �vT , where A is the adjacency matrix, � is the
largest eigenvalue of A, u and v are right and left eigenvectors of A. The dynamic
importance of edge .i; j/, DIij, is defined as:

DIij D ���ij

�
; (2.48)

that is, it is the amount ���ij by which � decreases upon the removal of edge .i; j/,
normalized by �. Similarly, the dynamical importance of vertex k is defined in terms
of the amount ���k by which � decreases upon removal of that vertex:

DIk D ���k

�
: (2.49)

By removing the edge .i; j/, we get .AC�A/.uC�u/ D .�C��/.uC�u/. If we
multiply by vT , expand the formula, and neglect second order terms vT�A�u and
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��vT�u, we obtain �� D vT �Au
vT u

. Upon the removal of edge .i; j/, the perturbation
matrix is .�A/lm D �Aijıilıjm, and therefore:

cDIij D �Aijviuj

�vTu
: (2.50)

By removing the vertex k, the perturbation matrix is given by .�A/lm D
�Aij.ıil Cıjm/, since �uk D �uk,2 therefore, we set �u D ıu�ukek, where ek is the
unit vector for the k-th component, and we assume that ıu is small. By multiplying
vT and again neglecting the second order terms vT�Aıu and ��vTıu, we obtain

�� D .vT �Au�ukvT �Aek/

.vT u�vkuk/
. Using the expression of �A, we get vT�Au D �2�ukv

k

and ukv
T�Aek D �ukvk. Considering that the network is large (V 
 1), we assume

that ukvk < vTu. Thus, we obtain:

cDIk D � vkuk

�vTu
: (2.51)

2.3.4.4 General Feedback Centrality

Now we present measures that are built on the concept of feedback centrality.
In this respect, a vertex has larger feedback centrality the more central are its
neighbors [41].

Definition 2.59. Bonacich’s eigenvector centrality: In 1972, Phillip Bonacich [9]
introduced a centrality measure that is computed using eigenvectors of adjacency
matrices. In special, he presented three different approaches to evaluate the central-
ity measure and all three of them result in the same valuation of the vertices. The
difference between these methodologies are in a constant factor. In the following,
we assume that the graph G is undirected, connected, without self-loops, and non-
weighted. As the graph is undirected and without self-loops, the adjacency matrix
A is symmetric and all diagonal entries are zero. The three methods that score each
vertex are:

1. The factor analysis approach;
2. The convergence of an infinite sequence; and
3. The solution of a simultaneous linear equation system.

Here, we only focus on the third approach. It follows the idea of calculating an
eigenvector of a linear equation system. If we define the centrality of a vertex to be
a weighted sum of the centralities of its adjacent vertices, where the weight is given
by the network topology, we get the following equation system:

2Recall that the left and right eigenvectors have zero k-th entries after the removal of vertex k.
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si D
X

j2V
Aijsj; (2.52)

in which si is the Bonacich score or centrality of vertex i. In a matrix form,

s D As: (2.53)

Equation (2.53) has a single solution only if det.A � I/ D 0, where I is the
identity matrix. We can instead solve for s using the eigenvalue problem of A, i.e.,
�s D As.

Definition 2.60. Katz index: This index first appeared in the context of social
networks to determine the importance or status of an individual [38]. To take
the number of intermediate individuals into account, a damping factor ˛ > 0 is
introduced: the longer the path between two vertices i and j is, the smaller should
its impact on the status of j be. The associated mathematical model is hence a non-
weighted, directed graph G D hV ;E i without self-loops and associated adjacency
matrix A. Using the fact that .Ak/ji holds the number of paths from j to i with length
k, the status of vertex i is:

Ck.i/ D
1X

kD1

X

j2V
˛k.Ak/ji: (2.54)

In matrix notation, we have:

CK D
1X

kD1

˛k.AT/k1V ; (2.55)

in which 1V is the V-dimensional vector where every entry is 1. Assuming that
˛j�0j < 1, where �0 is the largest eigenvalue of A, the infinite series converges.
Thus, we can find a closed form expression for the status index of Katz:

CK D
1X

kD1

˛k.AT/k1V D .I � ˛AT/�11V (2.56)

or in another form:

.I � ˛AT/CK D 1V ; (2.57)

which is an inhomogeneous system of linear equations that emphasizes the feedback
nature of the centrality: the value of CK.i/ depends on the centrality values of
neighbors of i in the graph, i.e., CK.j/, j ¤ i.
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Definition 2.61. Web page centrality—PageRank: PageRank (PR) is a well-
known measure used by Google to rank web pages. It is supposed to simulate the
behavior of a user browsing the Web. Most of the time, the user visits pages just by
surfing, i.e., by clicking on hyperlinks of the page he/she is on. Another manner is to
jump to another page by typing its URL on the browser, or going to a bookmark, etc.
In a network, this process can be modeled by a simple combination of a random walk
with occasional jumps toward randomly selected vertices. This can be described by
the simple set of implicit relations [64]:

p.i/ D q

V
C .1 � q/

X

j2V Wj!i

p.j/

k.out/
j

: (2.58)

Here, V is the number of vertices of the graph, p.i/ is the PR value of vertex i,
k.out/

j the out-degree of vertex j, and the sum runs over the vertices pointing toward
(direct connection to) i. The damping factor q 2 Œ0; 1� is a probability that weighs
the mixture between the realized random walk and random jumps.

For any q > 0, the process reaches stationarity, as a walker has a finite (no matter
how small) probability to escape from a dangling end, whenever it lands there. When
q D 0, the process may not be stationary and PR is ill defined. When q D 1, instead,
the jumping process dominates and all of the vertices have the same PR-value 1=V.

PR goes beyond the concept of in-degree. In order to have a large PR for a vertex,
it is important to have many neighbors pointing at that vertex, i.e., large in-degree,
but it is also important that the neighbors have large PR values themselves. So, if
two vertices have equal in-degree, the vertex with more “important” neighbors will
have larger PR.

Definition 2.62. Eigenvector centrality: The eigenvector centrality, like the
PageRank, relies on the principle that the importance of a vertex depends on
the importance of its neighbors [64]. The relationship that the eigenvector centrality
captures is more straightforward than that in PageRank: the prestige xi of vertex i is
simply proportional to the sum of the prestiges of the neighboring vertices pointing
to it. Numerically,

�xi D
X

j2V Wj!i

xi D
X

j2V
Ajixj D .ATx/i: (2.59)

We see that xi is basically the i-th component of the transposed eigenvector of
the adjacency matrix A associated to the eigenvalue �. We observe that the trivial
eigenvector with all of the components equal to zero is always a solution of (2.59).
From (2.59), we also see that singleton vertices have zero centrality. In general,
vertices pointed at by vertices with zero centrality also have zero centrality and
this effect will propagate to other vertices, so that in many cases the eigenvector
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centrality would not give any information about a large fraction of vertices. To avoid
this, it is useful to make the following modification: to each vertex, we assign a
prestige �, which is independent of its relationships with the other vertices. As a
result, Eq. (2.59) becomes [64]:

xi D ˛.ATx/i C �: (2.60)

The role of the parameter � reminds that of the damping factor q in PageRank.
The parameter ˛ weighs the relative importance of the contribution of the peers
versus that of the vertex itself.

2.3.5 Classification of the Network Measurements

As it can be noticed, the complex network literature has proposed a myriad of
network measurements that capture different aspects of the network structure.
The provided list is far from being exhaustive. New network measurements are
introduced to suit the needs of computational problems that arise in our day-to-day
problems. Some of them may be domain-dependent and others may even require
external information to be computed. In the previous sections, we have introduced
the network measurements by dividing them into functional roles. In this section,
we re-compile these network measurements using a meta-information approach.
We classify them in accordance with the type of information they use in their
computation. We define three classes of network measurements, as follows:

• Strictly local measures: these measures only employ information from the vertex
itself to be computed. Strictly local measures are always vertex-level measures.

• Mixed measures: besides using strictly local information, these measures also
use topological information from its direct and indirect neighborhoods. This
additional information can vary from simply quasi-local topology, such as the
number of triangles in the neighborhood, to long-range information, such as
the shortest path between the two most distant pair of vertices. Mixed measures
are always vertex-level measures.

• Global measures: these network measurements make use of the entire network
structure to be computed. Global measures are always network-level measures.

Figure 2.21 portrays a schematic of the three classes of network measurements.
Strictly local and mixed measures are vertex-level, while global measures must be
network-level. Table 2.1 reports the classification of the network measurements we
have discussed so far in this chapter.
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Ref.

Strictly local

Mixed

Global

Fig. 2.21 Intuition for classifying network measurements in terms of the type of information they
need to be computed

2.4 Dynamical Processes in Complex Networks

One of the fundamental differences between graph theory and complex network
studies is that the latter focus not only on the static structures but also on the
dynamical properties of networks under study. Therefore, in this section, we review
five dynamical processes in networks: random walk, lazy random walk, self-
avoiding walks, tourist walk, and epidemic spreading. Besides these ones, there
are many other dynamical processes in networks, such as information transmission,
percolation in regular lattices and in complex networks, and synchronization among
oscillators (vertices). However, the last ones are not the focus of this book.

2.4.1 Random Walks

A random walk is a mathematical formalization of a trajectory that consists of
taking successive random steps [63]. It has been used to describe many natural
phenomena and it has also been applied to solve a wide range of engineering
problems. Some of these include graph matching and pattern recognition [33],
image segmentation [34], neural network modeling [37, 47], network centrality
measure [59], network partition [81], construction and analysis of communication
networks [78, 80].

Given a network G D hV ;E i and a starting vertex v 2 V , we select a neighbor
of it at random, and move to this neighbor; then we select a neighbor of this new
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Table 2.1 Classification of the network measurements using a meta-
information approach

Definition Description Classification

2.10 Degree Strictly local

2.11 In- and out-degree Strictly local

2.12 Average degree (connectivity) Global

2.13 Average in- and out-degree Global

2.14 Strength Strictly local

2.15 In- and out-strength Strictly local

2.35 Density Global

2.36 Assortativity Global

2.37 Local assortativity Mixed

2.38 Non-normalized rich-club coefficient Global

2.39 Normalized rich-club coefficient Global

2.40 Diameter Global

2.41 Vertex eccentricity Mixed

2.42 Radius Global

2.43 Wiener index Global

2.44 Global efficiency Global

2.45 Average harmony Global

2.46 Clustering coefficient Mixed

2.47 Network clustering coefficient Global

2.48 Cyclic coefficient Mixed

2.49 Global cyclic coefficient Global

2.50 Modularity Global

2.51 Topological overlap Mixed

2.52 Eccentricity centrality (minimax criterion) Mixed

2.53 Total distance centrality (minisum criterion) Mixed

2.54 Betweenness Mixed

2.55 Communicability Mixed

2.56 Flow betweenness vitality Mixed

2.57 Closeness vitality Mixed

2.58 Dynamical vitality Mixed

2.59 Bonacich centrality Mixed

2.60 Katz index Mixed

2.61 PageRank Mixed

2.62 Eigenvector centrality Mixed
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vertex again at random, and move to it, and so on. The random sequence of vertices
selected this way is a random walk on the graph. A finite random walk of length
t > 0 has the same intuition, but we stop after making t � 1 random transitions.
If the graph is weighted, then we transition to a neighbor u with probability that is
proportional to the edge weight Avu.

In essence, the theory of random walks on networks and the theory of finite
discrete Markov chains are basically the same, so that every discrete Markov
chain can be conceived as random walk on a graph. Discrete Markov chains are
stochastic processes whose future states are conditionally independent of the past
states provided that the present state is known. In graph theory, the states are denoted
by the vertices in the graph. In a graph theory context, given that a walker is at vertex
v, the Markovian property affirms that the probability of visiting a neighboring
vertex is independent on the past trajectories of that walker. We formalize that
concept in the following.

Definition 2.63. Discrete-time Markov chain: A discrete-time Markov chain is a
stochastic process fXt W t 2 Ng, where the random variable X assumes values in a
countable set N at any given time t. The transition probability to state q 2 N is:

PŒXt D q j Xt�1; Xt�2; : : : ; X0� D PŒXt D q j Xt�1�; (2.61)

i.e., the probability of the next outcome only depends on the last value of the process.
Therefore, past trajectories are irrelevant.

Remark 2.32. In the context of graph theory, the countable set is composed of the
vertex set, i.e., N D V .

Remark 2.33. In Markovian processes, each feasible value in the countable set V
is called a state.

Definition 2.64. Transition probability: The transition probability of going from
state (vertex) q to u is denoted by Pqu.t/, q; u 2 V , which is a shorthand for Pqu.t/ D
PŒXt D u j Xt�1 D q�. Mathematically, the transition probability is defined in
accordance with the network topology, as follows:

Pqu D Aqu
P

i2V Aqi
; (2.62)

i.e., the stronger is the edge weight linking q to u, the more likely will be that
transition.

Remark 2.34. Rewrite (2.62) as:

Pqu D Aqu

K.q/
; (2.63)
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in which K.q/ D P
i2V Aqi. Then,

• If the network is undirected and non-weighted, then K.q/ D kq, where kq is the
degree of vertex q.

• If the network is directed and non-weighted, then K.q/ D k.out/
q , where k.out/

q is
the out-degree of vertex q.

• If the network is undirected and weighted, then K.q/ D sq, where sq is the
strength of vertex q.

• If the network is directed and weighted, then K.q/ D s.out/
q , where s.out/

q is the
out-strength of vertex q.

Definition 2.65. Transition matrix: In Markovian processes, we can map all of
the feasible transitions using the transition matrix P.t/ as follows:

P.t/ D

0

B
B
B
@

P1;1.t/ P1;2.t/ : : : P1;V.t/
P2;1.t/ P2;2.t/ : : : P2;V.t/

:::
:::

: : :
:::

PV;1.t/ PV;2.t/ : : : PV;V.t/

1

C
C
C
A

: (2.64)

Note that the transition matrix completely characterizes the Markovian process
because, the immediate future state X.t C 1/ is only determined by the current state
X.t/, regardless of the past trajectories.

Remark 2.35. If P.t/ is immutable for all t 2 N, then the Markov process is said
to be time-homogenous. In a graph theory perspective, this is equivalent to saying
that the graph topology does not change during the walk. For clarity, if the Markov
process (or random walk) is time-homogeneous, we drop the time indexing of the
transition matrix.

Definition 2.66. m-step transition matrix: For a time-homogeneous Markovian
process, we can define the m-step transition matrix, m > 0, as Pm. Essentially, the
entry Pm

qu encodes the transition probability of starting from state or vertex q and
arriving at state or vertex u after exactly m transitions.

Remark 2.36. The original transition matrix defined in (2.64) is a 1-step transition
matrix.

For each realization of the Markovian process ! 2 ˝, let pt.j/ be the number of
times j appears in the random walk that visits the states X0.!/; X1.!/; X2.!/; : : :.
Then, pt.j/ is the total number of times the state j is visited by the stochastic process
X in realization !. If pt.j/ is finite, then X eventually leaves state j never to return.
Mathematically, there must be an integer n such that Xn.!/ D j and Xm.!/ ¤ j,
8m > n. In contrast, if pt.j/ D 1 for a realization !, then X keeps on visiting
j again and again. These two classes that state j can assume are important from a
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practical point-of-view [14]. We now turn our attention in providing formal tools to
classify states according to those perspectives.

The passage time function counts the number of times a given vertex has been
visited during a random walk. We formalize this notion in the following.

Definition 2.67. Passage Time: The passage time is a function pt W V ! N

such that pt.q/ is the number of times the Markovian process reaches the state q.
Mathematically,

pt.q/ D jft 2 N j Xt D qgj

D
1X

tD0

1ŒXt.!/Dq�: (2.65)

Recall that 1ŒA� is the indicator function that yields 1 whenever the logical
expression A is true, and returns 0, otherwise. Basically, we increment pt.q/ by
one each time the stochastic process X visits state or vertex q.

We now define the so-called potential matrix of the Markovian process X.

Definition 2.68. Potential or fundamental matrix: The potential matrix R
encodes the expected number of times each vertex is visited when we start from any
given other vertex. Mathematically, its .i; j/-th entry is expressed as:

Rij D E Œpt.j/ j X.0/ D i� ; (2.66)

which can be seem as the mean passage time to reach j conditioned that the walker
starts at vertex i.

Plugging (2.65) into (2.66) and using the monotone convergence theorem,
we get:

Rij D E

" 1X

nD0

1ŒXnDj�

ˇ
ˇ
ˇ
ˇ
ˇ

X.0/ D i

#

D
1X

nD0

E

h
1ŒXnDj�

ˇ
ˇ
ˇ X.0/ D i

i

D
1X

nD0

P
�

Xn D j
ˇ
ˇ
ˇ X.0/ D i

�

D
1X

nD0

Pm
ij : (2.67)

Let T be the time that state or vertex j is first visited by a realization of the
Markovian process.
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Definition 2.69. Recurrent state: State j is recurrent if:

P.T < 1 j X.0/ D j/ D 1: (2.68)

As a consequence, the number of returns of a recurrent state is always infinite,
that is:

Rjj D E Œpt.j/ j X.0/ D j� D 1: (2.69)

Definition 2.70. Transient state: State j is transient if:

P.T D C1 j X.0/ D j/ > 0: (2.70)

As a consequence, the number of returns of a transient state is always finite,
that is:

Rjj D E Œpt.j/ j X.0/ D j� < 1: (2.71)

Remark 2.37. There are only two states: recurrent or transient. In this way, if j is
not recurrent, then it must be a transient state, and vice versa.

Remark 2.38. Let j be a recurrent state. Then, we sub-classify it as null recurrent if:

EŒT j X.0/ D j� D 1; (2.72)

otherwise, we call it non-null recurrent.

Remark 2.39. Let j be a recurrent state. Then, we sub-classify it as periodic with
period ı if ı � 2 is the largest integer for which:

P.T D nı for some n � 1/ D 1: (2.73)

otherwise, we call it aperiodic.

Definition 2.71. Closed set of states: A set of states is said to be closed if no state
outside it can be reached from any state inside it.

Definition 2.72. Absorbing state: A state forming a closed set by itself is called an
absorbing state. We say that state q is absorbing if there is a probability 1 to go from
q to itself. In other words, once an absorbing state has been reached in a random
walk, the walker stays in this state forever.

Definition 2.73. Irreducible closed set: A closed set is irreducible if no proper
subset of it is closed.
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Definition 2.74. Irreducible Markov chain: A Markov chain is called irreducible
if its only closed set is the set of all states. Therefore, a Markov chain is irreducible
if and only if all states can be reached from each other.

The state set of the Markov chain process can be divided into the absorbing state
set VA and its complementary set, the transient state set VT D V nVA.

Remark 2.40. The mean passage time for transient states can be obtained by
computing the fundamental matrix only for the transient states R.transient/:

R.transient/ D .I � PT/�1; (2.74)

in which I is the jVT j�jVT j identity matrix and PT is the transition probability matrix
restricted to the transient states. The entry R.transient/

q0q contains the mean passage time
in state q 2 VT during random walks starting in state q0. Hence,

E Œpt.q/� D Œp0.transient/R.transient/�q; (2.75)

in which p0.transient/ is the transpose of the initial probability vector when we only
consider transient states. Note that the expectation operation is taken over random
walks with arbitrary lengths.

Given a distribution p.t/, dim.p.t// D 1 � V , where the v-th entry denotes the
probability that the system will be at vertex v 2 V , the evolution of pv.t/ is:

pv.t C 1/ D
X

.u;v/2E
P.t/uvpu.t/: (2.76)

Analogously, the evolution of the distribution p.t/ is:

p.t C 1/ D p.t/P.t/: (2.77)

Intuitively, the evolution of the probability distribution p.t/ as a function of t can
be seen as describing a diffusion process in the underlying graph. The diffusion
is completely characterized once we know the initial distribution p.0/ and the
transition matrices P.t/.

Definition 2.75. Stationary distribution: If the network G is a finite, irreducible,
time-homogenous, and aperiodic Markov chain, then it has a unique stationary
distribution 
 D Œ
1; : : : ; 
V � that can be reached from any initial distribution p.0/.
In the dynamic equation, the stationarity is reached when the following holds:


 D 
P: (2.78)
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Each entry of the stationary distribution is of the form:


i D 1

E ŒT j X.0/ D i�
; (2.79)

in which recall that E ŒT j X.0/ D i� is the expected time to regress to vertex i
starting from i.

For an undirected network, we have that:

E ŒT j X.0/ D i� D
P

j2V kj

ki
DD 2E

ki
; (2.80)

in which E is the number of edges in the network and ki is the degree of vertex i.
Substituting (2.80) in (2.79), we get:


i D ki

2E
: (2.81)

2.4.2 Lazy Random Walks

The unique stationary distribution in Definition 2.75 only holds true, among other
things, for aperiodic networks. However, if the network is periodic, there is an easy
way to fix the periodicity problem by introducing the lazy random walk. In a lazy
random walk at time t, the walker may decide upon two different actions:

1. It can transition to a neighboring vertex in accordance with the transition matrix
with probability 1=2; or

2. It can stay at the current vertex3 with probability 1=2.

Remark 2.41. The lazy random walk can be viewed as a vanilla version of the
classical random walk in a network in which we add ku self-loops to every vertex u
in the original graph G .

Formally, the evolution of the probability distribution p.t/ of a lazy random walk
is given by:

p.t C 1/ D 1

2
p.t/ C 1

2
p.t/P.t/

D p.t/
1

2
ŒI C P.t/�

D p.t/P0.t/; (2.82)

3Hence, the terminology “lazy” random walk.
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in which P0.t/ is the modified transition matrix for the lazy random walk:

P0.t/ D 1

2
ŒI C P.t/� : (2.83)

Note also that the stationary distribution of a lazy random walk is identical to that
of the classical random walks portrayed in Definition 2.75. To see that, it suffices
to see that P0.t/ is also a valid transition matrix, just like the original P.t/. As long
as the graph G is finite, irreducible, time-homogenous, and aperiodic, the unique
stationary distribution always exists.

2.4.3 Self-Avoiding Walks

A self-avoiding walk on a network G is a path that visits no vertex more
than once. Self-avoiding walks were first introduced in the chemical theory of
polymerization [27], and since then their critical behavior has attracted attention
of mathematicians and physicists [49].

Broadly speaking, self-avoiding walks are usually considered in infinite lattices,
so that steps are only allowed in a discrete number of directions and of certain
lengths. Self-avoiding walks cannot be Markovian, because we need to check the
past trajectory in order to list the possible futures states that the process can assume.
The research in [49] provides a comprehensive review on self-avoiding walks.

2.4.4 Tourist Walks

A tourist walk can be conceptualized as a walker (tourist) aiming at visiting sites
(data items) in a P-dimensional map, representing the data set. At each discrete
timestep, the tourist follows a simple deterministic rule: it visits the nearest site that
has not been visited in the previous � steps. In other words, the walker performs
partially self-avoiding deterministic walks over the data set, where this self-avoiding
factor is limited to the memory window � � 1. This quantity can be understood as a
repulsive force emanating from the sites in this memory window, which prevents
the walker from visiting them in this interval (refractory time). Therefore, it is
prohibited that a trajectory intersects itself inside this memory window. In spite of
being a simple rule, it has been shown that this kind of movement possesses complex
behavior when � > 1 [48]. Note that tourist walks differ from self-avoiding random
walks in that the former is a deterministic process, while the latter is a random
process.

The tourist’s behavior heavily depends on the data set’s configuration and the
starting site. In computational terms, the tourist’s movements are entirely realized
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Fig. 2.22 Illustration of a
tourist walk with � D 1. The
red (dark gray) and green
(light gray) dots represent
visited and unvisited sites,
respectively. The dashed lines
indicate the transient part of
the walk, whereas the
continuous lines, the attractor
of the walk

by means of a neighborhood table. This table is constructed by ordering all the data
items in relation to a specific site. This procedure is performed for every site of the
data set.

Each tourist walk can be decomposed in two terms: (1) the initial transient part
of length t and (2) a cycle (attractor) with period c. Figure 2.22 shows an illustration
of a tourist walk with � D 1. In this case, one can see that the transient length is
t D 3 and the cycle length, c D 6.

Considering the attractor or cycle period as a walk section that begins and ends
at the same site of the data set may lead one to think that, once the tourist visits a
specific site, a new visit to it would configure an attractor. Nevertheless, this is a very
simple, and likely to fail, approach for attractors’ detection. In fact, during a walk,
a site may be re-visited without configuring an attractor. Besides, the tourist’s finite
memory � allows some steps of the walk to be repeated without configuring an
attractor. For instance, if we had chosen a � D 6 for the walk in Fig. 2.22, the re-visit
performed by the tourist on the site 4 would have not configured an attractor, since
the site 5 would still be forbidden to be visited again; hence, the tourist would be
compelled to visit another site. This characteristic enables sophisticated trajectories
over the data set, at cost of also increasing the difficulty in detecting an attractor.

In the majority of the works related to tourist walk [40, 48, 71], the tourist
may visit any other site other than the ones contained in its memory window. As
� increases, there is a significant chance that the walker will begin performing
large jumps in the data set, since the neighborhood is most likely to be already
visited in its entirety within the time frame �. In the context of data classification,
this is an undesirable characteristic that can be simply avoided by using a graph
representation of the input data. In this way, the walker is only permitted to visit
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vertices, represented now by the sites, that are in its connected neighborhood (link).
With this modified mechanism, for large values of �, it is very likely that the walker
will get trapped within a vertex, not being able to further visit other vertices of the
neighborhood. In this scenario, we say that the walk only had a transient part and
the cycle period is null (c D 0).

2.4.5 Epidemic Spreading

Epidemic spreading in complex networks has triggered much attention to many
researchers. It is a dynamic process within a network and the main concern is how
the network structure attenuates or amplifies disease breakouts or immunization.
Since epidemic spreading processes can be considered as information transmission,
it is useful for machine learning. For example, epidemic spreading may be directly
related to data label propagation in semi-supervised learning. Although we have
not found works connecting epidemic spreading and machine learning in literature
yet, we would like to share such a prediction with the readers. The readers who are
interested in this topic are invited to develop their new techniques in this direction.
For the above-mentioned purpose, we here review two basic models of epidemic
spreading in complex networks. For a comprehensive review, see [23, 62, 83].
For some development related to information transmission in complex networks,
see [18, 50, 76, 77, 79].

The most extensively studies of epidemic models are about the susceptible-
infected-recovered and susceptible-infected-susceptible models [3, 4, 36]. We
review these models in the following.

2.4.5.1 Susceptible-Infected-Recovered (SIR) Model

In the SIR model, each individual is at one of the three states: susceptible (does
not infect others but may be infected), infected, or recovered (will not be affected
again). At each time step, assume that a susceptible individual may be infected by
another infected person with probability ˛ and that the recovering rate of infected
individuals is ˇ. Then, the epidemic process in the SIR model can be described by
the following dynamic equations:

dx

dt
D �˛yx; (2.84)

dy

dt
D �˛yx � ˇy; (2.85)

dz

dt
D �ˇy; (2.86)
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in which x, y and z are the ratios of susceptible, infected, and removed individuals
to the entire population, respectively. In a network setting, each individual is
represented by a vertex and links exist when two individuals have some kind of
contact. In this network, a susceptible vertex will be infected only if it has at least
one infected neighbor.

2.4.5.2 Susceptible-Infected-Susceptible (SIS) Model

For some diseases, such as influenza and pulmonary tuberculosis, the recovered
individual can be infected again. This situation is not considered by the SIR model.
For this reason, the SIS model was introduced. The only difference between them is
that in SIS model, the infected individuals will return to the susceptible state after
recovering. The SIS model is defined by the following equations:

dx

dt
D �˛yx C ˇy; (2.87)

dy

dt
D ˛yx � ˇy: (2.88)

2.4.5.3 Epidemic Spreading in Complex Networks

In [43], the authors studied the SIS model on small-world networks of Watts and
Strogatz, which have been presented in Sect. 2.2.2. They found that even when
the rewiring probability p is very small (for instance, p D 0:01), the disease
can permanently exist with very small infection ratios and without fluctuations in
the population ratios. In contrast, when p gets large enough (for example, p D 0:9),
periodic oscillations of the number of infected individuals start to appear.

Consider the SIS model in random networks and assume that � denotes the
spreading rate. In [6, 7], the authors uncovered a spreading threshold �c. If the
value of � is above the threshold, i.e., � > �c, the infection spreads and becomes
persistent. Below it, the infection disappears. Such a result implies that the disease
can persist only if it infects a sufficiently large amount of individuals. However,
in real situations, many diseases can persistently exist with just a small fraction of
the population being infected, such as computer viruses and measles. In [6, 7], the
authors obtained the epidemic threshold of the SIS dynamics in general networks as
follows:

�c D hki
hk2i ; (2.89)

in which h:i represents an averaging operator over all of the network vertices,
and k denotes the degree. Note that hki D Nk, which is the network connectivity.
In scale-free networks, when the network size goes to infinite, we have that
�c D 0. The absence of epidemic threshold in scale-free networks provides a good
explanation for the empirical data [6, 7].
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2.5 Chapter Remarks

In this chapter, we have introduced the basic notion of graphs and some of the
network topologies that are well-known by the complex network community.
We have also explored a comprehensive list of network measurements, which
are able to extract structural information of the data relationships in a systematic
manner. Finally, we have reviewed classical dynamic processes, such as the random
walk, self-avoiding walk, tourist walk, and epidemic spreading with a focus on
networked environments.
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